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THE GEOMETRICAL QUANTITY IN DAMPED
WAVE EQUATIONS ON A SQUARE

PAscAL HEBRARD! AND EMMANUEL HUMBERT!

Abstract. The energy in a square membrane {2 subject to constant viscous damping on a subset
w C ) decays exponentially in time as soon as w satisfies a geometrical condition known as the
“Bardos-Lebeau-Rauch” condition. The rate 7(w) of this decay satisfies 7(w) = 2min(—p(w), g(w))
(see Lebeau [Math. Phys. Stud. 19 (1996) 73-109]). Here pu(w) denotes the spectral abscissa of the
damped wave equation operator and g(w) is a number called the geometrical quantity of w and defined
as follows. A ray in 2 is the trajectory generated by the free motion of a mass-point in  subject
to elastic reflections on the boundary. These reflections obey the law of geometrical optics. The
geometrical quantity g(w) is then defined as the upper limit (large time asymptotics) of the average
trajectory length. We give here an algorithm to compute explicitly g(w) when w is a finite union of
squares.
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Let Q = [0,1]2 be the unit square of R? and let w C 2 be a subdomain of 2. We are interested here in the
problem of uniform stabilization of solutions of the following equation

uge (2, ) — Aulz, t) + 2xw(@)ue(x,t) =0, x € 52, t>0,
u(z,t) =0, 2 € 9N, t>0

u(.,0) = ug € H}(Q),

u(.,0) = ug € L2(Q),

(0.1)

where x, is the characteristical function of the subset w. This equation has its origin in a physical problem.
Consider a square membrane 2. We study here the behaviour of a wave in Q. Let u(z,t) be the vertical position
of x € Q at time t > 0. We assume that we apply on w a force proportional to the speed of the membrane
at . Then, u satisfies equation (0.1). To get more information on this subject, one can refer to [2,7,10]. With
regard to the one-dimensional case, the reader can consult [3, 6].

We do not deal here with the existence of solutions. We assume that there exists a solution u. Let us define
the energy of u at time t by

E(t)z/ [Vul® + uldz.
Q
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It is well known that, for any ¢t > 0,

E(t) < CE(0)e ™, (0.2)
where C, 7 > 0. As proven by E. Zuazua [13], this result remains true in the semilinear case when the dissipation
is in a neighborhood of a subset of the boundary satisfying the multiplier condition. Let us now define

Definition 0.1. The exponential rate of decay 7(w) is defined by
T(w) = sup{7 > 0 s.t. 3C > 0 for which (0.2) holds}.

Many articles have been devoted to finding bounds for 7(w). The reader can consult [1,9,11]. In the case of a
non-constant damping, the reader may see [4]. Lebeau proved in [9] that

7(w) = 2min(—p(w), g(w)).

Here p1(w) denotes the spectral abscissa of the damped wave equation operator and g(w) is a number called the
geometrical quantity of w and defined as follows. A ray in €2 is the trajectory generated by the free motion of
a mass-point in €2 subject to elastic reflections in the boundary. These reflections obey the law of geometrical
optics: the angle of incidence equals the angle of reflection. If a ray meets a corner of €2, the reflection will be
the limit of the reflection of the rays which go to this corner. It is easy to verify that the ray runs along the
same trajectory before and after the reflection but in an opposite direction.

Let v : RT — Q be the parametrization of the ray by arclength. Let

C= {rays in Q}

Furthermore, let pg = (Xo, ), where X € © and « € [0,2n[. Consider the ray 7y,, which starts at Xy in the
direction of the vector (cos(),sin(«)). Each ray of C can be defined in this way. More precisely, if ' = Q2x [0, 27|
then

C={vp st. po €T}
In the whole paper v € C will be noted v = [Xo,a]. If v € C and if ¢t > 0 is a positive real number, we write:

Yt = V/[0,4]-

Let

¢ = U {’yt"y ecC}

>0
be the set of paths of finite length not necessarily closed. For «; € C’ of length ¢ > 0, we define:

m(y:) = %/0 Xo(y(8))ds.

The definition of m can be extended to C. Indeed, if v € C, set

m(y) = limsup m(vy).

t—+o0

It is proven in Section 1.2 that
m(y) = lm m(y). (0.3)
t——+o0
For a ray v belonging to C, m(vy) represents the average time that - spends in .
Definition 0.2. The geometrical quantity g(w) is defined by

g(w) = lim sup inf m(y:).
t—+oo YEC
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We are interested here in a precise study of the geometrical quantity g. The first part of this paper is devoted
to studying the rays. We recall some well known properties of rays. In the second part, another expression for g
is given. Namely, we prove that if w C Q whose boundary is a finite union of C'-curves, then

9(w) = inf lirilfgop m(ye) = inf m(v).

It is easier to work with this second definition of g(w). An important application of this theorem is given in
the third part: we obtain an algorithm which gives an exact computation of g(w) when w is a finite union of
squares. This work has many interests. At first, Theorem 2.1 gives another definition for g(w), much more
easy to manipulate than the original one. Secondly, maximizing the exponential rate of decay is interesting
from the point of view of physics. For these questions, knowing exactly g(w) is important. We give some exact
computations of g(w) with the help of our algorithm at the end of the paper. An interesting question is then:
how can we choose the subset w such that g(w) is maximum? At the moment, this problem is still open. The
following inequality is always true g(w) < |w| (see Sect. 2) where |w| is the area of w. Let us set for a € [0, 1]

S(a) = sup g(w).

lw|=a

Some questions then arise naturally

— What is the value of S(a)? In particular, is it true that S(a) = a?

— Can we find a subset w for which g(w) = |w|?

— Can we find an optimal w (i.e. an w that maximizes g) among the domains that satisfy the multiplier
condition?

If |w| = 0 or |w| = 1, the answers are obvious. However, if |w| €]0, 1], these questions seem to be much more
difficult and are still open.

1. BASIC PROPERTIES OF RAYS

1.1. Different representations of rays

In this section, we regard billards in  from different point of views (see for example [12]). Instead of reflecting
the trajectory with respect to a side of §2, one can reflect 2 with respect to this side. We then obtain a square
grid and the initial trajectory is straightened to a line. This gives a correspondance between billard trajectories
in 2 and straight lines in the plane equipped with a square grid. Two lines in the plane correspond to the same
billard trajectory if they differ by a translation through a vector of the lattice 2Z + 27Z. The factor 2 in 2Z + 27
is important. Indeed, two adjacent squares have an opposite orientation in the sense that they are symmetric
with respect to their common side.

Now, consider T' = [0, 2]2 and identify its opposite sides. A trajectory then becomes a geodesic line in the
flat torus.

Finally, trajectories in €2 can be seen in three different ways

— the definition which consists in reflecting trajectories in sides of §2;
— the point of view of straight lines in R?;
— the point of view of geodesic lines in a flat torus 7.

Note that the set w must be reflected in the same way as we did for €2. This means that the sets w contained
in two adjacent squares must be symmetric with respect to their common side (see Figs. 1 and 2).
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>

FIGURE 1. Point of view of infinite plane.

2

FIGURE 2. Point of view of flat torus.

Let t > 0 and v € C. The value
1 t
— [ Au(ve(s))ds
t Jo

does not depend on the point of view we adopt.

1.2. Open and closed rays

A ray is said to be closed if it is periodic in the flat torus. It is said to be open if it is not closed. We have
the following characterization. The ray [Xo = (2o, ¥o0), @] is open if and only if cos« and sin « are independent
over Z, i.e. if and only if tana € R — Q. Indeed, for example using the point of view of a flat torus, the
trajectory is periodic if and only if there exist 0 < ¢t; < t2 and n,m € N such that

Ty +t1cosa = xg+ tacosa + 2n
Yo +tisina = yo + ta sina + 2m.

Hence 2m(t; —t2) cosa—2n(t; —t2) sina = 0. Let us now consider open rays. They have the following properties
(see for example [5], p. 172).



640 P. HEBRARD AND E. HUMBERT

Proposition 1.1. Let v = [Xg, o be an open ray. Then, {v¢, t > 0} is dense in the torus T and then in Q. In
addition, if w is quarrable (i.e. x, Riemann-integrable on ) then m(y;) —— |w|. More precisely, let « be

t——+oo
such that tana € R — Q then
Ve >0, Ito |t > to, VX0 € Q : ify,, = [Xo,a] then |m(v) — |w|| <e.

In other words, tg is independent of Xg.
Here, |w| stands for the area of w. Consider now closed rays. They satisfy the following properties:

Proposition 1.2. Let v = [Xo,a] be a closed ray. Then, there exist p,q € Z relatively prime such that:

p . q
cosq = ———— and sina =

p2 + q2 p2 + q2
The period L of the trajectory is L = 2+/p? + q2. We have

L
mi) —— / Yo (1(8))ds.

t—+oo L
Remark 1.1. The assertion (0.3) follows immediately from Propositions 1.1 and 1.2. Moreover, let v € C. If
is open, we have m(v) = |w| and if 7 is periodic of period L, we have m(y) = %fOL Xw (7(8))ds.
As one can check, an immediate consequence of Proposition 1.2 is the following result

Proposition 1.3. Let w C Q be Riemann-integrable, then
g(w) < |wl.

Closed rays can easily be described. Let us adopt the point of view of a flat torus. Let us consider a ray

~v = [Xo,a] with Xy € T and cosa = p/+/p? + ¢2, sina = ¢/+/p? + ¢?, p and q relatively prime. We assume
that p > 0 and ¢ > 0 (i.e. « € [0,7/2]). From Remark 3.1 below, the study can be restricted to such rays.

Theorem 1.1. The ray v is an union of p+ q parallel segments directed by @ = cosai—+ sinozj. Among these
segments, p of them start at Ax, 1 < k < p, and the q others start at By, 1 < k < q with

A (07 (yo +4/p(2k — x0) = 2E (%(yo T a/ph - IO)))))

and B ((xo +p/a(2k — yo) — 2 (% (zo + p/a(2k — ya))) ,0)) .

In addition, the distance between two neighbouring segments is constant and equal to 6 = 4/L, where L =
2+/p2 + g2 s the period.

Proof. In the infinite plane R?, the ray is defined by x(t) = x¢ + 2tp/L and y(t) = yo + 2tq/L, where L =
24/p? + @2 is the period. Let us restrict the study to the segment [XoX;] of length L. In |X(X;], the ray
intersects p vertical straight lines defined by the equations x = 2k, k = 1,...,p and ¢ horizontal straight lines
defined by the equation y = 2k, k =1,...,q. This gives p + ¢ segments starting at points with coordinates

(0,50 + a/p(2k — 20))



THE GEOMETRICAL QUANTITY IN DAMPED WAVE EQUATIONS ON A SQUARE 641

6

FIGURE 3. infinite plane.

FI1GURE 4. Closed ray p = 3 and ¢ = 2 in the flat torus.

and

(zo + p/a(2k — 10),0).

Coming back to the point of view of the torus, this gives p + ¢ segments starting at Ay and Bj.
Since p and q are relatively prime, it is well known that {kq[p], 1 < k <p} ={0,1,...,p—1}. Hence, if Ay,

and Ay, are two neighbouring points, Ay, Ax, = 2/p. As a consequence, the distance between the straight lines
(Ag,, @) and (Ay,, @) is

PV re L

In the same way, if By, and By, are two neighbouring points By, B, = 2/¢, the distance between (By, , @) and
(Bk2 s ’l_f) is

SN 2. —qi+p; 4
5:‘Ak1Ak2.uJ“:_]7q PJ =

o o - 2 qf—pj' 4
5= ‘BlekQ.ul‘ = —h——— = =
a p*+¢ L
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Let k1, k2 be such that

dist(Ag,,0) = mkin dist(Ag,0) and dist(By,,0) = mkin dist(By, 0).

It remains to prove that the distance between the two segments starting at Ay, and By, is § = 4/L. Since the
distance between two points Ay is 2/p, there exists n € N such that the ordinate y* of Ay, satisfies

2n < yo +q/p(2k1 — x0) — 2F (%(yo +q/p(2k1 — wo))) <2n+2/p
= y" =yo+q/p(2k1 — x0) - 2F (%(yo +q/p(2k1 — aco))) —2n < 2/p.

In the same way, there exists m € N such that the abscissa * of By, satisfies

om < w0 + pla(2ky — o) — 2 (%m T p/a(2ks yo>>) <2m+2/q
= 2" =wz0 +p/q(2kz — yo) — 2E (%(Io +p/q(2ks — yo))) —2m < 2/q.

The distance § between the two segments verifies:

lgz* + py*|

NCEYE

An easy computation shows that |gz* 4+ py*| is an even integer number. Consequently, ¢ can be written as 4k /L,
where k is an integer. Since 0 < z* < 2/g and 0 < y* < 2/p, we get § < 8/L, and hence, 6 =4/L. O

—
0= ‘Alek2.u

Remark 1.2. If a quarrable domain w is such that g(w) = |w| then for all & € [0,7/2] and for almost all
Xo €T, m(y) = |w|, where v = [Xo, a].

Indeed, consider an open ray 7. Then m(y) = |w|. Let Xy € Q. Assume that a ray v starting at X is

closed of length L. Let M and N be two points of v such that M N is orthogonal to & and M N = 4. Let also
P(s) =sM + (1 — s)N and v* = [P(s), o], then

1
g(w) < inf m(r}) < / m(7)ds < |l
s€0,1] 0

If g(w) = |w|, then m(vy§) = |w| almost everywhere. If dw is a finite union of curves of class C', then the
number of discontinuity points of m(v37) is finite. It is null if dw does not possess any segments. The remark
above immediately follows.

2. AN EQUIVALENT DEFINITION FOR g

2.1. The geometrical quantity ¢’
We define, for any set w:

Definition 2.1. The geometrical quantity ¢’(w) is defined by

g'(w) = inf m(7).
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As easily seen, ¢’ is easier to study than g. As shown in Section 3, ¢’(w) can be computed explicitly for a certain
class of domains w. Together with Theorem 2.1, this gives an algorithm for computing g(w).

Theorem 2.1. Let w be a closed set whose boundary is a finite union of curves of class C*. Then

As a first remark, the same argument as in the proof of Proposition 1.3 shows that
0< () < ol (2.1)

The proof of Theorem 2.1 is given in the appendix. It is easy to see that g(w) < ¢'(w). Inequality ¢'(w) < g(w)
is much more difficult to obtain. To prove Theorem 2.1, we consider a sequence of rays " = [z,,0,] and
a sequence of real numbers t,, — +oo for which m(y}!) — g(w). After choosing a subsequence, there exists
(z,0) € Qx[0,2n[ such that lim, 2, = 2 and lim,, 6, = 6. We will now show that lim, m(vy;. ) —m([z,0];,) = 0.
The conclusion then follows. The difficulty in this proof is that the function (z,0) — m([z, ];) is not continuous.
A direct consequence of Theorem 2.1 is that it suffices to consider closed rays in the explicit computation of g(w).
Namely, let C. be the set of closed rays, then we have:

9() = inf m(y). (2.2)

3. EXPLICIT COMPUTATION OF g

We prove in this section that for a particular class of domains w, the properties of the geometrical quantity
g we obtain above allow to compute explicitly g(w). Let N € N* and let w C Q be a finite union of squares

(Cij)i<ij<N, with
Ci-1 i) [i-1
CW_{N ,N}x[ ~ N]

Obviously, w is Riemann-measurable, closed and its boundary is a finite union of C! curves.

3.1. Influence of «
The first result we obtain is the following

Theorem 3.1. Let v = [Xo, ] be a closed ray such that tana = q/p, with p and q relatively prime and
p+q> 2N, then

N2 2
m w|| £ —min{|w|,1 — |w
[m(7) = |wl| o {lw], 1 — o[} < 34
Proof. We adopt the point of view of flat torus 7' = [0, 2]?. At first, let K be one of the C; ; i.e.
’i() —1 ’i() -1 Jo
K= Cio,jo = |: N ’N:| X |: N N:| ABCD

The period of vy is L = 24/p? + ¢2. Let 6 = 4/L. Then cosa = pd/2 and sina = ¢d/2. By Theorem 1.1, the
ray -y is constituted by p 4+ ¢ segments directed by . The distance between two nelghbourmg segments is 5
—

Let us define the orthonormal frame R, = (X, Iu,J ), where X is such that XD.i = = 0, XD.XA = 0,
— —_ — — _— —
I, = XD/||XD]||, and J, = XA/|| X A|| = @ (see Fig. 5).

In this frame, the coordinates of A, B, C' and D satisfy

A <0, sma); B <sma smaJrcosa); o <sma+cosa cosa>; D (cosa’o).

N N’ N N " N N
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FIGURE 5. Ray v = [0, o] with tana = 4/15.

B
C
A
X, X, D X,

FIGURE 6. Vertical segments in the square ABCD.

The ray «y is constituted of p + ¢ vertical segments. R of them meet K (see Fig. 6). We note xg,21,...Tr—1
their abscissa

330:7"6[0,5]
i =x0+10, 0<i<R-1.

sin a4-cos
N

Since = 1)2_4]-\;15 > §, there exists at least one segment in K and R > 1.
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fi(z) =cotaxz+ % = cot « (ac - 51270() + smoz]—l\—fcosa line (AB)

f(z) = —tana (I_s1]rifa) smaj—l\—fcosa

= —tana (:E - sma+cosa) + 2% Jine (BC)

N N

g1 () :ftana:ch%:ftana (mfcif]a) line (AD)
g2(z) = cota (x — a;;oz) =cota (Jc _ana j\—fcosa) + C(‘):fa line (C'D)
Sl;a ifz<0 C‘ffa ifz<0
filz) f0<a< R @ gi(z) if0<a< R
) . and g(x) = .
f2 T if % S x S San(J;\’/VCOSOt gg(l’) if CO]E]CE S T S Sln()(]"’\‘[COSO(
C(;ffa if z > sin aEcosoz C(;ffa if x> sinatcosa O‘JJ\F[COSO‘.
sin a+cos o 1
[1-a=[ 7 G- gnie=Kl- 5
R 0

L R—1
5 [ s =53 1) - g(w).
0 0

=
Let k be the number of vertical segments which meet [AB], i.e. the k segments such that

sin o

N

rt (k—1)8 < <r+ ko,

645

If 1 <k < R-1,if at least one segment meets [AB] and if at least one segment meets [BC| then, as one can

see

Sl
[y
8

\
=~ >
~
—
—
8
~—
+
=~ >
"
8
~—

1 k—1 :E,,+6/2 1 R—1 $1+6/2
- fi(x)dz + - / fa(z)dz

1 r=1/2) 1 [rH(R=1/2)8
— Z/ fi(x)dz + —/ fa(x)dz.
62 r+(k=1/2)8

If k=0 or k = R, equation (3.1) remains true. Hence, in all cases

1 1 [(p+a)d/2N 1 [r9/2
7 2 flw) = —/0 f(z)dz — 1/0 fi(z)dz

4 (k—1/2)8 r4+(R—1/2)5
o1 ()~ e+ | fali)da.

d/2N 4 p+q)8/2N

(3.1)
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In the same way, let [ be the number of segments which meet [AD]

Ccos

—1)5<
+(-18< —

<r+419.

We obtain that, in all cases

=

e~ =
\_/

g(@i) =

I

7-+(z—1/2)5 1 rH(R- 1/2)5
/ x)dx + —/ x)dz
5/ 4 Jra-1/2)6

(p+q)d/2N 1 /7 6/2
/ g(x)dx — —/
0 4 Jo

1 rH-1/2)8 1 [rH(R=1/2)8
v (9(2) ~ go(@)ida + / g2(z)de.
p

4 Jpsjan (p+)5/2N

~
Il
o

>~ =

Finally

1 L 1 1 ’1“76/2 1 T+(k271/2)5
7 XKVS))dS——Z——/ f1—91+—/ fi—f
L/O (( aN? 1, 1 5o

| rta-1/2)s | [rH(R=1/2)
+Z/ 91*92+Z/ fo—92
pd/2N (p+9)d/2N

= RO [~ 6/2)% + (r + (k— 1/2)0 — 4b/2N)?
+(r+(1—1/2)0 — p6/2N)* — (r+ (R —1/2)5 — (p+ q)5/2N)?] .

1

However in this last equality, each of the four square terms is less than §/2 and tana + cota = e =

7asT = 4pq hence

1
~ 4pq

L
7| ot - 5

U Ci,ja
(4,5)eE
where E is a subset of {1,2,...,2N}? and card(E) = N?|wr| = 4N?|w| ; then

m(v)=%/Owa =) / xc., (v

(1,7)EE

(3.2)

‘We now consider:

Hence

m(y) ~lel = 3 (% / x@,,j<v<s>>ds—ﬁ>-

(i,5)€E
This leads to
card(E) N?
4pq Pq
If the area of w is greater than 1/2, let w’ be the adherence of {2 —w which is also a finite union of squares Cj ;.
Hence

[m(y) = lw[| <

2

1 N
< —(1 = wf)
pq

7| e enas == o)
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o _1_2 3 _4_5_ 186 X

¢, ¢, ¢ C, G C

columns

FIGURE 7. A domain w for N = 6.

or

L L
7| et =11 [T

Finally, we get [ m(y) — |w|| < 2 (1 — |w]).

3.2. Representation of w

647

For convenience, consider the frame (O, I,.J) with I = i/(2N) and J = j/(2N). As a consequence, { is now
the square [0, N]2, and T is the torus [0,2N]2. The length of closed rays defined by (p, q) (p, ¢ relatively prime)

such that cosa = p/4/p? + ¢ and sina = q/+/p? + ¢® must be modified. The period is now

L =2Np?>+¢?

and C; ; is such that:
Cij=1[i—1ix[j—17l]

Let us define the matrix M N x N such that M; ; = 1if C;; C w, and M; ; = 0if C;; ¢ w. With this notation,

the matrix M is a representation of w. As an example, if w is as in Figure 7 then

O = OO =
O =
_o0 O oo
OO O == O
OO, OO
O O =

Let us also define the 2N x 2N matrix A such that A; ; =1if C;; Cwr, 4;; =0if C;; € wr, i.e.

M;; =Ai; = Aonti—ij = AiaoNyi—j = AoNti—iaN+1—j-
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2
|
I
I
X u X u
o ¥
I
I
I
I
I
I
|- - - oo - - o
I
I
|
I
LI2 Xo u ! qu
I
o
u, u1:
I
I
0 1 2

FIGURE 8. Starting points with a € [0, 7/2].

3.3. Influent rays
Let 7 be a horizontal ray starting at Xo = (20, %0). Then,

LN
m(y) = N ZMi,j'
j=1

Assume that yo = k is an integer. Since each C} ; is closed,

N
1
m(y) = > (M1 j + My ).
j=1

Obviously, this ray does not realize the infimum in the definition of g. In the same way, for a vertical ray, only
the numbers

1 N
NZMm, 1<i<N
i=1

must be considered. Now, let us deal with oblique rays and fix a. Let us denote tan« by ¢/p, where p and ¢
are relatively prime integers.

Remark 3.1. One has to consider only the rays defined by v = [Xo, o] with Xo € T and « € [0,7/2], i.e.
p>0and g >0.

Indeed, keeping the notations of Figure 8, the ray v' = [Xo,u1] is equivalent to ' = [X1,%]. In the same
way, the rays 72 = [Xo, us] and 3 = [Xo, u3] are equivalent to 7% = [X», 4] and 7% = [X3, ).
Let us now study the influence of the starting point of rays. We have the following result

Proposition 3.1. Among oblique closed rays of angle «, the ray which spends the least time in w in average is
a ray which meets a point with integer coordinates.

Proof. Let B = (x0,y0) be a point of T such that the ray v = [B,«] does not meet a point with integer
coordinates. Let us adopt the point of view of infinite plane and let By, By, Bo,... be the intersection points
of v with the lattice Z + Z. A direct consequence of Theorem 1.1 is that BoBaon(piq) = L = 2N+/p? + ¢

@ = (pi + qj)/\/p? + ¢ is the direction of the ray. Let i = (—qi + pj)/r/p? + ¢2 be such that (@, 7) is a direct
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FiGURE 9. Case of a ray which does not meet any point with integer coordinates.

orthonormal frame. For a point P = (k,l) with integer coordinates, let us compute the algebraic distance to
the ray v

d(P,v) = ‘P>.ﬁ: pl—qk — (pyo *q:c()).

N

There exists a point A with integer coordinates and which verifies:

d(A,~) = min{d(P,~)|P has integer coordinates and d(P,vy) > 0}.

Let A; be the intersection point of the line meeting A and directed by @ (the points A solutions of the mini-
mization problem above are clearly on a same line directed by #) and the line belonging to the lattice Z + Z
which contains B; (see Fig. 9 for the case N = 2). In the same way, there exists C' with integer coordinates
which satisfies

d(C,~) = min{d(P,~)|P has integer coordinates and d(P,~) < 0}.

Let us note C; the intersection of the line meeting C' and directed by « and the line belonging to the lattice
Z + Z which contains B; (see Fig. 9).

There are three oblique rays of angle o v4 = [Ao, a], v8 = [B,a] = [Bo,a] and y¢ = [Co, a]. According to
the definitions of A and C, the segments [A; Ait1], [B; Bit+1] and [C; C;41] belong to the same square Cy ;. We
define e, = 1 if [Bg Br41] C wr, ex = 0 if [By, By1] ¢ wr. Then, if

1 2N (p+q)

1
m(yp) = z/ Xor = F €k Bk—1Bg,
[BoBan (p+a)] =1
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we have:
1 2N (p+q) 1 2N (p+q)
m(ya) = 7 Z ex Ag—14r and m(ye) = 7 Z er Cr_1Ch.
k=1 k=1

These three rays are parallel. Hence, there exists ¢ € (0,1) such that for all 4, B; is the barycenter of (A;,t) and
(Ci,1—1t). If the quadrilateral A; A; 1 C; C;y1 is a trapezium (or in the degenerate case a rectangular triangle),
Thales’ theorem implies that B;B;y1 = t A;Ai+1 + (1 — t) C;Cy41. If the quadrilateral is a parallelogram, this
inequality remains valid because the three lengths are equal. As a consequence, we have

m(yp) = tm(ya) + (1 — t)m(yc).

The minimum of the three quantities m(v4), m(yg) and m(vy¢) is attained for one of the two rays y4 ou v¢.
This shows that v cannot be the minimum in the set of oblique closed rays. (]

It remains to find the angles a we need to consider among the rays which meet a point with integer coordinates.
In the flat torus 7' = [0, 2N]?, there are 4N? possible starting points. However, the ray v = [(zo, y0), @] with
(70,%0) € N2 meets 2N points with integer coordinates. Indeed, v meets the point (x1,%) if and only if there
exists A € [0,2N) such that

x1 =20+ Ap [2]
Y1 =1yo+Aq [2].

Therefore, the points belonging to v and with integer coordinates are exactly the 2N points obtained for
A=0,1,...,2N — 1. There exist at least 2N rays which meet a point with integer coordinates.

Proposition 3.2. Let d be the G.C.D. of p and 2N, let d' be such that dd' = 2N. Then, the 2N rays of angle
a starting at (i,7) with 0 <i<d—1and 0 < j < d — 1 meet one and only one time all the points of T with
integer coordinates.

Proof. Let p’ be such that dp’ = p. We note that p’ and d’ are relatively prime. Let also 1 and 2 be the rays
starting respectively at A and B with integer coordinates (k1,ke) and (ks, ks4) (with 0 < k1, ks < d —1 and
0 < kg, kg < d —1). There exists a point C € v, N, with integer coordinates if and only if there exist four
integer numbers A, u,n and m such that

r=ki+p=ks+pup+2Nn

y=ko+ Ag=ky+ pug+2Nm.
Therefore, k1 — ks = (u — A\)p + 2Nn and k1 — ks is divisible by d. Since —(d — 1) < k; — ks < d — 1, we have
k1 = ks and (u — A)p = —2Nn. As a consequence, (i — A)p’ = —d'n and since p’ and d’ are relatively prime,

(u — A) = kd', where k € Z. In the same way, ko — ks = (1 — A)g + 2Nm = kd'q + 2Nm. Hence ko — ky is
divisible by d'. Since —(d' — 1) < ky — k4 < d' — 1, we have ks = k4 and 1 = 2. O

3.4. The algorithm

In this section, we give a method to compute explicitly g when w is a finite union of squares C; ;. At first,
according to Propositions 1.1 and 3.1, the study can be restricted to closed rays starting at a point with integer
coordinates.

The user of the program must input the matrix M which represents w and the value of a parameter PQmax
which avoids infinite loops (this problem never appeared until now).
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The algorithm is the following
1. Compute the minimum g of the 2N numbers

N
NZM,] and Nz_: 5.

i=1

which corresponds to the minimum of m(+y) when ~ is a vertical or horizontal ray.

2. From the matrix M, build the matrix A defined in (3.3).

3. For all (p,q) such that p > 1, ¢ > 1, p+¢ < 2N and p and q relatively prime, compute the number (the
way to compute my, 4 is explained below)

Mg = omin,  Am()l = [X,arctang/p]} (3.4
Then g < min{g, m; ¢}
4. If at this step g = |w/|, the user inputs the parameter PQmax Which corresponds to the greatest product
pq which will be considered; in the other cases PQmazr = E(;2— e min{|w|,1 — |w|}) + 1.
5. Find all the (p, q) relatively prime such that p > 1, ¢ > 1, p+¢ > 2N, pg < PQmax. Sort these couples
from the lowest product pq to the greatest one. This gives a list L containing n couples.
6. i < 1 and as long as |w| —g > JZ—: min{|w|,1 — |w|} and ¢ < n,

g < min{g,mp,} and i «—i+1,

where (p, ¢) is the i-th couple of L and m,, , is defined above (see (3.4)).
7. Finally
o if at the end of this loop, g = |w|, then

2
PQmazx

This means that one of the following cases occurs; g(w) = |w|, or too few families of rays have been
considered;
e if g # |wl|, according to Theorem 3.1, g(w) is equal to g.

|w| = min{|wl, 1 - [} < g(w) < |w].

We now present the method of computation defined in (3.4) for two relatively prime integers p > 1, ¢ > 1.
At first, let us consider the ray v9 = [0, arctan g/p] and let us study the way to compute m(yp). Its period is
L =2N+/p? + ¢? and between the instants ¢ = 0 and ¢ = L, it meets 2N (p+¢—1)+1 points which have at least
one integer coordinate. Let Pi,..., Pon(ptq—1)+1 be these points (see Fig.10). Remember that Pyptrg—1)+15
1 <1 < 2N have integer coordinates.

Let (ix), (jx) and (ex) be the three other finite sequences (1 < k <2N(p+ g — 1)) defined by

PyPyi1 C [ig,in + 1] X [Ji, jr + 1]

and
- 1if[ik,ik+1]x[jk,jk+1]Cw
¥~ 0if not.

Then, m(y) = % iﬂpﬂ_l) € P Pry1, the computation of m(yg) is equivalent to the computation of the

sequences (P Pry1), (ix) and (ji).
e Computation of the lengths Py Pr11

_— — -
At first, note that it suffices to compute the lengths Py P11 for 1 <k < p+q¢—1. Indeed, Py (piq—1)FPr = pi+qj,
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0o 1 2 3 4 5 6 7 8 9 10 11 12
FicUrE 10. Ray vg, for N =2, p =3 and ¢ = 2.

hence the sequence (PyPy41) is periodic of period p 4+ ¢ — 1. Since p and ¢ are relatively prime, Py and Ppiq—1
do not have integer coordinates.

Then, the equations of the ray o are x = pt/\/p? + ¢ and y = qt/+/p? + ¢>. It meets the vertical lines
defined by x = i at instants ¢; = i\/p? + ¢%/p at points (¢,iq/p) and the horizontal lines defined by y = j at

instants t; = j\/p* + ¢*/q and at points (jp/q, j).
Let us then define the list V! by

Vi={t),1<j<q-1}u{t;1<i<p-—1}.

Let V2 be the list obtained from V! by sorting its elements in increasing order. Let also ¢ be the permutation
of {1,2,...,p+ ¢ — 2} such that

2 1 1 1 1
V = O'(V ) = {Vo'(l)7 VU(Q)’ e 7V0(p+q—2)}'
Let V3 and V* be defined by
VE={0}UVPU{Vp?+ ¢} and V= {V5 - VP V2 VP VD -V )

Finally, let V' be defined by
V= Vvtuvtu...uv?
2N times
then for all k, 1 <k <2N(p+q—1) PyPri1 = Vi and

1 2N (p+q-1)

m(vo) = 2]\77 m 1922:1

As an important remark, it may be convenient to work with pq/+/p? + ¢%.V instead of V. Thus, V; = {pj,1 <
j<q—1}U{qgi,1 <i<p-—1}, V3 ={0}UV?2U{pg} and hence, the elements of V are all integer numbers.
m (7o) is then given by

ska.

2N (p+q—1
k=1 : ek Vi )

2Npq

m(vyo) =
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As a consequence, m(yp) is a rational number whose denominator and numerator are explicitly known.

e Computation of the sequences (ix) and (ji)
Let I' and J! be the two following lists

I'= {1,1,...,1, 0,0,...,0} and J'= {0,0,...,0, 1,1,...,1}.
—_— —_—

q— 1 times p—1 times q— 1 times p—1 times

This means that the numbers 1 which appear in the sequence I' correspond to the points P, which belong to
horizontal lines and the numbers 1 of the sequence J! correspond to the points P, belonging to vertical lines.
From these two lists and from the permutation o, we define

P =o(I) = {I;0) Loz Lopig-n} and J* = 0(J) = {J50): Jo@) - Joprg-2)}

and also
p+q—2

2 2 p+q—2
:{0,112,21,3,..., > 1,3} and J3={0,J§,ZJ,3,..., > J,f}.
k=1 k=1 k=1 k=1
Finally, we set

I=PUp@+I*)U---U(2N —1]p+1%) and J = J2U (¢ + J*)U---U([2N — 1]q) + J>.

Then, for all k, 1 <k <2N(p+q—1), i =1+ I and jr = 1 + Ji.
Let us introduce the matrix A defined from M in (3.3) and a function r defined over integers by

r(k) € {1,2,...,2N} and 3l € Z|k=2N.0+r(k).

Then, for all k, 1 <k < 2N(p +q — 1), €k = Ar(ik),r(jk) = AT(1+11¢)7T(1+~71¢)'

There are two reasons why we consider all rays of angle arctan¢/p at the same time in the computation of
mp,q- First, all these rays have the same sequence Vj. In addition, let v = [Xo, arctan()] where Xo = (0, y0)
has integer coordinates. Then, the sequences (i) and (ji) of v can be computed from the lists I, and Ji by
the formula: i, =1+ xg + Iy and jr =1+ xo + Ji-

For two relatively prime integers p > 1 and ¢ > 1, the number m,, , can be computed in the following way

1. Compute the G.C.D. d of p and 2N and from Proposition 3.2, the 2N starting points with integer
coordinates that must be considered are known. Let us note X1, Xs,..., Xon and Y7,Ys, ..., Yon their
coordinates.

2. Compute the three lists of 2N (p + ¢ — 1) elements Vi, I, and Jj defined above.

3. my g is then the minimum of the 2N numbers

2N (p+q—1
Zl_l(p b Ar( X+ 1), (4 Yt ) Vi
2Npq

All these quotients have the same denominator and hence, are easy to compare by looking at their
numerator. Finally, this gives the explicit value of m, 4.

We now present the results obtained with our algorithm for explicit domains w.

As an example, for the computation of g(w) for the domain w of Figure 7, the minimum for vertical and
horizontal rays is ¢ = 1/3 and there are 45 families of oblique rays of first kind (i.e. the rays of part 3 in
algorithm). Among these rays, there exists v such that m(y) = 1/3 but there is no « such that m(y) < 1/3.
At this step, the value of g is 1/3. There are also 344 families of oblique rays of second kind (corresponding to
part 5 of algorithm). None of them satisfies m(y) = 1/3. We obtain g(w) = 1/3.
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area = 1/2, 401 rays, g = 1/3
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FIGURE 11. An example of computation of g(w).
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FIGURE 12. Minimizing rays: m(y) = g(w) = 1/3.

Figure 11 presents the values of m, , as a function of pg and presents also inequality of Theorem 3.1. Note
that this inequality is not optimal for this particular domain. However, (3.2) is optimal for a unique square C; ;.
This shows that the error comes from the summation of inequalities (3.2) for all the squares of wy. Nevertheless,
it is useful because it certifies that the value of g(w) is exact.

There exist 10 rays which satisfy m(v) = g(w); six vertical or horizontal rays (more precisely six families of
vertical or horizontal rays). They are represented in Figure 12a. There are also two rays of angle 7/4 represented

in Figure 12b, one ray of angle arctan1/2 represented in Figure 12¢, and also the ray v = [0, arctan1/4]
represented in Figure 12d.
The domain w of Figure 13 of area |w| = 29/100 is represented here to show that intuition can be false.

Indeed, consider only vertical rays, horizontal rays and closed rays of small period. The intuition says that
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FIGURE 13. Minimizing ray: m(y) = g(w) = 111/560.

g(w) = 1/5. However, the ray v = [0, arctan8/7] is such that m(y) = 111/560 (note that 1/5 = 112/560), that
is the exact value of g(w) as shown by the complete computation.

4. APPENDIX: PROOF OF THEOREM 2.1
First, it is clear that
g(w) < g (w). (4.1)
Indeed, for all 4/ € C and all ¢ > 0, m(vy;) > inf,ecc m(y:). Hence,

m(vy') = limsupm(y;) > limsup inf m(y) = g(w).
t—-+oo t—+oo VEC

Since this equality is true for all 4" € C, this shows (4.1).
Let us prove that

g(w) > ¢’ (w). (4.2)

Let us fix € > 0 and choose a sequence (y"),, C C and a sequence (t,), which tends to +o0o such that

lim m(yf.) = g(w). (4.3)

n—-+o0o

For all n € N, there exist X,, € Q and 6,, € [0, 27 such that v = [X,,,0,]. Up to a subsequence, we can assume
that there exists (Xo,6) € £ x [0, 27] such that

liyrln X,, = Xo and 1irrln 0, =20.
We claim that there exists L > 0 such that
m([y,0]r) > ¢'(w) — € for all y € Q. (4.4)
If tan(f) € R\Q, then set L = ty, where t is as in Proposition 1.1. Indeed, together with relation (2.1),

m([y,0]r) > lw| — e > g'(w) — e
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If tan(0) € Q or if tan(f) = oo, the ray [y, 8] is periodic and the period T' does not depend on y € Q. Hence,

m([y, 0]r) = m(ly, 0]) > ¢'(w).

Thus, let us set L = T. Clearly, t,, can be assumed to be a multiple of L. Indeed, replacing t,, by t, + s, (where
|sn| < L) does not change the limit of m(+7 ). Now, assume that 6, = 0. If tan(a) € Q or if tan(a) = oo,
then clearly lim, m(7}" ) — m(y") = 0. If tan(a) € R\Q, this relation follows from Proposition 1.1. Then, by
relation (4.3), it follows that

g(w) = liminfm(y") > ¢'(w).

This proves (4.2). Hence, we can assume that
O, # 0. (4.5)

Now, let us define, for k € {0,..., % — 1}, X}, =" (kL) and v*"(t) = 4" (kL + t) for t € [0, L]. Let us define
also 7% as the unique trajectory of length L and slope # such that v¥7%(s) = v¥"(s) and

Ak,n: U ,yk,n,s.
s€[0,L]

) =E ()

7H™(0) = 7*™0(0)
Now, we prove that
Step 1. There exists a sequence (ky,), such that
| Ak, n N Ow| < e and m(y* ") < g(w) + ¢

for all n large enough. Here, | Ay, » N Ow| denotes the length of the curve Ay, , N Ow.
In the following, the length of any curve C will be denoted by |C|. Let

K, = {k € {0,...,% - 1} s.t. m(yF™) < g(w) —l—e}.
Set

M= ("U

meN \n>m;kek,
and

aon (U

meN \ n>m;kek,,
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For X € M, let vx denote the trajectory of length L and slope 6 such that vx(0) = X. Note that M and M
are not empty. Otherwise, K, would be empty too and we would have m(y*") > g(w) + € for all n > ny and
forall k. Thus, we would have m(v{’ ) > g(w) + € that contradicts (4.3). Now, we prove that

M= - (4.6)
yeM

Take a sequence (X, ), such that lim,, X, », =y € M. Then, for all t € [0, L], lim~'""(¢) = ~,(t). We obtain
that

U wem

yeM

Conversely, if z € M then there exist two sequences (In)n such that I, € K, and (sp), C [0, L] such that
z = lim, y'*"(s,). Up to a subsequence, we can assume that there exist y € M and s € [0, L] such that
lim, X, » =y and lim, s, = s. As one can check, this implies that z = lim,, v*»"(s) = v, (s) and therefore

McC U Vy-
yeM

This proves (4.6).

We now distinguish two cases.

First, assume that there exists an infinite sequence (y,), in M such that v, Ny, , = 0 if n # . Since |Ow|
is finite, one can choose y € M (y is one of the y,,) such that |y, Ndw| < §. Otherwise, for all n, [Ow Ny, | > §
and hence, since v,, N7, , = 0, we would have

+00 = |0w Ny, | = [(Unyy,) NOw| < [w].

n

This is false. The definition of M implies that there exists a sequence (k, ), such that y = lim,, X, , with
kn € K. Clearly, for all t € [O, L],

Lim ™" (£) = 7 (8). (4.7)

Set B, =J Ay, n. Obviously, B, is a decreasing sequence of sets. We recall that

m>n

kn,n,s
Ak = U T

s€[0,L]

By construction, for all ¢ € [0, L], v*»™%(t) = ~,(¢). This implies that (0, cy Bn = 7. Since |y, Ndw| < §, for
all n large enough, we have | B, Ndw| < €. Since Ay, » C By, and since k,, € KC,,, this proves Step 1 in this case.

Now, assume, for all infinite sequences (y,)n in M, there exists n # n' such that v, N~, , # 0. Clearly, this
case occurs if M is finite. Then, choose a finite set {y1,...,yr} C M such that v,, N, , = 0 if n # n' and
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assume that & is maximal. This means that for all y € M, there exists n € {1,...,k} such that v, N, #0
(otherwise the set {y,y1,. .., yx} would have the above property and k would not be maximal). Since |y,| = L,
we have: v, C v, where v, is the trajectory of length 3L + 2 and slope 6 such that v, (L + 1) = 7, (0).
Note that instead of 71//7n one could have considered trajectories of length 3L. We need to consider trajectories
strictly greater than 3L to get relation (4.10) below. For simplicity, we choose 3L + 2. Using (4.6), we see that

k
Mc | J,.- (4.8)

A, { [0, t,] U’yym}

The set UI;ZI fy@’/m is a finite union of disjoint trajectories of finite length and slope 6. Moreover, 6, # 0

Let n be fixed. Let

(see (4.5)). Hence, A, is a discrete set of points. Since Ufn:l Yy, 18 closed, A, is closed too. This shows
that A, is finite. Let now ty,t5 € A, with ¢; < t5. As one can check, there exists a > 0 independent of n
such that if t < a6, — 0], 7" (t1 + 1) & UI;ZI Yy - Indeed, UI;ZI Yy, 18 @ finite union of segments of slope 6.
Then, it is clear that the trajectory -,, whose slope is 6,,, meets two different segments of Ufn:l 71/;m, in a time

proportional to the difference |6,, — 6] of the slopes. Hence t2 — t1 > «l|f,, — 9|71. This proves that

tn
#A, < E|6’n -0 (4.9)
Moreover,
1 qte I -1 G I -1
mof) =5 | %Ok =3 3 [ @ = 3 me,
n —

mo

Il
—

From the definition of K,,, we write that for I € K,, we have m(y>") > 0 and we know that for [ € {0, ..., % —
1\, we have m(y5") > g(w) + e. We obtain that

L
tn

mion) = £ (0 - 1) )+ 0 = 1 (% - #5) 060) 0

Since lim, m(v{’) = g(w),
#Kn > cty,
where ¢ > 0 is independent of n. It follows from (4.9) that we can choose k,, € KC,, such that [k, L, (k, +1)L] N
A, = 0. Hence, v*»" N Um 1 Ve, = 0. We can assume that lim, X, » =y € M. Then, for all ¢ € [0, L], we

have: lim,, v (t) = [y, 0](t). Since 7, has been chosen such that their length is 3L + 2, there exists an m
such that

[y,0]L C ., (4.10)
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with [y, 0](0) # v, (0) and [y, 0](L) # v, (L). As one can check, this implies that Ay, , N UI;1=1 Yo = 0 (see
figure below).

Akn,n

Tkp,n

mkn+17n+1

By (4.7), we obtain that

A n MM = 0. (4.11)
Now, set
dy = dist(Ap, n,7),) = xdf  dist(X, Vo)
and

d, = sup dist(X,,, ).
X€Ak, n "

We have 0 < d,, < d},. Since the sequence of sets (A, n)n converges to v, (see figure above) and since v, C 7, ,
it is clear that lim,, d’'n = lim,, d,, = 0. After passing to a subsequence, we can assume that for all n, d;, | < d,.
In other words, the sets Ay, , can be assumed to be all disjoint. Since |Ow| is finite, there exists a infinite
number of Ay, , such that |A, , NOw| < e. We can assume that, for all n, |4, » N Ow| < e. Since k, € K,
this proves step 1 in this case. Note that the sequence (k, ), does not necessarily tend to +oo.

Let now 4" = v#»". Keeping the same notation as in the definition of Ay n. Furthermore, let 7§ = Ayfen om0,
This means that 47 is the unique trajectory of slope 6 and length L such that 4§ (0) = 5™(0). We now prove
that

Step 2. We have

for any n large enough.

The rays 4™ and 7§ can be seen as segments of length L in the plane. Let p,, be the projection on #g in the
direction of the line (3"(L) 4§ (L)). Thales’ theorem implies that for all ¢ € [0, L], pn(Y"(t)) = 75 (t).
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()

76 (N) = pn(7"(N))

36 (1) = pa(7"(t))

7*(0) =% (0)

Now let t € [0, L]. Assume that X, (3 (¢)) # X, (35 (t)). Then, there exists a point X of dw between 3" (t) and
A (t). Thus, X € [3"(t), 3} (t)] () Ow. This shows that p,(X) € pn(Ow () Ak, ). Indeed, remark that, for all
t € 0,L],

(7" ()% ()] C Ak,
Since 7 is parametrized by the length, the segments [0, L] and 7§ can be identified. We obtain that

{te[0.L] st Xo(7" (1) # XT3 (1)} € pu(@w () Asyon). (4.12)
Now, write that

1 L
m") = m) < [ 67 0) - 2O
By (4.12), this gives

m(3") = mE)] < 7 pn (@) Akl

Remember that p,, is a projection whose angle tends to 7. Hence, for any piece of curve C, |p,(C)| < 2|C| (the
constant 2 could be replaced here by a constant ¢, which goes to 1 with n). It follows that

=N =N 2
m(7") = m(¥§)| < 710w () Ak, nl-

Step 2 is then a direct consequence of step 1.
Step 3. Conclusion

The trajectory 7§ has length L and slope 6. The definition of L (see (4.4)) then implies that

By step 1,

Step 2 then shows that
2
§(@)— e < gw) +et e

Since € is arbitrary, we obtain (4.2). Together with (4.1), the proof of the theorem is complete.
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