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ON AN OPTIMAL SHAPE DESIGN PROBLEM IN CONDUCTION

José Carlos Bellido1

Abstract. In this paper we analyze a typical shape optimization problem in two-dimensional conduc-
tivity. We study relaxation for this problem itself. We also analyze the question of the approximation
of this problem by the two-phase optimal design problems obtained when we fill out the holes that we
want to design in the original problem by a very poor conductor, that we make to converge to zero.
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1. Introduction

Consider an open, regular, simply-connected domain Ω ⊂ R2, another open, regular domain ω ⊂ Ω with
∂Ω ∩ ∂ω = ∅ and u0 ∈ H1(Ω). Let u ∈ H1(Ω\ω) be the solution of the elliptic problem

⎧⎨
⎩

− div(β∇u) = 0 in Ω\ω,
u = u0 on ∂Ω,
β∇u · n = 0 on ∂ω.

(e)

We would like to analyze the shape optimization problem associated to the previous elliptic system, namely

Minimize I(ω) =
∫

Ω\ω

ϕ(x, u(x),∇u(x)) dx, (P )

over the ω’s verifying the previous conditions and subject to the volume constraint
∫

ω

dx = δ,

where 0 < δ < |Ω| is a data of the problem. A physical meaning of the problem can be to determine how
to distribute a fixed amount of a given conducting material with conductivity β in the domain Ω in order to
minimize the given criterion I.
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We will assume the following typical bounds on ϕ

c ≤ ϕ(x, u, λ) ≤ h1(x, u) + h2(x, u)|λ|2, (1)

where c is a constant and h1, h2 are locally bounded functions with h2 ≥ 0. It is not necessary to impose
coercivity on ϕ as it will be obtained from the state equation.

If we try to apply the direct method of the Calculus of Variations to the previous problem, we proceed taking
a minimizing sequence of domains {ωj}, for this sequence we have the associated sequence of states {uj}, and
we need to extract a weakly convergent subsequence of {uj} in H1(Ω) (Ω is the reference domain). Each uj is
the solution of an elliptic PDE at the domain Ω\ωj, and as ωj is a Lipschitz domain, uj can be extended to a
function in the space H1(Ω), that we still denote the same. By the lower bound assumed on ϕ we know that

‖uj‖H1(Ω\ωj)

is uniformly bounded with respect to j, however it is not true in general that

‖uj‖H1(Ω)

is uniformly bounded uniformly with respect to j, as the norm of the extension operators for domains ωj can
blow up (and a hypothesis assuming this not to happen does not fit with typical microstructural configurations
like laminates). Therefore, the first difficulty that we find in the analysis of this problem is that it is not coercive
in the sense explained before. In the numerical practise to overtake this problem is very common to fill out the
set of holes ω by a very poor conducting material with conductivity α > 0, with α small, so that the shape
optimization problem is approximated by the two-phase optimal design problem

Minimize Iα(ω) =
∫

Ω

(1 − χ(x))ϕ(x, uα(x),∇uα(x)) dx, (Pα)

subject to ∫
Ω

χ(x) dx = δ,

where χ is the characteristic function of ω and uα ∈ H1(Ω) is the unique solution of{ − div((αχ(x) + (1 − χ(x))β)∇uα) = 0 in Ω,
u = u0 on ∂Ω.

(eα)

It is easy to prove that problem (Pα) is coercive but it still lacks optimal solutions because minimizing sequences
of shapes become more and more intricate extending along the whole Ω and microstructure develops (see the
pioneering work [20]). This yields the need of studying relaxation of the above problem. The main tool, very
successful both theoretically and practically, to analyze relaxation for two-phase optimal design problems has
been Homogenization Theory, this is known as the homogenization method in optimal design (see [1,11,15,25]).
For instance, the homogenization method applies for obtaining a relaxation of the problem of mixing two
conducting materials in order to minimize an integral functional, when the integrand does not depend on the
gradients of the state, or it does in a suitable way (see [24, 25]).

Coming back to the shape optimization problem, as we mentioned before it is rather frequent, and physically
reasonable, to approximate problem (P ) by problem (Pα) in order to simulate optimal solutions, but there
is not rigorous mathematical justification of this procedure in general. Hence an open, outstanding problem
is to obtain the above optimal shape design problem as the degeneracy limit of the problem of mixing two
materials as one of the materials degenerates to void. That is a very interesting Γ-convergence problem and, to
the best of the author knowledge, very little seems to be known (see [1] where this approximation problem is
proposed). There are however partial results in the elasticity and conductivity frameworks for the case of the
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compliance cost functional [1–4]. The fact that this functional is self-adjoint allows a suitable reformulation as
an optimization problem in term of stresses and a convergence result is shown in this formulation.

Very recently a new approach to analyze relaxation for optimal design problems has been proposed. The
approach is based on the introduction of a new variable in the form of a potential or stream function in
order to avoid the non-local character of the state equation (eα). Then we can reformulate the optimal design
problem as a vector variational problem without differential constraints and study relaxation for this problem by
usual techniques: computing the quasiconvexification of the integrand of the variational problem and studying
relaxation in terms of Young measures. Using this idea fully explicit relaxations have been obtained for two-
material optimal design problems, with cost functionals depending also on the gradient of the state, in two-
dimensions [8, 23], and in three-dimensions [6]. The idea of reformulating an elliptic PDE as a differential
inclusion has been very successful in some other contexts, as for instance to provide counterexamples to the
regularity of solutions of elliptic systems [19,26], or to establish existence results for optimal design and optimal
control problems [7, 9, 10]. In this paper we propose to apply this approach to the problem at hand. We carry
out this program in the following steps:

1. firstly we study relaxation for the variational reformulation of problem (Pα), obtaining a fully explicit
relaxation (we explicitly compute the semiconvex envelope of the involved density);

2. we analyze relaxation for the variational reformulation of problem (P ) with the purpose of understand-
ing non-existence of optimal solutions for this problem. We again compute explicitly the semiconvex
envelope of the energy density involved, and prove a partial result in the direction of a relaxation result.
Indeed, what we prove is that the infima of the problem in terms of gradient Young measures, the
problem in which we substitute the density W by the computed semiconvex envelope and the original
infimum, coincide. We do not prove that this two new problems admit minimizers, again we find the
difficulty of the lack of coercivity;

3. we study the approximation of the ‘relaxed’ formulation of the shape optimization problem that we get,
by the relaxed formulation obtained for the sequence of optimal design problems, as α → 0.

The reader should notice that the situation here is highly non-standard regarding lack of coercivity for this
problem, and as a consequence, a lot of questions have still to be understood. However, we think that our
approach here is original and that the results that we present are interesting in themselves and probably useful
for future work on the subject.

The plan of the paper is as follows. In Section 2 we introduce the variational formulation of the problems
(Pα) and (P ). In Section 3 we obtain a fully explicit relaxation of problem (Pα) by computing the constrained
semiconvex envelope of the density involved in the variational reformulation. In Section 3 is also given the right
definition of that semiconvex envelope. In Section 4 we analyze relaxation for problem (P ), and finally Section 5
is devoted to the analysis of the approximation problem.

2. Variational reformulations of problems (Pα) and (P )

This section is devoted to the reformulation of problems (Pα) and (P ) as vector variational problems.
Let us begin by the reformulation of problem (Pα). If u is the solution of equation (eα) then there exists an

stream function v ∈ H1(Ω) such that

(αχ(x) + β(1 − χ(x)))∇u(x) + T∇v(x) = 0, a.e. x ∈ Ω, (2)

where T is the counter-clockwise π
2 -rotation [18]. If we call Λγ (for any γ ∈ R) to the manifold

Λγ =
{
B ∈ M2×2 : γA(1) + TA(2) = 0

}
,

the identity (2) can be rewritten as the first order differential inclusion

(∇u(x),∇v(x)) ∈ Λα ∪ Λβ,
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a.e. x ∈ Ω, and this is equivalent to the PDE (eα). Now we can pick the two variables u, v up in a single vector
U = (u, v) and define the densities

Wα : Ω × R × M2×2 → R∗ = R ∪ {+∞},

Wα(x, U, A) =

⎧⎨
⎩

ϕ(x, U (1), A(1)) if βA(1) + TA(2) = 0,

0 if αA(1) + TA(2) = 0,
+∞ otherwise,

and
Vα : M2×2 → R∗,

Vα(A) =

⎧⎨
⎩

0 if βA(1) + TA(2) = 0 and αA(1) + TA(2) �= 0,
1 if αA(1) + TA(2) = 0,
+∞ otherwise,

where U (i) and A(i) are the i-th component and i-th row of U and A respectively, i = 1, 2.
In order to avoid contradiction in the definition of W we assume that

ϕ(x, u, 0) = 0,

a.e. x ∈ Ω and all u ∈ R. In this case W (x, u, ·) is continuous where is finite, however W is not a Carathéodory
function because it takes on the value +∞ suddenly.

If we now consider the variational problem

Minimize I(U) =
∫

Ω

Wα(x, U(x),∇U(x)) dx, (PVα)

over the set
U =

{
U ∈ H1(Ω;R2) : U (1) = u0 on ∂Ω

}
,

subject to the integral constraint ∫
Ω

Vα(∇U(x)) dx = δ,

is not difficult to realize that problem (Pα) and (PVα) are equivalent (see [10] for a rigorous proof in a general
situation). With this formulation we avoid the state equation for the optimization problem (Pα), paying the
price that we now have a vector variational problem.

The shape optimization problem (P ) can also be reformulated as a vector variational problem simply observ-
ing that the solution of the boundary value problem (e) is also a solution (in the sense of distributions) of the
degenerate elliptic equation { − div(χΩ\ωβ∇u) = 0 in Ω,

u = u0 on ∂Ω,
(e′)

and conversely. What we mean is that if u is a solution of (e) then u extended to the hole Ω (this can be
done because we are assuming ω Lipschitz) is a solution of (e′) and conversely if u is a solution of (e′) (for this
problem we do not have uniqueness) then u restricted to Ω\ω is the solution of (e). Since the function χΩ\ωβ∇u
is divergence-free we can proceed as before. In this case we reformulate problem (P ) as the vector variational
problem

Minimize I(U) =
∫

Ω

W (x, U(x),∇U(x)) dx, (PV )

over the set
U =

{
U ∈ H1(Ω;R2) : U (1) = u0 on ∂Ω

}
,
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subject to the integral constraint ∫
Ω

V (∇U(x)) dx = δ,

where the densities W and V are defined in a analogue way to Wα and Vα simply changing the manifold Λα by
Λ0 = {A(2) = 0}.

One can hope that variational problem (PV ) is equivalent to our optimal shape design problem (P ), however
it is not, unless we impose the additional restrictions on the admissible functions of U that the sets{

x ∈ Ω : ∇U (2)(x) = 0
}

are open and Lipschitz. This is a quite artificial and unreasonable hypothesis, so instead of assuming such a
hypothesis we will analyze relaxation for problem (PV ). This means that we are not imposing any condition on
the interface between the region with and without material, or in other words, we are dropping the restrictions
on the boundary of the admissible shapes for the design problem, thus we are enlarging the set of admissible
designs.

A word should be said about quasiconvexification here. In this paper we deal with functionals whose inte-
grands are not Carathéodory functions and hence we will define the proper semiconvex envelope for relaxation
of those variational problems as an infimum over a set of Young measures, instead of as an infimum over a
set of gradients, which may be too rigid in this situation. Of course, as our integrands are not Carathédory
functions, we cannot be sure that the infima in terms of Young measures or gradients coincide, but anyhow
with the envelope defined in terms of Young measures we still have a relaxation result and this is our aim here.
For the sake of rigorousness and to avoid confusion we will not use the word quasiconvexification here and we
will refer to our envelopes as semiconvex envelopes.

3. Relaxation of problem (PVα)

As we have mentioned in the Introduction our approach for relaxation of the optimal design problem (Pα)
consists in the relaxation of the equivalent formulation (PVα). There are two delicate facts concerning relaxation
for that special problem with respect to typical problems in the Calculus of Variations. The first one is that
the integrand Wα is not a Carathéodory function as we have mentioned above, and the second one is the
volume constraint required by the variational problem (PVα). The first difficulty can be overtaken defining the
appropriate semiconvex envelope in terms of Young measures associated to sequences of admissible gradients for
the problem. This definition also allows to impose the volume constraint from the beginning in the semiconvex
envelope, and therefore we can also tackle with the second difficulty. In this case we should talk then of
constrained semiconvex envelope. The appropriate definition in this case would be

W �
α(x, U, A, t) = inf

{∫
M2×2

Wα(x, U, F ) dν(F ) : ν ∈ Aα(A, t)
}

, (3)

where Aα(A, t) is the set of homogenous gradient Young measures (see [21]) ν such that

A =
∫
M2×2

F dν(F ),

and the volume constraint
t =

∫
M2×2

Vα(F ) dν(F ).

This constrained “quasiconvexification” was introduced in [17, 22], and for an optimal design problem of the
kind of (Pα) but with a different cost functional (actually the cost functional was the square of the gradient
of the state) was explicitly computed in [23] for the volume constrained case, and in [8] for the case without
volume constraint.
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Before to state and prove the main result in this section we need to introduce a little bit of notation. Put

gα(B) = (α + β)2
[(

αB(1) + TB(2)
)
·
(
βB(1) + TB(2)

)]2
− 4αβ

∣∣∣αB(1) + TB(2)
∣∣∣2 ∣∣∣βB(1) + TB(2)

∣∣∣2 ,

hα(B) =
(
αB(1) + TB(2)

)
·
(
βB(1) + TB(2)

)
.

Let ri(B), i = 1, 2, be

rα
1 (B) =

1
2

+
1

2(β − α) detB

[
αβ
∣∣∣B(1)

∣∣∣2 − ∣∣∣B(2)
∣∣∣2 −√gα(B)

]
,

rα
2 (B) =

1
2

+
1

2(β − α) detB

[
αβ
∣∣∣B(1)

∣∣∣2 − ∣∣∣B(2)
∣∣∣2 +

√
gα(B)

]
.

Finally Γα is the set of matrices

Γα =
{
B ∈ R2×2 : gα(B) ≥ 0, hα(B) ≤ 0

}
.

Theorem 1. Assume that the function ϕ(x, u, ·) is convex for a.e. x ∈ Ω and all u. Then the semiconvex
envelope W �

α is given by

W �
α(x, U, A, t) =⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ϕ
(
x, U (1), A(1)

)
, if A ∈ Λβ, t = 0

0, if A ∈ Λα, t = 1
(1 − t)ϕ

(
x, U (1),− 1

(1−t)(β−α)

(
αA(1) + TA(2)

))
, if A ∈ Γα\(Λα ∪ Λβ), t ∈ [rα

1 (A), rα
2 (A)]

+∞, otherwise.

Moreover, in computing W �
α the optimal microstructures are first order-laminates if t = rα

1 (A), rα
2 (A) and

second-order laminates if t ∈ (rα
1 (A), rα

2 (A)).

The proof we give here for this theorem partially follows the ideas of [8, 23]. The explicit expression of the
optimal laminates is also known and it is included in the proof. We would like to emphasize that the computation
of the optimal microstructures is new and particular of the situation that we consider in this paper.

Proof. We can assume without loss of generality that Wα does not depend on (x, u), i.e. Wα = Wα(∇u) (this
happens when ϕ = ϕ(∇u)). The case A ∈ Λα ∪ Λβ is trivial so that we assume A ∈ Γα\(Λα ∪ Λβ).

It is clear that the set where W �
α( is finite is Λα ∪ Λβ . Thus, to compute the infimum (3) we just need to

consider measures with support contained in that set, barycenter A and with volume fraction t. We divide the
proof into three steps.

Step 1 (previous considerations). Given a Young measure ν with support contained in the set Λα ∪ Λβ and
such that

t =
∫
M2×2

Vα(F ) dν(F ),

we can decompose
ν = tνα + (1 − t)νβ ,

where να and νβ are probabilities measures with support contained in Λα, Λβ respectively. We call

Aα =
∫

Λα

F dνα(F ) ∈ Λα, Aβ =
∫

Λβ

F dνβ(F ) ∈ Λβ.
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Due to the weak continuity of the determinant we have that

det
(∫

M2×2
F dν(F )

)
=
∫
M2×2

det(F ) dν(F ).

Indeed, this equality is not true in general, but it is in this case due to the existence of a generating sequence for
the Young measure with equi-integrable square of the gradient. Exploiting this inequality and typical algebraic
formulas for the determinant of matrices in M2×2 it is not hard to check the inequality

det(Aα − Aβ) ≤ 0. (4)

Using the decomposition it is an easy calculation to obtain that

Aα =
(

z
αTz

)
, Aβ =

(
w

βTw

)
,

where

z =
1

t(β − α)

(
βA(1) + TA(2)

)
,

w = − 1
(1 − t)(β − α)

(
αA(1) + TA(2)

)
.

Notice that matrices Aα and Aβ are uniquely determined by A and t and are independent of ν itself.
Again by an elementary computation we obtain that

det(Aα − Aβ) = |A1|2 α

t2
+ |A2|2 β

(1 − t)2
− A1 · A2

α + β

t(1 − t)
,

where
A1 =

1
β − α

(
βA(1) + TA(2)

)
, A2 = − 1

β − α

(
αA(1) + TA(2)

)
.

Following [8] and exploiting the inequality (4)

|A1|2 α

t2
+ |A2|2 β

(1 − t)2
− A1 · A2

α + β

t(1 − t)
≤ 0 (5)

we obtain that in order to exist any t ∈ (0, 1) verifying such an inequality the two conditions

gα(A) ≥ 0, hα(A) ≤ 0

must hold, that is to say
A ∈ Γα.

Step 2 (a lower bound for the semiconvex envelope W �
α). Using the decomposition of the Young measure ν,

the cost functional can be rewritten as

t

∫
Λα

Wα(F ) dνα(F ) + (1 − t)
∫

Λβ

Wα(F ) dνβ(F ) = (1 − t)
∫

Λβ

ϕ
(
F (1)

)
dνβ(F ),

and having in mind that ϕ is convex we can use the Jensen’s inequality to obtain that this expression is greater
or equal than

mA(t) = (1 − t)ϕ
(
A

(1)
β

)
= (1 − t)ϕ

(
− 1

(1 − t)(β − α)

(
αA(1) + TA(2)

))
.
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Then the value mA(t) provides a lower bound for the constrained semiconvex envelope W �
α(A, t). Of course if

(A, t) is such that (5) is not verified then
mA(t) = +∞,

and consequently
W �

α(A, t) = +∞.

In this case, given A ∈ Γα, it is an elementary computation to check that those t′s verifying (5) are the values
in the interval

t ∈ [r1(A), r2(A)].

Step 3 (attaining of the lower bound). If we prove that there exists an admissible homogenous Young measure,
ν, with barycenter A and such that

mA(t) =
∫
M2×2

Wα(F ) dν(F ),

and

t =
∫
M2×2

Vα(F ) dν(F ),

for any A ∈ Γα and t ∈ [r1(A), r2(A)], then we have proved the result. We will show that such a measure
exists in the form of a finite order-laminate, more concretely, a first-order laminate if t = ri(A), i = 1, 2, or a
second-order laminate if t ∈ (r1(A), r2(A)).

For the case in which t coincides with any of the extreme points of the interval [r1(A), r2(A)], we obtain
equality in (5) and also in (4) so that it is clear that

ν = tδAα + (1 − t)δAβ

is a first-order laminate and it attains the bound. In other case, we find the optimal microstructure in the form
of the second-order laminate

ν = sδC + (1 − s)
(
σδB + (1 − σ)δAβ

)
,

with (1 − s)(1 − σ) = (1 − t) and

Aβ =
(

w
βTw

)
, w =

1
1 − t

A2,

B =
(

z1

αTz1

)
, z1 =

1 − rα
2 (A)

(1 − t)rα
2 (A)

A1,

C =
(

z2

αTz2

)
, z2 =

1
s

rα
2 (A) − t

t(1 − t)rα
2 (A)

A1.

The following facts are elementary (but tedious)to check:

1. A =
∫
M2×2 F dν(F );

2. mt(A) =
∫
M2×2 W (F ) dν(F );

3. det(Aβ − B) = 0;
4. there exists σ ∈ (0, 1) such that

det(C − (σB + (1 − σ)Aβ)) = 0. (6)

For the last item we just impose (6) and we get the polynomial at (5) compose with a function depending
on σ. �
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It is important to mention here that we are able to compute the relaxed density W �
α for any objective convex

function ϕ because we define the cost as zero on the manifold Λα. An extension of this computation to the case
in which we consider a different general function on that manifold is not clear as it is shown in [23].

As the integrand Wα is not a Carathéodory function, the classical relaxation results in the Calculus of
Variations do not apply to this situation. Nevertheless we can prove a relaxation result taking advantage of the
structure of the set where Wα is finite, or essentially of the set Λα ∪ Λβ. We introduce the following notation.

mα = inf
{

Iα(U) =
∫

Ω

Wα(x, U(x),∇U(x)) dx : U admissible,
∫
M2×2

Vα(∇U(x)) dx = δ

}
,

m�
α = inf

{
I�
α(U) =

∫
Ω

W �
α(x, U(x),∇U(x), t(x)) dx : U admissible,

t ∈ L∞(Ω), 0 ≤ t(x) ≤ 1,

∫
Ω

t(x) dx = δ

}
,

m̃α = inf
{

Ĩα(ν) =
∫

Ω

∫
M2×2

Wα(x, U(x), F ) dνx(F ) dx : ν admissible
}

where U admissible means, U ∈ H1(Ω;R2) with U (1) = u0 on ∂Ω, and the admissible ν’s for this last optimiza-
tion problem are those Young measure ν such that

∇U(x) =
∫
M2×2

F dνx(F ),

with U admissible and ∫
Ω

∫
M2×2

Vα(F ) dνx(F ) dx = δ.

Theorem 2. The equalities

mα = m�
α = m̃α

hold. Moreover the infima m�
α, m̃α are attained.

Recall that in our case are rather obvious the inequalities

m̃α ≤ m�
α ≤ mα

(see [21]). The key point of the relaxation result is to prove that any Young measure with support contained in
the set Λα ∪ Λβ can be generated by a sequence of gradients taking values on that set. Noticing this we make
sure that there is no gap between mα and m̃α and we get the equality of Theorem 2. The proof is of technical
nature, based on the fact that the set Λα ∪Λβ comes from a linear elliptic PDE, and we do not include it here,
the reader is referred to [8] for a proof in the unconstrained case. In the volume constrained case the proof
would be identical just modifying appropriately the essential sets Ωj in order to impose the volume constraint.

The fact that the infima m�
α and m̃α are attained can be obtained using the direct method of the Calculus

of Variations and noticing that the coercivity is a consequence of coercivity for problem (PVα) (see also [8],
Lem. 3.2) and the weak lower semicontinuity is a consequence of the jointly convex character of W �

α, as this
density is defined as a semiconvex envelope. See [17] for the definition of jointly convexity in the context of
variational problems with constraints like those that we consider in this paper.
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4. Relaxation of problem (PV )

In this section we would like to carry out an analysis of relaxation for the variational reformulation of problem
(P ) analogous to the analysis of Section 3 for problem (Pα). In this case we find the additional difficulty of
the lack of coercivity of problem (P ), which will have consequences in the analysis as we will see below. Let us
begin by defining the appropriate semiconvex envelope in this case. Similarly to the case α > 0, we define

W �(x, U, A, t) = inf
{∫

M2×2
W (x, U, F ) dν(F ) : ν ∈ A(A, t)

}

where A(A, t) is the set of homogenous gradient Young measures ν such that

A =
∫
M2×2

F dν(F ),

and

t =
∫
M2×2

V (F ) dν(F )·
Now we call

Γ =
{

A ∈ M2×2 :
∣∣∣A(2)

∣∣∣2 ≤ β detA

}
and for a matrix A ∈ Γ\(Λ0 ∪ Λβ) we define

tA = 1 −
∣∣A(2)

∣∣2
β detA

·

Notice that if A ∈ Γ\(Λ0 ∪ Λβ) then detA �= 0, and therefore the definition of tA makes sense. The following
result establishes the explicit expression of W �.

Theorem 3. Assume that for every pair (x, u) the function

ϕ(x, u, ·)

is convex. Then

W �(x, U, A, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ(x, U (1), A(1)), if A ∈ Λβ, t = 0
0, if A ∈ Λ0, t = 1
(1 − t)ϕ

(
x, U (1),− 1

(1−t)β TA(2)
)

, if A ∈ Γ\(Λ0 ∪ Λβ), t ∈ (0, tA]
+∞, otherwise.

Moreover in computing W � there is an optimal microstructure in the form of a second-order laminate if t ∈
(0, tA), and a first-order laminate for tA.

Proof. The proof of this theorem follows the line of the one for Theorem 1, but it is slightly different and we
think it is worth for the reader including it. We can assume without loss of generality that W does not depend
on (x, U), i.e. ϕ does not depend on (x, u), ϕ = ϕ(∇u). It is clear by the definition of W that for computing
the envelope

W �(A, t) = min
{∫

M2×2
W (F ) dν(F ) : ν ∈ A(A, t)

}
(7)

we just need to consider Young measures supported where W is finite, i.e. the set Λ0 ∪ Λβ. The border-line
cases t = 0, 1 are trivial so that we assume A /∈ (Γ0 ∪ Γβ).



ON AN OPTIMAL SHAPE DESIGN PROBLEM IN CONDUCTION 709

Step 1 (previous considerations). We can decompose

ν = tν0 + (1 − t)νβ ,

where ν0, νβ are probability measures supported in Λ0, Λβ respectively. We call

A0 =
∫

Λ0

F dν0(F ) ∈ Λ0,

Aβ =
∫

Λβ

F dνβ(F ) ∈ Λβ .

As before, the equality

det
(∫

M2×2
F dν(F )

)
=
∫
M2×2

detF dν(F ),

holds for any admissible measure ν for the minimization problem (7). Exploiting this identity we obtain the
inequality

det(A0 − Aβ) ≤ 0.

It is an elementary computation to check that

A0 =
(

z
0

)

and

Aβ =
(

w
βTw

)
,

where

z =
1
t

(
A(1) +

1
β

TA(2)

)
, w = − 1

β(1 − t)
TA(2).

Again by an elementary computation

det(A0 − Aβ) = − 1
t(1 − t)

(
detA − 1

(1 − t)β

∣∣∣A(2)
∣∣∣2) ,

so that the condition
det(A0 − Aβ) ≤ 0 (8)

can be rewritten as
1

(1 − t)β

∣∣∣A(2)
∣∣∣2 − detA ≤ 0.

It is clear that there exists t ∈ [0, 1] satisfying that condition if and only if

0 <

∣∣A(2)
∣∣2

β detA
≤ 1,

that is to say, if A ∈ Γ. Actually the inequality

0 <

∣∣A(2)
∣∣2

β detA

is trivial.
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Step 2 (a lower bound for the semiconvex envelope W �). Using the decomposition of the measure ν, the cost
functional can be rewritten as

t

∫
Λ0

W (F ) dν0(F ) + (1 − t)
∫

Λβ

W (F ) dνβ(F ) = (1 − t)
∫

Λβ

ϕ(F (1)) dνβ(F ),

and having in mind that ϕ is convex we can use the Jensen’s inequality to obtain that this expression is greater
or equal than

(1 − t)ϕ(A(1)
β ) = (1 − t)ϕ

(
− 1

(1 − t)β
TA(2)

)

whenever A ∈ Γ and t ∈
(

0, 1 − |A(2)|2
β detA

]
(this is the set of t’s that can be attained by Young measures with

barycenter A by Step 1). Therefore
W �(A, t) ≥ mA(t),

where

mA(t) =

⎧⎨
⎩ (1 − t)ϕ

(
− 1

(1−t)β TA(2)
)

, if A ∈ Γ, t ∈
(

0, 1 − |A(2)|2
β detA

]
+∞, otherwise.

Step 3 (attaining of the lower bound). For proving this, it is enough to prove that for any matrix A ∈ Γ and

any t ∈
(

0, 1 − |A(2)|2
β detA

]
there exists a homogeneous Young measure (a microstructure) ν supported in Λ0 ∪ Λβ

with barycenter A and ∫
M2×2

V (F ) dν(F ) = t,

such that ∫
M2×2

W (F ) dν(F ) = mA(t). (9)

If t = tA then the first order laminate
tAδA0 + (1 − tA)δAβ

(10)
is an optimal microstructure. This is a first-order laminate because when t = tA the inequality (8) becomes a
equality. If t ∈ (tA, 1), we are going to show that there exists an admissible microstructure verifying (9) in the
form of a second-order laminate

ν = sδC + (1 − s)
(
σδB + (1 − σ)δAβ

)
, (11)

where Aβ ∈ Λβ and B, C ∈ Λ0 and very important (1 − s)(1 − σ) = (1 − t) (this determines s as a function of
σ bearing in mind that t is fixed).

Let us take

Aβ =

(
− 1

β(1−t)TA(2)

1
(1−t)A

(2)

)
,

B =

(
1−tA

tA(1−t)

(
A(1) + 1

β TA(2)
)

0

)
,

and

C =

(
1
s

tA−σ
tA(1−σ)

(
A(1) + 1

β TA(2)
)

0

)
.

It is not hard to check the following:

1. A =
∫
M2×2

F dν(F );
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A

BC

A β

Λβ

Λ0

Figure 1. Optimal second-order laminate ν.

2. mA(t) =
∫
M2×2

W (F ) dν(F );

3. det(Aβ − B) = 0.
We have to prove that ν is a second-order laminate, and this is so if

det (C − (σB + (1 − σ)Aβ) = 0.

It is a tedious but elementary computation to check that this condition is verified taking

σ =
1
2

(
β det A∣∣A(2)

∣∣2 (1 − t) + (2t − 1)

)
.

For finishing having in mind that A ∈ Γ is easy to see that σ ∈ (0, 1). �

If we call, as in the previous section,

m = inf
{

I(U) =
∫

Ω

W (x, U(x),∇U(x)) dx : U admissible,
∫
M2×2

V (∇U(x)) dx = δ

}
,

m� = inf
{

I�(U, t) =
∫

Ω

W �(x, U(x),∇U(x), t(x)) dx : U admissible,

t ∈ L∞(Ω), 0 ≤ t(x) ≤ 1,

∫
Ω

t(x) dx = δ

}
,

m̃ = inf
{

Ĩ(ν) =
∫

Ω

∫
M2×2

W (x, U(x), F ) dνx(F ) dx : ν admissible
}

where U admissible means U ∈ H1(Ω;R2) with U (1) = u0 on ∂Ω, and the admissible ν’s for this last optimization
problem are those Young measure ν such that

∇U(x) =
∫
M2×2

F dνx(F ),
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with U admissible and ∫
Ω

∫
M2×2

V (F ) dνx(F ) dx = δ.

Again the inequalities
m̃ ≤ m� ≤ m (12)

hold. For having a relaxation result we need to have equality and to show that m̃ and m� are attained. We
explore this here and we are able prove the equality of the three infima when the function ϕ does not depend
on u, however we are not able to prove that the infima m̃ and m� are attained. Again the difficulty that we
find is the lack of coercivity of the problem: given a minimizing sequence, {Uj}, for the infimum m� by the
the structure of the set Γ we can prove that {∇U

(2)
j } is bounded in L2 (see Lem. 3.1 in [8] for a proof in the

non-degenerate case that could be extended easily to our situation here), so that there exists a subsequence
(that we still denote the same) and v ∈ H1(Ω) such that (maybe after extracting certain constants)

U
(2)
j ⇀ v, weakly in H1.

The matter is that we do not know what happens with the sequence of first components, {U (1)
j }, as we do not

have any condition implying the boundness of this sequence in any norm. Anyhow, in order to prove existence
we do not need that much, it would be enough to conclude the existence of a function u ∈ H1(Ω), with u = u0

on ∂Ω, such that
(∇u(x),∇v(x)) ∈ Γ, a.e. x ∈ Ω.

Unfortunately, a statement like this, it is not expectable to be true in general, taking into accounts the results
on homogenization of problems in perforated domains where non-local effects appear, see the works [13,14] and
the references therein. This really shows the tremendous theoretical difficulty of the problem we are considering.

The following lemma is itself a version of the equality in (12). The proof is technical an particular of the
situations that we are considering here.

Lemma 4. Let us assume that ϕ does not depend on u, i.e. ϕ = ϕ(x,∇u), and let ν = {νx}x∈Ω be a H1-Young
measure verifying

1. νx is a finite-order laminate;
2. supp(νx) ⊂ Λ0 ∪ Λβ;

3.
∫

Ω

∫
M2×2

V (F ) dνx(F ) dx = δ.

Then there exists a sequence {U j}, such that
1. ∇U j(x) ∈ Λ0 ∪ Λβ a.e. x ∈ Ω;

2. limj→∞
∫

Ω

W (x,∇U j(x)) dx =
∫

Ω

∫
M2×2

W (x, F ) dνx(F ) dx;

3.
∫

Ω

V (∇U j(x)) dx = δ for all j ≥ 1;

4. finally, if

∇U(x) =
∫
M2×2

F dνx(F ),

then
U

(2)

j ⇀ U (2), weakly H1

.

Proof. Let ν = {νx}x∈Ω a H1-Young measure in the conditions of the statement, and U ∈ H1(Ω;R2) such that

∇U(x) =
∫
M2×2

F dνx(F ).



ON AN OPTIMAL SHAPE DESIGN PROBLEM IN CONDUCTION 713

There exists a sequence {Uj} ⊂ H1(Ω;R2) (see [21]) such that ν is the Young measure associated to {∇Uj}
and

1.
{
|∇Uj |2

}
is equi-integrable;

2. U
(1)
j = u0 on ∂Ω for all j ≥ 1.

If we call
Ωj = {x ∈ Ω : ∇Uj(x) /∈ Λ0 ∪ Λβ} ,

ωj = {x ∈ Ω : ∇Uj(x) ∈ Λ0} ,

then by the fact that ν is a family of finite-order laminates with support contained on Λ0 ∪ Λβ we can assume
that

|Ωj | → 0,

as j → ∞, and that ωj is a Lipschitz domain. We can assume without loss of generality that ∂ωj ∩ ∂Ωj = ∅.
By hypothesis 3 we can claim that

|ωj | → δ

as j → ∞, and as we are working with finite-order laminates we can assume that δ < |ωj | (for this we just
increase the volume fraction of the set ωj, i.e. the size of the set itself, so that it is strictly greater than δ and
it converges to δ as j → ∞). Now we can modify slightly the sets ωj to obtain new Lipschitz sets ωj such that

|ωj | = δ,

and if we call
Aj = (ωj\ωj) ∪ (ωj\ωj)

then
|Aj | → 0.

We can suppose without loss of generality that the sequence {∇Uj} is such that we can assume that

ωj ⊂ ωj, ωj ∩ Ωj = ∅,

for all j ≥ 1.
Since the set ωj is Lipschitz, we can solve the problem

⎧⎨
⎩

− div(β∇uj) = 0, in Ω\ωj ,
uj = u0, on ∂Ω,
β∇uj · n = 0, on ∂ωj .

Let U
(1)

j ∈ H1(Ω) be a function such that

U
(1)

j (x) = uj(x)

a.e. x ∈ Ω (we can assert that, because the domain ωj is Lipschitz, there exists a H1-extension operator from
ωj to Ω). By the transition boundary condition assumed on the boundary of ωj we have that the function

χΩ\ωj
β∇U

(1)

j

is divergence-free, so that there exists U
(2)

j such that

Ej(x)∇U
(1)

j (x) + T∇U
(2)

j (x) = 0, (13)

a.e. x ∈ Ω, where Ej(x) = χΩ\ωj
β.
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By construction,
∇U j(x) ∈ Λ0 ∪ Λβ ,

and ∫
Ω

V (∇U j(x)) dx = δ,

a.e. x ∈ Ω and for all j ≥ 1.
On the other hand, it is clear that the sequence {∇Uj} verifies

Ej(x)∇U
(1)
j (x) + T∇U

(2)
j (x) = 0, (14)

a.e. x ∈ Ω\Ωj , where Ej(x) = χΩ\ωj
β.

Now using equations (13) and (14) and that T sends curl-free vector fields to divergence-free vector fields,
we get the following∫

Ω

(
Ej(∇U

(1)

j −∇U
(1)
j )
)
· (∇U

(1)

j −∇U
(1)
j ) dx =

∫
Ω

(−Ej)∇U
(1)
j · (∇U

(1)

j −∇U
(1)
j ) dx

=
∫

Ω

(
−Ej∇U

(1)
j − T∇U

(2)
j

)
· (∇U

(1)

j −∇U
(1)
j ) dx.

It is easy to check that
Ej(x)∇U

(1)
j (x) + T∇U

(2)
j (x) = 0

a.e. x ∈ (Ω\Aj) ∩ (Ω\Ωj) and as Aj ∪ Ωj ⊂ Ω\ωj , applying Hölder’s inequality we obtain that last integral is

≤
(∫

Aj∩Ωj

∣∣∣Ej(x)∇U
(1)
j (x) + T∇U

(2)
j (x)

∣∣∣2 dx

) 1
2
(∫

Ω\ωj

∣∣∣∇U
(1)
j (x) −∇U

(1)

j (x)
∣∣∣2 dx

) 1
2

.

By the equi-integrability of the sequence {|∇Uj |2}, and the facts |Ωj | → 0 and |Aj | → 0 we obtain∫
Ω\ωj

∣∣∣∇U
(1)

j −∇U
(1)
j

∣∣∣2 dx → 0, as j → ∞. (15)

Now we prove that
∇U

(2)

j −∇U
(2)
j → 0, strong in L2. (16)∫

Ω

∣∣∣∇U
(2)

j −∇U
(2)
j

∣∣∣2 dx =
∫

Ω

(
T∇U

(2)

j − T∇U
(2)
j , T∇U

(2)

j − T∇U
(2)
j

)
dx

adding and subtracting Ej∇U
(1)
j and Ej∇U

(1)

j is easy to check that the above integral is equal to the sum

∫
−
(
Ej∇U

(1)
j + T∇U

(2)
j , T∇U

(2)

j − T∇U
(2)
j

)
dx +

∫
Ω

(
Ej

(
∇U

(1)
j −∇U

(1)

j

)
, T∇U

(2)

j − T∇U
(2)
j

)
dx.

Applying Hölder’s inequality we obtain

‖∇U
(2)

j −∇U
(2)
j ‖2 ≤

(∫
Aj∪Ωj

∣∣∣Ej∇U
(1)
j + T∇U

(2)
j

∣∣∣2 dx

) 1
2

+ β

(∫
Ω\ωj

∣∣∣∇U
(1)

j −∇U
(1)
j

∣∣∣2 dx

) 1
2

.

The second term converges to zero by (15), and for the first term we have already proved above its convergence
to zero.
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By (16) is clear that, maybe after extracting suitable constants,

U
(2)

j ⇀ U (2), weakly H1.

For a.e. x ∈ Ω, the second projection of the measure νx, π2νx is the probability measure given by∫
R2

Ψ(λ) dπ2νx(F ) =
∫
M2×2

Ψ(F (2)) dνx(F ),

for any Ψ ∈ C0(R2). Obviously the family π2ν = {π2νx} is a H1-Young measure generated by the sequence of
gradients {∇U

(2)
j }, so that by (16), the sequence {∇U

(2)

j } is also a generating sequence for this Young measure.
If we define the function W̃ : Ω × R2 → R ∪ {+∞} as

W̃ (x, λ) =

{
ϕ
(
x, 1

β Tλ
)

, if λ �= 0,

0, if λ = 0

we obtain the following ∫
Ω

∫
M2×2

W (x, F ) dνx(F ) dx =
∫

Ω

∫
R2

W̃ (x, λ) dπ2νx(λ) dx

= lim
j→∞

∫
Ω

W̃ (x,∇U
(2)

j (x)) dx

=
∫

Ω

W (x,∇U j(x)) dx. �

We have not been able to include the general case in Lemma 4. Our approach to prove this result would work
if we have that

lim
j→∞

‖U (1)

j − U (1)‖L2(Ω\ωj) = 0.

This is true in certain periodic cases (see [5]), but unfortunately it is not true in general (see again the examples
in [13, 14]).

Theorem 5. If ϕ = ϕ(x,∇u), then
m̃ = m� = m

hold.

The proof of this theorem is a direct consequence of the inequality (12), and the fact that given an admissible
gradient Young measure µ = {µx}, there exists another gradient Young measure ν = {νx} such that, each νx is
a laminate of order less or equal that two and∫

Ω

∫
M2×2

ϕ(x, F ) dνx(F ) dx ≤
∫

Ω

∫
M2×2

ϕ(x, F ) dµx(F ) dx.

The proof of this fact is a part of Step 1 in the proof of Proposition 7.
We have explored here the possibility of proving a relaxation result in terms of gradient Young measures, the

idea of this is to enlarge the set of admissible designs to the set of all the gradients Young measures associated
to bounded sequences of admissible gradients in our original optimal shape design problem. We have proved a
partial result in this direction, and as we have mentioned above Lemma 4, a full result is not clear at all. On
the one hand, it is possible to find, based on the examples in [13, 14], that there exists sequences of admissible
gradients for our original problem (not bounded in the first component) that do not generate any gradient Young
measure, so that we maybe have to look for minimizers in bigger sets than that of the admissible gradient Young
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measures. In order to do this we would have to advance in the understanding of Homogenization of problems
in perforated domains in the case of Neumann boundary conditions. On the other hand, very often in optimal
design problems happens that for establishing a relaxation result we have to use a bigger set than the set where
all the potential minimizers really live. The fact that given an admissible gradient Young measure we can
approximate it in energy by a sequence of admissible gradients (Lem. 4) may indicate that this is the case here,
i.e. that m̃ and m� are actually attained. Although the author suspects that this may depend on the particular
election of the objective function ϕ.

We would like to finish this section mentioning that an interesting direction of research is to do numerical
simulations on this for different objective functions in order to test numerically whether the relaxation that we
propose really admits minimizers. The author plans to explore this in the near future.

5. Approximation

Along this section we will assume that ϕ does not depend on u. As we have mentioned in the Introduction
an interesting open problem is whether “the optimal shape design problem (PV ) may be approximated by the
sequence of problems (PVα)”. Of course the concept of approximation we would like to mean have to be explicitly
clarified, and in particular, as those problems lack of optimal solutions, it seems more convenient to deal with
their relaxed formulations. A suitable framework to analyze this question would be that of Γ-convergence (two
basic references on Γ-convergence are [12, 16]), and then the question we want to understand would be: does
the sequence of relaxed formulations of problems (PVα) Γ-converge to the “relaxed” formulation of (PV )? In
this section we focus on this problem. Unfortunately we are not able to provide a positive answer to this, but
we provide partial answers that, we think, are interesting to know and of physical interest in themselves. It
is important to remark that even if the Γ-convergence result holds, this is limited by the fact that we are not
dealing with an equi-coercive sequence, so that many of the consequences of Γ-convergence will not hold. We
would also like to mention that an interesting simulation problem would be to test the Γ-convergence result
numerically, we plan to do this in the near future as well.

We begin recalling the definition of Γ-convergence. Given a metric space X , we say that a sequence fj : X →
R Γ-converges in X to f∞ : X → R if for all x ∈ X we have

1. (liminf inequality) for every sequence {xj} converging to x

f∞(x) ≤ lim inf
j

fj(xj);

2. (limsup inequality) there exists a sequence {xj} converging to x such that

f∞(x) ≥ lim sup
j

fj(xj).

The function f∞ is called the Γ-limit of {fj}. Here our space is X = W 1,p(Ω;R2) × L∞(Ω) (with p = 2)
equipped with the weak and weak-� topologies respectively. We want to check whether this definition is verified
in our situation. The first important fact that we notice is that pointwise convergence of the integrands W �

α to
W � holds. Effectively, it is not hard to check that, for a fixed matrix A, we have that

rα
1 (A) → 0, rα

2 (A) → tA,

as α → 0. It is also easy to see that
Γα → Γ,

as α → 0, in the sense that the inequalities defining those sets converge pointwise. Finally, by the continuity
assumed on the function ϕ, it is clear that

W �
α(x, A, t) → W �(x, A, t)
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as α → 0, for any matrix A and any t ∈ [0, 1]. Further, in the computation of W �
α(x, A, t), W �(x, A, t) there is

convergence of the optimal microstructures that we use in the proofs of Theorems 1 and 3.
There are situations in Γ-convergence in which we can obtain a convergence result for integral functionals

from the pointwise convergence of the integrands. Unfortunately, this is not the situation here, and the author
has not even been able to prove the liminf inequality from this fact. However, it is possible to show a, in our
context satisfactory, version of the limsup inequality. This is stated in the next proposition.

We would like to emphasize that we consider the Γ-convergence problem in H1(Ω;R2) rather than L2(Ω).
This is due to the fact that we are interested in the optimal designs for (Pα) and the optimal shapes for
(P ) (or their relaxed formulations). These problems are reformulated as vector variational problems, and in
these formulations all the information on the admissible designs and shapes is enclosed in the gradients of the
admissible functions for those problems, in the sense that if we have an optimal design or shape we can reproduce
the optimal microstructure for the original problem. Hence the relevant objects for our vector variational
problems are the gradients of the admissible functions and this is the reason because we find reasonable to
formulate the Γ-convergence problem in a Sobolev space.

Proposition 6. Given U ∈ H1(Ω;R2) and t ∈ L∞(Ω) such that

∇U(x) ∈ Γ, t(x) ∈ (0, t∇U(x)]

a.e. x ∈ Ω, there exists a sequence {Uα} in H1(Ω;R2) such that

∇Uα(x) ∈ Λα ∪ Λβ,

a.e. x ∈ Ω and for all α ≥ 0, such that

U (2)
α ⇀ U (2), weakly H1,

tα ⇀ t, weakly − � L∞,

where

tα(x) = χΩ\ωα
,

ωα =
{
x ∈ Ω : α∇U (1)

α + T∇U (2)
α = 0

}
,

and moreover ∫
Ω

W �(∇U(x), t(x)) dx = lim
α→0

∫
Ω

W �
α(∇Uα(x), tα(x)) dx.

Proof.
Step 1. We prove that there exists a sequence {Vj} such that

• ∇Vj(x) ∈ Λ0 ∪ Λβ, a.e. x ∈ Ω;

•
∫

Ω

V (∇Vj(x)) dx = δ for all j ≥ 1;

• ∇V
(2)
j ⇀ ∇U (2) weakly L2;

• tj(x) = V (∇Vj(x)) = χΩ\ωj
→ t(x) weak-� in L∞(Ω), where

ωj = {x ∈ Ω : ∇Vj(x) = 0} ;

5. lim
j→∞

∫
Ω

W �(∇Vj(x), tj(x)) dx =
∫

Ω

W �(∇U(x), t(x)) dx.
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Furthermore we can assume that ∂Ω ∩ ∂ωj = ∅. For proving this, we proceed in the following way. For a.e.
x ∈ Ω let νx be the optimal homogeneous Young measure given by Theorem 3 such that

W �(∇U(x), t(x)) =
∫
M2×2

W (F ) dνx(F ),

∇U(x) =
∫
M2×2

F dνx(F ),

and

t(x) =
∫
M2×2

V (F ) dνx(F ).

Recall that νx is either a dirac mass, a first-order laminate or a second-order laminate. We claim that the
family ν = {νx} is a H1-Young measure. This is true because the characterization theorem of gradient Young
measures [21] is satisfied, namely:

1. the first moment of the family is a gradient by definition;
2. each νx is a homogenous Young measure itself;

3.
∫

Ω

∫
M2×2

|F |2 dνx(F ) < +∞. Proving this is not difficult but a bit tedious, it can be done using the

explicit expression for νx given at Theorem 3. It is not hard to check that for any of the possibilities
we have for this optimal Young measure, the inequality∫

M2×2
|F |2 dνx(F ) ≤ C|∇U(x)|2,

where C is positive constant independent of x, holds a.e. x ∈ Ω.
The Young measure ν = {νx} is in the conditions of Proposition 4, therefore the existence of the sequence

{Vj} is just a consequence of it.

Step 2. We prove that for any j ≥ 1 there exists a sequence {Uj,α} such that:
1. ∇Uα,j(x) ∈ Λα ∩ Λβ , a.e. x ∈ Ω, and for all α > 0;
2. ∇U

(2)
α,j → ∇V

(2)
j strong L2 as α → 0;

3. (α(1 − tj) + βtj)∇U
(1)
α,j → βtj∇V

(1)
j strong L2 as α → 0;

4. finally limα→0

∫
Ω

W �
α(∇Uα,j(x), tj(x)) dx =

∫
Ω

W �(∇Vj(x), tj(x)) dx.

Obviously the last item is a straightforward consequence of items 2 and 3. For the proof, let us consider for
each α > 0, U

(1)
α,j the solution of the equation

{ − div [((α(1 − tj) + βtj)∇u] = 0, in Ω,
u = u0, on ∂Ω.

This function is divergence free so that there exists U
(2)
α,j ∈ H1(Ω) such that

(α(1 − tj) + βtj)∇U
(1)
α,j(x) + T∇U

(2)
α,j(x) = 0,

a.e. x ∈ Ω.
Now we claim that

(α(1 − tj) + βtj)∇U
(1)
α,j → βtj∇V

(1)
j , strong L2,

and
∇U

(2)
α,j → ∇V

(2)
j (x), strong L2.
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Let us prove the first convergence. For this we will use the identity

βtj(x)∇V
(1)

j + T∇V
(2)
j (x) = 0,

a.e. x ∈ Ω. Notice that it is enough to show that∫
Ω

(
(α(1 − tj) + βtj)

(
∇V

(1)
j −∇U

(1)
α,j

)
,∇V

(1)
j −∇U

(1)
α,j

)
dx → 0

as α → 0. To prove this is easy as the previous integral is equal, after adding and subtracting T∇V
(2)
j and

T∇U
(2)
α,j, to ∫

Ω

(
(α(1 − tj) + βtj)∇V

(1)
j − T∇V

(2)
j ,∇V

(1)
j −∇U

(1)
α,j

)
dx,

and this integral converges to zero as α → 0. This is true because, thanks to the fact the function α(1− tj)+βtj
takes the value β on ∂Ω, we can use a truncation function to prove that

‖∇U
(1)
α,j‖L2(Ω\ωj ;R2) + α

1
2 ‖∇U

(1)
α,j‖L2Ω\ωj ;R2),

is uniformly bounded with respect to α (we refer to Lem. 3.1.5 for a more detailed proof of this in a similar
situation).

The second convergence is a direct consequence of the first one.
Step 3. For finishing the proof is enough to use a diagonal sequence procedure to choose a sequence of the
form {∇Uα(j),j} in the conditions of the statement of the theorem.

�

The results here are obviously far from being an answer to the question formulated at the beginning of this
section, and many things still remain to be understood. For instance, because we do not have a liminf inequality
type result, we cannot assert that the infimum value of the relaxed formulations for problems (PVα) converges
to the infimum of the relaxed formulation for problem (PV ), so that the limit of this sequence might be smaller
than the infimum of (PV ).
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visit to École Polytechnique. The author also thanks many interesting conversations on the subject of this paper with
Daniel Faraco. Financial support from CEC-Marie-Curie Fellowships Program through contract HPMF-CT-2002-02177,
research projects MTM2004-07114 of the MEC and PAI05-027 of Castilla-La Mancha (SPAIN).

References

[1] G. Allaire, Shape optimization by the homogenization method. Springer (2002).
[2] G. Allaire, E. Bonnetier, G. Franfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76

(1997) 27–68.

[3] G. Allaire and R.V. Kohn, Optimal bounds on the effective behauvior of a mixture of two well-odered elastic materials. Quat.
Appl. Math. 51 (1993) 643–674.

[4] G. Allaire and R.V. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures.
Europ. J. Mech. A/solids 12 (1993) 839–878.

[5] G. Allaire and F. Murat, Homogenization of the Neumann problem with nonisolated holes. Asymptotic Anal. 7 (1993) 81–95.
With an appendix written jointly with A.K. Nandakumar.

[6] J.C. Bellido, Explicit computation of the relaxed density coming from a three-dimensional optimal design prroblem. Nonlinear
Analysis TMA 52 (2003) 1709–1726.



720 J.C. BELLIDO

[7] J.C. Bellido and P. Pedregal, Optimal design via variational principles: the one-dimensional case. J. Math. Pures Appl. 80
(2000) 245–261.

[8] J.C. Bellido and P. Pedregal, Explicit quasiconvexification for some cost functionals depending on the derivatives of the state
in optimal design. DCDS-A 8 (2002) 967–982.

[9] J.C. Bellido and P. Pedregal, Optimal control via variational principles: the three dimensional case. J. Math. Anal. Appl. 287
(2003) 157–176.

[10] J.C. Bellido and P. Pedregal, Existence in optimal control with state equation in divergence form via variational principles. J.
Convex Anal. 10 (2003) 365–378.

[11] M.P. Bendsøe and O. Sigmund, Topology optimization, Theory, methods and applications. Springer-Verlag, Berlin (2003).
[12] A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications. Oxford University Press,

Oxford, 22 (2002).
[13] M. Briane, Homogenization in some weakly connected domains. Ricerche Mat. 47 (1998) 51–94.
[14] M. Briane, Homogenization in general periodically perforated domains by a spectral approach. Calc. Var. Partial Differ.

Equat. 15 (2002) 1–24.
[15] A. Cherkaev, Variational methods for structural optimization. Springer (2000).
[16] G. Dal Maso, Introduction to Γ-convergence. Birkhäuser, Boston, 1993.
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Birkhäuser 2 (1994) 1153–1158.


