ESAIM: COCV ESAIM: Control, Optimisation and Calculus of Variations
April 2006, Vol. 12, 271-293 www.edpsciences.org/cocv
DOI: 10.1051/cocv:2006005

ASYMPTOTIC ANALYSIS, EXISTENCE AND SENSITIVITY RESULTS
FOR A CLASS OF MULTIVALUED COMPLEMENTARITY PROBLEMS*

FABIAN FLORES-BAZAN! AND RUBEN LOPEZ?

Abstract. In this work we study the multivalued complementarity problem on the non-negative
orthant. This is carried out by describing the asymptotic behavior of the sequence of approximate
solutions to its multivalued variational inequality formulation. By introducing new classes of multi-
functions we provide several existence (possibly allowing unbounded solution set), stability as well as
sensitivity results which extend and generalize most of the existing ones in the literature. We also
present some kind of robustness results regarding existence of solution with respect to certain pertur-
bations. Topological properties of the solution-set multifunction are established and some notions of
approximable multifunctions are also discussed. In addition, some estimates for the solution set and
its asymptotic cone are derived, as well as the existence of solutions for perturbed problems is studied.
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1. INTRODUCTION AND NOTATION

A great variety of problems arising in most applications in Sciences and Engineering have the same mathe-
matical formulation known as a multivalued complementarity problem which may be stated as follows: given a
set-valued mapping, or simply a multifunction, ® : R} — R", and a vector ¢ € R", it is requested to

find z > 0, y € ®(z) such that §+¢ >0, (§+q,Z) =0. (MCP)

This problem denoted by MCP(g, ®) generalizes substantially the so-called linear complementarity problem
largely studied since 1958 (see [4], p. 218).
Problem (MCP) is known to be equivalent to the following multivalued variational inequality problem
MVIP(R?, ® + q):
find z >0, y € ®(z) such that (§+q,z—2) >0 Vo >0. (MVIP)
In this paper we present a method which allows us to develop a general theory yielding new existence and
sensitivity results and unifying the ones found in the literature. Our method is based on the asymptotic
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description of a sequence of approximate solutions to (MVIP). Thus, problems possibly allowing an unbounded
solution set are also treated. Another advantage of our approach is that all requirements needed in this paper
arise in a natural way. Several examples are discussed illustrating the wide applicability of our results. We
follow the line of reasoning carried out in [7-9].

We end this section by stating some basic notations. Section 2 is devoted to list some definitions and
preliminaries related to multifunctions. The asymptotic analysis of the approximate solutions to (MVIP) is
performed in Section 3 (basic lemma) and the abstract Gowda-Pang existence theorem is reformulated therein.
In Section 4, new classes of mappings are introduced and some of their properties are described. The main
specializations of the abstract existence theorem are discussed in Section 5, where also some kind of robustness
results are established. Section 6 is devoted to present some sensitivity and stability results by using the concept
of graphical convergence, developed in [23]. Finally, precise bounds-estimations for the solution set are obtained
in Section 7.

Throughout this paper, we will use the following notation: = > 0 (resp. = > 0) whenever z € R’ (resp.
r e Ry, =intRY); |yl = (Jnal,---,|ynl) and [|y|la := (d,|y|) whenever y € R™ and d > 0 (in particular
[lylla = (d,y) for y > 0); S(q, ®) stands for the solution set to MCP(g, ®); co A is the convex hull of the set A;
ri A is the relative interior of A; pos A = {tz : t > 0,2 € A} is the positive hull of A; pos™A = {tz:t >0,z € A}
is the strictly positive hull of A; A* is the positive polar cone of A; A# is the strictly positive polar cone of A;
given x € R”, the index set supp{z} :={i € I : x; # 0} is the support of  where I = {1,...,n}; given d > 0
we denote Ay ={x >0:(d,xz) =1} and if J C I, Ay = Ay(d) = co{diiei S J} is an extreme face of Ay,

where €’ is the i-th column of the identity matrix in R”*". In particular, A; = Ag. The set
D(®)={qeR": gcw—®(x), (v,w) € R} xR}, (w,z) =0}
is the set of vectors for which MCP(g, ®) has solutions. More precisely,
g ED(P) <= S(q,®) #0) < ®c D (q).
Here D~! denotes the inverse multifunction of D defined as usual. Moreover, the sets
Flg, @) ={z=20:ye (@), y+q=0}, Fs(q,®) ={z > 0:y € 2(z), y +¢> 0}

are the feasible and strict feasible sets of MCP(q, ®) respectively.

2. DEFINITIONS AND PRELIMINARIES

Here and in the subsequent sections we will deal with multifunctions ® defined in R} which associates to any
z € R} anonempty set ®(x) of R™, and denoted by ® : R < R". Theset gph® = {(z,y) € R x R" : y € ®(z)}
denotes the graph of ®.

A multifunction ® : R} < R" is said to be:

o compact (resp. convex) valued if for each x > 0, ®(x) is compact (resp. convex);

e lower semicontinuous (Isc) if for any x > 0, y € ®(z) and any sequence {:ck} C R% converging to z,
there exists a sequence {yk} such that y* € ®(2*) and y* — y;

e upper semicontinuous (usc) if for each > 0 and any open set V' C R™ containing ®(x), there is an
open set U C R™ containing x such that ®(U N Ri) CcV;

e a cusco if it is usc and compact convex valued;

o sequentially bounded if for any bounded sequence {:ck} C RY, it follows that any sequence {yk} with
yk € ®(2%) for all k, is bounded;

o superadditive if ®(x) + @(y) C ¢(z +y) for all z,y > 0;
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e uniformly bounded if there exists a bounded set C' C R™ such that ®(x) C C for all > 0;

e graph-convex (resp. graph-closed) if its graph is convex (resp. closed);

o R -conver if A@(z)+ (1 —N)®(y) € (Ax+ (1 —N)y)+ R} forall z,y >0, X € [0,1].
Before introducing our main classes of multifunctions, we need the following notation:

Xi{q):Ri%R": (I)isacusco}.

C= {C ‘Riy = Ryq, ¢(0) >0, lim ct) = —|—oo}.

t—+o0

Definition 2.1. For c € C, d > 0, the mapping ® : R} < R™ such that 0 € ®(0), is said to be
e c-homogeneous (on Ag) if ®(Az) = c(A\)®(x) for all z € Ag and A > 0;
e c-subhomogeneous (on Ay), if ®(Az) C ¢(A\)P(x) for all z € Ay and A > 0;
e zero-subhomogeneous (on Ay), if ®(Az) C &(z) for all z € Ay and A > 0;
o c-Moré (on Ay), if for all A > 1, z € Ay, and y € ®(Az) there exists z € ®(z) such that (y,z) >
c(N) (z, z).

We have to point out that our notion of (sub)homogeneity lies on the compact set A4 in place of the standard
requirement lying on R’}.

Example 2.2.
1. [13] An homogeneous multifunction ® of degree v > 0, i.e. such that

O(Az) = \V®(z) for all z > 0 and A > 0,
is A7-homogeneous on A, for any d > 0 provided 0 € ®(0). For instance the mappings ®;(z) = Mz, where
M € R &y(x) = (fi(z), ..., fu(2))T, where f;(z) = max {{(w;j,z) : j € A;} with w;; € R™ and A; being a
finite index set; ®3(z) = {My : Az + Qy < 0}, where M € R™" and A,Q € R™*" are all homogeneous of
degree 1. The mapping ®4(z) = ||z||Mx is homogeneous of degree 2.
2. [25] A generalized homogeneous multifunction @, i.e. such that for some ¢ € C,

O(Az) = c(N)®(x) for all z > 0 and A > 0,
is c-homogeneous on Ay for any d > 0 provided 0 € ®(0).
3. The mappings ®5(x) = [z + 22,2z + 22%] and Pg(z) = [e* — 1,2¢” — 2] are c-homogeneous on A; with

c(N) = ’\+TA2 and ¢(\) = e:__ll respectively, and if

1 if0<z<1; 1, if0o<A<1;
r(a) = 4 O HOsosl depy={b T0sASE
[z —1,2], ifz>1. A, A>T,

then ®7 is é-subhomogeneous on A; but not c-homogeneous for any ¢ € C.
4. [18,19,25] Let f : R} — R™ and c € C such that
(x, f(Ax) — f(0)) > c(N) (z, f(z) — f(0)) for all z > 0 and A > 1.
The mapping ®(z) = f(z) — f(0) is e-Moré on Ay for any d > 0. In connection with this result see (d) of
Proposition 2.5.
5. The mapping ®s(z) = [z, 2] is 5-Moré on A;.
6. The mapping Pg(x) = [0,1/]|x||4] if ||z||la = 1 and Pg(z) = [0, ]|z||4] if ||z||¢ < 1 is zero-subhomogeneous on
Ay for d > 0.
7. [13] An homogeneous multifunction ® of degree 0, i.e. such that

®(Az) = @(z) for all z > 0 and A > 0,

is zero-subhomogeneous on A, for any d > 0 provided 0 € ®(0). For instance, ®19(x) = Oh(x) where h(z) =
SUPyco (x,y) for C C R™ a nonempty compact convex set such that 0 € C.
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Proposition 2.3. Let c € C and @ : R} — R"™ be a multifunction.
(a) If @ is usc with compact values, then it is sequentially bounded and graph-closed.
(b) If ® is a zero-subhomogeneous cusco, then it is uniformly bounded.
(c) If ® is either graph-convex or c-homogeneous with c¢(Ry) = Ry, ®(0) = {0}, and superadditive, then
O(R?) is conver.

Proof.
(a) It follows from Propositions 1.1.3 and 1.1.2 in [1]
(b) For 0 # x > 0, we have ®(x) = @(H:L’HdeHd) C o(
since ®(Aq) is compact [1], Proposition 1.1.3.
(c¢) It is obvious. O

Ijlld) C ®(A,), which implies the desired result

Notice that within cuscos mappings, uniformly bounded does not imply zero-subhomogeneity as the function
®(z) =1/(1 + ) shows.

The (nonlinear) multivalued version of the classes of mappings introduced in the study of linear complemen-
tarity problems (see [4,9] for example) arise in a natural way in the present setting. We now recall some of
them. Let d > 0 and ® : R} — R" be a multifunction. We say that ® is:

e copositive if (y,x) >0 V(z,y) € gph P;

e strictly copositive if (y,x) >0 V(x,y) € gph ® with x # 0;

e strongly copositive if Ela > 0 such that (y,x) > af|z||? V(x,y) € gph ®;
e semimonotone if S(p, ®) = {0} Vp > 0;

e a R(d)-mapping, or ® 6 R(d), if S(rd,®) = {0} V7 >0;

e a G(d)-mapping, or ¢ E G(d) if S(rd, @) = {0} V1 > 0;

e monotone if for any (z!,y%), (z2,9?) € gph<I> (y' —y?, 2t —2?) > 0;
e g¢-pseudomonotone if for any (2%, y1), (22,9?) € gph @,

(y' +q,2* —a") 20:><y2+q,:c27x1> > 0.

The following definition generalizes that for linear mappings used in [14].

Definition 2.4. For d > 0 and ® € X. The d-numerical range of ® is by definition, the set

w(®)={{y,z) 1z € Ay, y € D(x)}.
We set Mg = supw(®) and mg = inf w(P).

Proposition 2.5. Letd >0, ce€C, and ® € X.
(a) If ® is c-subhomogeneous and me > 0 (in particular if ® is strictly copositive), then ® is ¢-Moré for
e(A) = TEe(A).
(b) If ® is copositive c-subhomogeneous and the following implication holds:
(v>0,we Pw), (w,v) =0= v =0), then O is &-Moré.
(¢) If ® is strongly copositive and 0 € ®(0), then it is ¢-Moré for ¢(\) = ﬁﬁillz'
(d) If @ is R} -convex and 0 € ®(0), then it is ¢-Moré for ¢(X) = \.
Proof.
) Let A > 1, z € Ay, and y € ®(Ax) be given, by hypothesis C(A)y € ®(x) and for any z € ®(x) we get

(a
< L > > me > 1% (z,2). Thus, setting ¢(A) = §72c(A) we obtain the desired result.
(

c(X
b)
me
c)

Z

ince ® is coposmve me > 0. Suppose that me = 0, then there exist x € Ay and y € ®(z) such that
(y,x) = 0, contradicting the hypothesm. The result follows from (a).
et A >1and x € Ay, then ||z|| > \dll and if y € ®(\z), then (y, A\z) > af|A\z||? for some a > 0, and thus

> laz\ Clearly if z € ®(x) then M@ (z,2) < 1. Therefore (y,z) > H?iﬁz > ¢(AN) (z,x).

\/F‘HUJ

(y,x
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(d) Let A > 1 and @ € Ag, by definition +®(Az) + (1 — $)®(0) C ®(z) + R}, since 0 € ®(0) we conclude
that $+®(A\z) € ®(z) + R%, thus, if y € ®(Az) then there exists z € ®(x) such that $y > z. Thus, (y,z) >
é(N) (z,x). O

3. ASYMPTOTIC ANALYSIS AND THE ABSTRACT EXISTENCE THEOREM

We approximate problem (MVIP), which is the variational inequality formulation to (MCP), by the following
sequence of problems

find z* € Dy, y* € ®(z"): ¥ + ¢z —2%) >0 Ve € Dy (MVIPy)

where d > 0, {01} is an increasing sequence of positive numbers converging to +oo, and
Dy = {l‘ GRTJLF : <d,’JJ> < O'k}.

If ® is usc with nonempty compact convex values, the existence of (z¥,y*) € gph ® satisfying (MVIPy) is
guaranteed by the multivalued version of the classical Hartman-Stampacchia existence theorem (see [13] for
instance).

It is clear that (z¥,4*) solves (MVIPy) if and only if z* is an optimal solution of the linear program

irxlf[<yk +qz): x>0, (dz) <ol (P)

Applying the usual optimality conditions we conclude that (2, y*) solves (MVIPy) if and only if there exists
0r € R such that (%, y*, 0;) solves the so-called augmented multivalued complementarity problem

find z*¥ >0, 6, >0, y* e @(xk) such that

y*+q+0kd >0, (da") <oy, (MCPy)

<yk +q+ Od, :ck> =0, Og(or — <d, :L'k>) =0.
In particular,
2 € S(q + 0id, ®) and z* € S(q,  + Ord). (3.1)
Clearly, we observe that
<d,xk> <op = 0, =0 = 2" € S(q, D).
This line of reasoning was also applied in [22].
We introduce the following definition: a subset M of a metric space X is said to be closed at z, if whenever
a sequence {z*} C M converges to z, one has x € M. Obviously, if M is closed then M is closed at every point
reM.
The next theorem was established in [13].

Theorem 3.1. Let d > 0, {01} be an increasing sequence of positive numbers converging to +oco, ® € X,
and {(mk,yk,ﬁk)} be a sequence of solutions to problem (MCPy). Assume lkim inf 0y, = 0. Then, the following
——+o00

assertions are equivalent:
(a) S(q,®) is nonempty;
(b) D(®) is closed at q.
Proof.
(a)=(b): it is obvious.
(b)=-(a): without loss of generality we may assume that 6, — 0. By (3.1), we conclude that S(q + 0id, ?) is
nonempty, thus g + 0xd € D(®). By hypothesis ¢ € D(®), thus S(g, ?) is nonempty. O
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An important class of multifunctions ® for which D(®) is closed at every ¢ is that of polyhedral ones (see for
instance [13]). However we look for new classes of multifunctions such that D(®) is closed at some particular q.
These classes are introduced in Section 4.

Remark 3.2. As pointed above, if 6, = 0 for some k, then S(g, ®) is nonempty. Theorem 3.1 yields existence
of solutions when 6y > 0 for all k. Indeed, let ®(z1,72) = [~x1,21] X [~72,22], d = (1,1)T, o} = k, and
q = (0,—1)T. We have that {(z*,y*,6;)} solves (MCPy) for z* = (0,k)T, y* = (0,1 — )7, and 6 = + > 0.
Since lklg—il-gcfn‘ 0 = 0 and D(®) is closed being ® polyhedral (see [13], Prop. 3), the above theorem asserts that

S(q, ®) is nonempty. Indeed, S(q, ®) = {(z1,22)" : 1 > 0, 25 > 1}.

In our opinion, Theorem 3.1 was established only by taking z* € S(g + 0d, ®) into account in (3.1); in this
respect the closedness of D(®) at ¢ plays a certain role since ¢ + 6*d € D(®) and, S(q, ®) # 0 < q € D(P).
However, if instead we look at z* € S(q,® + 6xd) in (3.1), we have to analize the closedness of D~1(q)
relative to some particular class of approximating mappings. Thus, we first need a good notion of convergence
for multifunctions, and secondly, to find the particular approximating mappings. Just to give an idea to be
developed presently, we observe that the c-subhomogeneity of ® does not imply the c-subhomegeneity of ® +0d;
however, the multifunction U* given by W*(x) = 6xd is copositive and uniformly bounded whenever ), — 0.
On the other hand, in order to discuss sensitivity and stability results we also substitute ® by an approximating
mapping ®*. These considerations give rise to the notion of approzimable mappings to be discussed in Section 6.

The next (basic) lemma describes the asymptotic behavior of the corresponding solutions to the problems
associated to the approximating mappings (see (PMVIPy) below). Existence of solutions will require further
assumptions on the original and/or the approximating mappings. The latter is also analyzed in Section 6.

We start by introducing the notion of convergence for multifunctions. To that end, we need the following
concepts (for more details see [23], Ch. 4). For a nonempty set C C R", do(x) = d(C, z) stands for the distance
from x to C. Let A, B C R™ be two nonempty sets, the integrated set distance between them is defined by

d(A, B) = /de(A,B)efpdp
0

where for p > 0,

d,(A,B) = lgll?gpldfx(fv) —dp(z)]-

The expression dl gives a metric on cl — sets_y(R"™)-the space of all nonempty closed subsets of R, and char-
acterizes the ordinary set convergence in the sense of Painlevé-Kuratowski, i.e. C¥ — O <= d[(C*,C) — 0.
On X we consider the metric (we shall denote also by dI)

d(®', %) = di(gph @', gph ®?),

. . . g .
which characterizes the graphical convergence “=” i.e.

ok L o — di(®F, D) — 0,

and will be crucial in our analysis.
The following lemma, which is important on its own, will be repeatedly used in the subsequent sections. This
basic lemma will be extremely useful for deriving existence, sensitivity as well as stability results.

Lemma 3.3 (basic lemma). Let d > 0, {ox} be an increasing sequence of positive numbers converging to +00;
q,¢" € R"; &, U, &% U* ¢ X be such that ®* L &, Uk L ¥, ¢ — ¢ and {(xk,yk,rk)} be a sequence of
solutions to

findz® € Dy, : o* € dF(zF), v* e TF(R), (WF 4k + ¢z —2F) > 0 vz € Dy (PMVIPy)
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such that (d,z*) = o}, and “—k — v as k — +00. Then, there exist subsequences {ox,, } and {(x¥Fm yFm rkm))
numbers ko, mg € N, and an index set ) # J, C I such that

(a) for all k > ko, z* — Zv >0 and 0 < ||z¥ — Z=0||q < ok;

(b) for all m > my, %:ﬂ m € 1i(Ay,), thus supp{z¥=} = J, (hence supp{v} C J, );

(c) for allm >mg, z € Ay, : (yFm +rkm 4 ghm oy 2 — 2Fm) = 0.
Moreover,

(d) if each ®* is c-subhomogeneous and each W* is uniformly bounded respect to the same set (resp. zero-
subhomogeneous), then the subsequences {y*=}, {r*=}, {o, } may be chosen in such a way that there
are vectors w and r such that (01 )ykm — w € ®(v), r¥» — r (resp. and r € ¥(v)), (w,v) <0,
(w,y) > (d y) (w,v) for ally >0, and (w,z) = (w,v), for all z € Ay, ;

(e) if each ®F is c-Moré and each V* is uniformly bounded respect to the same set, then there exist vectors
w, T and sequences {wk’"} and {rk’"} such that wkm € ®km(
(w,v) <0;

(f) if each ®* is ¢*-pseudomonotone and each ¥* = 0, then v € R N [-®(R7) — ¢]*. Hence, 0 < v €
—[®([R})]* and (q,v) <0 provided ® is c-homogeneous and ®(0) = {0} as well;

(g) if each ®F is monotone and each W* is copositive zero-subhomogeneous, then

v ERLN[-B(RL) — g]*.

=), w'm — w € ®v), r'm —r, an
gkm; § P ;k ’ d

Proof. By Theorems 5.19 and 5.51(b) from [23], ®* + ¥* € X, and problem (PMVIPy) has solutions by the
multivalued version of Hartman-Stampacchia Theorem.

(a) As - Lk — v, for e = min{% : v; > 0} > 0 there exists ko such that for all k > ko, > i,

This implies % < - L forie supp {v}. Thus 0 # 2* — Z=v > 0, and then (a) holds.
(b) Clearly Agq = AI = co{ 2 €i 11 € I} may be written as the disjoint union of the relative interior of its

mk

extreme faces. More precisely, if we denote its extreme faces by Ay, Ay, ..., As,._,, then
2" —1
Ad = U I'l(A]I)
i=1

As %xk € Ay, k € N, there exist an ig € {1,2,...,2" — 1}, myp, and a subsequence {:L'k} such that
——zkm eri(Ay, ) for allm > myg. By setting J, = Jj,, one obtains supp{z*~} = .J, and supp{v} C J,,.

k

m

(c) We analyze two cases, whether J, is a singleton or not. In the first case, we have %x m =y for all

m > mg because of ri(A;,) = Ay, , and therefore (c¢) obviously holds. In the second case, for all z € Ay,
and all m > myg, by virtue of (b) there exists £, > 0 such that for all ¢, |t| < e, one obtains

1 1
—ka—l—t(z——x )EAJ.

Ok,

Because of the choice of ¥, we have

k k k akm akm k
<y mo4 +q mao—km <—+t<2 —>) — X m> 207 V|t| < Ez.
Tl Tk,

(yPm 4 b o gkm oy, 2 —aPm)) >0, V|t <e..

m

Then

Hence
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yk
c(ok)

(d) By assumption ed (i—k) Since {i—k} is bounded, by the uniformity in graphical convergence

TG [23], Theorem 5.34, we may also assume that c(kak) — w up to subsequences. From (a) of

Theorem 5.37 in [23], it follows in particular that w € ®(v).

Moreover, from r* € W¥(z*), if U* is zero-subhomogeneous, % € \I/k(i—k), and reasoning as above (up

¥ — r, and r € U(v). On the other hand, if ¥* is uniformly bounded respect to the

to subsequences)

same set, the sequence {rk} is bounded and up to a subsequence r* — .

For both cases, on dividing the inequality in (PMVIPy) by ¢(ok)oy and letting k¥ — +oo for 2 = 0 and
T = okm with 0 # y > 0 respectively, we obtain (w,v) < 0 and (w,y) > (d,y) (w,v) for all y > 0.
Dividing (c¢) by ¢(o,, )ok,, and letting m — +oo we obtain the last part of (d).

m

(e) By assumption, <yk, i—k> > (o) <wk ””—k> for some w* € @k(g) As in (d), we may suppose up to

k ok

subsequences that w* — w and w € ®(v). On dividing (PMVIPy) (for x = 0) by c(o%), we get

ko k ok k k k
_ u, NS (L TN (b 2,
clog) ok c(og)’ o Ok

Taking the limit we obtain (w,v) < 0.

(f) Let us fix > 0 and y € ®(z). Since ®F, & are closed-valued and ®* % &, we invoke Theorem 5.37
in [23] to obtain x as the limit of a sequence {aj} C R?, corresponding to some choice of {bj}
satisfying b’ € ®/(a’) and I’ — y as j — +oo. Obviously there is jo such that @’ € Dj, for all j. In
particular, for j > jo we have that o’ € D;, € D;. By ¢’-pseudomonotonicity of ®7, (PMVIP;) implies
<bj +¢7,al — a7 > > 0 for all j sufficiently large, dividing by o; and taking the limit we conclude that
(y +q,v) <0. Thus v € [-®(R"}) — ¢]*. The remaining part is obvious.

(g) From r* € Uk(xF), if U¥ is zero-subhomogeneous r* € \I/k(%) and as in (d), up to subsequences r* — r

and r € ¥(v). By hypothesis (r,v) > 0.

Let us fix # > 0 and y € ®(z), as in (f) we obtain  as the limit of a sequence {a’} C R, corresponding

to some choice of {b7} satisfying v/ € ®7(a’/) and b’ — y as j — +o0, and o/ € Dj, C D; for j > jo. By

(r? + ¢7)-pseudomonotonicity of ®/, (PMVIP;) implies <bj +ri+ ¢ 0l — acj> > 0 for all j sufficiently

large; dividing by o; and taking the limit we conclude that 0 > (y+r+g¢,v) > (y+gq,v). Thus

ve[-2[RY) —q]" O

Remark 3.4. Clearly (d,v) = 1. Moreover, when ®* are c-subhomogeneous, by choosing y = ¢, i € I in (d)
and setting 7 = — (w,v) > 0, we obtain w + 7d > 0 and (w + 7d,v) = 0. Thus 0 # v € S(7d, D).

We now exhibit an instance where our basic lemma is applicable. Let us consider ®(z) = M*z, Uk(z) =
docn (), where MF € R™*™ converges to M € R™ " and Qo is the (Fenchel) subdifferential of the support
function of the nonempty compact convex set C*, which converges (in the sense of Painlevé-Kuratowski) to the
nonempty compact convex C. It is known that M* % M (see [23], p. 353), and by Corollaries 11.5 and 8.24,
and Theorem 12.35 of [23], one obtains, C* — C' <= docw 5 doe. Moreover, as mentioned in Example 2.2,
each docr and doc is zero-subhomogeneous. In addition, if 0 € C*¥ N C (this is not a stringent assumption),
then 0o and Ooc are copositive.

Let {(2*,y")} be a sequence of solutions to (MVIPy), if (d,z*) < o}, for some k, then z* € S(q, ®). Thus,
we are interested in the case when <d, Ik> = oy, for all k. Therefore, the following set of sequences will play an
essential role in our analysis.

Definition 3.5. Let d > 0 and {0} be an increasing sequence of positive numbers converging to +oo. Let W
be the set of sequences {(z*,y")} in R” x R", satisfying for each k,

(z*,4*) solves problem (MVIPy) (3.2)

(d,z*) = oy,. (3.3)
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We point out that the requirement (3.3) is verified if S(g, ®) is either empty or unbounded. Indeed, if S(g, ®) = (§
then <d, :c’“) = o}, for all k by the above reasoning. If S(g, ) is nonempty and unbounded, then for all k, there

exists 2* € S(q, ®) such that <d, :ck> > k, and then we put o = <d, :ck>.
Under requirement (3.3), there exists a vector v such that, up to subsequences, ﬁ—k — v, and if {0y} is such
k

that (z*,y*, 0x) solves (MCPy) for each k, by (c) of the basic lemma (for ®* = &, U* =0 and ¢* = ¢ for all k)

we get.
km

Ok, = — <y’“ +q, j > =—(y*" +q,v). (3.4)

m

4. NEW CLASSES OF MAPPINGS AND ESTIMATES FOR [S(g, ®)]*

We introduce the following classes of mappings, which generalize those introduced in [9] for the linear com-

plementarity problem. Recall that A; = A(d) = co {%ei 1€ J}.

Definition 4.1. Let d > 0, ® : R} — R” be a multifunction such that 0 € ®(0). We say that ® is a
e T(d)-mapping, or & € T(d), if for any index subset J C I, one has

>0, w>0,we® *
Z)J_: 0?,1)@ 2 suup})p{v}(vg) J } = v € [®(posTAy)] . (4.1)

. 'i‘(d)—mapping, or ® € ’i‘(d), if for any index subset J C I, one has

v>0, w>0, we dv) (y,z) >0, (4.2)
wy =0, 0 # supp{v} CJ Vo € posTAy, y € ®(x). :

o GT(d) (resp. GT(d))-mapping if it is G(d) and T(d) (resp. T(d)).

Remark 4.2. We observe that if ® is c-subhomogeneous for some ¢ € C, one obtains
®cT(d) < ¢ T(d)Vd >0;
®eT(d) — ®eT(d)Vd >0.
Moreover, ® € T(d) (resp. ® € T(d)) if and only if (4.1) with A instead of pos™ A holds (resp. (4.2)).

Proposition 4.3. Letd >0, c € C, and ® : R} — R" be a multifunction. The following assertions hold:

(a) 0 € S(p,®) for all p > 0 provided 0 € ®(0); :

(b) if ® is copositive and 0 € ®(0), then it is semimonotone (hence G(p) for all p > 0) and T(p) for all
p>0; _

(c) if @ is superadditive c-homogeneous (in particular if ® is single-valued and linear) and T(d), then it
s T(d).

Proof.

(a) It is obvious.

(b) For p > 0 fixed, we take any © € S(p,®). Then, y +p > 0 and (y + p,z) = 0 for some y € &(z). By
copositivity (p,x) < 0, which implies z = 0, proving that ® is semimonotone. The remaining assertion
is obvious.

(c) Let v, w be such that the left-hand side of (4.1) holds, then {y,z) > 0 for all x € posTA; and y € ®(z).
By hypothesis, y + c(t)w € ®(x + tv) for all ¢ > 0 since w € ®(v). Thus (y + c(t)w, z + tv) > 0 for all
t > 0. It follows that (y,v) > 0 since (w,z) = (w,v) = 0, and therefore (4.1) holds. O
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Example 4.4.

e We must point to out that there is no relationship between G and T-mappings, even in the linear case
as shown in [FL]. Analogously, there is no relationship between G and T-mappings. Indeed, take

-10 0 -1
= (V)= (65

Then, the mappings ®;(x) = Mz, i = 1,2, satisfy ®; € T(d)\ G(d) for any d > 0, and &, € G(d)\ T(d)
for any d > 0.

o Let Mz = ( (1) _02 ) , My = ( _01 8 ), and consider the mappings ®;(x) = M;x, i = 3,4. Then O3

is not copositive but it is semimonotone (hence ®3 € G(p) for any p > 0) and ’i‘(p) for any p > 0;
whereas ®4 € T(p) \ T(p) for any p > 0. This shows that T and T does not coincide even in the linear
case. The same properties hold for ®;(x) = ||z||M;z, i = 3, 4.

One can check directly that
Flg, @) # 0= [v >0, ve—-[®R}]" (g,v) <0= (g,v) =0]. (4.3)

The reverse implication holds whenever @ is c-homogeneous for some ¢ € C, (0) = {0}, and the set R} —®(R")
is convex and closed. It should be notice that the right-hand side of (4.3) amounts to writing

v >0, ve—[®RY)]" = (q,v) > 0.

Proposition 4.5. Letd >0, cc€C, ¢ € R*, and ® : R} — R" be g-pseudomonotone c-homogeneous. Assume
that F(q,®) # 0. Then,

(a) ® is copositive on R} ;
(b) @ is copositive, if in addition it is either lsc or superadditive;
(c) if @ is superadditive, then for all J C I

v>0, wePw), wy<0

0 # supp{v} C J } — v e[2(A)]" (4.4)

Proof.
(a) Let 2% > 0 and y° € ®(2") such that y° + ¢ > 0. For any = > 0 there exists ¢, > 0 such that for all
t > t,, mx — 2% > 0. Thus <y0 +q, mx - ac0> >0 for all t > t,. If y € ®(z), by c-homogeneity

c(ﬁgf:tl)ld)y € o( H;de), and by g-pseudomonotonicity,

< M) gt x0>20 Vit > t,.
c(||z[a) ||z[la

On dividing by ¢(t)t and taking the limit as t — +oo, we get (y,x) > 0, proving (a).

(b) Let = be on the boundary of R? and y € ®(x). Then, there exists {z¥} C R7, such that 2% — =.
Suppose first that @ is Isc, then there exists {y*} such that y* € ®(2*) and y* — y. By (a), (y*,2*) >0
and then (y,z) > 0. We now suppose that ® is superadditive. If e > 0, tz + e > 0 for all ¢ > 0. Let
y € ®(x) and u € P(e). Clearly c(t)y +u € ®(tx + ¢e), and by (a) {(c(t)y + u,tx +¢e) > 0 for all ¢ > 0.
After dividing by c¢(t)t and taking the limit as ¢ — +o0, we get (y,z) > 0. This completes the proof
that ® is copositive in either case.
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(¢) Let v, w be satisfy the left-hand side of (4.4). For z € A; and y € ®(z), we have y + c(t)w € ®(z + tv)
for all ¢ > 0, and by (b) we get (y + c¢(t)w, z +tv) > 0. Since (w,v) = (w,z) < 0, we deduce that
(y,v) > 0, proving (4.4). O

The next result describes the asymptotic behavior of the normalized approximate solutions to problem (MCP),
for the mappings introduced recently.

Lemma 4.6. Let d >0, c € C; ®,¥ € X, and {0k} be an increasing sequence of positive numbers converging
to +00. Assume there exist a sequence {(Ik,yk + rk)} eW for ® +V such that i_: — v. Then, in addition to
the existence of w, r, {w*} and subindex set O # J, C I satisfying the properties established in the basic lemma
(for ®% = &, Uk = U and ¢* = q for all k), we also obtain the following:
(a) for ® to be c-subhomogeneous:
(a.1) ® € G(d) and U uniformly bounded imply w > 0, wy, =0 (hence {(w,v) =0);
(a.2) @ € G’i‘(d) and U copositive uniformly bounded imply w > 0, wy, = 0, {q,v) <0, and (y,z) >0
Vo € posTAy, and y € ®(x);
(a.3) ® € GT(d) and ¥ copositive zero-subhomogeneous imply w > 0, wy, = 0, {q,v) <0, (r,v) >0,
and v € [®(posTAy)]*;
(b) for ® to be a copositive c-Moré and U copositive uniformly bounded: (w,v) =0 and (g,v) <O0.

Proof. We set ®* = &, U* = ¥ and ¢* = ¢ for all k in the basic lemma.

(a.1) By (d) of the basic lemma, (w,v) < 0. If; on the contrary (w,v) < 0, then from Remark 3.4, 0 # v €
S(rd, ®) with 7 = — (w,v) > 0. This contradicts the fact that ® € G(d). Hence (w,v) = 0. We then
apply again (d) to obtain the desired result.

(a.2) If ® € GT(d), then (a. 1) holds, and by (4.2) we get (y,x) > 0 for all z € post A, and y € ®(z), which
in turn implies <ykm ak > > 0. From < Fprk g, > <0 for all k& (set z =0 in (MVIPy) for ® 4+ ¥),
we deduce that < q,x > <0, thus (g,v) <0.

(a.3) If ® € GT(d), then (a.1) holds, and by (4.1) we get v € [®(posTA,)]*, which in turn implies <yk ,
0. From (c) of the basic lemma (for z = v), and setting = 0 in (MVIPy) for ®+ W we get (g + r*
<yk’" + rkm q,v) = <y m 4 pkm g, p m> < 0, thus (r 4+ ¢,v) < 0. Since ¥ is copositive (r,v
and then (g,v) <0.

(b) By copositivity of ® and ¥, and (e) of the basic lemma, (w,v) = 0 and setting x = 0 in (MVIPy) for
D+, (q,aF) < (y*+r¥ +¢q,2*) < 0. Thus (g,v) <0. O

~ -

Given a nonempty set C C R™ and a vector d > 0. We define the d-normalized asymptotic set of C as the set
ok
Cyr = {U eR": I* € C, ||2*||qa — +oo, Tl —>U},
and the asymptotic cone of C' as the set
‘X’i{UER": Ik e C, t; | 0, thk—w)}.
We notice that C*° = pos C3° (where by convention pos() = {0}) and C is bounded if and only if C* = {0},

or equivalently, C3° = () (see [3] for instance).
The following sets will be needed in our study:

Ug(®) ={v=20:w e @), (w,0) =0, (g,v) <0}, Vy(®) =R} N[-2[RY) —q]

Wo(®) ={v = 0:w e (v), (w,v) =0,w=>0,(g,v) <O0}.
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One immediately obtains

€ [Up(®)]# <= U, (®) = {0}; ¢ € [S(0, )] <= W,(®) = {0}.

Proposition 4.7. Letd >0,ceC, g e R", and ¢, ¥ € X.

(a)

If ® is c-subhomogeneous and V is uniformly bounded, [S(q, ®+¥)]5* € S(0, ®)NAg. If, in addition,  is
either T(d) and U is copositive uniformly bounded or ® is T(d) and ¥ is copositive zero-subhomogeneous,
(S(g, &+ WF € W, (®) 1 Ay

If @ is copositive c-Moré and U is copositive uniformly bounded, [S(q, ® + ¥)]5° C Ug(®) N Ag;

If ® is monotone and ¥ is copositive zero-subhomogeneous, [S(q,® + U)|3° C V4(®) N Ag. If, in
addition, ® is q-pseudomonotone, [S(gq, ®)]>° = V4(P) provided S(q, @) is nonempty.

Let v € [S(q,® + ¥)]3. Then, there exists ¥ € S(q, ® + ¥) such that ||z*||; — 400 and ﬁ — .
Moreover, there exist y* € ®(2*) and ¥ € ¥(2*) such that y* + ¥ + ¢ > 0 and <yk +rk 4 q, :ck> =0
for all k. Clearly, oy = <d :ck> — 400 and i — v as k — 4o00. Consequently, the basic lemma (for
OF = @, UF = ¥, and ¢* = ¢ for all k) 1mphes the existence of w € d(v ) and 0 # J, C I, such that (a)-
(d) of that lemma hold. Dividing y* +r* +¢ > 0 (resp. (y* 4+ r* + ¢q,2%) = 0) by c(ox) (resp. c(ox)or)
and taking the limit we obtain w > 0, (w,v) = 0, and wy, = 0. Thus, in particular v € §(0, ).

Let ® be T(d) (resp. T(d)) and ¥ be zero-subhomogeneous (resp. uniformly bounded) copositive, by
proceeding exactly as in Lemma 4.6 we obtain that (g,v) <0. Thus, v € W4(®).

By proceeding as above and in Lemma 4.6, we obtain that v € Uy(®).

If @ is monotone and ¥ is zero-subhomogeneous, by proceeding as above, (g) of the basic lemma implies
that v € V().

If @ is g-pseudomonotone, it is well known that (see [5] for instance)

ﬂ ﬂ { y+q,:cf:c>>0}

>0 yed(x)

Since the sets involved in the intersection are closed and convex and S(g, ®) is nonempty, applying a
property of asymptotic cones we conclude that

=N N {z20: Graz-m20} =V,@)

>0 yed(x)

since {Z>0: (y+q,0—-2) 20} ={v=0: (y+q,v) <0}.

Example 4.8. The inclusions in the preceding proposition may be strict.

o Let ®(z1,22) =

0 1
01
S(q,®) = {(0,1)*} and S(0, <I>) =Wy (®) = {(v1,0)T : v > 0}, the inclusions in (a) are strict.

) be in T(d) NT(d) (for all d > 0), ¥ =0, and ¢ = (—%,—1)T. Since

e Let ®(x1,32) = [21,271] x {0} be copositive 3-Moré on A, for d = (1,1)", ¥ = 0, and ¢ = (-1,1)T.

Since S(q, ®) = [3,1] x {0} and Up(®) = {(0,v2)™ : vz > 0}, the inclusion in (b) is strict.
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5. MAIN EXISTENCE RESULTS

In this section we present new existence results, which generalize and unify several ones found in the literature.
This is carried out by using the classes of mappings introduced in Sections 2 and 4 applying mostly Theorem 3.1.
Actually, our main results of this section establishes sufficient conditions implying a kind of robustness property
for some classes mappings with respect to certain perturbation.

Lemma 5.1. Letd >0, c € C, ¢ € R", and ®,¥ € X. The set D(® + V) is closed at q under any of the
following circumstances:

18 coposztwe c-Moré, U is copositz've uniformly bounded, and q € [Ug(®)]7;
is monotone, ¥ is copositive zero-subhomogeneous, and Vy(®) = {0}.

Proof. Let {qk} C D(® + V) be a sequence converging to q. There exist 2% > 0, y* € ®(2*), and r* € U(zF)
such that y* +r* +¢* > 0 and <yk +rk 4 gk, :L'k> = 0. If the sequence {:L'k} is bounded, each of its limit points
is in S(q,® + U) since ,¥ € X. Thus ¢ € D(® + ¥).

If the sequence {ack} is unbounded, setting oK = <d xk > — +00, we may consider that there exists v such
that, up to subsequences, % — v and {(2*,y* r*)} are solutions to (PMVIPy) for ®* = &, ¥* = VU for all k.
By the basic lemma (for ®* = ®, ¥* = W for all k) and proceeding as in Lemma 4.6 it follows that:

(a) there exist {z"}, r, and 0 # J, C I, such that 0 # v € S(0,®), wy, = 0, and by (4.1) v €
[®(posTAy,)]*, which in turn implies (y*=,v) > 0. Moreover, from (c) of the basic lemma (for z = v)
we get <ykm + rkm +qkm,v> = <ykm—|—r - 4 gk i > = 0, thus < fom 4 ghom ’U> < 0, then (g,v) <
(r 4+ ¢,v) <0, contradicting the choice of g; v

(b) there exist {z""} and 0 # J, C I, such that O # v € §(0,P), wy, = 0, and ( ,:U) > 0 for all z €
posT Ay, , y € ®(z), which in turn implies (y*=, 2% ) > 0. Moreover, fr < Fm o ghm ghm )y = 0,
we get <qkm,ka> < 0, then (g,v) <0, contradicting the choice of g;

(c) there exists w* € @(%) such that w* — w € ®(v) and (w, v) = 0, thus 0 # v € Uy(®). Moreover, from
0= <yk +rk 4+ gk, $k> > <qk,xk> , we get (gq,v) <0, contradicting the choice of g;

(d) 0+# v e Vy(®P) a contradiction. O

We first obtain existence theorems for problem (MCP) for mappings of the form ® + ¥, and ® respectively. In
this way, we generalize some results from [13,20-22] as will be shown in the example below.

Theorem 5.2. Let d > 0, ¢ € C, ® € X be GT(d) (resp. GT(d)) c-subhomogeneous, and ¥ € X be a
zero-subhomogeneous (resp. uniformly bounded) copositive mapping:

(a) if ¢ € [S(0,®)]* and D(® + V) is closed at q, then S(q,® + V) is nonempty;
(b) if q € [S(0,®)]#, then S(q,® + V) is nonempty and compact.
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Proof.
(a) Let {ok} be an increasing sequence of positive numbers converging to +oo, d > 0, and {(:ck, Yk + rk)} ew

for ® + W. Since <d, §> = 1, up to subsequences, there exists 0 # v > 0 such that i—z — v. Thus,
¥ € Dy, yF € d(2"), € U(2P), <yk +rF 4 g — $k> >0 forallx e Dy. (5.1)

By the basic lemma (for ® = &, ¥* = ¥ and ¢* = ¢ for all k), Lemma 4.6 for ® in GT(d) (resp. in GT(d))
and the uniform boundedness (resp. zero-subhomogeneity) and the copositivity of ¥, there exist w € ®(v), r,
0 # J, C I, and {x*} such that w > 0, (w,v) =0, wy, = 0, (g,v) <0, and (y,z) > 0 for all z € postA,,
y € ®(z) (resp. v € [®(posTAy,)]*, r € ¥(v), and (r,v) > 0), which in turn implies (y"m, az*=) > 0 (resp.
<yk’",’u> > 0). Moreover, v € §(0,®) implies (g,v) = 0. From (3.4) for ® + ¥, we get

k
o
O = = <yk” +rkm 4, —> == (" +rh 4 q0). (5.2)

m

Then 0 < 6, < — <q, ﬁ:—"> (resp. 0 < O, < — <rkm,v>). Thus liminf §; = 0, and the result follows from

k—+o00
Theorem 3.1.
(b) By Lemma 5.1 the set D(® + V) is closed at ¢ and by (a) we conclude that S(g, ® + ¥) is nonempty. Its
boundedness follows from Proposition 4.7 since by the choice of ¢, Wq(®) = {0}. O

When ¥ = 0 in the previous theorem, the closedness of D(®) is not needed in some cases, as shown by the
next corollary.

Corollary 5.3. Letd >0, c€C, g € R, and ® € X be c-subhomogeneous:
(a) if ® € GT(d) and q € [S(0, ®)]*, then S(q, P) is nonempty;
(b) if @€ G’i‘(d), D(®) is closed at q, and q € [S(0, P)]*, then S(q, ) is nonempty;
(c) if ® is GT(d) or GT(d) and q € [S(0,®)]|#, then S(q, ®) is nonempty and compact.

Proof. By setting ¥ = 0 in the above theorem we obtain (b) and (c).
By proceeding exactly as in the above theorem with ¥ = 0, from (5.2) we obtain that 0 < 6, <
— <ykm + q,v) <0, thus 6, =0 and 2*» € S(q, ®). O

m

Remark 5.4. Since copositive mappings are G’i‘(d) for each d > 0, the above result contains Corollary 2 of
[13].

The next two results do not require c-subhomogeneity.

Theorem 5.5. Let d > 0, c € C, ¢ € R", & € X be copositive c-Moré, and ¥ € X be copositive uniformly
bounded:

(a) if ¢ € [Upg(D)]* and D(D + V) is closed at q, then S(q, P + V) is nonempty;

(b) if q € [Ug(®)]*, then S(q,® + V) is nonempty and compact.

Proof.
(a) Let {0} be an increasing sequence of positive numbers converging to +o00, d > 0, and {(Jck, yk)} ew

for & + . Since <d, ﬁ—:> = 1, up to subsequences, there exists 0 # v > 0 such that % — v. By the

basic lemma (for ®* = &, U*¥ = ¥ and ¢* = ¢ for all k) and Lemma 4.6 there exist w, 7, {:L'k ,

and § # J, C I such that w € ®(v) and (w,v) = 0, thus v € Up(®P), and then (g,v) > 0. From
(5.2) and copositivity of ® and ¥ we get that 0 < 6, = — <yk’" +rhm 4 g, ikﬂ> < — <q, ii—m>, thus

m —

likm inf 8, = 0 and the result follows from Theorem 3.1.
—00
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(b) By Lemma 5.1 the set D(® + ) is closed at ¢, and by (a) we conclude that S(g, ® + ¥) is nonempty.
Its boundedness follows from Proposition 4.7, since by the choice of ¢, Uy(®) = {0}. O

The previous theorem allows us to recover Theorem 3.1 from [24], where ® is assumed to admit contractible
images.

Corollary 5.6. Let ® € X be such that 0 € ®(0). If ® is strongly copositive, then S(q, ®) is nonempty and
compact for all g € R™.

Proof. By Proposition 2.5, ® is ¢-Moré for some ¢ € C, moreover Uy(®) = {0}. The result follows from the
above theorem. O

Theorem 5.7. Letd > 0, g € R™, ® € X be monotone copositive, and ¥ € X be copositive zero-subhomogeneous:
(a) if the following implication holds [v € V¢(®) = (g, v) = 0] and D(®+V) is closed at q, then S(q, +V)
18 nonempty;
(b) if Vq(®) = {0}, then S(q,® + ¥) is nonempty and compact.
Proof.
(a) Let {0k} be an increasing sequence of positive numbers converging to +o00, d > 0, and {(:ck, Yk + rk)} €
W for ® 4+ W. Since <d, i—z> =1, up to subsequences, there exists 0 # v > 0 such that % — v. By (g)
of the basic lemma (for ®* = &, U = ¥, and ¢* = ¢ for all k), v € V,(®) and by hypothesis {g,v) = 0.
From (5.2) since ® and ¥ are copositive we get 0 < 0, = — <ykm + rkm 4 g, iz:> < - <q7 i:m >

Therefore 1kim inf 8, = 0 and the result follows from Theorem 3.1.
— 400

(b) By Lemma 5.1 the set D(® + ) is closed at ¢ and by (a) we conclude that S(g, ® + ¥) is nonempty.
Its boundedness follows from Proposition 4.7, since V(@) = {0}. O

It is worth mentioning that a monotone mapping is copositive if ®(0) "R’ # () (in particular if 0 € ®(0)).
We now revise the pseudomonotone case. Part of the next theorem was first observed in [5], see also [8].

Theorem 5.8. Let ¢ € R™ and ® € X be g-pseudomonotone. Consider the statements
(a) Fs(q, @) is nonempty;
(b) Vq(@) = {0};
(c) ( q,®) is nonempty and compact;
(d) There exists a compact convex set K C R’ such that

VeeRE\NKVye®(x)Ize K: (y+q,2—x)<0.

The following implications hold: (a) => (b) <= (¢) <= (d).
Moreover, if ®(R’) is convex, then all the statements are equivalent.

Proof. (a)=(b): Let z° > 0 and y° € ®(2°) such that y° 4+ ¢ > 0, and let v € V4(®), thus (y° +¢,v) <0 a
contradiction if v # 0.

(b)=>(c): Let {0k} be an increasing sequence of positive numbers converging to +oo, d > 0, and {(x*,y*,0;)}
a sequence which solves (MCPy) for all k. If there exists k such that <d, :ck> < o, then 0, = 0 and therefore
o* € S(q, ®). If <d, :ck> = oy, for all k, then up to subsequences % — v # 0. By (f) of the basic lemma (for
ok = @, Uk = 0, and ¢* = ¢ for all k) we obtain 0 # v € V,(®) a contradiction. The boundedness of the
solution set follows from Proposition 4.7.

(¢)=(b): It follows from (c) of Proposition 4.7.

(c)=(d): See [6].

(d)=-(c): See [5] (this implication holds without the g-pseudomonotonicity assumption).

(b)=(a): On the contrary suppose that (®(R’} )+ ¢) Nint R} = (). By using standard separation arguments, we
obtain the existence of 0 # v € V(®) a contradiction. O
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Theorem 5.9. Letd >0, c€C, ¢ € R, and ® € X be g-pseudomonotone c-homogeneous and superadditive.
Consider the statements:

(a) F(q,®) # 0;
(b) v>0,ve—-[®R})]* = (¢g,v) >0;
(c) S(q, @) #90.
The following implications hold: (c) <= (a) = (b).
Moreover, if R —®(R"}) is convex and closed together with ®(0) = {0}, then all the statements are equivalent.

Proof. (a)=(b): It follows from (4.3).
(a)=-(c): Let {o«} be an increasing sequence of positive numbers converging to +o0o, d > 0, and {(:ck, yk)} eW.
Since <d, i—z> = 1, up to subsequences, there exists 0 # v > 0 such that i—: — v. By (f) of the basic lemma (for

ok =@, U¥ =0, and ¢* = ¢ for all k) we get 0 < v € —[®(R")]* and (g,v) <0, which in turn imply (g,v) =0
by the above implication. By (d) of the same lemma and (4.4) we conclude that v € [®(Ay,)]", which in turn

implies <yk’",v> > 0, therefore by (3.4), 0 < 0, = — <yk’" + q,v) = - <yk’",v> < 0, thus 0, = 0 and then
zkm e S(q, ®).

(c)=(a): Tt is obvious.

(b)=-(a): It follows from the remark made after (4.3). O

In what follows we give a variety of results existing in the literature which are direct consequences of our
theorems.

Example 5.10.
1. [13], Corollary 4,5, let ®(x) = Mx, where M € R™*" and ¥(x) = Oh(z), where h is a nonnegative on R’}
support function of a nonempty compact convex set C' (see Ex. 2.2). By applying Theorem 5.2 we obtain that:

e if M is copositive, g € [S(0, M)]*, and D(M + 9h) is closed at ¢, then S(q, M 4 9h) is nonempty. Moreover,
if C' is a polyhedral set the closedness condition is clearly satisfied [13], Proposition 3;

e if M is copositive-star and there exists a vector 2° > 0 such that M2 + ¢ > 0, then S(q, M + 0h) is
nonempty and compact. Since the existence of such an z° implies that ¢ € [S(0, M)]#;

e if M is regular, then S(gq, M + 9h) is nonempty and compact for all ¢ € R™.
2. Let ®(x) = F(x), where F' : R} — R” is a continuous homogeneous of degree v > 0 function. Let
¥ : R} < R" be a multifunction.

e [22], Theorem 7, if F is regular and ¥ be an usc convex-valued uniformly bounded multifunction, then
S(q, F + ¥) is nonempty and compact for all ¢ € R™. This follows from Theorem 5.2;

e [21], Theorem 3.3, if F' is monotone, dh(x) as above, and there exist u > 0, § € Oh(u) such that F(u)+g+q >
0, then S(gq, F'+0h) is nonempty and compact. This follows from Theorem 5.8 since F'+dh is g-pseudomonotone
and F,(q, F' + Oh) is nonempty.

Remark 5.11. The results of this section allow us to find Karush-Kuhn-Tucker stationary points for the
following mathematical programming problem:

minimize F(z) + h(x)
subject to x>0, g(x) >0

where F': R™ — R and g : R™ — R™ are differentiable functions and h is the support function of a nonempty
compact convex set in R™, since its corresponding Karush-Kuhn-Tucker stationary point problem can be ex-
pressed as a multivalued complementarity problem [21].

Given d > 0, the system

v >0, (dv) =1, we ®(v), (w,v) <0, w—{(w,v)d >0, (5.3)
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found in the basic lemma (for ®* = &, U* = ¥, and ¢* = ¢ for all k), plays a fundamental role in characterizing
the nonemptiness and boundedness of S(q,®) for all ¢ € R®. When ® is c-subhomogeneous the inconsistency
of (5.3) is equivalent to the inconsistency of the following system

0#v>0,z€®(w), 7>0, z+7d >0, (z+7d,v) =0. (5.4)

This system has its origin in [15] where the case ®(x) = Mz with M being a matrix and d to be the vector
of ones is treated. It was further developed in [16] for ® having single-values and nonlinear. Afterwards, the
set-valued version was introduced in [13,22].

The next theorem generalizes Corollary 2 of [13] and provides, in this setting, new characterizations of regular
mappings. In particular, it shows the existence of some kind of robustness property with respect to certain
classes of perturbations.

Theorem 5.12. Let d >0, c € C, and ® € X be c-subhomogeneous. Consider the statements

(a) the system (5.3) is inconsistent;
(b) ® € G(d) and S(q, P + V) is nonempty and compact for all ¢ € R™ and all ¥ € X copositive uniformly

bounded;

(c) ® € G(d) and S(q, ® + ¥) is nonempty and compact for all ¢ € R™ and all U € X copositive zero-
subhomogeneous;

(d) ® € G(d) and S(q,P) is nonempty and compact for all ¢ € R™;

(e) ® € R(d).

The following implications hold: (e)<=-(a)=-(b)= (c¢)==-(d). Moreover, if ® is c-homogeneous, then all the
statements are equivalent.

Proof. (a)=(b): We first prove that ® is G(d). Let 7 > 0 and = € S(7d, ®). Then there is y € ®(x) such
that y + 7d > 0 and (y + 7d,z) = 0. If (y,z) = 0 then (d,z) = 0, which implies z = 0. If (y,z) < 0 then for
v=2z/||z|la we get w = y/c(||z||la) € P(v) and since T||z|lq = — (y, x), clearly (5.3) holds, a contradiction. The
previous reasoning also shows that S(0,®) = {0}, and thus ® € T(d). Hence ® € GT(d), and by Theorem 5.2
we conclude that S(¢,® + ¥) is nonempty and compact for all ¢ € R™ and all ¥ € X copositive uniformly
bounded.

(a)<(e): It follows from the equivalence between (5.3) and (5.4).

(b)=(c): It follows from Proposition 2.3(b).

(¢)=(d): It is obvious.

(d)=-(e): If there exists v € S(0,®), v # 0, then by c-homogeneity, tv € S(0, ®) for all ¢ > 0, contradicting the
boundedness of S(0, D). O

We rewrite the previous theorem to get the next corollary which is new in the literature, even in the case
when ®(z) = Mz with M being a real matrix. Our corollary gives more information than the existing ones,
e.g. [13].

Corollary 5.13. Let d > 0, c € C, and ® € X be c-homogeneous. Assume in addition that ® € G(d). The
following assertions are equivalent:

(a) S(q,®) is nonempty and compact for all ¢ € R";

(b) S(q,® + ¥) is nonempty and compact for all ¢ € R™ and all ¥ € X copositive uniformly bounded;
(¢) S(g, D+ ) is nonempty and compact for all ¢ € R™ and all ¥ € X copositive zero-subhomogeneous;
(d) s(0,

®) = {0}
6. SENSITIVITY, STABILITY RESULTS, AND APPROXIMABLE MAPPINGS

In this section we give sensitivity results for problem (MCP), whose data are small perturbations of a given
pair (¢", ®°); prove some continuity properties of its solution-set multifunction, and establish further existence
results for mappings which are approximable in some sense.
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Proposition 6.1. Letd >0, c€C, ¢°" € R", and ®° € X.
If ¢° € [S(0,9%)]# (resp. Vo(®°) = {0}), then there exists € > 0 such that for all ¢ € R™ and all ® € X
which are c-subhomogeneous (resp. simply cuscos) satisfying

g — °|| + di(®,9°) < e,

one has q € [S(0,®)]# (resp. V4(®) = {0}).

Proof. We first consider the case ¢° € [S(0,®")]#. Suppose on the contrary, that there exist sequences
{g¥, ®% vF} satisfying ¢* — ¢°, d(®*,®%) — 0, 0 # v* € S(0,®F), and <qk,’uk> < 0 with ®* € X being
c-subhomogeneous. By c-subhomogeneity we may assume that [[v* |4 = 1, therefore up to subsequences v* — v
and |[v]|lq = 1. Moreover, for all k, there exist w” € ®*(v*) such that w* > 0 and (v*,w*) = 0. By the
uniformity in graphical convergence ® % ®° [23], Theorem 5.34, we may also assume that w* — w. From (a)
of Theorem 5.37 in [23], it follows in particular that w € ®°(v). Furthermore, w > 0 and (w,v) = 0. Hence
0 # v € S(0,8%) and <q0, v> < 0, contradicting the choice of ¢°.

We now consider the case Vo (®°) = {0}. Suppose on the contrary that there exist sequences {¢~, &%, v*}
satisfying ¢* — ¢°, di(®*,®°) — 0, and 0 # v* € Vi (PF), with ®¥ € X. We may assume that |[v¥]|q = 1,
therefore up to subsequences v¥ — v and ||v||g = 1. Let us fix > 0 and y € ®°(x). Since ®*, ®° are closed-
valued and ®* % ®°, we invoke Theorem 5.37 in [23] to obtain x as the limit of a sequence {aj}, corresponding
to some {bj} satisfying ' € ®/(a’) and ¥/ — y. By the choice of v/, we obtain <bj + qj,vj> < 0. Thus
(y + q,v) <0, and therefore 0 # v € V0 (®°) a contradiction. O

Theorem 6.2. Letd >0, c€C, ¢° € R", and ®° € X.
If ¢° € [S(0,@°)]# (resp. Vgo(®°) = {0}), then there exists € > 0 such that for all ¢ € R™ and all

® € X which are c-subhomogeneous and either GT(d) or G’i‘(d) (resp. simply g-pseudomonotone) satisfying
llg — ¢°|| + di(®, ®°) < &, the set S(q, ®) is nonempty and compact.

Proof. This follows from the above proposition and Corollary 5.3 and Theorem 5.8. O

The following theorem may be considered as a stability result for MCP(q°, ®°) under a copositivity and
c-subhomogeneous or ¢g-pseudomonotone perturbation. Notice it is only required that ®° € X. This theorem
extends Theorem 7.5.1 of [4], where only the copositive linear case is considered.

Theorem 6.3. Letd >0, c€C, ¢° € R" and ®° € X.
If ¢° € [S(0,@%)]# (resp. Vyo(@°) = {0}), then there exist £ >0 and r > 0 such that for all ¢ € R"™ and all
® € X which are copositive c-subhomogeneous (resp. simply q-pseudomonotone) the following implication holds

lg—q°|| +d(®,@°) <e = ||z|| <7 for all x € S(q, P).

Proof. By Theorem 6.2 for such ¢ and ® the set S(g, ) is nonempty and compact.
Suppose on the contrary that there exist sequences {¢¥, ®* 2%} satisfying ¢* — ¢°, di(®*,®°) — 0, 2* €
S(qF, ®%), and <d, :ck> — +00. There exists a sequence {yk} such that for all &

yF e ®F(a¥), ¥ +4¢* >0, and (yF+4"2F)=0. (6.1)

Setting o, = <d, xk>, up to subsequences, % — v # 0. Clearly (2%, y*) is a solution of problem (PMVIPy) for
® = d° W* =0, and ¢ = ¢° for each k, so we can apply the basic lemma (for ® = ®°, W* = 0, and ¢ = ¢° for
all k).

If ®* is copositive c-subhomogeneous for all k, by (d) of the basic lemma and (6.1) we obtain that 0 # v €
S(0,®%) and <qk,:ck> <0, thus <q0,v> < 0 contradicting the choice of ¢°.

If ®F is g*-pseudomonotone for all k. By (f) of the basic lemma 0 # v € V0 (®°) a contradiction. O
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In what follows, we recall another type of continuity for multifunctions. Let X,Y be two metric spaces. The
mapping F : X — Y is said to be outer semicontinuous (osc) at T if,

lim sup F(z) C F(z),

T—T

or equivalently limsup,_,; F(x) = F(Z) where

limsup F(z) = {z Jliminf d g (2) = O} i
r—T

T—T

On R™ x X we introduce the metric
D((q1,®1)(q2, P2)) = ||q1 — q2|| + (D1, P2).

Obviously (R™ x X, D) is a metric space. We now investigate continuity properties of the solution-set multi-
function § : R™ x X — R".

Theorem 6.4. Let S be the solution-set multifunction associated to problem (MCP). Then S is osc at each
(q°, @°).
Proof. We have to prove

limsup  S(g, ®) € S(¢°, 7). (6.2)

(2,2)—(q°,2°)

If the set in the left-hand of (6.2) is empty, the assertion is trivial. On the contrary, let 2 be in that set, then
there exist a sequence (¢¥,®%) € R™ x X such that ¢* — ¢°, dl(®*, ®°) — 0, and a sequence z*¥ — x with
a* € 8(¢%, ®%). Thus, 2¥ > 0 and there is y* € ®"(2*) such that y* + ¢* > 0 and (y* + ¢*,2*) = 0. By the
uniformity in graphical convergence, we conclude that {yk} is bounded, and so, up to subsequences, we may
assume y* — y. From Theorem 5.37 in [23], it follows that y € ®°(z). Taking the limit we obtain = > 0,
y+¢° >0, and <y + qo,x> =0, that is, z € S(q°, ®°). O

It is worth mentioning that by Theorem 6.2 we may ensure the nonemptiness of the left-hand side of (6.2)
by considering that ¢° € [S(0,®%)]# (resp. V,o(®°) = {0}) and restricting ® to be c-subhomogeneous and
cither GT(d) or GT(d) for some ¢ € C and d > 0 (resp. g-pseudomonotone).

We now provide existence results for other classes of multifunctions, which admit some kind of approximating
mappings.

Definition 6.5. Let ) be any class of multifunctions, the mapping ® € X is said to be approximable by Y if
there exists a sequence {®*} C Y N X such that ®F ENYY

Some properties of the approximating sequence {®*} can be inherit by the approximable mapping ®, as
shown in the next result.

Proposition 6.6. Letd > 0, ¢ € C and ®,{®*} in X such that ®* ENEY

(a) if 0 € ®%(0) for each k then 0 € ®(0);

(b) if {®*} are monotone (resp. copositive) then ® is monotone (resp. copositive);

(c) if {®F} are c-subhomogeneous (resp. c-Moré) then ® is c-subhomogeneous (resp. c-Moré) provided c is
continuous;

(d) if {®*} are zero-subhomogeneous then ® is zero-subhomogeneous;

Proof.

(a) It follows from Theorem 5.37 in [23].
(b) For the monotone case see [23], Theorem 12.32. For the copositive case is similar.
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(¢) Let x € Ag, A > 0 (resp. A > 1) and y € ®(Az). By Theorem 5.37(b) in [23] there exist sequences

{uF} C R7% and {y*} such that u¥ — Az, y* € ®*(u*), and y*¥ — y (we may assume that u* # 0).
k k

Clearly, = oty 20d my; — &
If {®*} are c-subhomogeneous, ®*(u*) C c(||uk||d)®k(ﬁ) thus C(IlukH 5 € il (IlukH ). By taking
the limit and applying Theorem 5.37(a) in [23] we obtain C(}\) € ®(x), thus y € ¢(\)®(x).
If {®*} are c-Moré, there exists 2% € @k(%) such that (y*,u*) > c(|[u*]|q) (z*,u¥). By the
uniformity in graphical convergence [23], Theorem 5.34, and Theorem 5.37 in [23], there exists z such
that (up to subsequences) z¥ — z € ®(z), and by taking the limit in the previous inequality we get
(y, \z) > ¢(X) (z,2).

(d) It is similar as in (c). O

Example 6.7. It is worth pointing out that if {®*} are g-pseudomonotone then ® is not necessarily g¢-
pseudomonotone. To see this take ®*(z) = Mx + b*, ®(x) = Mx and ¢ = 0 where

(01 -
M—(OO) andb-(o ,
each ®* is 0-pseudomonotone, &% % & (see [23], p. 353), and ® is not 0-pseudomonotone since <Mel, e — el> =
0 and <M€2,€2 — el> < 0.
Theorem 6.8. Let d >0, c€C, and g € R™.
(a) Let ® = @0 + WO where ®°, WO € X the latter being copositive and zero-subhomogeneous:
(a.1) If ®° is approzimable by copositive c-subhomogeneous mappings and q € [S(0,®°)]* then S(q, ®)
18 nonempty;
(a.2) If ®° is approzimable by copositive c-Moré mappings and q € [Ug(®°)]# then S(q, ®) is nonempty;
(b) If & € X is approximable by q-pseudomonotone mappings and V4(®) = {0} then S(g, ®) is nonempty.
Proof.
(a) Let {®*} be the mappings that approximate ®°, {01} be an increasing sequence of positive numbers
converging to +oo, and {(z*,4* r*)} be a sequence of solutions to (PMVIPy) for ® = ®°, U* = ¥ = U0 and
k
= ¢ for all k.

If {z*} is bounded, by the uniformity in graphical convergence [23], Theorem 5.34, and Theorem 5.37 in [23],
any limit point of such a sequence belongs to S(q, ®).

Otherwise, we may consider (by redefining oy if necessary) that op = <d, ack>. Since <d, £> =1, up

to subsequences, there exists 0 # v > 0 such that % — v. By applying the basic lemma (for & = ®°
Uk =¥ = W0 and ¢* = ¢ for all k) we obtain that:
(a.1) there exist w € ®%(v), r € ¥O(v), and () # J, C I, such that 0 # v € S(— (w,v) d,®°) and (w,v) < 0.
As @Y is copositive (Proposition 6.6(b)) We conclude that (w v) =0and 0 # v € §(0,9%). By the
copositivity of ®* and WO we obtain <yk’" ak > >0 and < m gk > > 0 respectively. By setting x =0

in (PMVIPy) we get
2km i i o
q, — < ym+rm+Q7— SO; (63)
Ok Ok

then (g,v) <0 contradicting the choice of ¢;

(a.2) there exist w and wk= € @k(ik ) such that w*» — w € ®°(v) and (w,v) < 0. Since ®° is copositive
(Prop. 6.6(b)) we get (w,v) = 0 thus 0 # v € Up(®Y). As above we get (6.3) and thus (g,v) < 0
contradicting the choice of g.

(b) The result follows from Theorem 6.3 and the uniformity in graphical convergence [23], Theorems 5.34
and 5.37(a). O
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Remark 6.9.

1. If we set ¥° =0 in (a.1), then the result follows from Theorem 6.3 (similarly as in the proof of (b)).

2. In Theorem 6.8 (b) the solution set may be unbounded as shown by Example 6.7 where S(q, ®) = {(x1,0)" :
x1 > 0}. For this example we can use neither Theorem 5.8 nor Theorem 5.9, but by using (b) we get the
existence of solutions. 3. If in (a) we additionally assume that ¢ is continuous, then by Proposition 6.6(b) — (c)
and Theorem 5.2 or 5.5 respectively, the set S(g, ®) is also compact. Similarly, if in (b) we assume that @ is
approximable by monotone mappings, instead of g-pseudomonotone, by Proposition 6.6(b) and Theorem 5.8 the
set S(g, @) is also compact.

4. Notice that under the assumptions of Theorem 6.8 we actually prove that any limit point of every approximate
sequence {z¥} constructed through (PMVIPy) (which is bounded) is a solution to (MCP).

7. ESTIMATES FOR THE SOLUTION SET

In this section we extend and generalize some results from [17], where the monotone linear complementarity
problem is studied; [14], where the numerical range of an operator is used to obtain bounds for the linear
complementarity problem in Hilbert spaces; and [21], where a bound for the solution set of a quasidifferentiable
convex programming problem is obtained. Indeed, we consider the set-valued case and obtain bounds for the
solution set to problem (MCP) mainly under the subhomogeneity property.

If ® € X is c-subhomogeneous (on Ag4), we infer that

mal|llac(|lzlla) < (y,x) < Moll|lac(|z|la) for allz >0, y € (z). (7.1)

In the following || - || and || - || denote the Euclidean norm and the sum-norm in R™ respectively, and dy =
minj<;<n d; > 0. We point out that ¥ is uniformly bounded if and only if ||¥|] < +oo0, where ||T|| =
sup {lly|| : y € ¥(z), = > 0}.
Theorem 7.1. Letd >0,ceC, g€ R", and ¢,V € X.

(a) Assume @ is c-subhomogeneous and U is uniformly bounded:

o if My <0, then S(¢q, &+ ¥) C {:L' >0:c(||z]la) < max (c(()), %)};

o if mg >0, then S(¢,® +¥) C {:c >0:c(]|z]|¢) < max (c(()), W)}_

0 Mo
(b) Assume ® is monotone, W is copositive zero-subhomogeneous, and there exist 0 # x° > 0, y° € ®(a0)
such that y° + q > 0, then

(¥° +q,2%) + 2] [|2°]

3 0 X
12?"(?’ +q)i

S(g@+V)C x>0z <

Proof.
(a) First we notice that for z > 0 and r € ¥(x), ||r|| < ||¥||. Assume Mg < 0, and let 0 # = > 0, y € &(x),
and r € ¥(x). By (7.1)

{y +7+q,2) < Ma|lzlac(ll2(la) + (7]l + lalDI[=]] < [lz]la <M¢ c(ll2lla) + dio(ll‘l’ll + ||Q||)) :

It follows that Mg c(||x||q) + d—lo(||‘ll|| +1lg]]) = 0if 0# z € S(¢q, D + V).
Let mg >0,0# x>0,y € ®(z), and r € U(z). By (7.1) again

{y +r+q,2) = msllz|lac(l|la) = (llrll + gDzl = ||=[la (ﬂw c([fla) dio(ll‘lfll + IICJII)) :

It follows that me c(||z||qd) — d—lo(||\I/|| +1lg|]) <0if0#x € S(qg,®+ ).
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(b) Let z € S(q, ® + ¥), there exist y € ®(x) and r € U(x) such that (y +r+ ¢, u —z) > 0 for all u > 0, since
® is (r + g)-pseudomonotone we get <y0 +r+4q,2°— :c> > 0 and since ¥ is copositive

W' +r+q2%) > +r+qa) > " +q2) > min @ +q)illz|h.

By Proposition 2.3(b) ¥ is uniformly bounded and (r,z%) < ||¥||||z°]|. Thus

(0" +q.2%) + 19| = min (4" + gl O

Remark 7.2. One can check that hypothesis mg > 0 in (a) implies that ® € GT(d) and S(0,®) = {0}, which
in turn implies that S(g, ® + ¥) is nonempty and compact for all ¢ € R™ provided ¥ is copositive (Th. 5.2).
Similarly, the hypothesis in (b) implies that S(g, ® + ¥) is nonempty and compact provided ® is copositive as
well (Th. 5.8 implication (a) = (b) and Th. 5.7).
Corollary 7.3. Letd >0,ceC,qeR", and P € X.
(a) Assume @ is c-subhomogeneous:
o if My <0, then S(q,®) € {o = 0: c(lalla) < max (c(0), 712 ) }
e if mg >0, then S(q, ®) C {:c > 0:c(]]z]]q) < max (c(O) Ll )}
(b) Assume ® is q-pseudomonotone, and there exist 0 # z° > 0, y° € ®(2°) such that y° + q > 0, then
0 0
S(a®) € {2 0: ol < it L.

= H 0 .
1?ilé’n(y +49):

)

Proof.
(a) We set ¥ = 0 in (a) of the above theorem.

(b) We proceed as in (b) of the above theorem with ¥ = 0, and taking into account that ® is g-pseudomonotone.
([

Remark 7.4. We point out that mg > 0 in (a) implies that ® € GT(d) and S(0,®) = {0}, which in turn
implies that S(g, ®) is nonempty and compact for all ¢ € R™ (Cor. 5.3). Similarly, the hypothesis in (b) implies
that S(g, ®) is nonempty and compact (Th. 5.8).
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