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TOPOLOGY AND GEOMETRY OF NONTRIVIAL RANK-ONE CONVEX HULLS
FOR TWO-BY-TWO MATRICES
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Abstract. Continuing earlier work by Székelyhidi, we describe the topological and geometric struc-
ture of so-called T4-configurations which are the most prominent examples of nontrivial rank-one convex
hulls. It turns out that the structure of T4-configurations in R

2×2 is very rich; in particular, their collec-
tion is open as a subset of (R2×2)4. Moreover a previously purely algebraic criterion is given a geometric
interpretation. As a consequence, we sketch an improved algorithm to detect T4-configurations.
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1. Introduction

T4-configurations (see Def. 2.2 below) are the focus of several recent investigations [9, 11, 18]. This interest
can be explained by their importance for a variety of different fields. Firstly, rank-one convex hulls of sets and
rank-one convex envelopes of functions are intrinsically important notions in the calculus of variations [4, 13].
Secondly, the rank-one convex envelope of a nonconvex microscopic energy function of a material serves as a
model for its macroscopic energy, as an approximation of the quasiconvex envelope. The quest for a reliable
method for the computation of these hulls and envelopes highlights the relevance of rank-one convexity for
engineering [2]. Thirdly, rank-one convex hulls are, in connection with convex integration, important tools
for the regularity theory of elliptic systems. Müller and Šverák develop these techniques to obtain Lipschitz
continuous (weak) solution to elliptic systems which are nowhere C1 [14]. The use of T4-configurations as a
basis of counterexamples to regularity apparently goes back to Scheffer [16].

Here, we show that T4-configurations are not as exotic objects as one would expect at first sight. Namely,
we show that they form an open set in the set of quadruples of matrices in R

2×2 (Prop. 2.5) (see also [9],
Prop. 4.26). We remark that this is no longer true in higher space dimensions. This is another manifestation
of the observation that the case of R

2×2 is the most interesting one. Rank-one convexity is always implied
by quasiconvexity, which is the central notion in the calculus of variations. However, the converse is wrong in
higher space dimensions [17]. In R

2×2, equality of rank-one convexity and quasiconvexity is a long-standing
open problem.

In Section 3, we give a purely geometric characterization of the different types of T4-configurations as well as
so-called degenerate T4-configurations (Th. 3.8). In Section 4, we explore the topological structure of the set of
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Figure 1. A T4-configuration, projected to R
2.

T4-configurations in R
2×2. The different connected components are described as well as their boundaries. We

close in Section 5 with an algorithmic method for the efficient detection of T4-configurations. There, we improve
the algebraic methods presented in [10, 11] for the particular case of R

2×2. In this case, some time-consuming
(semi-)algebraic tests can be replaced by simple linear algebra. In this section as well as the previous ones, we
exploit deep ideas presented in [18]. The methods described in Section 5 can be used to augment and improve
previous algorithms for the computation of rank-one convex hulls [1, 2, 5].

2. T4-configurations are open in R
2×2

For the reader’s convenience, we recall the definition of the rank-one convex hull. A detailed discussion can
be found in [4, 8, 9, 12].

Definition 2.1.
(a) A function f : R

m×n → R is called rank-one convex if for all fixed A, X ∈ R
m×n with rank(X) = 1 the scalar

function t �→ f(A + tX) is convex in the usual sense.
(b) For a compact set K ⊂ R

m×n, its rank-one convex hull is defined as

Krc := {Y ∈ R
m×n

∣∣ f(Y ) ≤ sup
X∈K

f(X) ∀ f : R
m×n → R rank-one convex}.

Since obviously every convex function is rank-one convex, the rank-one convex hull Krc of a compact set K is
contained in the usual convex hull, which will be denoted Kco.

Our main object of study will be T4-configurations. They are the most prominent example of sets with a
non-trivial rank-one convex hull.

Definition 2.2. A set K = {X1, . . . , X4} ⊂ R
m×n with rank(Xj−Xk) ≥ 2 for j �= k is called a T4-configuration

if a permutation σ of {1, . . . , 4} exists (with σ(1) = 1), and rank-one matrices D1, . . . , D4 ∈ R
m×n, positive

scalars κ1, . . . , κ4, and matrices C1, . . . , C4 ∈ R
m×n such that the relations

Cj+1 − Cj = Dj , Xσ(j) − Cj+1 = κjDj (1)

hold, where the index j is counted modulo 4 (see Fig. 1).

This definition is taken from [10,11]. The difference to similar definitions in [9], Definition 7, and [18], Defi-
nition 1, is only that T4-configurations are considered here as sets, rather than tuples.

It is crucial for the present investigations that T4-configurations in R
2×2 can be characterized differently, due

to a result of Székelyhidi [18] (Th. 2.3 below). In this characterization, every set K := {X1, . . . , X4} ⊂ R
2×2

is considered as an edge-colored graph with vertices X1, . . . , X4. The color of the edge joining Xj and Xk is
determined by the sign of det(Xj − Xk). As det(Xj − Xk) = det(Xk − Xj) in R

2×2, this sign is well-defined.
To simplify the presentation, we will use dashed and solid lines instead of colors. The edge joining Xj and Xk
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Figure 2. Possible sign configurations.

is solid if det(Xj − Xk) > 0, and dashed if det(Xj − Xk) < 0. Two vertices Xj and Xk are not joined by an
edge if det(Xj − Xk) = 0. The resulting graph is called the sign diagram of X1, . . . , X4.

We remark that Definition 2.2 is invariant under permutation of Xj as well as under multiplication (from the
left, say) of all Xj by

(−1 0
0 1

)
. Therefore, it is natural to say that two sign diagrams are equivalent if they can

be obtained from each other by renumbering the nodes or exchanging the positive (solid) and negative (dashed)
edges.

For example, the sign diagram associated to classical T4-configuration by Tartar [19]

X1 =
(

1 0
0 3

)
, X2 =

(
−3 0
0 1

)
, X3 =

(
−1 0
0 −3

)
, X4 =

(
3 0
0 −1

)

is shown as sign diagram (A) in Figure 2.
Now we have the notation for the important theorem [18], Theorem 2, mentioned above.

Theorem 2.3 (Székelyhidi, 2003). Let K = {X1, . . . , X4} ⊂ R
2×2 with det(Xj − Xk) �= 0 for j �= k. Then

there are exactly three cases:
(1) If the sign diagram is, up to equivalence, as in (A) of Figure 2, then there exists exactly one permutation

σ of {1, . . . , 4} with σ(1) = 1 such that (1) has a solution.
Such a set K will be called a simple T4-configuration.

(2) If the sign diagram is, up to equivalence, as in (B) of Figure 2, then exactly one of the following holds:
(a) There exists a P ∈ Kco with det(Xj − P ) < 0 for all j = 1, . . . , 4. In this case, (1) has a solution

for all permutations σ of {1, . . . , 4}.
K will be called a sixfold T4-configuration.

(b) There exists a P ∈ Kco with det(Xj − P ) = 0 for all j = 1, . . . , 4. In this case, Krc = Kco ∩ {Y
∣∣

det(Y − P ) = 0}.
K will be called a degenerate T4-configuration.

(c) There exists a P ∈ Kco with det(Xj −P ) > 0 for all j = 1, . . . , 4. In this case, the rank-one convex
hull is trivial, Krc = K.

(3) For all other sign diagrams, the rank-one convex hull is trivial, Krc = K.

Examples of sixfold and degenerate T4-configurations can be found in Example 4.4 below. We learned about
their existence from Bernd Kirchheim [9].

The importance of T4-configurations in the case of R
2×2 becomes evident in the following theorem [18], The-

orem 1.

Theorem 2.4 (Székelyhidi, 2003). Let K ⊂ R
2×2 be a compact set such that rank(X−Y ) = 2 for all X, Y ∈ K,

X �= Y . Then K contains a simple, a sixfold or a degenerate T4-configuration.

We should stress that, in this paper, T4-configuration means either a simple T4-configuration or a sixfold
T4-configuration. We first state that T4-configurations are not as special as they might appear to be at first
glance (see [9], Prop. 4.26 for an alternative, elementary proof).
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Proposition 2.5. The set

T4(R2×2) := {(X1, . . . , X4) ∈ (R2×2)4
∣∣ K = {X1, . . . , X4} is a T4-configuration }

is open in (R2×2)4.

Proof. This follows easily from Theorem 2.3 and the continuity of the determinant. Namely, every set cor-
responding to a given sign diagram is open. For the set with sign diagram (A), this finishes the proof. For
sets with sign diagram (B), we observe P ∈ Kco is also an open condition (see also the Lem. 3.6, which is
independent from this proposition). �

As this proof relies on Székelyhidi’s deep Theorem 2.3, we wish to outline an alternative, elementary proof.
Without loss of generality, we can assume that the T4-configurations we consider are already suitably numbered.
Thus, {X1, . . . , X4} is a T4-configuration if and only if there exist matrices C1, . . . , C4 and λ1, . . . , λ4 ∈ (0, 1)
such that

det(Xj − Cj) = 0, (2)
Cj+1 = λjCj + (1 − λj)Xj (3)

for j ∈ {1, . . . , 4}, indices counted modulo 4. We regard the system of these equations as an implicit function
f : R

36 → R
20,

f(X1, . . . , X4, C1, . . . , C4, λ1, . . . , λ4) = 0.

The derivative Df is invertible with respect to the 20 variables Cj and λj for j ∈ {1, . . . , 4}. Hence the assertion
follows from the Implicit Function Theorem.

We close this section by remarking that Proposition 2.5 can not be generalized to space dimensions higher
than R

2×2.

Proposition 2.6. Let m, n ∈ N, and m ≥ 3 or n ≥ 3. The set

T4(Rm×n) := {(X1, . . . , X4) ∈ (Rm×n)4
∣∣ K = {X1, . . . , X4} is a T4-configuration }

has empty interior (with respect to the natural topology on (Rm×n)4).

Proof. This follows easily from a dimension argument. Condition (1) may be rewritten as

Xj = Cj + µj(Cj+1 − Cj), µj > 1 for j ∈ {1, . . . , 4} counted modulo 4, (4)
all 2 × 2-minors of (Cj+1 − Cj) vanish for j ∈ {1, . . . , 4} counted modulo 4. (5)

In R
2×3, there are 28 unknowns, namely C1, . . . , C4 ∈ R

2×3 and µ1, . . . , µ4 ∈ R. Condition (5) describes a variety
in R

28 in the variables C1, . . . , C4, µ1, . . . , µ4. Its dimension equals at most four times that of the variety of the
rank-one matrices in R

2×3, i.e., 4 · 4 = 16, plus 4 for the independent parameters µ1, . . . , µ4. (A computation
shows that the dimension equals indeed no less than 20, [6].) Every point in this variety with µj > 1 determines
at most one T4-configuration (X1, . . . , X4) via equation (4). Hence the set of four-tuples (X1, . . . , X4) forming
a T4-configuration is contained in the differentiable image of an affine variety and therefore by Sard’s Theorem
and the characterization of singular points of a variety (e.g., [7], Sect. 14) a 20-dimensional surface. The general
statement for arbitrary m, n follows by embedding R

2×3 into R
m×n. �

3. Geometric structure of configurations of type (B)

We now turn to the structure of the sets with sign diagram of type (B). We identify occasionally R
2×2 with

R
4. In particular, R

2×2 will be equipped with the standard inner product for matrices 〈·, ·〉, i.e., the Euclidean
inner product in R

4.
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Lemma 3.1. Let H be a three-dimensional linear subspace of R
2×2 with normal N . For a given point P ∈ H,

let R1(P ) ⊂ R
2×2 be the rank-one cone centered at P ∈ H,

R1(P ) :=
{

Y =
(

y1 y2

y3 y4

)
∈ R

2×2
∣∣ det(Y − P ) = 0

}
.

Then there exists a linear isomorphism TH : R
3 → H such that the following holds:

(1) If det(N) �= 0, then H ∩ R1(P ) is the image of the double cone

C := {(z1, z2, z3) ∈ R
3

∣∣ z2
1 + z2

2 − z2
3 = 0}

under the affine transformation (z1, z2, z3) �→ TH(z1, z2, z3) + P .
(2) If det(N) = 0, then H ∩ R1(P ) is the image of the pair of planes

E := {(z1, z2, z3) ∈ R
3

∣∣ z2
1 − z2

2 = 0}

under the affine transformation (z1, z2, z3) �→ TH(z1, z2, z3) + P .
Moreover, TH does not depend on the choice of P ∈ H.

Remark 3.2. The structure and shape of R1(P ) = P + R1(0) is independent of the choice of P . The same
applies to the structure and shape of R1(P )∩H for P ∈ H. We will use these facts frequently in the subsequent
proofs.

Proof. As stated in the previous remark, we may assume P = 0. The definition of N and R1(0) read

n1y1 + n2y2 + n3y3 + n4y4 = 0,

y1y4 − y2y3 = 0.

A substitution of y4 in the second equation yields for n4 �= 0

n1y
2
1 + n2y1y2 + n3y1y3 + n4y2y3 = 0 (6)

or, equivalently,

1
2

⎛
⎝ y1

y2

y3

⎞
⎠

T ⎛
⎝ 2n1 n2 n3

n2 0 n4

n3 n4 0

⎞
⎠

⎛
⎝ y1

y2

y3

⎞
⎠ = 0. (7)

Denote the symmetric matrix in (7) by S. Then

H ∩ R1(0) =

⎧⎨
⎩

(
y1 y2

y3 y4

) ∣∣ (y1, y2, y3) solves (7) and y4 = − 1
n4

3∑
j=1

njyj

⎫⎬
⎭ .

We now classify the geometric object associated with the quadric defined by equation (7). The characteristic
polynomial χS of S reads

χS(t) = t3 − 2n1t
2 − (n2

2 + n2
3 + n2

4)t + 2n4(n1n4 − n2n3),

and its derivative χ′
S has one negative and one positive root. By Rolle’s Theorem, S has at least one positive

eigenvalue λ1 and at least one negative eigenvalue λ3. Therefore the quadric in question is either the union of
two intersecting planes or a double cone, depending on whether 0 is an eigenvalue of S or not [15], p. 102. By
the structure of the characteristic polynomial, χS(0) = 0 if and only if det(N) = 0. The linear isomorphism TH
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Figure 3. Separation of determinant sign regions by H ∩ R1(0).

is easily constructed such that the canonical basis vectors of R
3 are mapped to the principal axes of S, using

the obvious scaling and the relation
∑4

j=1 njyj = 0 in order to ensure TH(R3) = H.
The case n4 = 0 is treated similarly. �

Corollary 3.3. (a) Let E ⊂ R
2×2 be a two-dimensional affine plane and X0 ∈ E arbitrary. Then J :=

E ∩ R1(X0) is exactly one of the following four objects:

(1) J = E, and det(X − Y ) = 0 for all X, Y ∈ E.
(2) J = {0}, and det(X − Y ) has the same sign for all X, Y ∈ E, X �= Y .
(3) J is a line L = X0 + span{W}, and det(X − Y ) has the same sign for all X, Y ∈ E with X − Y �∈

span{W}.
(4) J consists of two lines Lj = X0 + span{Wj} for j = 1, 2 intersecting at X0, and for X = X0 + λW1 +

µW2 ∈ E we have det(X − X0) = λµ c with a constant c = c(W1, W2) �= 0.
For fixed E, the case does not depend on the choice of X0 ∈ E.

(b) Let H be a three-dimensional subspace of R
2×2 such that det(N) �= 0 for its normal N . Then either of

the open sets {X ∈ H
∣∣ det(X) > 0} or {X ∈ H

∣∣ det(X) < 0} has two connected components while the other
one is connected (cf. Fig. 3).

Proof.
(a) Due to translation invariance we may assume X0 = 0. Let E = span{V1, V2}. If E is a rank-one plane

(this happens iff det(V1) = det(V2) = det(V1 + V2) = 0), case 1 clearly applies. For the other cases, let us
choose a vector V3 which is linearly independent of V1 and V2. We know from Lemma 3.1 that, for a generic
choice of V3, the intersection R1(0) ∩ span{V1, V2, V3} is a double cone. The conic sections which can occur
as the intersection of this double cone and the plane E are exactly the remaining cases 2, 3, and 4 since the
double cone and E intersect in 0. In case 2, the continuity of the determinant implies (−1)c det(X) > 0
for all X ∈ E \ {0} with a fixed c ∈ Z2. The more general statement follows from the trivial observations
det(X −Y ) = det((X0 + X −Y )−X0) and X0 + X + Y ∈ E. A similar argument shows case 3. The respective
claim in case 4 follows from an easy computation, c = det(W1 + W2).

(b) This follows from the continuity of the determinant, Lemma 3.1, and (a), or from a symmetry
argument. �

We recall from elementary analytic geometry that the zero set of

z2
1

a2
+

z2
2

b2
− z2

3

c2
= d
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is a one-sheeted (connected) hyperboloid for d > 0, a double cone for d = 0, and a two-sheeted hyperboloid for
d < 0. The following lemma is an easy consequence of the fact that double cones and one-sheeted hyperboloids
are ruled varieties.

Lemma 3.4. Let H be a three-dimensional linear subspace of R
2×2 with normal N such that det(N) �= 0. Let

TH : R
3 → H be the linear isomorphism of Lemma 3.1 with TH(C) = H∩R1(0). Then the surface of the image

of the one-sheeted hyperboloid Hd := {(z1, z2, z3) ∈ R
3

∣∣ z2
1 + z2

2 − z2
3 = d > 0} under TH consists of rank-one

lines.

Proof. We use the same notation as in the proof of Lemma 3.1 and demonstrate the proof for the case n4 �= 0.
In analogy to the proof of Lemma 3.1, where the case d = 0 is treated, one can see that for d > 0, a point in
TH(Hd) satisfies the relation

1
2
(n1y

2
1 + n2y1y2 + n3y1y3 + n4y2y3) = d.

Consequently, a line l(t) = c + tr for c ∈ TH(C), r ∈ H fixed, t ∈ R, lies in the surface of the TH(Hd), if and
only if the quadratic polynomial

n1(c1 + tr1)2 + n2(c1 + tr1)(c2 + tr2) + n3(c1 + tr1)(c3 + tr3) + n4(c2 + tr2)(c3 + tr3) − 2d (8)

vanishes for all t ∈ R. The constant term is zero because c ∈ TH. The coefficient of t2 equals

n1r
2
1 + n2r1r2 + n3r1r3 + n4r2r3,

hence (8) can be the zero polynomial only if r ∈ TH(C) = H∩R1(0), cf. (6). The lemma follows now from the
fact that every point on the surface of a one-sheeted hyperboloid lies on two lines belonging to two one-parameter
families. The case n4 = 0 is treated similarly. �

We now proceed to identify T4-configurations with sets on hyperboloids in the three-dimensional affine sub-
space they span. These hyperboloids belong to the one-parameter family of quadrics which is induced by the
double cone H∩R1(P ) (P ∈ H). The following proposition prepares the ground for Theorem 3.8 by excluding
some special cases (compare [3], Lem. 4 for a similar statement).

Proposition 3.5. Let K = {X1, . . . , X4} ⊂ R
2×2 be a set with sign diagram (B) (in particular, without rank-one

connections). Then exactly one of the following three possibilities holds.

(1) K is contained in a two-dimensional affine subspace. In this case Krc = K holds.
(2) K is contained in a unique three-dimensional affine subspace H with normal N such that det(N) = 0.

In this case Krc = K.
(3) K is contained in a unique three-dimensional affine subspace H with normal N such that det(N) �= 0.

Furthermore, a unique P ∈ H and d ∈ R exist such that K ⊂ P + TH(Hd) with TH as in Lemma 3.1,
where Hd := {(z1, z2, z3) ∈ R

3
∣∣ z2

1 + z2
2 − z2

3 = d}. In this case, det(P −Xj) has the same value for all
Xj ∈ K for j ∈ {1, . . . , 4}.

Proof.
Step 1. We show first that, if K is contained in a two-dimensional affine subspace, then its rank-one convex
hull is trivial. Without loss of generality we may assume that the affine span of K contains the zero matrix.
The possible conic section J , say, of the rank-one cone R1(0) and a two-dimensional subspace E are given by
Corollary 3.3. If J = E, then the elements of K ⊂ E are pairwise rank-one connected. For J = {0}, the
elements of E \ {0} have the same determinant (Cor. 3.3), which is not possible since K has sign diagram (B).
The same holds true if J is a line.

Therefore, we only need to study the case of two intersecting lines span{W1} and span{W2}. Figure 4 shows
how X1X2 and X3X4 can be separated. We use some ideas of Matoušek and Plecháč [12], Section 5. For a
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1
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µ

Figure 4. The matrices X1, . . . , X4 can be separated as indicated in the figure. This follows
from the fact that they have sign diagram (B) and det(λW1 + µ2W2) = λµ det(W1 + W2), as
shown in Corollary 3.3.

quadruple X1, . . . , X4 with sign diagram (B), we can assume without loss of generality that the elements are
labeled such that

det(X1 − X2) < 0, (9)
det(X3 − X4) < 0, (10)
det(Xj − Xk) > 0 for (j, k) ∈ {(1, 3), (1, 4), (2, 3), (2, 4)}. (11)

Let Xj := λjWj1 + µjW2 and suppose det(W1 + W2) > 0. Without loss of generality, we can assume λ1 > λ2.
This implies µ1 < µ2 (see inequality (9)). Likewise, we assume λ3 > λ4 and λ4 > λ1, which implies µ3 < µ4,
λ3 > λ2 and therefore µ3 > µ2. Now every point in the convex hull of X1, . . . , X4 lies in one of the following
open quadrants {λ < λ1, µ < µ2}, {λ > λ1, µ < µ3}, {λ < λ4, µ > µ2}, {λ > λ4, µ > µ3}, except for the union
L of the line segments [λ2, λ1] × {µ2}, {λ1} × [µ1, µ2], [λ4, λ3] × {µ3}, {λ4} × [µ3, µ4]. Rank-one convexity on
E reduces to separate convexity in (λ, µ). Hence Krc ⊂ L, and we may conclude K = Krc (cf. [10], Th. 3.11).

Step 2. Now suppose K is not contained in a plane. Let H be the unique three-dimensional affine subspace
spanned by K, and denote its normal by N . We consider first the case det(N) = 0. Without loss of generality
we may assume X4 = 0.

By Lemma 3.1, det(N) = 0 implies that there exist rank-one matrices V1, V2, V3 ∈ H such that H∩R1(0) =
span{V1, V3} ∪ span{V2, V3}. Since therefore rank(V1 + V3) = rank(V2 + V3) = 1, we obtain

det(λV1 + µV2 + νV3) = λµ det(V1 + V2).

Since the right-hand side is independent of V3, all sign relations of K are invariant under the canonical projection
to span{V1, V2} ⊂ H. The arguments from the planar case carry over, and we conclude that necessarily K = Krc

whenever det(N) = 0.

Step 3. We finally consider the general case det(N) �= 0. For a given matrix, let (ξ1, . . . , ξ4) be coordinates
with respect to the basis {X1, X2, X3, N} of R

2×2. Then the conditions for
∑3

j=1 ξjXj + ξ4N ∈ R
2×2 to lie in

H ∩ R1(0) read
ξ4 = 0 and det(ξ1X1 + ξ2X2 + ξ3X3) = 0.

Hence by a straightforward computation, using the relation a1b4 + a4b1 − a2b3 − a3b2 = det(A) + det(B) −
det(A − B),

ξ4 = 0,
1
2

⎛
⎝ ξ1

ξ2

ξ3

⎞
⎠

T ⎛
⎝ S11 S12 S13

S21 S22 S23

S31 S32 S33

⎞
⎠

⎛
⎝ ξ1

ξ2

ξ3

⎞
⎠ = 0, (12)
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with
Sjj = 2 det(Xj), Sjk = det(Xj) + det(Xk) − det(Xj − Xk) for j �= k. (13)

For fixed p = (p1, p2, p3) ∈ R
3 and fixed d ∈ R, let us define

Y(p, d) :=
{
y ∈ R

3
∣∣ 1

2 (y − p)T S(y − p) = d
}

. (14)

We remark that Y(p, d) is a cone (for d = 0) or a hyperboloid, centered at p; the hyperboloid is one-sheeted if
d > 0 and two-sheeted if d < 0. The claim is that there exist p ∈ R

3 and d �= 0 such that

K ⊂
{
y1X1 + y2X2 + y3X3

∣∣ y ∈ Y(p, d)
}
⊂ H.

This is equivalent to (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0) ∈ Y(p, d), i.e., for these four vectors vj

1
2
(vj − p)T S(vj − p) = d.

Spelling this out, with the new variable q := d − 1
2pT Sp, we obtain the linear system

⎛
⎜⎜⎝

1
S 1

1
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

p1

p2

p3

q

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

det(X1)
det(X2)
det(X3)

0

⎞
⎟⎟⎠ . (15)

An explicit computation shows det(S) = c det(N) for some nonzero constant c ∈ R, [6]. Since det(N) �= 0 this
implies that (15) has a unique solution. In particular, d = 1

2pT Sp and pT = S−1(det(X1), det(X2), det(X3))T .
The entries of the vector det(S)p are polynomials in the entries of X1, X2, X3, hence the same holds for the
entries of P := p1X1 + p2X2 + p3X3 and therefore for det(P − Xj). The claim that det(P − Xj) has the same
value for all Xj ∈ K follows from comparing the respective polynomials [6] (see [3] for a different argument). �

Lemma 3.6. Let K = {X1, . . . , X4} be a T4-configuration with sign diagram (B) (compare Fig. 2) and P the
center of the associated quadric from Proposition 3.5. Then

P ∈ intKco.

Proof. We first show that P �∈ ∂Kco. Assume the opposite, i.e., that P is a convex combination of three
elements X1, X2, X3 of K. Then there is a (two-dimensional) plane E ⊂ H such that P, X1, X2, X3 ∈ E. By
inspecting the different cases of Corollary 3.3, we find that E ∩ R1(P ) necessarily consists of two intersecting
lines P + span{W1} and P + span{W2}. By Proposition 3.5, det(P − Xj) has the same sign for all j = 1, . . . 4,
and from Theorem 2.3 we conclude that det(P −Xj) < 0. We may assume without loss of generality (replacing
Wj by −Wj if necessary) that det(λ1W1 + λ2W2 − P ) < 0 for λ1λ2 < 0 and det(λ1W1 + λ2W2 − P ) > 0 for
λ1λ2 > 0. Since P ∈ {X1, X2, X3}co, we can assure (by relabeling if necessary) that X1 = P + λ

(1)
1 W1 + λ

(1)
2 W2

with λ
(1)
1 , λ

(1)
2 < 0, while for j = 2, 3, we have Xj = P + λ

(j)
1 W1 + λ

(j)
2 W2 with λ

(j)
1 , λ

(j)
2 > 0 (or vice versa,

compare Fig. 5). In any case, det(X1 − X2) < 0 and det(X1 − X3) < 0. This contradicts the assumption that
K has sign diagram (B).

Suppose now P �∈ Kco. Theorem 2.3 implies that there exists a Q ∈ Kco such that det(Q − Xj) < 0 for all
Xj ∈ K. We know from Proposition 3.5 that det(P − Xj) < 0 for all Xj ∈ K. The set Y := {Y ∈ R

2×2
∣∣

det(Y − Xj) < 0 ∀ Xj ∈ K} is path-connected. Hence, a curve γ : [0, 1] → Y exists such that γ(0) = P and
γ(1) = Q. We conclude that there exists a Y0 ∈ γ([0, 1]) ∩ ∂Kco. However, the first part of this proof carries
over to Y0 instead of P . This rules out the existence of Y0 ∈ ∂Kco, and we arrive at a contradiction. �
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Figure 5. Illustration to the proof of Lemma 3.6.

Proposition 3.7. Let K = {X1, . . . , X4} be a sixfold or a degenerate T4-configuration. In the situation of
Proposition 3.5, let P = 0 and A ∈ H be such that span{A} is the axis of rotation of the quadric TH(Hd).

Then the two sets K ∩ {Y
∣∣ 〈Y, A〉R4 > 0} and K ∩ {Y

∣∣ 〈Y, A〉R4 > 0} contain two points each.

Proof. By Corollary 3.3 (b), either {Y ∈ H
∣∣ det(Y ) < 0} or {Y ∈ H

∣∣ det(Y ) < 0} contains exactly two
connected components. To fix the notation, we discuss here the case where H is such that {Y

∣∣ det(Y ) > 0} has
two connected components. With the notation of Proposition 3.5, we will have to distinguish the cases d > 0
(Hd being a one-sheeted hyperboloid), d = 0 (cone), and d = 0 (two-sheeted hyperboloid).

Case A: d > 0. We have det(X) < 0 for all X ∈ TH(Hd). Since by Lemma 3.6 P = 0 ∈ Kco, the sign
diagram will (after renumbering X1, . . . , X4 if necessary) due to Theorem 2.3 (2) be as in Figure 2.

Step A-1. Assume first that K ∩ {Y
∣∣ 〈Y, A〉R4 > 0} contains at least three points X1, X2, X3. Then these

three points span a two-dimensional affine plane E. We investigate the possible cases of Corollary 3.3 (a).
Obviously, case 1 cannot occur. In case 2, det(Xj − Xk) has the same sign for all 1 ≤ j < k ≤ 3, contradicting
sign diagram (B). Case 3 cannot occur for the same reason.

In case 4, we have to consider four subcases. Let Z ∈ E be the best approximation of 0 in E.

• If λZ ∈ TH(Hd) with 0 < λ < 1, then we are in the situation of Figure 6(a). X1, X2, X3 are on the top
branch of the hyperbola E ∩ TH(Hd), hence det(Xj − Xk) < 0 for 1 ≤ j < k ≤ 3. This contradicts the
assumption that we have a sign diagram of type (B).

• If Z ∈ TH(Hd) (Fig. 6(b)), then E ∩ TH(Hd) consists of two intersecting rank-one lines (compare
Lem. 3.4), and at least two of the three matrices X1, X2, X3 must be rank-one connected.

• Suppose that λZ ∈ TH(Hd) with λ > 1 and that all three Xj lie on the same branch of the hyperbola
E ∩ TH(Hd). We are then in the situation of Figure 6(c). Then det(Xj − Xk) > 0 for 1 ≤ j < k ≤ 3,
which is impossible for a sign diagram of type (B).

• Suppose that λZ ∈ TH(Hd) with λ > 1 and that only X1 and X2 lie on the same branch of the hyperbola
E ∩ TH(Hd). We are then in the situation of Figure 6(d). Since det(A − B) < 0 whenever A and B lie
on distinct branches of this hyperbola, we find det(X2 − X1) < 0, det(X3 − X1) < 0. Together with
det(X3) < 0 this is a contradiction to the criterion in Theorem 2.3 (2).

Step A-2. Assume now that X1 ∈ {Y
∣∣ 〈Y, A〉R4 = 0}. That is, at least one point lies on the horizontal

symmetry plane of the hyperboloid TH(Hd). The presence of sign diagram (B) means that for exactly two
matrices X2, X3 ∈ K, det(X1 − X2) and det(X1 − X3) have the same sign. As above in A-1, we conclude
det(X1 − Xj) > 0 for j = 2, 3 from the criterion in Theorem 2.3 (2). The matrices X1, . . . , X3 span a two-
dimensional affine hyperplane E. The cases 1–3 of Corollary 3.3 can be eliminated as above. In case 4, we



TOPOLOGY AND GEOMETRY OF RANK-ONE CONVEX HULLS 263
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Figure 6. Illustration to the proof of Proposition 3.7.

have to consider only two subcases, since the situation of Figure 6a cannot occur. Let Z be as above the best
approximation of 0 in E.

• If Z = X1 then E ∩ TH(Hd) consists of two intersecting rank-one lines, hence X1 is rank-one connected
to X2, X3.

• If λZ ∈ TH(Hd) for some λ > 1 then E ∩ TH(Hd) is a hyperbola, and because of det(X1 − Xj) > 0
(j = 2, 3) these three matrices lie on the same branch of the hyperbola. However, it follows that
det(X2 − X3) > 0, which is a contradiction to sign diagram (B), compare Figure 6e.

Case B: d = 0 (cone). This means det(Xj) = 0 for all Xj ∈ K. Clearly 〈Xj , A〉R4 �= 0 for all Xj ∈ K since
{Y ∈ H

∣∣ 〈Y, A〉R4 = 0} ∩ TH(Hd) = {0}.
Assume K ∩ {Y

∣∣ 〈Y, A〉R4 > 0} contains at least three points X1, X2, X3. Then Kco contains P = 0 [if and]
only if {X1, X2, X3}co ∩ span{X4} �= ∅. However, the fact that X1, X2, X3 lie on a cone implies Xj ∈ span{X4}
for some j ∈ {1, 2, 3}. This contradicts the fact that det(Xj − Xk) �= 0 for j �= k.

Case C: d < 0 (two-sheeted hyperboloid). (We will see in Theorem 3.8 that this case cannot occur.) In
this case we have det(Xj) > 0 for all Xj ∈ K. If K ⊂ {Y ∈ H

∣∣ 〈Y, A〉R4 > 0} then clearly P = 0 �∈ Kco,
contradicting Proposition 3.6. Suppose X1, X2, X3 ∈ K ∩ {Y ∈ H

∣∣ 〈Y, A〉R4 > 0} and 〈X4, A〉R4 < 0. Then
det(X4 − Xj) > 0 for j = 1, 2, 3, contradicting sign diagram (B). Note furthermore TH(Hd) ∩ {Y ∈ H

∣∣
〈Y, A〉R4 = 0} = ∅. �

Theorem 3.8. Let K = {X1, . . . , X4} ⊂ R
2×2 be a set with sign diagram (B) that is not contained in a plane.

Denote by H the three-dimensional affine subspace containing K. The following are equivalent:
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Figure 7. One-sheeted, two-sheeted hyperboloid and cone with similar parameters.

(a) K is a sixfold T4-configuration (degenerate T4-configuration, respectively).
(b) There exist unique P ∈ H and d > 0 (d = 0, respectively) such that P ∈ Kco and K ⊂ P +TH(Hd) with

TH from Lemma 3.1 and with the one-sheeted hyperboloid Hd := {(z1, z2, z3) ∈ R
3

∣∣ z2
1 + z2

2 − z2
3 = d}.

(Note that the surface of the hyperboloid TH(Hd) consists of rank-one lines.)

Proof. By Corollary 3.3 (b), either {Y ∈ H
∣∣ det(Y ) < 0} or {Y ∈ H

∣∣ det(Y ) < 0} contains exactly two
connected components. We consider here the case where H is such that {Y ∈ H

∣∣ det(Y ) > 0} has two
connected components; the rest follows by multiplication by

(−1 0
0 1

)
.

Assume for a contradiction that the quadric Hd from Proposition 3.5 is a two-sheeted hyperboloid, i.e.,
d < 0. By Proposition 3.5, we have det(Xj − P ) =: c > 0 for all Xj ∈ K. Define f : R

2×2 → R by
f(X) := max{c− det(X −P ), 0}. This function f is rank-one convex and nonnegative, and K ⊂ f−1(0), hence
Krc ⊂ f−1(0) ∩ H. But this set has two connected components, and by Proposition 3.7, each contains two
elements of K. In particular, K cannot be a sixfold or degenerate T4-configuration.

Now let K be a sixfold T4-configuration. Clearly d �= 0, since d = 0 means det(P − Xj) = 0 for all Xj ∈ K,
hence K is possibly a degenerate, but not a sixfold T4. We conclude d > 0. The claim P ∈ Kco has been proven
in Lemma 3.6, the rest of (a)⇒(b) for T4-configurations follows from Proposition 3.5.

A degenerate T4-configuration is characterized by the existence of a Y ∈ Kco with K ⊂ R1(Y ). Since
necessarily Y ∈ H and R1(Y ) = (Y − P ) + R1(P ) we conclude Y = P and d = 0. This shows (a)⇒(b) for
degenerate T4-configurations.

The implication (b)⇒(a) follows in both cases from Theorem 2.3. �

4. Topological structure in (R2×2)
4

In this section, we investigate the number of connected components of T4(R2×2) in (R2×2)4 and their bound-
aries.

We start with a technical lemma about sign diagrams.
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Lemma 4.1. For j, k ∈ {1, . . . , 4}, let ♦jk ∈ {<, >}. To represent a given sign diagram, we define

D(♦jk)jk :=
{
(X1, . . . , X4)

∣∣ det(Xj − Xk) ♦jk 0 ∀ j, k ∈ {1, . . . , 4}
}

.

Then D(♦jk)jk is connected as a subset of (R2×2)4.

Proof. We first remark that we can without loss of generality assume X1 = 0. Indeed, by setting D0 :=
D(♦jk)jk ∩ {(0, X2, . . . , X4)

∣∣ 0, X2, . . . , X4 ∈ R
2×2}, we recover D(♦ij)jk as

D(♦jk)jk =
⋃

X1∈R2×2

D0 + (X1, X1, X1, X1). (16)

To consider the differences Xj − Xk, we introduce the map

F :
{

D0 → (R2×2)6

F : (0, X2, . . . , X4) �−→ (X2, X3 − X2, X4 − X3, X4, X3, X4 − X2),

which is continuous and injective. The inverse map F−1 : F (D0) → D0 is continuous as well, since F−1(M1, . . . ,
M6) = (0, M1, M5, M4). Thus, F is a homeomorphism.

Given that GL±(2, R) := {M ∈ R
2×2

∣∣ detM ≷ 0} are connected, the same holds for F (D0). Hence D0 is
connected as preimage under a homeomorphism. The claim follows now from (16). �
Proposition 4.2. T4(R2×2) is the union of 12 connected components of simple T4-configurations and 6 con-
nected components of sixfold T4-configurations.

Proof. As there are six connections in every sign diagram, there are obviously 26 = 64 different sign diagrams.
Elementary bookkeeping shows that they constitute 6 equivalence classes. These classes are shown in the left
and the middle panel of Figure 8. The equivalence class of (A) comprises 12 sign diagrams, and every simple
T4-configuration corresponds to one of these. We conclude from Lemma 4.1 that T4(R2×2) contains 12 connected
components of simple T4-configurations.

The equivalence class of (B) consists of 6 sign diagrams. Since the sign diagram (B) describes, according to
Proposition 2.3, sixfold T4-configurations as well as degenerate T4-configurations and sets with trivial rank-one
convex hull, there is no direct correspondence between the sign diagram (B) and sixfold T4-configurations. The
claim for diagrams of type (B) follows from the geometric characterization of the (B)-components stated in
Theorem 3.8. �

Proposition 4.3. The boundary of the (A)-components consists of quadruples (X1, . . . , X4) with at least one
rank-one connection. That is to say, for every quadruple belonging to the boundary of an (A)-component, indices
j �= k exist with det(Xj − Xk) = 0.

The boundary of the (B)-components consists of tuples with rank-one connections and of the set of all degen-
erate T4-configurations.

Proof. Obviously, the set of all tuples corresponding to a specific sign diagram is bounded by tuples without
sign diagram, i.e., tuples with at least one rank-one connection. This finishes the proof for the (A)-components.
The statement for the (B)-components again follows from the geometric picture given in Theorem 3.8. �
Example 4.4. We now give examples for different kinds of boundaries. This will show that all the boundaries
listed in Proposition 4.3 are indeed nonempty.

(1) The boundary of an (A)-component and the set of quadruples with trivial rank-one convex hull: The
four-tuple of

X1 =
(

0 0
0 0

)
, X2 =

(
1 2

1 − ε 2

)
, X3 =

(
5 1
2 1

)
, X4 =

(
1 −1
−1 −1

)
,
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Figure 8. The left and the middle panel exhibit the different equivalence classes of sign
diagrams. The sign diagrams in right panel are generated from the ones in the left panel and
the same row by inverting all the edges. Therefore, they are another representative of the same
equivalence class as the corresponding diagram in the left panel. The numbering is referred to
in Section 5.

is a simple T4-configuration for ε > 0 and therefore belongs to an (A)-component (note this T4-
configuration is non-planar, unlike the classical Tartar example). For ε = 0, we have det(X1 −X2) = 0.
For ε < 0, the sign diagram is given by the bottom picture in the left panel in Figure 8. Hence, for
ε < 0, case 3 of Theorem 2.3 applies.

(2) The boundary of an (A)-component and a (B)-component: The four-tuple of

X1 =
(

0 0
0 0

)
, X2 =

(
1 2
0 2

)
, X3 =

(
5 1
2 1

)
, X4 =

(
1 −1
−ε −1

)
,

is a simple T4-configuration for ε > 0 and contains a rank-one connection for ε = 0, namely det(X2 −
X4) = 0. For ε < 0, we find a sign diagram of type (B), and Theorem 2.3 shows that the rank-one
convex hull is trivial, as case 2 applies.

(3) The boundary of an (A)-component and a (B)-component of sixfold T4-configurations: The four-tuple
of

X1 =
(

0 0
0 0

)
, X2 =

(
2 0
2 −5

)
, X3 =

(
−1 5
−2 0

)
, X4 =

(
1 1

−5 + ε −5

)
,

is, as the previous example, a simple T4-configuration for ε > 0 and has a rank-one connection (det(X1−
X4) = 0) for ε = 0. For ε < 0, it belongs to the sign diagram (B). One can check that the tuple is a
sixfold T4-configuration for ε < 0.
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Figure 9. The geometric arrangement of the connected components of (A) and (B), marked
with their sign diagram. Components linked by a line share a common boundary.

(4) A degenerate T4-configuration as a boundary point of a (B)-component of sixfold T4-configurations:
The set {(

0 0
0 1

)
,

(
ε −1
1 2

)
,

(
−1 2
1 1

)
,

(
1 −1
2 0

)}
,

belongs to the sign diagram type (B) for small ε. For ε < 0, we find a sixfold T4-configuration, for
ε = 0 a degenerate T4-configuration, and for ε > 0 the rank-one convex hull is trivial. This example
was found while performing experiments as described in Section 5.

We note for completeness that the set of all degenerate T4-configurations is not open.

Corollary 4.5. The set

K(R2×2) := {(X1, . . . , X4) ∈ (R2×2)4
∣∣ {X1, . . . , X4} is a degenerate T4-configuration }

has no interior points with respect to the natural topology of (R2×2)4.

Proof. This follows immediately from Theorem 3.8 and Lemma 3.6. �

We close this section with a somewhat surprising, though simple, result. This answers a question posed
by Daniel Faraco (personal communication). The question is whether the different connected components of
type (A) and type (B) are arranged in a ring-like structure. The answer is positive.

Proposition 4.6. The six connected components of type (B) and and the twelve connected components of
type (B) are arranged in a ring-like structure as shown in Figure 9. Neighboring components, i.e., compo-
nents with a common boundary, are linked by a line. For every component of type (B), there are exactly four
neighboring components of type (A).



268 C.-F. KREINER AND J. ZIMMER

Proof. These statements are easily seen by simple bookkeeping. To see that linked components do share a
common boundary, one can use the previous examples and symmetry arguments. �

5. Detection of T4-configurations

One application of the results presented in Section 4, in combination with [18], is an algorithm to answer the
following question: Given k ≥ 4 matrices X1, . . . , Xk ∈ R

m×n without rank-one connections (i.e., rank(Xi −
Xj) ≥ 2 for i �= j), do they form a Tk-configuration? This problem was posed in [9], Section 8. In [11], an
efficient algorithm is presented for the general case k ≥ 4 and arbitrary m, n ≥ 2, based on algebraic geometry.
For special case k = 4 and m = n = 2, we now present a substantially improved algorithm. However, unlike the
algorithm in [11], it does not generalize to higher space dimensions or general Tk-configurations.

The algorithm can be formulated as follows.

Algorithm 5.1.

Input: A set K := {X1, . . . , X4} ⊂ R
2×2 without rank-one connections.

Procedure: (1) Compute the sign diagram for K.
(2) If the sign diagram is neither of type (A) nor of type (B), then K is not a T4-configuration.
(3) If the sign diagram is of type (A), then K is a simple T4-configuration.
(4) If the sign diagram is of type (B), then

(a) Solve the linear system given by Equation (15) for p = (p1, p2, p3)T and determine d via
d = 1

2pT Sp.
(b) If p /∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}co, then K is not a T4-configuration. Otherwise, the

following possibilities exist:
– If d > 0, then K is a sixfold T4-configuration.
– If d = 0, then K is a degenerate T4-configuration.
– If d < 0, then K is not a T4-configuration.

Output: T4-configuration are detected in Steps (3) or (4). Other configurations are rejected in one of the
steps (2) to (4).

Proof. The correctness of the algorithm follows immediately from [18] and Theorem 3.8. The condition p ∈
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}co is equivalent to P ∈ Kco. �

We use Algorithm 5.1 to investigate the frequency of T4-configurations in
(
R

2×2
)4. More precisely, we are

interested in the measure of the set of T4-configurations in the unit cube of
(
R

2×2
)4 with respect to the ‖ . ‖∞

norm. We use a Monte Carlo method by applying Algorithm 5.1 to one billion randomly chosen points in(
R

2×2
)4. For an implementation in MATLAB on an Intel Pentium 4 processor with 2.66 GHz CPU speed and

1GB memory, 100 000 tests took about 20 seconds. This compares to 8–10 seconds for 1 test with the algorithm
in [11].

The results are recorded in Table 1. Their accuracy can be checked by exploiting the symmetry of the sign
diagrams. Namely, sign diagrams that arise from each other by inversion of edges (e.g., 1 and 11, or 4 and 8),
have equal probability. Indeed, Table 1 shows that their frequency agrees to a high level of accuracy.

The following observations can be made. Firstly, T4-configurations are not as exotic as one might assume
at a first glance. Indeed, about 8.92 percent of all configurations were found to be a T4. Secondly, the vast
majority of T4-configurations is simple (98.0%). Thirdly, T4-configurations are rare among those configurations
with sign diagram (B) (3.2%).
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Table 1. Results of the Monte Carlo computation. The numbering of the sign diagrams
corresponds to Figure 8.

# Comment # Random Points Frequency (%)

0 With rank-one connection 0 0.00
1 48 034 773 4.80
2 131 975 267 13.20
3 169 470 978 16.95
4 Sign diagram (B) 28 375 290 2.84

thereof sixfold T4-config. 909 395 0.09
thereof degen. T4-config. 0 0.00

5 78 443 346 7.84
6 Sign diagram (A) (simple T4) 87 362 467 8.74
7 78 445 984 7.84
8 Sign diagram (B) 28 382 134 2.84

thereof sixfold T4-config. 907 839 0.09
thereof degen. T4-config. 0 0.00

9 169 486 545 16.95
10 131 990 504 13.20
11 48 032 712 4.80

Sum 1000000 000

Total # of simple T4 87 362 467 8.74
Total # of sixfold T4 1 817 234 0.18
Total # of degenerate T4 0 0.00
Total # of T4 89 179 701 8.92
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