
ESAIM: COCV ESAIM: Control, Optimisation and Calculus of Variations
October 2006, Vol. 12, 721–751 www.edpsciences.org/cocv
DOI: 10.1051/cocv:2006019

STRUCTURE OF STABLE SOLUTIONS OF A ONE-DIMENSIONAL
VARIATIONAL PROBLEM

Nung Kwan Yip
1

Abstract. We prove the periodicity of all H2-local minimizers with low energy for a one-dimensional
higher order variational problem. The results extend and complement an earlier work of Stefan Müller
which concerns the structure of global minimizer. The energy functional studied in this work is mo-
tivated by the investigation of coherent solid phase transformations and the competition between the
effects from regularization and formation of small scale structures. With a special choice of a bilinear
double well potential function, we make use of explicit solution formulas to analyze the intricate inter-
actions between the phase boundaries. Our analysis can provide insights for tackling the problem with
general potential functions.
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1. Introduction and statements of theorems

In this paper, we study the structure of H2-local minimizers for the following functional:

E(u) =
∫ 1

0

ε2u2
xx + W (ux) + u2 dx subject to ux(0) = ux(1) = 0 (1)

where W is some double-well potential function usually taken to be W (p) = (p2 − 1)2. In order to facilitate the
use of explicit solution formulas, in the present paper, we consider the special form of W (p) = (|p| − 1)2 so that

W ′(p) =
{

2(p − 1), p > 0
2(p + 1), p < 0 , W ′(0+) − W ′(0−) = −4 and W ′′(p) = 2 − 4δ0(p).

The reason for this choice is that the corresponding Euler-Lagrange equation for (1) is given by a linear differ-
ential equation with constant coefficients together with some linear jump conditions for the solutions.

As our goal is to investigate the relation between the critical points of E and periodic patterns, we first
present the solution of a unit cell problem. For each l > 0, let P (x, l) be the function which solves the following
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boundary value problem:⎧⎨
⎩

ε2Pxxxx(x, l) = Pxx(x, l) − P (x, l) and Px(x, l) > 0 for x ∈ (− l
2 , l

2 ),
Px(− l

2 , l) = Px( l
2 , l) = 0,

ε2Pxxx(− l
2 , l) = ε2Pxxx( l

2 , l) = −1
(2)

(existence and uniqueness of which will be stated in Prop. 3.3). Now let N = 1
l be an integer and QN(x) be

the following periodic version of P (·, l):

QN (il + y) = P

(
(−1)i

(
y − l

2

)
, l

)
for 0 ≤ y ≤ l and i = 0, 1, 2 . . .N − 1. (3)

The following are our main results.

Theorem 1.1. There exist constants CL < 10, l∗ and ε∗ > 0 such that for any 0 < ε < ε∗, if CLε|ln ε| < l < l∗
and N = 1

l is an integer, then the function ±QN(x) defined as in (3) is a stable stationary point of the
functional E(·).
Theorem 1.2. There exist constants CE > 3

200 and ε∗ > 0 such that for any 0 < ε < ε∗, if u is a weakly stable
stationary point of E(·) satisfying

E(u) ≤ CE

|ln ε| , (4)

then u(·) = QN (·) or −QN (·) for some positive integer N .

Theorem 1.3. There exist constants CS < 10 and ε∗ > 0 such that for all 0 < ε < ε∗ and 0 < C < CS, if
l = Cε|ln ε| and N = 1

l is an integer, then QN(·) is unstable.
(Note that for the l in this theorem, E(QN (·)) = O( 1

|ln ε|).)

The notions of stationary points, their stability and relationship to local minimizers of E will be given in
Section 2. All of the above results can be extended in a natural way to the Dirichlet {u(0) = u(1) = 0} and
periodic {u(0) = u(1); ux(0) = ux(1)} boundary conditions.

Our results in essence establish the fact that if u is a stationary point of E(·) of low enough energy, then it
is stable if and only if it is periodic. Theorem 1.3 states that we have captured the correct range of the energy
values in terms of the stability properties of periodic structures. Our work hence extends and complements the
following theorem of S. Müller which studies the structure of global minimizer for the functional (1) in the case
of W (p) = (p2 − 1)2. Let A0 = 2

∫ 1

−1
W

1
2 (p) dp.

Theorem 1.4 [12]. There exists an ε∗ > 0 such that for 0 < ε < ε∗, if u is a global minimizer of E(·) in the
class of periodic functions:

H2
#(0, 1) =

{
u ∈ H2(0, 1) : u(0) = u(1) and ux(0) = ux(1)

}
,

then u is periodic with minimal period T ε = 2(6A0ε)
1
3 + O(ε

2
3 ). Moreover,

u

(
x +

T ε

2

)
= −u(x) for x ∈ (0, 1) and E(u) =

1
4
(6A0ε)

2
3 + O(ε

4
3 ).

The motivations for the investigation of (1) are twofold. One comes from the study of coherent solid-solid
transformations which very often give rise to some fine scale mixtures of different phases with characteristic
length scales. The formulation of energy minimization in the modeling of these transformations can be found in
[3,4,8]. In the one-dimensional setting, the phenomenology of the formation of mixtures of different phases can
be captured to sufficient degree by (1) and related functionals. It is the combination of the strain energy W (ux)
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which favors ux to be 1 or −1 and the elastic foundation term u2 that leads to the formation of fine scale
structures. However, definite length scales are determined by the incorporation of the strain gradient or surface
energy term ε2u2

xx. We refer to [16] for a more detail account of (1). The works [13–15] also consider some
nonlocal versions of u2. A two-dimensional model can be found in [9, 10].

The second motivation is that (1) can be viewed as a regularization of some functional which is not lower-
semicontinuous. For example, the following functional

E0(u) =
∫ 1

0

(W (ux) + u2) dx (5)

does not have a minimizer. Instead it possesses a minimizing sequence
{
uδ
}

δ>0
of the form that uδ

x oscillates
between 1 and −1 with increasing frequencies such that

∥∥uδ
∥∥
∞ → 0. The incorporation of the higher order term

ε2u2
xx in (5) penalizes the oscillations in ux and hence limits their number. By simple compactness arguments,

a minimizer for (1) exists. Furthermore, formal reasoning leads to that (1) for 0 < ε � 1 can be approximated
by

E1
∗ (u) =

∫ 1

0

1
2
εA0|uxx| + u2 dx subject to |ux| = 1 a.e. (6)

where A0 = 2
∫ 1

−1

√
W (p) dp, or even more explicitly, by

E2
∗ (u) =

∫ 1

0

u2 dx + εA0 × (number of times ux changes between 1 and −1) (7)

with u subjected to the same constraint. Assuming the validity of such an approximation, the minimizer u
of (1) can then be approximated by the minimizer of E1∗ or E2∗ . From this we infer that there is a collection of
roughly equidistant points {ci}’s at which ux changes between 1 and −1. In between these points, |ux| stays
very close to 1 so that u is very much like a sawtooth function. We call the transition of ux between 1 and −1
an interface and the region between any two interfaces a phase segment or simply a segment. See the following
Figure 1.

x

u  (x)

xInterface

u(x)

ε εl

x

Segment

Figure 1. A typical pattern of u(x) and its derivative ux(x).

Another interesting feature of the functional (1) is the competition between multiple – two – length scales.
One is ε, the interfacial width and the other is l, the length of the segment. The result of this competition is
that l = O(ε

1
3 ) for the global minimizer of (1). Rigorous justification of the relationship between E , E1

∗ and E2
∗

falls in the regime of Γ-convergence of functionals. We refer to [2, 12] for a discussion of this approach for the
present problem. [14] also uses this method to study (1) but with u2 replaced by εu2 in which case, l = O(1)
and hence there is only one small length scale left in the problem.

In order to study dynamic problems such as gradient flows, the classification of critical points is also important
as the ultimate observed patterns of the phase transformations are consequences of both energetic and kinetic
effects. Our results state that (1) has many critical points but those having low enough energy and stability
property are in fact periodic. Hence a time dependent solution can very likely fall into the basins of attraction
of these local minimizers and stay there indefinitely. We refer to [1] for some experimental investigations of such
phenomena which is relevant to the current functional.
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There are relatively few methods that can be used to describe the structure of critical points compared with
those that can prove the existence of them. In addition, as (1) is a higher order variational problem, the usual
techniques for second order equations are not easily at our disposal. Even though it is plausible to use the
approach of Γ-convergence to deduce that there exist local-minimizers which are nearly periodic (see [11] for a
general framework), to conclude other statements such as the existence and characterization of other types of
local minimizers or critical points, more precise estimates are needed.

Our approach, originated in [12], resembles that of asymptotic expansion. Theorem 1.1 is proved by following
quite closely the approach of [12], Theorem 5.1. However, the proof of Theorem 1.2 is much more delicate. It
requires careful analysis of the interactions between the interfaces. Our method can potentially be used to find
all critical points which do not fall easily in the regime of Γ-convergence.

Our analysis is made possible by the special choice of W . It allows the use of explicit solution formulas.
Such a choice is also used in [16, 17] in which detailed analysis is performed for the case when the number of
interfaces is small. We believe that our results can provide useful insights to tackle the case of general W ’s in
terms of what types of quantities and estimates to be looked upon.

It is instructive to compare (1) with the following Allen-Cahn functional:

F(v) =
∫ 1

0

ε2v2
x + W (v) dx subject to vx(0) = vx(1) = 0 and

∫ 1

0

vdx = 0 (8)

for which all the critical points are periodic and unstable except the global minimizer which has only one
interface where v changes between 1 and −1 [6]. This model thus cannot capture any fine scale structures.
Furthermore, the time dependent problem for the above functional demonstrates the existence of metastable
states – interfaces move with exponentially small speeds [5,7]. This is due to the fact that each pair of adjacent
interfaces gives rise to an exponentially small eigenvalue. However, for (1), we are dealing with algebraically
small eigenvalue.

1.1. Outline of Proof

Using the analysis of [12], we can easily deduce that any critical point u of E with low enough energy has a
sawtooth shape so that |ux| ≈ 1 away from the zeros of ux or the interfacial regions. This is seen by considering
the Euler-Lagrange equation of (1) which for smooth W reads:

ε2uxxxx =
W ′′(ux)

2
uxx − u.

If the distance between the interfaces are long, then the behavior of u can be described by ε2uxxxx = W ′′(ux)
2 uxx

for x near the interface and by W ′′(ux)
2 uxx = u for x far away from the interface. From these observations, sharp

estimates can be deduced. Theorem 1.1 is proved by showing that the minimum energy E(l) of a monotonic
function u over a segment of length l is a convex function of l. This is very similar to the approach of [12],
Theorem 5.1.

A CBACB

Variation
Variation

u (x)u(x)
x

Figure 2. An example of a variation for a pattern with a short segment adjacent to a long segment.
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However, in order to deduce the periodicity of stable patterns, we need to consider the possibility of short
segments. In this case, the above separation of scales is not quite useful. We need much more precise information
about the interactions between the interfaces. The core idea of this paper is to capture these interactions by
means of a propagation map which relates the behaviors of u at both ends of an segment. With this map, we
can find out the relationship between the lengths of adjacent segments.

As an illustrative example, consider the configuration of u and ux as in Figure 2. In this example, the lengths
of |AB| and |BC| differ substantially from each other. We now vary u by moving the interfaces at A and B.
The second variation of E at u is found to be:

∂2E(u) ≈ −O(e−
|BC|

ε )
ε

+ |AB|.

In order to determine the sign of the second variation, we need to analyze the relationship between |BC|
and |AB|. This procedure falls into an unfortunately large number of cases which we will check one by one.
From this analysis, we conclude that each short segment leads to an unstable eigen-mode and hence in order
for u to be a stable critical point, it can only have long segments. Then a reasoning using first variation shows
that u must be nearly periodic. A final step using an implicit function theorem type argument concludes the
periodicity of u.

The outline of the paper is as follows. Section 2 gives the definitions of critical points of E , their (in-)stability,
and some preliminary estimates. Section 3 introduces the propagation map which will be used throughout the
paper. The proofs of the main theorems will be given in Sections 4–6. The Appendix states some regularity
property of the critical points of E and also provides some explicit examples of unstable solutions.

2. Euler-Lagrange equation

The Euler-Lagrange equation for the functional E is formally given by

ε2uxxxx =
W ′′(ux)

2
uxx − u (9)

or, in the integrated form:

ε2uxxx =
W ′(ux)

2
−
∫ x

0

u(y) dy + C for some constant C. (10)

Note that there is an ambiguity about the meaning of W ′(0) which occurs at the points where ux = 0. From
Theorem A.2, it is sufficient to consider those solutions u with only a finite number of zeros for ux so that
u is piecewise monotone. In this way, the ambiguity of W ′(0) can be handled by imposing appropriate jump
conditions for u. However, we do not a priori limit the number of the zeros. The necessary formulation for the
solutions of (9) will be given next.

Definition 2.1. A function u is said to belong to class Z if u ∈ C2([0, 1]) and [0, 1] can be partitioned into a
finite number of segments {[ci, ci+1] : i = 0, 1, . . .N − 1} for some positive integer N and ci’s: 0 = c0 < c1 <
· · · < cN−1 < cN = 1 such that

1. u is monotone (ux ≥ 0 or ux ≤ 0) in each of the segment (ci, ci+1) and the sign of ux alternates between
adjacent segments, i.e. ux changes sign across the ci’s;

2. the zeros of ux are isolated. In particular, ux is not identically zero in any interval.

Remark. A priori, there can be two kinds of zeros for ux. One is the sign-changing zero ci which indicates
the location of the interface. The other is the interior zero which lies in between any two adjacent ci’s. The
sign of ux does not change across these zeros. We are mainly concerned with the sign-changing zeros while the
interior zeros can be shown not to occur for local minimizers or any stationary point of E with low energy.
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In the following, the notation [f ](x) refers to f(x+) − f(x−).

Definition 2.2. A function u ∈ Z is called a solution of (9) if the following hold for all i:

ε2uxxxx = uxx − u, x ∈ (ci, ci+1); (11)
ux(ci) = 0 and ux ≥ 0 (or ux ≤ 0) for all x ∈ (ci, ci+1); (12)

[ε2uxxx](ci)
(
=
[
1
2W ′(ux)

]
(ci)
)

= −2sgn∗(uxx(ci)). (13)

ux(0) = ux(1) = 0, ε2uxxx(0) = −sgn∗(uxx(0)), ε2uxxx(1) = sgn∗(uxx(1)). (14)

In (13), the symbol 2sgn∗(uxx(ci)) refers to sgn(ux(c+
i )) − sgn(ux(c−i )). In (14), sgn∗(uxx(0)) and sgn∗(uxx(1))

refer to sgn(ux(0+)) and −sgn(ux(1−)) respectively.

Remark. Since u satisfies (11) in (ci, ci+1), it is analytic. In addition, as ux is assumed not to be identically
zero, the zeros of ux inside each segment are automatically isolated and also do not cluster at the ci’s. Hence
the quantities sgn(ux(c±i ))’s are well defined.

In fact, the following proposition states that we can replace the sgn∗ by the usual sgn.

Proposition 2.3. If u ∈ Z and satisfies (13) and (14), then uxx(ci) �= 0 for i = 0, 1, . . .N . Hence
sgn∗(uxx(ci)) = sgn(uxx(ci)).

Proof. The proof follows easily by contradiction. Suppose uxx(ci) = 0 and ux(c+
i ) > 0 and ux(c−i ) < 0. Then

we have uxxx(c+
i ) ≥ 0 and uxxx(c−i ) ≤ 0 which contradicts (13). The other cases follow similarly. �

The following proposition motivates our definitions of solutions and stability.

Proposition 2.4. Let u ∈ Z and ϕ ∈ V∞ = C∞([0, 1])
⋂ {ϕx(0) = ϕx(1) = 0}. Then the following statements

hold.
1. The first variation of E(u) with respect to ϕ, defined as 1

2
d
dtE(u + tϕ)

∣∣
t=0

equals:

N−1∑
i=1

{
[ε2uxxx](ci) + 2sgn∗(uxx(ci))

}
ϕ(ci) +

{
ε2uxxx(0) + sgn∗(uxx(0))

}
ϕ(0)

− {ε2uxxx(1) − sgn∗(uxx(1))
}

ϕ(1) +
N−1∑
i=0

∫ ci+1(t)

ci(t)

(ε2uxxxx − uxx + u)ϕdx. (15)

In particular, u ∈ Z is a solution (in the sense of Def. 2.2) if and only if d
dtE(u + tϕ)

∣∣
t=0

= 0 for all
ϕ ∈ V∞.

2. Suppose uxx(ci) �= 0 (which holds when u is a solution). Then there are C1 functions ci(t) such that
ci(0) = ci, and for small t, ux(ci(t)) + tϕx(ci(t)) = 0. Furthermore,

ċi(0) = − ϕx(ci)
uxx(ci)

· (16)

(In essence, the ci(t)’s are the sign-changing zeros of ux + tϕx.)
3. Suppose uxx(ci) �= 0 (which holds when u is a solution) and ux �= 0 for x ∈ (ci, ci+1), i.e. ux has no

interior zeros, then the second variation of E(u) with respect to ϕ, defined as 1
2

d2

dt2 E(u + tϕ)
∣∣∣
t=0

equals:

∫ 1

0

ε2ϕ2
xx + ϕ2

x + ϕ2 dx − 2
N−1∑
i=0

ϕ2
x(ci)

|uxx(ci)| · (17)
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Remark. In general, if ux has interior zeros, ∂2E(u, ϕ) �= 1
2

d2

dt2 E(u + tϕ)
∣∣∣
t=0

. But by Theorem A.2(3) and

estimate (32) in Proposition 2.7 (presented later), this will not be an issue in our work. Again, if u is a solution,
the fact that uxx(ci) �= 0 follows from Proposition 2.3.

Proof of (15). To prove (15), we compute

1
2

d
dt

E(u + tϕ)
∣∣∣∣
t=0

=
1
2

d
dt

∫ 1

0

ε2(uxx + tϕxx)2 + (|ux + tϕx| − 1)2 + (u + tϕ)2 dx

∣∣∣∣
t=0

=
∫ 1

0

ε2uxxϕxx + uxϕx + uϕdx − lim
t→0

∫ 1

0

|ux + tϕx| − |ux|
t

dx.

The last term of the above equals

lim
t→0

∫
{ux �=0}

|ux + tϕx| − |ux|
t

dx + lim
t→0

∫
{ux=0}

|tϕx|
t

dx. (18)

As ux is assumed to have isolated zeros, we can ignore the second integral of (18). To simplify the first integral,
note that ∣∣∣∣ |a + tb| − |a|

t

∣∣∣∣ ≤ |b| for all a, b, t and lim
t→0

|a + tb| − |a|
t

= sgn(a)b if a �= 0.

By the Lebesgue Dominated Convergence Theorem, we have

lim
t→0

∫
{ux �=0}

|ux + tϕx| − |ux|
t

dx =
∫ 1

0

sgn(ux)ϕx dx. (19)

The above steps thus lead to

1
2

d
dt

E(u + tϕ)
∣∣∣∣
t=0

=
∫ 1

0

ε2uxxϕxx + (|ux| − 1)sgn(ux)ϕx + uϕdx. (20)

Performing integration by parts twice on each segment (ci, ci+1) and using the facts that [u+ tϕ] = [ux + tϕx] =
[uxx + tϕxx] = 0 at x = ci, (15) follows.

It is then easy to infer the equivalence of u being a solution in the sense of Definition 2.2 and the vanishing
of its first variation for all ϕ ∈ V∞.

Proof of (16). It follows from elementary computations. Since ux and ϕx are both C1 functions and uxx(ci) �= 0,
we can use the implicit function to show the existence of C1 functions ci(t) (for small enough t) satisfying
ux(ci(t)) + tϕx(ci(t)) = 0. Furthermore,

uxx(ci(t))ċi(t) + tϕxx(ci(t))ċi(t) + ϕx(ci(t)) = 0

which leads to (16).

Proof of (17). We start from the first variation, 1
2

d
dtE(u + tϕ) which equals

1
2

d
dt

N−1∑
i=0

∫ ci+1(t)

ci(t)

ε2(uxx + tϕxx)2 + (ux + tϕx − sgn(ux + tϕx))2 + (u + tϕ)2 dx

=
N−1∑
i=0

∫ ci+1(t)

ci(t)

ε2(uxx + tϕxx)ϕxx + (ux + tϕx − sgn(ux + tϕx))ϕx + (u + tϕ)ϕdx. (21)
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The condition of no interior zeros for ux is to ensure that for t small enough, there is no new zeros for ux + tϕx

other than the sign-changing ones, ci(t)’s. Now (17) follows by differentiating (21):

1
2

d2

dt2
E(u + tϕ) =

N−1∑
i=0

2sgn∗(uxx(ci(t)))ϕx(ci(t))ċi(t) +
∫ ci+1(t)

ci(t)

ε2ϕ2
xx + ϕ2

x + ϕ2 dx

and then utilizing (16). �
With the above definition of solutions, we have the next two useful formula:

1. the integrated version of (11): for x ∈ (ci, ci+1),

ε2uxxx(x) − ε2uxxx(c+
i ) = ux(x) −

∫ x

ci

u(y) dy; (22)

2. multiplying the previous equation by uxx and integrating from c+
i to x gives:

ε2u2
xx(x)−(ux(x)−sgn(ux))2 = ε2u2

xx(ci)−1+2(ε2uxxx(c+
i )+sgn(ux))ux−2

(∫ x

ci

u(y) dy

)
ux(x)+u2(x)−u2(ci).

(23)
We are now ready to introduce the notion of stability and instability used in the statements of our main
theorems. For all u ∈ Z, such that uxx(ci) �= 0, we make the following definitions:

V = H2(0, 1) ∩ {ϕ : ϕx(0) = ϕx(1) = 0} , (24)

D(u, ϕ) =
∫ 1

0

ε2ϕ2
xx + ϕ2

x dx − 2
N−1∑
i=0

ϕ2
x(ci)

|uxx(ci)| for u ∈ Z and ϕ ∈ V (25)

and ∂2E(u, ϕ) = D(u, ϕ) +
∫ 1

0

ϕ2 dx. (26)

Definition 2.5. A function u ∈ V is called a stationary point of E if for all ϕ ∈ V ,

d
dt

E(u + tϕ)
∣∣∣∣
t=0

exists and equals to 0.

Definition 2.6. A solution u ∈ Z of (9) is called (weakly) stable if

for all ϕ �= 0,∈ V , ∂2E(u, ϕ) (≥) > 0.

It is called unstable if
there exists a ϕ ∈ V such that ∂2E(u, ϕ) < 0.

Remark. This paper will only consider the critical points of E in the function space Z and their stability
properties. The reason why this is sufficient will be explained by the regularity results in Theorem A.2 which
also gives the relation between the above definition of stability and the notion of H2-local minimizers.

Next, we prove some preliminary estimates for any stationary point of the functional (1) having small enough
energy. The results are crude but important to prepare for our proof later. They are similar to the results of
[12], Section 2, and the proof will hence be omitted (or see [18]).

Proposition 2.7. Let u ∈ Z be a solution of (9) and E be the energy of u:

E = E(u) =
∫ 1

0

ε2u2
xx + W (ux) + u2 dx.
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Then there exist constants E∗ < 1, ε∗, C1, C2 > 0 such that for all ε < ε∗ and u with E < E∗, the following
statements hold for all i = 0, 1, . . .N − 1 and x ∈ [0, 1]:

∣∣∣∫ b

a
u(y) dy

∣∣∣ ≤ C1E
1
2 ; (27)∣∣|ε2uxxx(c±i )| − 1

∣∣ ≤ C1E
1
2 ; (28)

|ux(x)| ≤ 1 + C1E
1
2 ; (29)

|u(x)| ≤ C1E
1
3 ; (30)∣∣ε2u2

xx(ci) − 1
∣∣ ≤ C1E

1
2 ; (31)

||ux(x̄)| − 1| ≤ C1E
1
4 at all x̄ such that uxx(x̄) = 0; (32)

C2ε|ln E| ≤ (ci+1 − ci) ≤ C1E
1
3 . (33)

In particular, if E is small enough, (32) states that within any segment (ci, ci+1), ux does not have any interior
zero and also there must be a point x̄ such that |ux(x̄)| > 1

2 . Furthermore, (33) states that the length of any
segment cannot be too long but is much longer than ε.

As an application of the above estimates, we have the following lower bound for the energy inside any
segment (ci, ci+1):

Lemma 2.8. Under the same hypothesis as Proposition 2.7, then for all ε < ε∗ and u such that E ≤ E∗, it
holds that ∫ ci+1

ci

ε2u2
xx + W (ux) dx ≥ 3

4
ε for all i.

Proof.

∫ ci+1

ci

ε2u2
xx + W (ux) dx ≥ ε

∫ ci+1

ci

εu2
xx +

1
ε
W (ux) dx ≥ 2ε

∫ 1
2

0

√
W (ux)|uxx| dx =

3
4
ε

since from (32), there must be a point x̄ ∈ (ci, ci+1) such that |ux(x̄)| ≥ 1
2 . �

3. Propagation map for Euler-Lagrange equation

Here we introduce the propagation map which relates the boundary values at the end points of a segment
over which the solution u is monotone. Precisely, we consider the following boundary value problem:

ε2uxxxx − uxx + u = 0 such that ux(0) = ux(l) = 0 and ux �= 0 for 0 ≤ x ≤ l. (34)

  (R’,P’,Q’)(R,P,Q)
0

u  (x)

l x

x

Figure 3. The boundary value
problem for the propagation map.

For the case ux > 0, the initial and final values are
denoted by:

u(0) = R, εuxx(0) = P, ε2uxxx(0) = −Q

u(l) = R′, εuxx(l) = −P ′, ε2uxxx(l) = −Q′.

(See Fig. 3 on the left.)
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The existence of a unique solution to the above problem is proved in Proposition 3.3. In the actual application
of the result, the segment (0, l) will be one of the (ci, ci+1)’s. As we are interested in the case of ε → 0 and
E(u) � 1, by Proposition 2.7, we only need to consider the regime of l, R, R′ = o(1) and P, P ′, Q, Q′ = 1+ o(1).

Our goal is to compute the following propagation map as a function of l and ε:

(R, P, Q) −→l,ε (R′, P ′, Q′).

This requires solving (34). Its characteristic polynomial is ε2r4 − r2 + 1 = 0 which has four roots ±Λ and ±λ:

Λ =

√
1 +

√
1 − 4ε2

2ε2
=

1 − 1
2ε2 + O(ε4)

ε
and λ =

√
1 −√

1 − 4ε2

2ε2
= 1 + O(ε2).

The solution u of (34) is given by:

u = AeΛx + Be−Λx + Ceλx + De−λx (35)

where A, B, C, D satisfy: ⎧⎪⎪⎨
⎪⎪⎩

A + B + C + D = R
Λ(A − B) + λ(C − D) = 0

Λ2(A + B) + λ2(C + D) = P
ε

Λ3(A − B) + λ3(C − D) = −Q
ε2 ·

(36)

The exact solutions and asymptotic approximations for these constants are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
εP − Λ−1Q − ε2λ2R

2
√

1 − 4ε2
=

ε(P − Q − εR)
2

+ O(ε3) = o(ε)

B =
εP + Λ−1Q − ε2λ2R

2
√

1 − 4ε2
=

ε(P + Q − εR)
2

+ O(ε3) = ε + o(ε)

C =
ε2
(
Λ2R − P

ε + Q
λε2

)
2
√

1 − 4ε2
=

−εP + Q + R

2
+ O(ε2) =

1
2

+ o(1)

D =
ε2
(
Λ2R − P

ε − Q
λε2

)
2
√

1 − 4ε2
=

−εP − Q + R

2
+ O(ε2) = −1

2
+ o(1).

(37)

Now, if ux(l) = 0, we have:

Λ
(
AeΛl − Be−Λl

)
+ λ(Ceλl − De−λl) = 0 or AeΛl = Be−Λl − λΛ−1(Ceλl − De−λl).

Then the solution form (35) for u becomes:

u(x) =
(
Be−Λl − λΛ−1

(
Ceλl − De−λl

))
e−ΛleΛx + Be−Λx + Ceλx + De−λx (38)

which leads to the following expressions:

⎧⎨
⎩

R′ = u(l) = 2Be−Λl + (Ceλl + De−λl) − ε(Ceλl − De−λl) + O(ε2)
P ′ = −εuxx(l) = − 2Be−Λl

ε + (Ceλl − De−λl) − ε(Ceλl + De−λl) + O(ε2)
Q′ = −ε2uxxx(l) = (Ceλl − De−λl) − ε2(Ceλl − De−λl) + O(ε2).

(39)
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Similar results can also be derived for the case ux < 0. Then we would write

P = −εuxx(0), Q = ε2uxxx(0) and P ′ = εuxx(l), Q′ = ε2uxxx(0)

so that P, P ′, Q, Q′ are all positive numbers.
The following classification of segments is crucial to our approach.

Definition 3.1. A segment (ci, ci+1) is called long if (ci+1 − ci) ≥ 10ε|ln ε|. It is called short otherwise.

By means of (37), we now expand the formulas (39) so as to relate (R′, P ′, Q′) to (R, P, Q). The results are
grouped into four categories.

Proposition 3.2. Let Q = 1 + α and ν2 = e−
l
ε . For any c1 > 0, there exist ε∗ and l∗ > 0 such that the

following expressions hold for all ε < ε∗:

Long positive segment. If ux > 0 and 10ε|ln ε| ≤ l = L ≤ l∗, then

P = Q + εR + O(ε2) (40)
P ′ = Q′ − εR′ + O(ε2) (41)

R′ = R + L − 2ε + αL − 2εα +
L3

6
+

RL2

2
− εRL +

αL3

6
+ o|L3| + O(ε2) (42)

P ′ = Q +
(

R +
L

2
− ε

)
L +

αL2

2
− εαL − εR′ + o|L3| + O(ε2) (43)

Q′ = Q +
(

R +
L

2
− ε

)
L +

αL2

2
− εαL + o|L3| + O(ε2). (44)

Long negative segment. If ux < 0 and 10ε|ln ε| ≤ l = L ≤ l∗, then

P = Q − εR + O(ε2), (45)
P ′ = Q′ + εR′ + O(ε2) (46)

R′ = R − L + 2ε − αL + 2εα − L3

6
+

RL2

2
− εRL − αL3

6
+ o|L3| + O(ε2) (47)

P ′ = Q −
(

R − L

2
+ ε

)
L +

αL2

2
− εαL + εR′ + o|L3| + O(ε2) (48)

Q′ = Q −
(

R − L

2
+ ε

)
L +

αL2

2
− εαL + o|L3| + O(ε2). (49)

Short positive segment. If ux > 0 and l ≤ 10ε|ln ε|, then

P = Q − 2Qν2 + εR + O(ε2) + o(ν2) (50)
P ′ = Q′ − 2Qν2 − εR′ + O(ε2) + o(ν2) (51)

R′ = R + l − 2ε + αl − 2εα +
Rl2

2
− εRl + 2εν2 + o(εν2) + O(ε2) + o(ν2) (52)

P ′ = Q − 2Qν2 +
(

R +
l

2
− ε

)
l +

αl2

2
− εαl − εR′ + O(ε2) + o(ν2) (53)

Q′ = Q +
(

R +
l

2
− ε

)
l +

αl2

2
− εαl + O(ε2) + o(ν2). (54)
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Short negative segment. If ux < 0 and l ≤ 10ε|ln ε|, then

P = Q − 2Qν2 − εR + O(ε2) + o(ν2) (55)
P ′ = Q′ − 2Qν2 + εR′ + O(ε2) + o(ν2) (56)

R′ = R − l + 2ε − αl + 2εα +
Rl2

2
− εRl − 2εν2 + o(εν2) + O(ε2) + o(ν2) (57)

P ′ = Q − 2Qν2 −
(

R − l

2
+ ε

)
l +

αl2

2
− εαl + εR′ + O(ε2) + o(ν2) (58)

Q′ = Q −
(

R − l

2
+ ε

)
l +

αl2

2
− εαl + O(ε2) + o(ν2). (59)

We make the following remarks about the above expansions:

1. if l ≥ 10ε|ln ε|, then e−
l
ε � O(ε2);

2. for all δ, if E(u) is small enough, then ν2 = e−
l
ε < δ (see (33));

3. e−Λl = ν2 + o(ν2);
4. the expressions (41), (46), (51), and (56) come directly from (39) and are consistent with the formulas

for R′, P ′, and Q′ (such as (42), (43), (44) and so forth);
5. not all the terms are relevant in the actual analysis. In fact, we just need to keep the terms of order up

to L2, l2, and ν2.

As a first application of the above solution formula, we have the following existence and uniqueness result
for the solution of the initial-final value problem (34). Hence the functions P (x, l)’s are well defined in (2). The
proof is elementary [18].

Proposition 3.3. There exist l∗, α, β > 0 such that for all 0 < l ≤ l∗ and Q, Q′ satisfying |Q − Q′| ≤ αl and
|Q + 1| ≤ β the following boundary value problem

ε2uxxxx − uxx + u = 0 for x ∈ (0, l) (60)
ux(0) = 0; ux(l) = 0;

ε2uxxx(l) = Q, ε2uxxx(0) = Q′

has a unique solution u. In addition, ux(x) > 0 for x ∈ (0, l).

Before leaving this section, we introduce some notations to be used in all of the following analysis and figures.
The function u always refers to a function from Z which solves (9) in the sense of Definition 2.2. The triples
(Ri,±Pi,±Qi) and (R′

i,±P ′
i ,±Q′

i) denote the values of (u, εuxx, ε2uxxx) at c+
i and c−i+1. The ± are chosen

according to the sign of ux in (ci, ci+1). With this notation, we then have

R′
i = Ri+1, P ′

i = Pi+1 and Q′
i + Qi+1 = 2.

4. Proof of Theorem 1.1

In this section, we will prove the stability of periodic structures with long periods. The approach is similar
to [12], page 199, and hence we will just outline the steps and state the key estimates.

By approximation, we can assume that ϕ is C∞. In this case, we have the expression (17) for the sec-
ond variation of E with respect to ϕ. In addition, the zeros {ci(t)}N−1

i=1 of ux(x) + tϕx(x) are C1 functions
satisfying (16).

We first present the following result which essentially establishes the convexity property for the minimum
energy value in a unit cell.
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Proposition 4.1. Let P (x, l) be defined as in (2) and

E(l) =
∫ l

2

− l
2

ε2P 2
xx + (Px − 1)2 + P 2 dx. (61)

Then

1.
∫ l

2

− l
2

ε2v2
xx + (vx − 1)2 + v2 dx ≥ E(l) where vx > 0 for x ∈ (− l

2 , l
2 ) and vx(± l

2 ) = 0.

2. There exist constants CL < 10, l∗ and ε∗ > 0 such that for any 0 < ε < ε∗, if CLε|ln ε| < l < l∗, then
for some constant C,

∣∣∣∣E(l) −
(

2ε +
l3

12

)∣∣∣∣ ≤ Cl3
(
l2 +

ε

l

)
(62)∣∣∣∣E′(l) − l2

4

∣∣∣∣ ≤ Cl2
(
l2 +

ε

l

)
(63)∣∣∣∣E′′(l) − l

2

∣∣∣∣ ≤ Cl
(
l2 +

ε

l

)
· (64)

This proposition is basically the same as [12], Theorems 4.2(i), 5.1. In the current work, the proof can be carried
out in a more elementary way due to the presence of explicit solution formulas [18].

Now Theorem 1.1 follows easily as shown below. For small enough t,

E(u + tϕ) ≥
N−1∑
i=0

E(li(t)) where li(t) = ci+1(t) − ci(t).

As E(u) =
∑

i E(li(0)), the above leads to

d
dt

E(u + tϕ)
∣∣∣∣
t=0

=
∑

i

d
dt

E(li(t))

∣∣∣∣∣
t=0

and
d2

dt2
E(u + tϕ)

∣∣∣∣
t=0

≥
∑

i

d2

dt2
E(li(t))

∣∣∣∣∣
t=0

.

Since
d
dt

E(li(t)) = E′(li(t))l̇i(t) and
d2

dt2
E(li(t)) = E′′(li(t))(l̇i(t))2 + E′(li(t))l̈i(t)

we have

d2

dt2
E(u + tϕ)

∣∣∣∣
t=0

≥
∑

i

E′′(li)(l̇i(0))2 + E′(li)l̈i(0)

= E′′(l)
∑

i

(l̇i(0))2 + E′(l)
∑

i

(l̈i(0)) (since li(0) = l)

= E′′(l)
∑

i

(l̇i(0))2 (since
∑

i li = 1)

≥ Ml
∑

i

(l̇i(0))2 (by (64))

where the constant M can be chosen to be close to 1
2 (independent of ε and l). The desired result follows by

using the facts that l̇i(0) = ċi+1(0) − ċi(0) and also (16).
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5. Proof of Theorem 1.2

The essence of the proof is to analyze the patterns consisting of both long and short segments and show
that they have negative second variations. This is achieved by careful consideration of the interactions and
matchings between long and short segments. We rely heavily on the formulas derived in Section 3.

To prepare for the proof, we first show that there must be at least one segment of length longer than 5L̄
where L̄ = 10ε|ln ε| is the length of a long segment (see Def. 3.1). For if otherwise, by Lemma 2.8, we would
have

E(u) ≥ (no. of segments) × (lower bound for the energy in each segment)

>
1

5L̄

3
4
ε =

3
200|ln ε|

contradicting the smallness assumption on the energy (4).
Now let (ci, ci+1) be any one of the segments with length ≥ 5L̄. Assume for the moment this segment is not

at the boundary. Consider the two adjacent segments (ci−1, ci) and (ci+1, ci+2). The following three cases can
happen:

1. If both of them are short, we call the collection of segments {(cj , cj+1) : j = i − 1, i, i + 1} SLS.
2. If only one of them is short, we call the same collection of segments SLL or LLS.
3. If both of them are long, without loss of generality, we consider the segments to the right of (ci+1, ci+2).

We keep searching to the right until we find a short segment (ck, ck+1). By Proposition 5.2 (proved
later), the segments {(cj , cj+1) : j = i, . . . k − 2} have roughly the same length. Now if ck − ck−1 ≥
1
2 (ck−1 − ck−2) ≥ 2L̄, then we consider the collection of segments {(cj , cj+1) : j = k − 2, k − 1, k} and
call it LLS. If otherwise, we then consider the collection {(cj , cj+1) : j = k − 3, k − 2, k − 1} and still
regard it as LLS. (Note that in this case, the segment (ck−1, ck) is not yet known to be short according
to Def. 3.1.)

If the initial long segment (ci, ci+1) is at the boundary, we can reflect the function u across the boundary point
(which is admissible due to the boundary conditions). Now the segment will have at least one long segments as
a neighbor. Hence only the cases 2 or 3 above will arise.

In view of the above discussion, if u has both long and short segments, then it must contain a pattern of
SLL, LLS or SLS. Hence Theorem 1.2 will be proved once we establish the following claims:
Claim I. If u has a chain of adjacent long segments, then a sub-chain of them must have roughly the same
length.
Claim II. If u contains any of the patterns LLS, SLL or SLS, then it is unstable.
Claim III. If u is a (nearly periodic) pattern with low enough energy with only long segments, then it is
actually periodic.

We now proceed to prove the claims. Their precise statements will be given along the proof.

5.1. Proof of Claim I

Lemma 5.1. If both (ci−1, ci) and (ci, ci+1) are long segments, then

Q′
i−1 = 1 + O(ε2) and Qi = 1 + O(ε2). (65)

Proof. Consider the point ci. By (41) and (45), we have

P ′
i−1 = Q′

i−1 − εR′
i−1 + O(ε2) and Pi = Qi − εRi + O(ε2).

Since P ′
i−1 = Pi and R′

i−1 = Ri, it follows that Q′
i−1 − Qi = O(ε2). This, together with the continuity

condition (13) – Q′
i−1 + Qi = 2 – gives the desired statement. �
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Proposition 5.2. If {(ci, ci+1), i = m, m + 1, . . . , n} are all long segments, then there exists an Lε > 0 such
that ∣∣∣∣|Ri| −

(
Lε

2
− ε

)∣∣∣∣ = o(ε) for i = m + 1, . . . n; (66)

and Li = ci+1 − ci = Lε + o(L2
ε ) + o(ε) for i = m + 1, . . . n − 1. (67)

Proof. First, by the previous lemma, we have Qi = 1 + O(ε2) for i = m + 1, . . . , n. Then (44) and (49) lead to

Ri = ±Li

2
∓ ε + o(L2

i ) + o(ε), i = m + 1, . . . , n. (68)

Hence we must have |Ri| � O(ε) for the same range of the i’s.
Next, by setting x = ci+1 into (23), we obtain

ε2u2
xx(ci+1) − ε2u2

xx(ci) = u2(ci+1) − u2(ci) or P 2
i+1 − P 2

i = R2
i+1 − R2

i .

Upon summing over the i’s, it holds that

P 2
j − P 2

i = R2
j − R2

i .

By restricting m + 1 ≤ i, j ≤ n, we can again invoke Lemma 5.1 which together with (40), (41), (45) and (46)
gives

(1 ± εRj)2 − (1 ± εRi)2 = R2
j − R2

i + O(ε2).

If RiRj > 0, then

(1 + εRj)2 − (1 + εRi)2 = R2
j − R2

i + O(ε2)

2ε(Rj − Ri) = (Rj − Ri)(Rj + Ri) + O(ε2)

Rj − Ri =
O(ε2)

Ri + Rj + 2ε
= o(ε) (since |Ri|, |Rj | � ε).

Similarly, if RiRj < 0, then

Rj + Ri =
O(ε2)

Ri − Rj + 2ε
= o(ε).

To conclude (66), we can just take Lε to be any of the 2(|Ri|+ ε)’s. Statement (67) would also follow from (68)
which now says Li = Lε + o(L2

i ) + o(ε). �

The following corollary is interesting in its own right even though it is not used in the later parts of our proof.
It demonstrates that just the consideration of the first variation can already lead to some strong conclusion.

Corollary 5.3 (nearly periodic structures). If u ∈ Z has only long segments, then it is nearly periodic in the
sense that there exists Rε and Lε such that (66) and (67) hold for all i = 0, 1, . . .N − 1.

Proof. We can extend the conclusion to the boundary segments because it automatically holds that ε2uxxx =
±1 + O(ε2) at the boundary points. This is what is actually needed in the proof. �
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5.2. Proof of Claim II

Without loss of generality, it suffices to consider the following categories of patterns for ux (Figs. 4 and 5):

LLS (Long-Long-Short).

|EA| = L1 ≥ 10ε|ln ε|; |AB| = L ≥ 10ε|ln ε|;
|BC| = l ≤ 1

2 |AB|.

SLS (Short-Long-Short).

|EA| = m; |AB| = L ≥ 10ε|ln ε|;
|BC| = l; |EA|, |BC| ≤ |AB|

2

lL

u

B

x

E 1 A L C

(R  , P  , Q  )1 1 1

(R  , P  , Q  )2 2 2
(R  , P  , Q  )

000

Figure 4. An LLS pattern.

m L lE A B C

(R  , P  , Q  )

(R  , P  , Q  )

xu

0 0 0

1 1 1 3 3 3
(R  , P  , Q  )

(R  , P  , Q  )
222

Figure 5. An SLS pattern.

We will produce test function ϕ’s such that ∂2E(u, ϕ) < 0 for the above patterns. They are constructed by
moving the interfaces and are given precisely in the next section.

5.2.1. Construction of test functions

Consider the following second order (Allen-Cahn) equation:

ε2Uxxx =
W ′(Ux)

2
or equivalently, ε2Uxxx = Ux − 1

such that Ux(±l) = 0 and Ux > 0 for |x| ≤ l.

The solution, considered as a function of x and l, is given by:

Ux(x, l) = 1 − e
x
ε + e−

x
ε

e
l
ε + e−

l
ε

·

Let ν2 = e−
2l
ε – note that 2l is the length of the segment. Associated with the above function are the following

quantities:

Ux(−l, l) = 0, Ux(l, l) = 0

Uxx(−l, l) =
1
ε

(
1 − ν2

1 + ν2

)
, Uxx(l, l) = −1

ε

(
1 − ν2

1 + ν2

)

Uxl(−l, l) =
1
ε

(
1 − ν2

1 + ν2

)
, Uxl(l, l) =

1
ε

(
1 − ν2

1 + ν2

)

Uxxx(−l, l) = − 1
ε2

, Uxxx(l, l) = − 1
ε2

Uxxl(−l, l) = − 1
ε2

(
1 − ν2

1 + ν2

)2

, Uxxl(l, l) =
1
ε2

(
1 − ν2

1 + ν2

)2

which will be used to compute the second variations.
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Making use of the above Ux(x, l), we introduce two types of test functions which mimic the movements of
the interfaces (Figs. 6 and 7):

Type one – Fx(x, l) –
movement of one interface

l x −l l x

δ

U Fx x

−l

Figure 6. Type one variation.

Fx(x, l) = lim
δ→0

Ux(x − δ
2 , l + δ

2 ) − Ux(x, l)
δ

= −Uxx(x, l)
2

+
Uxl(x, l)

2
·

Then F satisfies the following estimates:

Fx(−l, l) = 0, Fx(l, l) =
1
ε

(
1 − ν2

1 + ν2

)
∫ l

−l

ε2F 2
xx + F 2

x dx =
1
ε
(1 − 4ν2 + o(ν2)) (69)

F (l, l) − F (−l, l) = 1 − 4ν2 + o(ν2). (70)

Type two – Gx(x, l) –
translation of two
adjacent interfaces

−l l x

δδ
−1 l x

U Gx x

Figure 7. Type two variation.

Gx(x, l) = lim
δ→0

Ux(x ± δ, l)− Ux(x, l)
δ

= ±Uxx(x, l).

Similarly, G satisfies:

Gx(−l, l) = ±1
ε

(
1 − ν2

1 + ν2

)
, Gx(l, l) = ∓1

ε

(
1 − ν2

1 + ν2

)
∫ l

−l

ε2G2
xx + G2

x dx =
2
ε
(1 − 2ν2 + o(ν2)) (71)

G(l, l) − G(−l, l) = 0. (72)

A bit of motivation for the following analysis is in place. From (69) and (71), the negativity of the second
variations comes from −ν2. So our goal is to characterize ν2 as accurately as possible. It turns out that if a
short segment is adjacent to a long segment, then its length cannot be arbitrary. This is due to some intricate
interactions between the long and short segments. We will use the results of Proposition 3.2 to provide some
lower bounds for the values of ν2. It is unfortunate that the present approach requires the consideration of a
large number of cases.

We now proceed to analyze the patterns LLS and SLS.
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5.2.2. Instability of LLS

We refer to Figure 4. Consider the point A. By (40) and (65), we have

P0 = 1 + εR0 + O(ε2) and Q0 = 1 + O(ε2). (73)

Using (43) and (44) for the propagation map (R0, P0, Q0) −→L (R′
0, P

′
0, Q

′
0), at B, we have

P ′
0 = 1 +

(
R0 +

L

2
− ε

)
L − εR1 + O(L3) + O(ε2) (74)

Q′
0 = 1 +

(
R0 +

L

2
− ε

)
L + O(L3) + O(ε2). (75)

Next consider the triples (R′
0, P

′
0, Q

′
0) and (R1, P1, Q1) associated with the point B. Let ν2 = e−

l
ε . By (41)

and (55), the following hold:

P ′
0 = Q′

0 − εR1 + O(ε2) (76)
P1 = Q1 − 2Q1ν

2 − εR1 + O(εν2) + O(ε2) (77)

which together with P ′
0 = P1 and Q′

0 + Q1 = 2 lead to

Q′
0 = 1 − ν2 + o(ν2) + O(ε2) (78)

Q1 = 1 + ν2 + o(ν2) + O(ε2). (79)

By substituting (79) into (77) and comparing (78) and (75), we have

P1 = 1 − ν2 − εR1 + o(ν2) + O(ε2) (80)

ν2 = −
(

R0 +
L

2
− ε

)
L + O(L3) + o(ν2) + O(ε2). (81)

We now consider the following three subcases..
Case of LLS1. Assume R0 ≤ − 2

3L. By (81), this assumption leads to

ν2 ≥
(

2
3
− 1

2

)
L2 + o(L2) ≥ L2

7
· (82)

Now vary the pattern by moving the interfaces at A and B as shown in Figure 8.

l

Variation

B CAE
L 1

R

R0

1

L

u(x)

A B Cl

Variation

LE

(R  , P  , Q  ) (R  , P  , Q  )0 0 0 1 1 1

L 1

xu

Figure 8. Variation of pattern LLS1.
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This corresponds to the test function:

Ψx =

⎧⎪⎨
⎪⎩

Fx

(
x − E+A

2 , A−E
2

)
x ∈ (E, A)

Gx

(
x − A+B

2 , B−A
2

)
x ∈ (A, B)

−
(

1+ν2

1−ν2

)
Fx

(−x + B+C
2 , C−B

2

)
x ∈ (B, C)

(83)

(see the remark at the end of this case.) Now the quantity D(u, Ψ) equals:

∫ C

E

(ε2Ψ2
xx + Ψ2

x) dx − 2
Ψ2

x(A)
|uxx(A)| − 2

Ψ2
x(B)

|uxx(B)| =
∫ A

E

(ε2F 2
xx + F 2

x ) dx +
∫ B

A

(ε2G2
xx + G2

x) dx

+
(

1 + ν2

1 − ν2

)2 ∫ C

B

(ε2F 2
xx + F 2

x ) dx − 2
1
ε

1
P0

− 2
1
ε

1
P1

=
1
ε

+
2
ε

+
(

1 + ν2

1 − ν2

)2 1
ε
(1 − 4ν2)

− 2
ε

1
1 + εR0 + O(ε2)

− 2
ε

1
1 − ν2 − εR1 + o(ν2) + O(ε2)

=
−2ν2 + 2εR0 − 2εR1 + o(ν2) + O(ε2)

ε
(84)

where in the above computation, we have used (73) and (80). By the lower bound (82) for ν2 and the fact that
|R1 − R0| = L + o(L), we have

D(u, Ψ) ≤ −L2

7ε
· (85)

Now Ψ(x) ≈ 1 for x ∈ (A, B) and ≈ 0 for x ∈ (E, A) ∪ (B, C). So
∫ C

E
Ψ2dx = L + o(L). Hence we have

∂2E(u, Ψ) = D(u, Ψ) +
∫ C

E

Ψ2 dx = −L2

7ε
+ L + o(L) < 0!

proving that the pattern LLS1 is unstable.

Remark about the test function Ψ (83).
1. The extra multiplicative factor for Fx in the segment of (B, C) is to make Ψx continuous with a common

value of 1
ε at A and B. In this way, the continuity of Ψ holds up to error terms consisting of e−

L
ε which

are transcendentally small compared with ν2 and hence can be ignored.
2. By (70), Ψ(B) − Ψ(C) = 1 − O(ν2) �= 1, so an extra piece of perturbation needs to be added to Ψx in

order to make Ψ(E) = 0 and Ψ(C) = 0. This can be done by choosing an appropriate function gx(x)
satisfying:

‖gx‖∞ ≤ O(ν2)
L

, ‖gxx‖∞ ≤ O(ν2)
L2

and spt(gx) ⊂ (A, B).

Note that ‖Ψx‖∞ is transcendentally small near the center region of the long segment (A, B), the error
introduced by gx can be bounded by:

∫ B

A

ε2g2
xx + g2

x dx ≤ ε2 × ν4

L4
× L +

ν4

L2
× L =

1
ε
o(ν2).

Compared with the expression (84) for D(u, Ψ), the above is within the range of acceptable error for
our analysis. Hence we can in effect ignore gx.
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We will not repeat the above remarks for the remaining analysis. �
Case of LLS2. Assume R0 ≥ − 2

3L and Q2 = 1 + O(ε2). (The reason for introducing this and the following
cases is that we might not have (82) – this can actually happen (see Sect. B). Thus we cannot directly deduce
the same negativity for D(u, Ψ) as in (85). To tackle this, we further consider the pattern to the right of LLS.)

First, just the assumption on R0 and the fact that l ≤ L
2 imply:(

R1 − l

2
+ ε

)
l =

(
R0 + L + o(L) − l

2
+ ε

)
l ≥

(
L

3
− L

4
+ o(L)

)
l ≥ Ll

13
· (86)

Consider the point C. In view of (59) and (79), it holds that:

Q′
1 = 1 + ν2 −

(
R1 − l

2
+ ε

)
l + o(ν2) + O(ε2). (87)

Since Q′
1 = 2−Q2 which equals 1+O(ε2) by the assumption of this case, the above leads to the following lower

bound:

ν2 =
(

R1 − l

2
+ ε

)
l + o(ν2) + O(ε2) ≥ Ll

13
· (88)

Now using the same test function (83) and reasoning as in LLS1, we have:

D(u, Ψ) =
−2ν2 + 2εR0 − 2εR1 + o(ν2) + O(ε2)

ε
≤ −Ll

7ε
(note: l � ε).

Thus it holds that
∂2E(u, Ψ) ≤ −Ll

7ε
+ L + o(L) < 0

so that this case is also unstable.
Case of LLSS. Assume R0 ≥ − 2L

3 and there is a short segment (C, D) to the right of (B, C). The
configurations of u and ux are shown in Figure 9.

u(x)

L l k

A B  C   D
R

R

0

1

E

Variation
l kB C DA   L

(R  , P  , Q  )(R  , P  , Q  )1 1 1 2 2 2

ux
Variation

Figure 9. Variation of pattern LLSS.

Let |CD| = k and µ2 = e−
k
ε . Consider the point C again. Using the (58) and (79) associated with the

propagation map from B to C, we have

P ′
1 = Q1 − 2Q1ν

2 −
(

R1 − l

2
+ ε

)
l + εR2 + o(ν2) + O(ε2)

= 1 − ν2 −
(

R1 − l

2
+ ε

)
l + εR2 + o(ν2) + O(ε2). (89)

In addition, applying the map from C to D and by (50), we have:

P2 = Q2 − 2Q2µ
2 + εR2 + o(µ2). (90)
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Comparing (89) and (90) and using (87) and Q′
1 + Q2 = 2 give:

Q2 = 1 − ν2 +
(

R1 − l

2
+ ε

)
l + o(ν2) + O(ε2) (91)

µ2 =
(

R1 − l

2
+ ε

)
l + o(ν2) + o(µ2) + O(ε2) (92)

which lead to

P2 = P ′
1 = 1 − ν2 − µ2 + εR2 + o(ν2) + o(µ2) + O(ε2). (93)

Now vary the pattern by moving the interfaces at B and C as shown in Figure 9. The test function Ψ used is
thus:

Ψx =

⎧⎪⎪⎨
⎪⎪⎩

−Fx

(
x − A+B

2 , B−A
2

)
x ∈ (A, B)(

1+ν2

1−ν2

)
Gx

(
x − B+C

2 , C−B
2

)
x ∈ (B, C)(

1+µ2

1−µ2

)
Fx

(−x + C+D
2 , D−C

2

)
x ∈ (C, D).

(94)

In this case,

D(u, Ψ) =
∫ D

A

(ε2Ψ2
xx + Ψ2

x) dx − 2
Ψ2

x(B)
|uxx(B)| − 2

Ψ2
x(C)

|uxx(C)|

=
1
ε

+
(

1 + ν2

1 − ν2

)2 2
ε
(1 − 2ν2) +

(
1 + µ2

1 − µ2

)2 1
ε
(1 − 4µ2) − 2

ε

1
P1

− 2
ε

1
P2

=
1
ε

+
2
ε
(1 + 2ν2) +

(1 + o(µ2))
ε

− 2
ε

1
1 − ν2 − εR1

− 2
ε

1
1 − ν2 − µ2 + εR2

=
−2µ2 − 2εR1 + 2εR2 + o(µ2) + o(ν2)

ε

≤ − 3
2µ2 − 2εR1 + 2εR2 + o(ν2)

ε
·

In view of (86), (92) and the fact that |R2 − R1| = l + o(l), we have

µ2 ≥ Ll

13ε
+ o(ν2) and hence D(u, Ψ) ≤ −Ll + o(ν2)

14ε
· (95)

Now consider two situations. If o(ν2) ≤ Ll
2 , then D(u, Ψ) ≤ − Ll

28ε . For Ψ, it is approximately equal to 0 in
the segments (A, B) ∪ (C, D) and 1 in the segment (B, C). So

∫ D

A
Ψ2 dx = O(L + l + k). Again we have

∂2E(u, Ψ) = D(u, Ψ) +
∫ D

A

Ψ2 dx = − Ll

28ε
+ O(L + l + k) < 0!

If o(ν2) ≥ Ll
2 , then (88) holds and the same reasoning and test function (83) as in LLS1 can be used to conclude

that this case is also unstable.
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Case of LLSL. Assume R0 ≥ − 2L
3 and

there is a long segment (C, D) to the right
of (B, C). The configurations of u and ux

are illustrated in Figure 10.

L

(R  , P  , Q  ) (R  , P  , Q  ) (R  , P  , Q  )0 0 1 1 2 2

A ClB

ux
Variation

1 20

Figure 10. Variation of pattern LLSL.

In this case, at the point C, by (40), we have P2 = Q2 + εR2 + O(ε2). In view of (89), (91) and (86), the
following holds:

o(ν2) + O(ε2) =
(

R1 − l

2
+ ε

)
l + O(ε2) ≥ Ll

13
+ O(ε2)

so that ν2 ≥ o(ν2) ≥ Ll
13 . Using the same test function as in LLS1 also concludes that this pattern has a negative

second variation.
Thus all the examples of the category LLS are unstable.

5.2.3. Instability of SLS

We refer to Figure 5. Let µ2 = e−
m
ε and ν2 = e−

l
ε . First, the relations (55), (58) and (59) lead to

P ′
1 = Q′

1 − εR2 + O(ε2) and P2 = Q2 − 2Q2ν
2 − εR2 + o(ν2) + O(ε2). Their comparison gives

P2 = 1 − ν2 − εR2 + o(ν2) + O(ε2) (96)
Q2 = 1 + ν2 + o(ν2) + O(ε2). (97)

Similarly

P1 = 1 − µ2 + εR1 + o(µ2) + O(ε2). (98)

Using the map (R2, P2, Q2) −→l (R′
2, P

′
2, Q

′
2), we have:

P ′
2 = 1 − ν2 −

(
R2 − l

2
+ ε

)
l + εR3 + o(ν2) + O(ε2) (99)

Q′
2 = Q2 −

(
R2 − l

2
+ ε

)
l + O(ε2). (100)

Without loss of generality, we can assume R2 > L
3 . In addition, by the hypothesis of this case – l ≤ L

2 , we have
the following estimate: (

R2 − l

2
+ ε

)
l ≥ Ll

13
· (101)

Now we divide this category into the following two cases each of which will be shown to have negative second
variations.
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Case of SLSS. Assume that there is a short
segment (C, D) to the right of (B, C). Figure 11
shows the configuration of ux.

L l kA B C D

(R  , P  , Q  ) (R  , P  , Q  ) (R  , P  , Q  )1 1 2 2 3 3

E

xu
Variation

1 2 3

m

Figure 11. Variation of
pattern SLSS – the first
case.

Let k = |CD| ≤ 10ε|ln ε| and δ2 = e−
k
ε . Consider the point C. Using (50), we have:

P3 = Q3 − 2Q3δ
2 + εR3 + o(εδ2).

Since P ′
2 = P3 and Q3 + Q′

2 = 2, (99) gives:

δ2 =
(

R2 − l

2
+ ε

)
l + o(ν2) + o(δ2) + O(ε2) (102)

P3 = 1 − ν2 − δ2 + εR3 + o(ν2) + o(δ2) + O(ε2). (103)

Consider the following test function Ψ which mimics the movement of interfaces at B and C:

Ψx =

⎧⎨
⎩

−Fx

(
x − A+B

2 , B−A
2

)
x ∈ (A, B)(

1+ν2

1−ν2

)
Gx

(
x − B+C

2 , C−B
2

)
x ∈ (B, C)(

1+δ2

1−δ2

)
Fx

(−x + C+D
2 , D−C

2

)
x ∈ (C, D).

(104)

Then D(u, Ψ) equals:
∫ D

A

(ε2Ψ2
xx + Ψ2

x) dx − 2
Ψ2

x(B)
|uxx(B)| − 2

Ψ2
x(C)

|uxx(C)|

=
1
ε

+
(

1 + ν2

1 − ν2

)2 2(1 − 2ν2)
ε

+
(

1 + δ2

1 − δ2

)2 (1 − 4δ2)
ε

− 2
ε

1
P2

− 2
ε

1
P3

=
1
ε

+
2 + 4ν2

ε
+

1 + o(δ2)
ε

−2
ε

1
1 − ν2 − εR2 + o(ν2) + O(ε2)

− 2
ε

1
1 − ν2 − δ2 + εR3 + +o(ν2) + o(δ2) + O(ε2)

=
−2δ2 − 2ε(R2 − R3) + o(ν2) + o(δ2)

ε
·

Hence, by (101), (102) and the fact that |R2 − R3| = l + o(l), we have

D(u, Ψ) ≤ −Ll + o(ν2)
7ε

·

Again, we consider two cases. If o(ν2) ≤ Ll
2 , then

∂2E(u, Φ) = − Ll

14ε
+ l + o(l) < 0.
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If o(ν2) ≥ Ll
2 , then we move the interfaces at A

and B as shown in Figure 12:

m L l kA B CE

Variation
xu

(R  , P  , Q  )
(R  , P  , Q  )

(R  , P  , Q  )

11 1 1
2 2 2

3 3 3

Figure 12. Variation of
pattern SLSS – the sec-
ond case.

The corresponding test function is:

Ψx =

⎧⎪⎪⎨
⎪⎪⎩

(
1+µ2

1−µ2

)
Fx

(
x − E+A

2 , A−E
2

)
x ∈ (E, A)

Gx

(
x − A+B

2 , B−A
2

)
x ∈ (A, B)

−
(

1+ν2

1−ν2

)
Fx

(−x + B+C
2 , C−B

2

)
x ∈ (B, C).

(105)

Similarly we have:

D(u, Ψ) =
∫ C

E

(ε2Ψ2
x + Ψ2

x) dx − 2
Ψ2

x(A)
|uxx(A)| − 2

Ψ2
x(B)

|uxx(B)|

=
(

1 + µ2

1 − µ2

)2 1 − 4µ2

ε
+

2
ε

+
(

1 + ν2

1 − ν2

)2 1 − 4ν2

ε
− 2

ε

1
P1

− 2
ε

1
P2

=
−2µ2 − 2ν2 + 2εR1 − 2εR2 + o(µ2) + o(ν2)

ε
·

The assumption on o(ν2) now gives:

∂2E(u, Φ) = −Ll

ε
+ L + o(L) < 0!

Case of SLSL. Assume that there is a long segment (C, D) to the right of (B, C). In this case, we have
P3 = Q3 + εR3. Combining the fact Q′

2 + Q3 = 2 together with (99) and (100) gives

o(ν2) + O(ε2) =
(

R2 − l

2
+ ε

)
l ≥ Ll

13
(by (101)).

Hence ν2 ≥ o(ν2) ≥ (R2 − l
2 + ε

)
l ≥ Ll

13 . and we can then use the same Ψ as in (105) to deduce that the second
variation is negative.

Hence, we have also shown that all the cases of SLS are unstable. Claim II is thus proved.

5.3. Proof of Claim III

In this section, we assume that u is a solution of (9) with only long segments. We will prove that li = li+1 for
all i and hence u is periodic by Proposition 3.3. The approach taken here resembles the use of implicit function
theorem. We will exploit again the solution formula given by the propagation map defined in Section 3. We
use the same notation as in that section.
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Consider the boundary value problem as stated in Proposition 3.3. Given Q, Q′, using (35), a solution similar
to (36) is given as follows:

A =
Qe−Λl − Q′

ε2Λ(Λ2 − λ2)(eΛl − e−Λl)
,

C =
−Qe−λl + Q′

ε2λ(Λ2 − λ2)(eλl − e−λl)
,

B =
QeΛl − Q′

ε2Λ(Λ2 − λ2)(eΛl − e−Λl)
,

D =
−Qeλl + Q′

ε2λ(Λ2 − λ2)(eλl − e−λl)
·

Then we can express the solution as follows:

R (= u(0)) =
1

ε2(Λ2 − λ2)

{
Q(eΛl + e−Λl) − 2Q′

Λ(eΛl − e−Λl)
− Q(eλl − e−λl) − 2Q′

λ(eλl − e−λl)

}

R′ (= u(l)) =
1

ε2(Λ2 − λ2)

{
2Q − Q′(eΛl + e−Λl)

Λ(eΛl − e−Λl)
− 2Q − Q′(eλl + e−λl)

λ(eλl − e−λl)

}

P (= εuxx(0)) =
1

ε(Λ2 − λ2)

{
Λ
[
Q(eΛl + e−Λl) − 2Q′]

(eΛl − e−Λl)
− λ

[
Q(eλl − e−λl) − 2Q′]

(eλl − e−λl)

}

P ′ (= εuxx(l)) =
1

ε(Λ2 − λ2)

{
−Λ

[
2Q − Q′(eΛl + e−Λl)

]
(eΛl − e−Λl)

+
λ
[
2Q − Q′(eλl + e−λl)

]
(eλl − e−λl)

}
·

Similar expressions hold if ux < 0 for x ∈ (0, l) (by changing Q and Q′ to −Q and −Q′).
The above results are now applied to the solution u. Let R±

i = u(c±i ), P±
i = εuxx(c±i ), Q±

i = ε2uxxx(c±i )
and li = ci − ci−1. Since R+

i = R−
i and P+

i = P−
i , we have, for i = 1, 2, . . .N − 1:

− 2Q+
i−1 − Q−

i (eΛli + e−Λli)
Λ(eΛli − e−Λli)

+
2Q+

i−1 − Q−
i (eλli + e−λli)

λ(eλli − e−λli)

=
Q+

i (eΛli+1 + e−Λli+1) − 2Q−
i+1

Λ(eΛli+1 − e−Λli+1)
− Q+

i (eλli+1 + e−λli+1) − 2Q−
i+1

λ(eλli+1 − e−λli+1)
(106)

and − Λ
[
2Q+

i−1 − Q−
i (eΛli + e−Λli)

]
(eΛli − e−Λli)

+
λ
[
2Q+

i−1 − Q−
i (eλli + e−λli)

]
(eλli − e−λli)

=
Λ
[
Q+

i (eΛli+1 + e−Λli+1) − 2Q−
i+1

]
(eΛli+1 − e−Λli+1)

− λ
[
Q+

i (eλli+1 + e−λli+1) − 2Q−
i+1

]
(eλli+1 − e−λli+1)

· (107)

For convenience, we introduce the following notations:

θ(l) = (1 − e−2λl), η(l) =
e−Λl

1 − e−2Λl
, E(l) =

1 + e−2Λl

1 − e−2Λl
and σ =

λ

Λ
= ε + O(ε2).

As Q+
i +Q−

i = 2, we can write Q±
i = 1±δi for some number δi. Then (106) and (107) become: (i = 1, 2, . . .N−1)

2θ(li+1)e−λliδi−1 + 2θ(li)e−λli+1δi+1 +
[
θ(li+1)(1 + e−2λli) + θ(li)(1 + e−2λli+1)

]
δi

− 2σθ(li)θ(li+1)
[
η(li)δi−1 + η(li+1)δi+1 +

(
E(li) + E(li+1)

2

)
δi

]
= θ(li+1)(1 − e−λli)2 − θ(li)(1 − e−λli+1)2

− σθ(li)θ(li+1) [E(li) − 2η(li) − (E(li+1) − 2η(li+1))] ; (108)
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and

2θ(li+1)e−λliδi−1 + 2θ(li)e−λli+1δi+1 +
[
θ(li+1)(1 + e−2λli) + θ(li)(1 + e−2λli+1)

]
δi

− 2
θ(li)θ(li+1)

σ

[
η(li)δi−1 + η(li+1)δi+1 +

(
E(li) + E(li+1)

2

)
δi

]
= θ(li+1)(1 − e−λli)2 − θ(li)(1 − e−λli+1)2

− θ(li)θ(li+1)
σ

[E(li) − 2η(li) − (E(li+1) − 2η(li+1))] . (109)

Let l = (l1, l2, . . . lN )T . We now introduce the following vectors a, b(l), e(l) ∈ RN−1 and matrices A(l), D(l),
Θ(l) ∈ R(N−1)×(N−1): (In the following, (M)i refers to the i-th component of M and the subscript i ranges
from 1 to N − 1.)

(a)i = δi

(b(l))i = θ(li+1)(1 − e−λli)2 − θ(li)(1 − e−λli+1)2 = θ(li)θ(li+1)
(

1 − e−λli

1 + e−λli
− 1 − e−λli+1

1 + e−λli+1

)

(e(l))i = E(li) − 2η(li) − (E(li+1) − 2η(li+1)) =
(

1 − e−Λli

1 + e−Λli
− 1 − e−Λli+1

1 + e−Λli+1

)
(A(l)a)i = 2θ(li+1)e−λliδi−1 + 2θ(li)e−λli+1δi+1

+
[
θ(li+1)(1 + e−2λli) + θ(li)(1 + e−2λli+1)

]
δi

(D(l)a)i = η(li)δi−1 + η(li+1)δi+1 +
(

E(li) + E(li+1)
2

− 1
)

δi

Θ(l) = the (N − 1) × (N − 1) diagonal matrix with Θ(l)ii = θ(li)θ(li+1)
I = the (N − 1) × (N − 1) identity matrix.

(In the above definitions of A(l) and D(l), we set δ0 = δN = 0.) The expressions (108) and (109) can now be
concisely written as

A(l)a − 2σΘ(l)(I + D(l))a = b(l) − σΘ(l)e(l)

and A(l)a − 2
1
σ

Θ(l)(I + D(l))a = b(l) − 1
σ

Θ(l)e(l).

The above leads to 2(I + D(l))a = e(l) and A(l)a = b(l). Hence

b(l) =
A(l)
2

(I + D(l))−1e(l) or equivalently Θ(l)−1b(l) =
Θ(l)−1A(l)

2
(I + D(l))−1e(l).

Component-wise, the above is equal to, for i = 1, 2, . . .N − 1:

1 − e−λli

1 + e−λli
− 1 − e−λli+1

1 + e−λli+1
=

1
θ(li)θ(li+1)

{
N−1∑
k=1

1
2

(
A(l)(I + D(l))−1

)
ik

(
1 − e−Λlk

1 + e−Λlk
− 1 − e−Λlk+1

1 + e−Λlk+1

)}
·

Consider the following function and its derivative

fa(l) =
1 − e−al

1 + e−al
, f ′

a(l) =
2ae−al

(1 + e−al)2
·
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Hence there are numbers
{
l̃i, l̂i

}N−1

i=1
such that

2λe−λl̃i

(1 + e−λl̃i)2
(li − li+1) =

1
θ(li)θ(li+1)

{
N−1∑
k=1

1
2
(A(l)(I + D(l))−1)ik

(
2Λe−Λl̂k

(1 + e−Λl̂k)2
(lk − lk+1)

)}
. (110)

Note that E(li)+E(li+1)
2 − 1 = 2e−2Λli

1−e−2Λli
+ 2e−2Λli+1

1−e−2Λli+1
. Since 10ε|ln ε| ≤ li ≤ o(1), all the entries of D(l) are bounded

by O(ε10) which implies that the entries of (I + D(l))−1 can be bounded by some O(1) constants. Furthermore,
we have

2λe−λl̃i

(1 + e−λl̃i)2
= O(1),

2Λe−Λl̂k

(1 + e−Λl̂k)2
≤ O(ε9) and

1
2
li ≤ θ(li) ≤ 2li

so that the entries of Θ(l)−1A(l)(I + D(l))−1 can be bounded by O(maxi(l−1
i )). Applying these estimates

to (110), we have
∑

i |li − li+1|2 ≤ o(1)
∑

i |li − li+1|2 which leads to li = li+1 for all i. Hence e(l) = 0, a = 0
and Q±

i = 1. By Proposition 3.3, u equals QN (x) given by (3). Claim III is thus proved.

6. Proof of Theorem 1.3

The theorem follows easily by the formulas and approach we have been using. Let l = Kε|ln ε| for some K,
N = 1

l be an integer and u = QN(x). Then,

ν2 = e−
l
ε = εK and u(B) =

l

2
+ o(l) = O(ε|ln ε|).

Now the graphs of u and ux are shown in the following Figure 13.

A B C D E
A B C D E

VariationVariationu(x) u  (x)x

Figure 13. Variation of a periodic pattern with short period.

Consider the variation of ux given by:

Ψx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fx

(
x − A+B

2 , B−A
2

)
, x ∈ (A, B)

Fx

(−x + B+C
2 , C−B

2

)
, x ∈ (B, C)

−Fx

(
x − C+D

2 , D−C
2

)
, x ∈ (C, D)

−Fx

(−x + D+E
2 , E−D

2

)
, x ∈ (D, E).
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With the above, we have

D(u, Ψ) =
∫ E

A

(
ε2Ψ2

xx + Ψ2
x

)
dx − 2

Ψ2
x(B)

|uxx(B)| − 2
Ψ2

x(D)
|uxx(D)|

=
4
ε
(1 − 4ν2 + o(ν4)) − 4

ε|uxx(B)|
1
ε

(
1 − ν2

1 + ν2

)2

=
4(1 − 4ν2 + o(ν2))

ε

(
1 − 1

1 − 2ν2 − εu(B) + O(ε2) + o(ν2)

)

≤ −7ν2 + O(ε2)
ε

where in the above, we have used (55) with Q = ε2uxxx(B) = 1 to express εuxx(B). Hence the overall second
variation for the test function Ψ is given by

∂2E(u, Ψ) ≤ −7ν2 + O(ε2)
ε

+ 2l + o(l) =
−7εK + O(ε2|ln ε|)

ε
< 0

as long as 0 < K < 2 and ε is small enough. Thus Theorem 1.3 is proved.

A. Regularity properties of critical points of E
This section states some regularity results of the critical points of E . They also relate the notion of stability

introduced in Definitions 2.5 and 2.6 and the following definition of H2-local-minimizers.

Definition A.1. A function u ∈ V is called a (strict) H2-local minimizer of E if there is a δ > 0 such that

E(v) (>) ≥ E(u) for all v ∈ V with 0 < ‖v − u‖H2 ≤ δ.

(In the literature, the above definition is frequently called a weak-local minimizer in contrast to strong-local
minimizer in which the H2-norm is replaced by the L∞-norm.)

Theorem A.2. Let u ∈ V.
1. If u is a stationary point, then the one-dimensional Lebesgue measure of the zeros of ux vanishes, i.e.

L1 {x : ux(x) = 0} = 0. In addition, u ∈ H3([0, 1]) (and hence uxx ∈ C
1
2 ([0, 1])) and

∫ 1

0
u(x) dx = 0.

Let V (x) =
∫ x

0 u(y) dy. Then the following identities also hold:

ε2uxxx − (|ux| − 1)sgn(ux) + V (x) = 0, a.e. x ∈ [0, 1]; (111)
ε2u2

xx(x) − (|ux| − 1)2 + 2V (x)ux(x) − u2(x) = ε2uxx(0) − 1 − u2(0), for all x ∈ [0, 1]. (112)

2. There exists a δ∗ > 0 (independent of ε) such that any stationary point u with E(u) < δ∗ belongs to Z
and hence is a solution of (9) in the sense of Definition 2.2. In particular, uxxx satisfies the conditions
(13) and (14) at the sign-changing zeros ci of ux and hence uxx(ci) �= 0 by the Proposition 2.3.

3. Any H2-local minimizer u is a stationary point. Hence if further E(u) < δ∗ (same as in the previous
statement), then u ∈ Z. In addition, ux(x) �= 0 for x �= ci, i.e. ux does not have any interior zeros.

4. If u ∈ Z is an H2-local minimizer, then it is weakly-stable.
5. If u ∈ Z is a stable stationary point such that ux(x) �= 0 for x �= ci, i.e. ux does not have any interior

zeros, then u is a strict H2-local minimizer.

The proof of the above theorem is elementary but somewhat technical and lengthy due to our choice of the
non-smooth double-well potential W (·). For the sake of space, it is hence omitted but can be found in [18].
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B. Explicit examples

In this section, we provide some simple explicit examples of unstable solutions of (9) to illustrate that the
various cases considered in the proof of Theorem 1.2 can actually occur.

We will find 4L-periodic functions which solves the following unit cell problem (Fig. 14):

ux > 0 for x ∈ (−l, l);
ux < 0 for x ∈ (−L,−l)

⋃
(l, L);

and u(x) = −u(−x) for x ∈ (−L, L).

u  (x)

x

x

−L l L−l

Figure 14. Explicit construc-
tion of an unstable pattern.

By symmetry and (35), it suffices to consider u given by the form:

u =

{
A(eΛx − e−Λx) + B(eλx − e−λx), x ∈ (−l, l)

CeΛx + De−Λx + Eeλx + Fe−λx, x ∈ (l, L).

Given L > 0, there are seven unknowns A, B . . . F and l. They are found by the following boundary and jumpconditions for u:

ux(l−) = 0; ux(l+) = 0;

u(l−) = u(l+);

uxx(l−) = uxx(l+);

ε2 (uxxx(l+) − uxxx(l−)) = 2;

ux(L) = 0; ε2uxxx(L) = 1.

The above correspond to the following system of equations:

ΛA(eΛl + e−Λl) + λB(eλl + e−λl) = 0 (113)

Λ(CeΛl − De−Λl) + λ(Eeλl − Fe−λl) = 0 (114)

A(eΛl − e−Λl) + B(eλl − e−λl) = CeΛl + De−Λl + Eeλl + Fe−λl (115)

Λ2A(eΛl − e−Λl) + λ2B(eλl − e−λl) = Λ2(CeΛl + De−Λl) + λ2(Eeλl + Fe−λl) (116)

−Λ3A(eΛl + e−Λl) − λ3B(eλl + e−λl) + Λ3(CeΛl − De−Λl) + λ3(Eeλl − Fe−λl) = 2
ε2 (117)

Λ(CeΛL − De−ΛL) + λ(EeλL − Fe−λL) = 0 (118)

Λ3(CeΛL − De−ΛL) + λ3(EeλL − Fe−λL) = 1
ε2 · (119)
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Let γ = λ
Λ · Using (113) – (117), we obtain:

A = −λ

Λ

(
eλl + e−λl

eΛl + e−Λl

)
B

C = −λ

Λ

(
eλl + e−λl

eΛl + e−Λl

)
B +

e−Λl

ε2Λ3(1 − γ2)

D =
λ

Λ

(
eλl + e−λl

eΛl + e−Λl

)
B − eΛl

ε2Λ3(1 − γ2)

E = B − e−λl

ε2Λ3γ(1 − γ2)

F = −B +
eλl

ε2Λ3γ(1 − γ2)
·

Substituting the above into (118) and (119) leads to the following two expressions for B:

B =
eλ(L−l) + e−λ(L−l) − 1

ε2Λ3γ(1 − γ2)(eλL + e−λL)
and B =

(
eΛ(L−l) + e−Λ(L−l) − 1

) (
eΛl + e−Λl

)
ε2Λ3γ(1 − γ2)(eΛL + e−ΛL)(eλl + e−λl)

and hence the following relationship between l and L:
(
eλ(L−l) + e−λ(L−l) − 1

) (
eλl + e−λl

)
eλL + e−λL

=
(

1 + e−2Λl

1 + e−2ΛL

)(
1 − e−Λ(L−l) + e−2Λ(L−l)

)
. (120)

We will use the above to determine the value(s) of l.
To simplify the following computations, we will assume that L = Kε|ln ε| for some sufficiently large K.

Note that (120) has the trivial solution l = L
3 which corresponds to the 4L

3 -periodic solution. We look for two
additional solutions. (By Claim III of the proof of Th. 1.2, these are the only three solutions.)

1. l = hε|ln ε| for some h < K
3 ·

In this case, e−2ΛL, e−Λ(L−l) and e−2Λ(L−l) are all transcendentally small and thus can be ignored.
Then we have:

e−2Λl =

(
eλ(L−l) + e−λ(L−l) − 1

) (
eλl + e−λl

)
eλL + e−λL

− 1 =
eλ(L−2l) + e−λ(L−2l) − (eλl + e−λl)

eλL + e−λL

=
(λ(L − 2l))2 − (λl)2 + O(L3)

eλL + e−λL
·

The above has a solution for l satisfying:

e−2Λl = O(L2)

which belong to the case of LLS1 – see (82). The graph of u is shown in Figure 15.
2. y = L − l = hε|ln ε| for some h < K

3 ·
Let y = L − l. By ignoring all the transcendentally small terms again, we obtain:

−e−Λy + e−2Λy =
eλ(L−2y) + e−λ(L−2y) − (eλ(L−y) + e−λ(L−y)

)
eλL + e−λL

= −2λ2Ly + o(Ly)
eλL + e−λL
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which has a solution for y such that

e−Λy = O(Ly).

This belongs to the case of SLSS – see (101). The graph of u is shown in Figure 16.

x

u(x)

−L

−l

l

L

Figure 15. An LLS1 un-
stable pattern.

u(x)

−L

L
x−l

l

Figure 16. An SLSS un-
stable pattern.

By using the above approach together with some perturbation argument, it seems possible to construct other
non-periodic unstable solutions. It is certainly interesting to characterize the structure of all critical points.
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