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ON A VARIATIONAL PROBLEM ARISING IN CRYSTALLOGRAPHY

Alexander J. Zaslavski1

Abstract. We study a variational problem which was introduced by Hannon, Marcus and Mizel
[ESAIM: COCV 9 (2003) 145–149] to describe step-terraces on surfaces of so-called “unorthodox”
crystals. We show that there is no nondegenerate intervals on which the absolute value of a minimizer
is π/2 identically.
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1. Introduction

For the understanding of crystalline growth processes, the form of step-terraces on the crystalline surface
plays an important role [5]. The edges of these steps usually form oscillations in space that become larger
when the equilibrium temperature rises. This behavior is called “orthodox” and had been explained by Herring,
Mullins and others (see e.g. [6]) by thermodynamical effects. The classical model is given by

J1(y) =
∫ S

0

β(θ)ds

where s is arclength and y is a function defined on a fixed interval [0, L] whose graph is the locus under
consideration:

y ∈ W 1,1(0, L), θ = arctan y′ ∈ [−π/2, π/2],

while β is a positive π-periodic function which satisfies certain properties. Minimization of J1 subject to
appropriate boundary data is a parametric variational problem. It is closely related to the variational problem
defining the Wulff crystal shape as that shape for a domain of prescribed area such that the boundary integral
with respect to arclength involving the integrand in J1 [referred to as the surface tension] attains its minimum
value [1, 2]. Recently crystals have been studied which are “unorthodox” in the sense that lower temperatures
lead to larger oscillations and the step profile takes a saw-tooth structure for low temperatures and not a straight
line as the classical theory would predict [3]. To describe this situation, Hannon, Marcus and Mizel [4] suggested
a refined model which will be stated below.
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Suppose that a function β ∈ C(R) satisfies the following assumption:
(A)

β(t) > 0 for all t ∈ R, (1.1)

β(t) = β(−t) for all t ∈ R, (1.2)

β(π/2) ≤ β(t) ≤ β(0) for all t ∈ R, (1.3)

β(t + π) = β(t) for all t ∈ R. (1.4)

Let L > 0, ρ > 0, σ > 0. We study the following variational problem introduced in [4]:

JL
ρσ(θ, y) :=

∫ S

0

[ρ(θ′(s))2 + β(θ(s)) + σy(s)2]ds → inf, (1.5)

y(s) = y(0) +
∫ s

0

sin(θ(τ))dτ, s ∈ [0, S], (1.6)

where S ≥ L, θ ∈ W 1,2(0, S) is subject to the following constraints:

θ(τ) ∈ [−π/2, π/2], τ ∈ [0, S],
∫ S

0

cos(θ(τ))dτ = L, (1.7)

∫ S

0

sin(θ(τ))dτ = 0.

Here θ describes the angle of the step profile relative to a straight line profile. The first constraint in (1.7)
expresses the condition that the curve

(x(s), y(s)) :=
(∫ s

0

cos(θ(τ))dτ, y(0) +
∫ s

0

sin(θ(τ))dτ

)

does not “reverse”, the second is the condition that the x-interval is [0, L], while the third condition in (1.7) is
the condition that y(0) = y(S).

It was shown in [4] that problem (1.5)–(1.7) has a solution. Actually in [4] it was assumed that β ∈ C2(R)
and that β(0) + β′′(0) < 0 but the existence result of [4] holds without these two additional assumptions and
with the same proof. Hannon, Marcus and Mizel [4] noted that their theorem does not exclude the possibility
that a minimizer (S, θ, y) satisfies |θ| = π/2 on one or more nondegenerate intervals. If this occurs, then the
locus of the curve s → (x(s), y(s)), s ∈ [0, S] is not the graph of a function defined on [0, L]. This fact leads to
difficulties in calculating a solution.

Our main result stated below establishes that if a parameter σ is small enough, then the locus of the curve
s → (x(s), y(s)), s ∈ [0, S] associated with a minimizer (S, θ, y) is necessarily a graph of a function defined on
[0, L]. It should be mentioned that the smallness of σ is a natural assumption for the model.

Theorem 1.1. Let ρ1, L1 > 0. Then there is σ1 > 0 such that for each ρ ≥ ρ1, each L ∈ (0, L1] and each
σ ∈ (0, σ1] the following assertion holds:

Assume that (S, θ, y) is a solution of the problem (1.5)–(1.7). Then there is no interval [a, b] ⊂ [0, S] such
that a < b and |θ(t)| = π/2 for all t ∈ [a, b].

The proof of Theorem 1.1 is long and technical. It is based on a number of auxiliary results. Here we explain
the main ideas of the proof.

In the proof of Theorem 1.1 we use two procedures applied to triples (S, θ, y): a reduction of a triplet and a
restriction of a triplet.

Let S ≥ L, θ ∈ W 1,2(0, S) and y : [0, S] → R satisfy (1.6) and (1.7).
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Assume that t0 ∈ [0, S] and δ > 0. An extension of the triplet (S, θ, y) is a triplet (S̃, θ̃, ỹ) defined by

S̃ = S + δ, θ̃(t) = θ(t), t ∈ [0, t0], θ̃(t) = θ(t0), t ∈ (t0, t0 + δ],

θ̃(t) = θ(t − δ), t ∈ (t0 + δ, S̃], ỹ(τ) = y(0) +
∫ τ

0

sin(θ̃(t))dt, τ ∈ [0, S̃].

Let us now describe a reduction of the triplet (S, θ, y). Assume that ∆ = [a, b] ⊂ [0, S] and that one of the
following cases holds:

(1) a = 0; (2) b = S; (3) 0 < a, b < S and θ(a) = θ(b).
Put S̃ = S − b + a. In the case (1) set θ̃(t) = θ(t + b − a), t ∈ [0, S̃], in the case (2) set θ̃(t) = θ(t), t ∈ [0, S̃]

and in the case (3) set θ̃(t) = θ(t), t ∈ [0, a], θ̃(t) = θ(t + b − a), t ∈ (a, S̃]. Finally we define

ỹ(τ) = y(0) +
∫ τ

0

sin(θ̃(t))dt, τ ∈ [0, S̃].

The triplet (S̃, θ̃, ỹ) is called a reduction of the triplet (S, θ, y).
We prove Theorem 1.1 by negation. We assume that a triplet (S0, θ0, y0) is a solution of the variational

problem and that |θ0(t)| = π/2 for all t belonging to a subinterval of [0, S0] with a positive length. Using the
extension of triples and the reduction of triples we will construct a new admissible triplet (S1, θ1, y1) such that
JL

ρσ(θ1, y1) < JL
ρσ(θ0, y0). In order to meet this goal we will choose a small positive constant r0 and consider

separately two cases:

inf{θ0(t) : t ∈ [0, S0]} ≤ −π/2 + r0 and inf{θ0(t) : t ∈ [0, S0]} > −π/2 + r0.

2. Auxiliary results

For each function f : X → R, where X is nonempty, set inf(f) = inf{f(x) : x ∈ X}. Denote by meas(E)
the Lebesgue measure of a Lebesgue measurable set E ⊂ R.

Lemma 2.1. Let L, ρ, σ > 0. Then inf(JL
ρσ) ≤ Lβ(0).

Proof. Set S = L, θ(t) = 0, t ∈ [0, S] and y(t) = 0, t ∈ [0, S]. Clearly (S, θ, y) satisfies (1.6) and (1.7). Then
inf(JL

ρσ) ≤ JL
ρσ(θ, y) = Lβ(0). Lemma 2.1 is proved. �

Lemma 2.2. Let L, ρ, σ > 0 and let S ≥ L, θ ∈ W 1,2(0, S), y : [0, S] → R satisfy (1.6) and (1.7). Then

S ≤ [Lβ(0) + JL
ρσ(θ, y) − inf(JL

ρσ)](β(π/2))−1. (2.1)

Proof. It follows from (1.5), (1.3) and Lemma 2.1 that

Sβ(π/2) ≤ JL
ρσ(θ, y) = inf(JL

ρσ) + [JL
ρσ(θ, y) − inf(JL

ρσ)]

≤ Lβ(0) + [JL
ρσ(θ, y) − inf(JL

ρσ)].

This inequality implies (2.1). �

Corollary 2.1. Let L, ρ, σ > 0 and let (S, θ, y) be a solution of the problem (1.5)–(1.7). Then S ≤ Lβ(0)(β(π/2))−1.

Corollary 2.2. Let L, ρ, σ > 0 and let S ≥ L, θ ∈ W 1,2(0, S), y : [0, S] satisfy (1.6) and (1.7). Assume that
JL

ρσ(θ, y) ≤ inf(JL
ρσ) + Lβ(0). Then

S ≤ 2Lβ(0)(β(π/2))−1.
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Lemma 2.3. Let L, ρ, σ > 0 and let S ≥ L, θ ∈ W 1,2(0, S), y : [0, S] → R satisfy (1.6) and (1.7). Assume that

JL
ρσ(θ, y) ≤ inf(JL

ρσ) + min{Lβ(0), σL3}. (2.2)

Then
|y(t)| ≤ 8Lβ(0)(β(π/2))−1 for all t ∈ [0, S]. (2.3)

Proof. By (2.2) and Corollary 2.2
S ≤ 2Lβ(0)(β(π/2))−1. (2.4)

Relations (1.6) and (2.4) imply that for each t ∈ [0, S]

|y(t) − y(0)| ≤ t ≤ S ≤ 2Lβ(0)(β(π/2))−1. (2.5)

Set

S1 = S, θ1 = θ, y1(τ) =
∫ τ

0

sin(θ(t))dt, τ ∈ [0, S]. (2.6)

Clearly
|y1(t)| ≤ t for all t ∈ [0, S] (2.7)

and (1.6), (1.7) hold with (S, θ, y) = (S1, θ1, y1). It follows from (2.2), (2.6) and (1.5) that

JL
ρσ(θ, y) ≤ JL

ρσ(θ1, y1) + σL3 = JL
ρσ(θ, y) + σ

[∫ S

0

(y1(t))2dt −
∫ S

0

(y(t))2dt

]
+ σL3

and ∫ S

0

(y(t))2dt ≤
∫ S

0

(y1(t))2dt + L3.

Combined with (2.7) this implies that

∫ S

0

(y(t))2dt ≤ L3 + S3 ≤ 2S3. (2.8)

We show that |y(0)| ≤ 3S. Let us assume the converse. Then |y(0)| > 3S and by (2.5) |y(t)| > 2S for all t ∈
[0, S]. This inequality implies that

∫ S

0 (y(t))2dt ≥ 4S3. This inequality contradicts (2.8). The contradiction we
have reached proves that |y(0)| ≤ 3S. Combined with (2.5) and (2.4) this inequality implies that for all t ∈ [0, S]

|y(t)| ≤ |y(0)| + S ≤ 4S ≤ 8Lβ(0)(β(π/2))−1.

Lemma 2.3 is proved. �

Lemma 2.4. Let L, ρ, σ > 0, S ≥ L, θ ∈ W 1,2(0, S), y : [0, S] → R satisfy (1.6) and (1.7). Suppose that
(S, θ, y) is a solution of the problem (1.5)–(1.7). Then

∫ S

0

(θ′(t))2dt ≤ ρ−1Lβ(0) (2.9)

and for each t1, t2 ∈ [0, S] satisfying t1 < t2 the following inequality holds:

|θ(t2) − θ(t1)| ≤ (ρ−1Lβ(0)(t2 − t1))1/2. (2.10)
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Proof. By Corollary 2.1 L ≤ S ≤ Lβ(0)β(π/2)−1. It follows from (1.5) and Lemma 2.1 that

∫ S

0

(θ′(t))2dt ≤ ρ−1JL
ρσ(θ, y) = ρ−1 inf(JL

ρσ) ≤ ρ−1Lβ(0).

Inequality (2.10) follows from (2.9) by the Cauchy-Schwarz inequality. �

Lemma 2.5. Let L1 > 0, ρ > 0 and let a positive number γ satisfy

γ ≤ arcsin(2−1(β(0))−1β(π/2)min{1, (π2/16)ρL−2
1 (β(0))−1}). (2.11)

Suppose that σ > 0, L ∈ (0, L1] and that S ≥ L, θ ∈ W 1,2(0, S) and y : [0, S] → R are a solution of the problem
(1.5)–(1.7) such that

max{θ(t) : t ∈ [0, S]} = π/2. (2.12)

Then
min{θ(t) : t ∈ [0, S]} ≤ −γ. (2.13)

Proof. By (2.12) there is t0 ∈ [0, S] such that

θ(t0) = π/2. (2.14)

Set
E = [0, S] ∩ [t0 − (π/4)2ρL−1(β(0))−1, t0 + (π/4)2ρL−1(β(0))−1]. (2.15)

Assume that t ∈ E. By (2.15) and Lemma 2.4

|θ(t) − θ(t0)| ≤ (ρ−1Lβ(0)|t − t0|)1/2 ≤ π/4.

Combined with (2.14) this inequality implies that θ(t) ≥ π/4. Thus we have shown that

θ(t) ≥ π/4 for all t ∈ E. (2.16)

Clearly
meas(E) ≥ min{(π/4)2ρL−1β(0)−1, S}. (2.17)

Relations (2.15), (2.16), (2.17) and (1.7) imply that

∫
E

sin(θ(t))dt ≥ sin(π/4) meas (E) ≥ 2−1 min{(π/4)2ρL−1(β(0))−1, S}. (2.18)

By (2.18) and (1.7)

∫
[0,S]\E

sin(θ(t))dt = −
∫

E

sin(θ(t))dt ≤ −2−1 min{(π/4)2ρL−1(β(0))−1, S}. (2.19)

Since inf(θ) ≤ 0 (see (1.7)) the relation (2.19) implies that

−2−1 min{(π/4)2ρL−1(β(0))−1, S} ≥
∫

[0,S]\E

sin(θ(t))dt

≥ sin(inf(θ))meas([0, S] \ E) ≥ sin(inf(θ))S. (2.20)
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It follows from (2.20), Corollary 2.1 and the inequality L ≤ L1 that

sin(inf(θ)) ≤ −2−1 min{(π/4)2ρL−1(β(0))−1, L}L−1(β(0))−1β(π/2)

≤ −2−1(β(0))−1β(π/2)min{1, (π/4)2ρL−2
1 (β(0))−1}

and in view of (2.11)

inf(θ) ≤ − arcsin(2−1(β(0))−1β(π/2)min{1, (π/4)2ρL−2
1 (β(0))−1} ≤ −γ.

This completes the proof of Lemma 2.5. �

It is easy to see that the following lemma holds.

Lemma 2.6. Let S > 0, θ : [0, S] → R be a continuous function, M > 0, δ ∈ (0, S) and let y : [0, S] → R
satisfy

y(τ) = y(0) +
∫ τ

0

sin(θ(t))dt, τ ∈ [0, S] (2.21)

and

|y(τ)| ≤ M for all τ ∈ [0, S]. (2.22)

Suppose that

S̃ = S − δ, θ̃(t) = θ(t + δ), t ∈ [0, S̃], (2.23)

ỹ(τ) = y(0) +
∫ τ

0

sin(θ̃(t))dt, τ ∈ [0, S̃]. (2.24)

Then

|ỹ(t)| ≤ M + δ for all τ ∈ [0, S̃] (2.25)

and ∣∣∣∣∣
∫ S

0

(y(t))2dt −
∫ S̃

0

(ỹ(t))2dt

∣∣∣∣∣ ≤ M2δ + δS(2M + δ). (2.26)

Lemma 2.7. Let S > 0, θ : [0, S] → R be a continuous function, M > 0, 0 < a < b < S and let y : [0, S] → R
satisfy (2.21) and (2.22). Suppose that

θ(a) = θ(b), (2.27)

S̃ = S − b + a, (2.28)

θ̃(t) = θ(t), t ∈ [0, a], θ̃(t) = θ(t + b − a), t ∈ (a, S̃], (2.29)

ỹ(τ) = y(0) +
∫ τ

0

sin(θ̃(t))dt, τ ∈ [0, S̃]. (2.30)

Then

|ỹ(τ)| ≤ M + b − a for all τ ∈ [0, S̃] (2.31)

and ∣∣∣∣∣
∫ S

0

(y(t))2 −
∫ S̃

0

(ỹ(t))2dt

∣∣∣∣∣ ≤ (b − a)M2 + (b − a)(2M + b − a)S. (2.32)
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Proof. Relations (2.21), (2.29), (2.30) imply that

ỹ(t) = y(t), t ∈ [0, a]. (2.33)

Assume that τ ∈ (a, S̃). It follows from (2.30), (2.29) and (2.21) that

ỹ(τ) = y(0) +
∫ a

0

sin(θ(t))dt +
∫ τ

a

sin(θ(t + b − a))dt

= y(0) +
∫ τ+b−a

0

sin(θ(t))dt −
∫ b

a

sin(θ(t))dt

= y(τ + b − a) −
∫ b

a

sin(θ(t))dt.

This equality implies that
|ỹ(τ) − y(τ + b − a)| ≤ b − a for all τ ∈ (a, S̃). (2.34)

Combined with (2.22) the inequality (2.34) implies that

|ỹ(τ)| ≤ M + b − a for all τ ∈ (a, S̃). (2.35)

Relations (2.22), (2.33), (2.35) imply (2.31). It follows from (2.33), (2.22), (2.28), (2.31) that
∣∣∣∣∣
∫ S

0

(y(t))2dt −
∫ S̃

0

(ỹ(t))2dt

∣∣∣∣∣
≤
∫ b

a

(y(t))2dt +

∣∣∣∣∣
∫ S̃

a

(y(t + b − a))2dt −
∫ S̃

a

(ỹ(t))2dt

∣∣∣∣∣
≤ (b − a)M2 +

∫ S̃

a

|y(t + b − a) − ỹ(t)|(|y(t + b − a)| + |ỹ(t)|)dt

≤ (b − a)M2 + (b − a)S(2M + b − a).
Thus (2.32) is true and Lemma 2.7 is proved. �

The following auxiliary result is proved analogously to Lemma 2.7.

Lemma 2.8. Let S > 0, θ : [0, S] → R be a continuous function, M > 0, 0 ≤ a ≤ S, δ > 0 and let y : [0, S] → R
satisfy (2.21) and (2.22). Suppose that

S̃ = S + δ,

θ̃(t) = θ(t), t ∈ [0, a], θ̃(t) = θ(a), t ∈ (a, a + δ],

θ̃(t) = θ(t − δ), t ∈ (a + δ, S̃],

ỹ(τ) = y(0) +
∫ τ

0

sin(θ̃(t))dt, τ ∈ [0, S̃].

Then
|ỹ(τ)| ≤ M + δ for all τ ∈ [0, S̃]

and ∣∣∣∣∣
∫ S

0

(y(t))2dt −
∫ S̃

0

(ỹ(t))2dt

∣∣∣∣∣ ≤ δ(M + δ)2 + δS(2M + δ).
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3. A weakened version of Theorem 1.1

In this section we establish the following result.

Theorem 3.1. There exists r0 ∈ (0, π/8) such that for each L0 > 0 there is σ0 > 0 for which the following
assertion holds:

Suppose that L ∈ (0, L0], ρ > 0, σ ∈ (0, σ0], (S, θ, y) is a solution of the problem (1.5)–(1.7) and

[−π/2 + r0, π/2 − r0] ⊂ θ([0, S]). (3.1)

Then there is no interval [a, b] ⊂ [0, S] such that a < b and |θ(t)| = π/2 for all t ∈ [a, b].

Proof. Choose a positive number r1 such that

r1 ∈ (0, π/16), β(0) cos(π/2 − r1) ≤ β(π/2)/16 (3.2)

and choose
r0 ∈ (0, r1/2). (3.3)

Let L0 > 0. Put
∆0 = 16L0β(0)(β(π/2))−1 (3.4)

and choose a positive number σ0 such that

σ0∆2
0 < β(π/2)10−29−1. (3.5)

Let
L ∈ (0, L0], ρ > 0, σ ∈ (0, σ0]. (3.6)

Suppose that S ≥ L, θ ∈ W 1,2(0, S) satisfies (3.1) and (1.7), y : [0, S] → R satisfies (1.6) and

∫ S

0

[ρ(θ′(t))2 + β(θ(t)) + σ(y(t))2]dt = JL
ρσ(θ, y) = inf(JL

ρσ). (3.7)

In order to prove Theorem 3.1 it is sufficient to show that there is no interval [a, b] ⊂ [0, S] such that a < b and
|θ(t)| = π/2 for all t ∈ [a, b].

Let us assume the converse. Then there is an interval [a, b] ⊂ [0, S] such that 0 < a < b < S and |θ(t)| = π/2
for all t ∈ [a, b]. We may assume without loss of generality that

θ(t) = π/2 for all t ∈ [a, b]. (3.8)

There is τ0 ∈ [0, S] such that
θ(τ0) = inf{θ(t) : t ∈ [0, S]}. (3.9)

By (3.9) and (3.1)
θ(τ0) ≤ −π/2 + r0. (3.10)

Corollary 2.1 implies that
L ≤ S ≤ Lβ(0)(β(π/2))−1. (3.11)

By Lemma 2.3, (3.6) and (3.4)
|y(t)| ≤ ∆0 for all t ∈ [0, S]. (3.12)

By continuity it follows from (3.10) and (3.3) that there is a positive number δ1 such that

δ1 < (b − a)/16, (3.13)

θ(t) < −π/2 + r1 for all t ∈ [0, S]∩]τ0 − 2δ1, τ0 + 2δ1]. (3.14)
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It follows from (3.13) that
δ1 ≤ meas([0, S] ∩ [τ0 − δ1, τ0 + δ1]) ≤ 2δ1. (3.15)

There are three cases: (1) τ0 ≤ δ1; (2) τ0 ≥ S − δ1 > 4δ1 (see (3.13)); (3) δ1 < τ0 < S − δ1.
In the case (1) set

ã = 0, b̃ = τ0 + δ1, S1 = S − b̃ + ã, (3.16)
θ1(t) = θ(t + b̃ − ã), t ∈ [0, S1]. (3.17)

In the case (2) put
b̃ = S, ã = τ0 − δ1, S1 = S − b̃ + ã, (3.18)

θ1(t) = θ(t), t ∈ [0, S1]. (3.19)
Consider the case (3). Since θ is continuous and τ0 satisfies (3.9), there exists a closed interval [ã, b̃] ⊂ [0, S]
such that

δ1 ≤ b̃ − ã ≤ 2δ1, τ0 ∈ [ã, b̃] ⊂ [τ0 − δ1, τ0 + δ1], (3.20)
θ(ã) = θ(b̃).

We set
S1 = S − b̃ + ã, (3.21)

θ1(t) = θ(t), t ∈ [0, ã], θ1(t) = θ(t + b̃ − ã), t ∈ (ã, S1]. (3.22)
It is not difficult to see that in the all three cases θ1 ∈ W 1,2(0, S1),

δ1 ≤ b̃ − ã ≤ 2δ1, (3.23)

τ0 ∈ [ã, b̃]. (3.24)
Relations (3.23), (3.24) and (3.14) imply that

θ(t) ≤ −π/2 + r1 for all t ∈ [ã, b̃]. (3.25)

Clearly one of the following conditions holds:

ã = 0; b̃ = S; ã > 0, b̃ < S and θ(ã) = θ(b̃). (3.26)

Define y1 : [0, S1] → R by

y1(τ) = y(0) +
∫ τ

0

sin(θ1(t))dt, t ∈ [0, S1]. (3.27)

It follows from the definition of y1 (see (3.27)), θ1 (see (3.17), (3.19), (3.22)), Lemmas 2.6 and 2.7, (3.12), (3.11),
(3.23), (3.6) and (3.4) that∣∣∣∣∣

∫ S

0

(y(t))2dt −
∫ S1

0

(y1(t))2dt

∣∣∣∣∣ ≤ (b̃ − ã)∆2
0 + (b̃ − ã)(2∆0 + b̃ − ã)S

≤ (b̃ − ã)[∆2
0 + (2∆0 + b̃ − ã)L0β(0)(β(π/2))−1]

≤ 2δ1[∆2
0 + (2∆0 + 2δ1)∆0/16].

Combined with (3.13), (3.11), (3.6) and (3.4) this inequality implies that∣∣∣∣∣
∫ S

0

(y(t))2dt −
∫ S1

0

(y1(t))2dt

∣∣∣∣∣ ≤ 2δ1[∆2
0 + 16−1∆0(2∆0 + S)]

≤ 2δ1[∆2
0 + 16−1∆0(2∆0 + L0β(0)(β(π/2))−1)]

≤ 2δ1[∆2
0 + 16−1∆0(3∆0)] ≤ 3δ1∆2

0.



A VARIATIONAL PROBLEM 81

Therefore we have shown that ∣∣∣∣∣
∫ S

0

(y(t))2dt −
∫ S1

0

(y1(t))2dt

∣∣∣∣∣ ≤ 3δ1∆2
0. (3.28)

It follows from the definition of θ1 (see (3.17), (3.19), (3.22)), (3.25) and (3.8) that there are numbers a1, b1

such that
a1, b1 ∈ [0, S1], a1 < b1 < S1, b1 − a1 = b − a, (3.29)

θ1(t) = π/2 for all t ∈ [a1, b1]. (3.30)
Set

δ2 = −
∫ b̃

ã

sin(θ(t))dt. (3.31)

Relations (3.31) and (3.23) imply that
δ2 ≤ b̃ − ã ≤ 2δ1. (3.32)

By (3.25) and (3.2) for each t ∈ [ã, b̃]

− sin θ(t) ≥ sin(π/2 − r1) ≥ sin(π/2 − π/16) ≥ 1/2. (3.33)

In view of (3.33), (3.31) and (3.23)
δ2 ≥ 2−1(b̃ − ã) ≥ δ1/2.

Together with (3.32) this implies that
δ1/2 ≤ δ2 ≤ 2δ1. (3.34)

Set
S2 = S1 − δ2. (3.35)

Relations (3.35), (3.34), (3.16), (3.18), (3.21), (3.23) and (3.13) imply that

S2 ≥ S1 − 2δ1 = S − b̃ + ã − 2δ1 ≥ S − 4δ1 ≥ S/2. (3.36)

Define θ2 ∈ W 1,2(0, S2) by

θ2(t) = θ1(t), t ∈ [0, b1 − δ2], θ2(t) = θ1(t + δ2), t ∈ (b1 − δ2, S2] (3.37)

(see (3.30), (3.29), (3.13) and (3.34)).
Define y2 : [0, S2] → R as follows:

y2(τ) = y1(0) +
∫ τ

0

sin(θ2(t))dt, τ ∈ [0, S2]. (3.38)

Relations (3.38) and (3.27) imply that
y2(0) = y1(0) = y(0). (3.39)

Combined with (3.12) this equality implies that

|y2(0)| = |y1(0)| = |y(0)| ≤ ∆0. (3.40)

By (3.40), (3.27), (3.11), (3.6) and (3.4) for each t ∈ [0, S1]

|y1(t)| ≤ ∆0 + t ≤ ∆0 + S ≤ ∆0 + L0β(0)(β(π/2))−1 ≤ 2∆0. (3.41)

It follows from (3.38), (3.40), (3.35), (3.11), (3.6) and (3.4) that for each t ∈ [0, S2]

|y2(t)| ≤ ∆0 + S ≤ ∆0 + L0β(0)(β(π/2))−1 ≤ 2∆0. (3.42)
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In view of (3.29), (3.13), (3.34) and (3.30)

0 ≤ a1 < b1 − δ2 < b1 < S1, θ1(b1 − δ2) = θ1(b1) = π/2. (3.43)

It follows from the definition of y2 (see (3.38)), θ2 (see (3.37)), (3.27), (3.41), (3.43), (3.35) and Lemma 2.7
(with a = b1 − δ2, b = b1, θ = θ1) that∣∣∣∣∣

∫ S1

0

(y1(t))2dt −
∫ S2

0

(y2(t))2dt

∣∣∣∣∣ ≤ δ2(2∆0)2 + δ2S1(4∆0 + δ2).

Combined with (3.34), (3.13), (3.11), (3.6) and (3.4) this inequality implies that∣∣∣∣∣
∫ S1

0

(y1(t))2dt −
∫ S2

0

(y(t))2dt

∣∣∣∣∣ ≤ 2δ1[4∆2
0 + S(4∆0 + 2δ1)]

≤ 2δ1[4∆2
0 + L0β(0)(β(π/2))−1(4∆0 + L0β(0)(β(π/2))−1)]

≤ 2δ1[4∆2
0 + (5/16)∆2

0] ≤ 10δ1∆2
0. (3.44)

Relations (3.44) and (3.28) imply that∣∣∣∣∣
∫ S

0

(y(t))2dt −
∫ S2

0

(y2(t))2dt

∣∣∣∣∣ ≤ 13δ1∆2
0. (3.45)

By (3.37), (3.35), (3.43), (3.30) and (3.31),

∫ S2

0

sin(θ2(t))dt =
∫ b1−δ2

0

sin(θ1(t))dt +
∫ S1

b1

sin(θ1(t))dt =
∫ S1

0

sin(θ1(t))dt

−
∫ b1

b1−δ2

sin(θ1(t))dt =
∫ S1

0

sin(θ1(t))dt − δ2 =
∫ S1

0

sin(θ1(t))dt +
∫ b̃

ã

sin(θ(t))dt.

It follows from this equality, the definition of θ1 (see (3.17), (3.19), (3.22)) and (1.7) that

∫ S2

0

sin(θ2(t))dt =
∫ S

0

sin(θ(t))dt = 0. (3.46)

By (3.29), (3.30), (3.43), (3.34), (3.13) and (3.37)

sup{θ2(t) : t ∈ [0, S2]} = π/2. (3.47)

Combined with (3.46) and the mean-value theorem this equality implies that there is τ∗ ∈ [0, S2] such that

θ2(τ∗) = 0. (3.48)

Set

δ3 =
∫ b̃

ã

cos(θ(t))dt. (3.49)

By (3.49) and (3.23)
δ3 ≤ b̃ − ã ≤ 2δ1. (3.50)
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Set
S3 = S2 + δ3 (3.51)

and define θ3 ∈ W 1,2(0, S3) by

θ3(t) = θ2(t), t ∈ [0, τ∗], θ3(t) = 0, t ∈ (τ∗, τ∗ + δ3], (3.52)

θ3(t) = θ2(t − δ3), t ∈ (τ∗ + δ3, S3]
(see (3.48)). Define

y3(τ) = y2(0) +
∫ τ

0

sin(θ3(t))dt, τ ∈ [0, S3]. (3.53)

In view of (3.52), (3.51) and (3.46)

∫ S3

0

sin(θ3(t))dt =
∫ τ∗

0

sin(θ2(t))dt +
∫ S2

τ∗
sin(θ2(t))dt = 0. (3.54)

It follows from (3.52) and (3.51) that

∫ S3

0

cos(θ3(t))dt = δ3 +
∫ S2

0

cos(θ2(t))dt. (3.55)

By (3.37), (3.35), (3.43), (3.30) and the definition of θ1 (see (3.17), (3.19), (3.22))

∫ S2

0

cos(θ2(t))dt =
∫ b1−δ2

0

cos(θ1(t))dt +
∫ S1

b1

cos(θ1(t))dt =
∫ S1

0

cos(θ1(t))dt

−
∫ b1

b1−δ2

cos(θ1(t))dt =
∫ S1

0

cos(θ1(t))dt =
∫ S

0

cos(θ(t))dt −
∫ b̃

ã

cos(θ(t))dt.

Combined with (3.55), (3.49) and (1.7) this equality implies that

∫ S3

0

cos(θ3(t))dt = L. (3.56)

It follows from Lemma 2.8 (with θ = θ2, θ̃ = θ3), (3.42), (3.50)–(3.53), (3.13), (3.11) and (3.6) that

∣∣∣∣∣
∫ S3

0

(y3(t))2dt −
∫ S2

0

(y2(t))2dt

∣∣∣∣∣ ≤ δ3(2∆0 + δ3)2 + δ3S2(4∆0 + δ3)

≤ 2δ1[(2∆0 + 2δ1)2 + S(4∆0 + 2δ1)] ≤ 2δ1[(2∆0 + S)2 + S(4∆0 + S)]

≤ 2δ1[(2∆0 + L0β(0)(β(π/2))−1)2 + L0β(0)(β(π/2))−1(4∆0 + L0β(0)(β(π/2)−1)].

Combined with (3.4) this inequality implies that∣∣∣∣∣
∫ S3

0

(y3(t))2dt −
∫ S2

0

(y2(t))2dt

∣∣∣∣∣ ≤ 2δ1[(2∆0 + ∆0/16)2 + 16−15∆2
0] ≤ 2δ1(9∆2

0) ≤ 18δ1∆2
0.

Together with (3.45) this implies that∣∣∣∣∣
∫ S3

0

(y3(t))2dt −
∫ S

0

(y(t))2dt

∣∣∣∣∣ ≤ 13δ1∆2
0 + 18δ1∆2

0 = 31δ1∆2
0. (3.57)
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We will estimate JL
ρσ(θ, y) − JL

ρσ(θ3, y3). It follows from the definition of θ1, θ2, θ3 (see (3.17), (3.19), (3.22),
(3.37) and (3.52)) that

∫ S3

0

(θ′3(t))
2dt =

∫ S2

0

(θ′2(t))
2dt ≤

∫ S1

0

(θ′1(t))
2dt ≤

∫ S

0

(θ′(t))2dt. (3.58)

In view of (3.52) and (3.51)

∫ S3

0

β(θ3(t))dt =
∫ τ∗

0

β(θ2(t))dt + δ3β(0) +
∫ S2

τ∗
β(θ2(t))dt = δ3β(0) +

∫ S2

0

β(θ2(t))dt. (3.59)

By (3.37), (3.35), (3.43) and (3.30)

∫ S2

0

β(θ2(t))dt =
∫ b1−δ2

0

β(θ1(t))dt +
∫ S1

b1

β(θ1(t))dt

=
∫ S1

0

β(θ1(t))dt −
∫ b1

b1−δ2

β(θ1(t))dt =
∫ S1

0

β(θ1(t))dt − δ2β(π/2). (3.60)

It follows from the definition of θ1 (see (3.17), (3.19) and (3.22)) that

∫ S1

0

β(θ1(t))dt =
∫ S

0

β(θ(t))dt −
∫ b̃

ã

β(θ(t))dt. (3.61)

Equalitites (3.59)–(3.61) imply that

∫ S3

0

β(θ3(t))dt = δ3β(0) − δ2β(π/2) +
∫ S

0

β(θ(t))dt −
∫ b̃

ã

β(θ(t))dt. (3.62)

Relations (3.49), (3.25), (3.22) and (3.2) imply that

δ3 ≤ (b̃ − ã) cos(π/2 − r1) ≤ 2δ1 cos(π/2 − r1). (3.63)

By (3.62), (3.63), (3.34) and (3.2)

∫ S3

0

β(θ3(t))dt −
∫ S

0

β(θ(t))dt ≤ δ3β(0) − δ2β(π/2) ≤ 2δ1 cos(π/2 − r1)β(0) − 2−1δ1β(π/2) ≤ −4−1δ1β(π/2).

(3.64)
In view of (1.5), (3.64), (3.58), (3.57), (3.6) and (3.5)

JL
ρσ(θ3, y3) − JL

ρσ(θ, y) =
∫ S3

0

β(θ3(t))dt −
∫ S

0

β(θ(t))dt

+ ρ

[∫ S3

0

(θ′3(t))
2dt −

∫ S

0

(θ′(t))2dt

]
+ σ

[∫ S3

0

(y3(t))2dt −
∫ S

0

(y(t))2dt

]

≤ −4−1δ1β(π/2) + 31σδ1∆2
0 ≤ −4−1δ1β(π/2) + 31σ0δ1∆2

0 < 0,

a contradiction. The contradiction we have reached proves Theorem 3.1. �
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4. Proof of Theorem 1.1

By Theorem 3.1 there are
r0 ∈ (0, π/8), σ0 > 0 (4.1)

such that the following assertion holds:
(A1) If L ∈ (0, L1], ρ > 0, σ ∈ (0, σ0] and if (S, θ, y) is a solution of the problem (1.5)–(1.7) satisfying

[−π/2 + r0, π/2 − r0] ⊂ θ([0, S]) (4.2)

then there is no interval [a, b] ⊂ [0, S] such that a < b and |θ(t)| = π/2 for all t ∈ [a, b].
Choose a positive number γ such that

γ ≤ arcsin(2−1(β(0))−1β(π/2)min{1, 16−1π2ρ1L
−2
1 (β(0))−1}) (4.3)

and choose a number σ1 such that
0 < σ1 < σ0, (4.4)

σ1(1 + (cos(π/2 − r0))−1)(16L1β(0)(β(π/2))−1 + 4)3 < sin(γ)β(π/2)/3200. (4.5)
Let

L ∈ (0, L1], ρ ≥ ρ1, σ ∈ (0, σ1]. (4.6)
Suppose that S ≥ L, θ ∈ W 1,2(0, S) satisfies (1.7) and y : [0, S] → R satisfies (1.6) and

∫ S

0

[ρ(θ′(t))2 + β(θ(t)) + σ(y(t))2]dt = JL
ρσ(θ, y) = inf(JL

ρσ). (4.7)

In order to prove Theorem 1.1 it is sufficient to show that there is no interval [a, b] ⊂ [0, S] such that a < b and
|θ(t)| = π/2 for all t ∈ [a, b].

Let us assume the converse. Then there is an interval [a, b] ⊂ [0, S] such that 0 < a < b < S and |θ(t)| = π/2
for all t ∈ [a, b].

We may assume without loss of generality that

θ(t) = π/2 for all t ∈ [a, b]. (4.8)

It follows from Lemma 2.5, (4.3), (4.6) and (4.8) that

min{θ(t) : t ∈ [0, S]} ≤ −γ. (4.9)

Corollary 2.1 implies that
L ≤ S ≤ Lβ(0)(β(π/2))−1. (4.10)

In view of (4.8), assertion (A1), (4.4) and (4.6) the inclusion (4.2) does not hold. Together with (4.8) this
implies that

min{θ(t) : t ∈ [0, S]} ≥ −π/2 + r0. (4.11)
Choose a positive number ε such that

ε < γ/4 and ε(β(0) cos(π/2 − r0)−1 + 1) < β(π/2) sin(γ)/4. (4.12)

There is a positive number δ such that

δ < min{1/8, L/16, 32−1(b − a) cos(π/2 − r0)}, (4.13)

δ(1 + cos(π/2 − r0)−1) < 1/8 (4.14)
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and
if t1, t2 ∈ [0, S] satisfies |t1 − t2| ≤ 2δ, then (4.15)
|θ(t1) − θ(t2)| ≤ ε, |β(θ(t1)) − β(θ(t2))| ≤ ε.

There is t0 ∈ [0, S] such that
θ(t0) = inf{θ(t) : t ∈ [0, S]}. (4.16)

There are three cases: (1) t0 ≤ δ; (2) t0 ≥ S − δ; (3) δ < t0 < S − δ. In the case (1) set

c = 0, d = t0 + δ, S1 = S − d, (4.17)

θ1(t) = θ(t + d), t ∈ [0, S1]. (4.18)
In the case (2) put

d = S, c = t0 − δ, S1 = t0 − δ, (4.19)
θ1(t) = θ(t), t ∈ [0, S1]. (4.20)

Consider the case (3). Since θ is continuous and t0 satisfies (4.16), there exists a closed interval [c, d] ⊂ [0, S]
such that

δ ≤ d − c ≤ 2δ, (4.21)
t0 ∈ [c, d] ⊂ [t0 − δ, t0 + δ], (4.22)

θ(c) = θ(d). (4.23)
We set

S1 = S − d + c, (4.24)
θ1(t) = θ(t), t ∈ [0, c], θ1(t) = θ(t + d − c], t ∈ (c, S1]. (4.25)

It is not difficult to see that in all three cases θ1 ∈ W 1,2(0, S1), (4.21), (4.22) are true and one of the following
conditions holds:

c = 0; d = S; c > 0, d < S and θ(c) = θ(d). (4.26)
In view of (4.22) and the choice of δ (see (4.15)) for each t ∈ [c, d]

|θ(t) − θ(t0)| ≤ ε, |β(θ(t)) − β(θ(t0))| ≤ ε. (4.27)

By (4.16), (4.27), (4.9) and (4.12) for each t ∈ [c, d]

θ(t0) ≤ θ(t) ≤ θ(t0) + ε ≤ −γ + ε ≤ −(3/4)γ. (4.28)

Inequality (4.28) implies that ∫ d

c

cos(θ(t))dt ≥ (d − c) cos(θ(t0)). (4.29)

In view of (4.16), (4.11) and (4.9) cos(θ(t0)) �= 0. Set

∆0 =

(∫ d

c

cos(θ(t))dt

)
(cos(θ(t0)))−1. (4.30)

By (4.30), (4.29), (4.9), (4.11) and (4.16)

d − c ≤ ∆0 ≤ (d − c)(cos(θ(t0)))−1 ≤ (d − c)(cos(π/2 − r0))−1. (4.31)

It follows from (4.8), (4.28), and the construction of θ1 (see (4.18), (4.20), (4.25)) that there is an interval
[a1, b1] ⊂ [0, S1] such that

b1 < S1, b1 − a1 = b − a, θ1(t) = π/2, t ∈ [a1, b1]. (4.32)
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In view of (4.28) and the definition of θ1 (see (4.18), (4.20), (4.25))

inf{θ1(t) : t ∈ [0, S1]} ≤ −(3/4)γ. (4.33)

By (4.32), (4.33) and (4.28) there is t1 ∈ [0, S1] such that

θ1(t1) = −θ(t0). (4.34)

Set
S2 = S1 + ∆0 (4.35)

and define
θ2(t) = θ1(t), t ∈ [0, t1], θ2(t) = θ1(t1), t ∈ (t1, t1 + ∆0], (4.36)

θ2(t) = θ1(t − ∆0), t ∈ (t1 + ∆0, S2].

Clearly θ2 ∈ W 1,2(0, S2).
It follows from (4.36), (4.35), (4.34), (1,7), (4.30) and the definition of θ1 (see (4.18), (4.20), (4.25)) that

∫ S2

0

cos(θ2(t))dt =
∫ S1

0

cos(θ1(t))dt + ∆0 cos(θ(t0))

=
∫ S1

0

cos(θ1(t))dt +
∫ d

c

cos(θ(t))dt =
∫ S

0

cos(θ(t))dt = L. (4.37)

By (4.36), (4.34), (4.35), the definition of θ1 (see (4.18), (4.20), (4.25)) and (1.7)

∫ S2

0

sin(θ2(t))dt =
∫ S1

0

sin(θ1(t))dt − ∆0 sin(θ(t0)) = −
∫ d

c

sin(θ(t))dt − ∆0 sin(θ(t0)). (4.38)

Set

∆1 = −
∫ d

c

sin(θ(t))dt − ∆0 sin(θ(t0)). (4.39)

In view of (4.39), (4.28) and (4.30)
0 < ∆1 ≤ d − c + ∆0. (4.40)

It follows from (4.32) and the construction of θ2 (see (4.35), (4.36)) that there is an interval [a2, b2] ⊂ [0, S2]
such that

b2 < S2, b2 − a2 = b1 − a1 = b − a, θ2(t) = π/2, t ∈ [a2, b2]. (4.41)

Relations (4.39), (4.31), (4.21) and (4.13) imply that

∆1 ≤ d− c−∆0 sin(θ(t0)) ≤ d− c+∆0 ≤ 2(d− c)(cos(π/2− r0))−1 ≤ 4δ(cos(π/2− r0))−1 ≤ 8−1(b−a). (4.42)

Set
S3 = S2 − ∆1. (4.43)

Combined with (4.43), (4.35), (4.24), (4.21) and (4.13) the inequality (4.42) implies that

S3 ≥ S1 − ∆1 = S − ∆1 − d + c ≥ S − ∆1 − 2δ ≥ b − a − 8−1(b − a) − 16−1(b − a) ≥ (3/4)(b − a). (4.44)

Define
θ3(t) = θ2(t), t ∈ [0, b2 − ∆1], θ3(t) = θ2(t + ∆1), t ∈ [b2 − ∆1, S3] (4.45)
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(see (4.41)). Clearly θ3 ∈ W 1,2(0, S3). In view of (4.45), (4.43), (4.41), (4.42) and (4.37)

∫ S3

0

cos(θ3(t))dt =
∫ b2−∆1

0

cos(θ2(t))dt +
∫ S2

b2

cos(θ2(t))dt

=
∫ S2

0

cos(θ2(t))dt −
∫ b2

b2−∆1

cos(θ2(t))dt =
∫ S2

0

cos(θ2(t))dt = L. (4.46)

By (4.45), (4.43), (4.41), (4.42), (4.38) and (4.39)

∫ S3

0

sin(θ3(t))dt =
∫ b2−∆1

0

sin(θ2(t))dt +
∫ S2

b2

sin(θ2(t))dt

=
∫ S2

0

sin(θ2(t))dt − ∆1 = 0. (4.47)

It follows from the definition of θ1, θ2, θ3 (see (4.18), (4.20), (4.25), (4.36), (4.45)) that

∫ S3

0

(θ′3(t))
2dt ≤

∫ S2

0

(θ′2(t))
2dt =

∫ S1

0

(θ′1(t))
2dt ≤

∫ S

0

(θ′(t))2dt. (4.48)

We estimate ∫ S3

0

β(θ3(t))dt −
∫ S

0

β(θ(t))dt.

By (4.45) and (4.43)

∫ S3

0

β(θ3(t))dt =
∫ b2−∆1

0

β(θ2(t))dt +
∫ S2

b2

β(θ2(t))dt

=
∫ S2

0

β(θ2(t))dt −
∫ b2

b2−∆1

β(θ2(t))dt.

Combined with (4.41), (4.42), (4.36), (4.34), (4.35) and (1.2) this equality implies that

∫ S3

0

β(θ3(t))dt =
∫ S2

0

β(θ2(t))dt − ∆1β(π/2)

= −∆1β(π/2) + ∆0β(θ(t0)) +
∫ t1

0

β(θ1(t))dt +
∫ S1

t1

β(θ1(t))dt

= ∆1β(π/2) + ∆0β(θ(t0)) +
∫ S1

0

β(θ1(t))dt.

Together with the definition of θ1 (see (4.18), (4.20), (4.25)) this equality implies that

∫ S3

0

β(θ3(t))dt = −∆1β(π/2) + ∆0β(θ(t0)) +
∫ S

0

β(θ(t))dt −
∫ d

c

β(θ(t))dt.

Thus ∫ S3

0

β(θ3(t))dt −
∫ S

0

β(θ(t))dt = −∆1β(π/2) + ∆0β(θ(t0)) −
∫ d

c

β(θ(t))dt. (4.49)
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In view of (1.3) and (4.27)

∆0β(θ(t0)) −
∫ d

c

β(θ(t))dt = β(θ(t0))[∆0 − (d − c)]

+
∫ d

c

[β(θ(t0)) − β(θ(t))]dt ≤ β(0)[∆0 − d + c] + ε(d − c). (4.50)

By (4.30), (4.27), (4.16), (4.9) and (4.11)

∆0 − d + c = (cos(θ(t0)))−1

∫ d

c

[cos(θ(t)) − cos(θ(t0))]dt

≤ (cos(θ(t0)))−1

∫ d

c

|θ(t) − θ(t0)|dt

≤ (cos(θ(t0)))−1ε(d − c) ≤ ε(d − c)(cos(π/2 − r0)))−1. (4.51)

Combined with (4.50) the relation (4.51) implies that

∆0β(θ(t0))−
∫ d

c

β(θ(t))dt ≤ β(0)(d−c)(cos(π/2−r0))−1ε+ε(d−c) = (d−c)[β(0)ε(cos(π/2−r0))−1+ε]. (4.52)

Relations (4.39), (4.28), (4.31), (4.16) and (4.9) imply that

∆1 ≥ −∆0 sin(θ(t0)) ≥ − sin(θ(t0))(d − c) ≥ (d − c) sin(γ).

Together with (4.49), (4.52) and (4.12) this inequality implies that

∫ S3

0

β(θ3(t))dt −
∫ S

0

β(θ(t))dt

≤ (d − c)[−β(π/2) sin(γ) + ε(β(0)(cos(π/2 − r0))−1 + 1)]

≤ −(d − c) sin(γ)β(π/2)/2. (4.53)

For i = 1, 2, 3 set

yi(τ) = y(0) +
∫ τ

0

sin(θi(t))dt, τ ∈ [0, Si]. (4.54)

We estimate
∫ S

0 (y(t))2dt − ∫ S3

0 (y3(t))2dt. Lemma 2.3 implies that

|y(t)| ≤ 8Lβ(0)(β(π/2))−1, t ∈ [0, S]. (4.55)

It follows from (4.55), (4.54), the definition of θ1 (see (4.18), (4.20), (4.25)), Lemmas 2.6 and 2.7 and (4.10)
that ∣∣∣∣∣

∫ S1

0

(y1(t))2dt −
∫ S

0

(y(t))2dt

∣∣∣∣∣ ≤ (d − c)(8Lβ(0)(β(π/2))−1)2

+ (d − c)S(16Lβ(0)(β(π/2))−1 + d − c)

≤ (d − c)[64(Lβ(0)(β(π/2))−1)2 + 17(Lβ(0)(β(π/2))−1)2]

= (d − c)81(Lβ(0)(β(π/2))−1)2. (4.56)
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Relations (4.54), (4.55), (4.24), (4.10) and (4.13) imply that for all t ∈ [0, S1]

|y1(t)| ≤ |y(0)| + t ≤ |y(0)| + S1 ≤ 8Lβ(0)(β(π/2))−1 + S ≤ 9Lβ(0)(β(π/2))−1.

Combined with (4.54), (4.36), Lemma 2.8, (4.31), (4.22), (4.10) and (4.13) this inequality implies that

∣∣∣∣∣
∫ S2

0

(y2(t))2dt −
∫ S1

0

(y1(t))2dt

∣∣∣∣∣ ≤ ∆0(9Lβ(0)(β(π/2))−1 + ∆0)2

+ ∆0S1(∆0 + 18Lβ(0)(β(π/2))−1)

≤ ∆0[(10Lβ(0)(β(π/2))−1)2 + 19(Lβ(0)(β(π/2))−1)2]

≤ 29(d − c)(cos(π/2 − r0))−1(Lβ(0)(β(π/2))−1)2. (4.57)

In view of (4.35), (4.31), (4.21) and (4.13)

S2 = S1 + ∆0 ≤ S + (d − c)(cos(π/2 − r0))−1

≤ S + 2δ(cos(π/2 − r0))−1 ≤ S + b − a ≤ 2S. (4.58)

By (4.54), (4.55), (4.58) and (4.10) for each t ∈ [0, S2]

|y2(t)| ≤ |y(0)| + t ≤ |y(0)| + S2 ≤ 8Lβ(0)(β(π/2))−1 + 2S ≤ 10Lβ(0)(β(π/2))−1. (4.59)

It follows from (4.54), (4.58), (4.59), (4.45), (4.40)–(4.42), Lemma 2.7 and (4.10) that

∣∣∣∣∣
∫ S2

0

(y2(t))2dt −
∫ S3

0

(y3(t))2dt

∣∣∣∣∣ ≤ ∆1(10Lβ(0)(β(π/2))−1)2

+ ∆1S2(20Lβ(0)(β(π/2))−1 + ∆1)

≤ ∆1[102(Lβ(0)(β(π/2))−1)2 + 2S(20Lβ(0)(β(π/2))−1 + S)]

≤ 142∆1[Lβ(0)(β(π/2))−1)2.

Together with (4.42) this implies that

∣∣∣∣∣
∫ S2

0

(y2(t))2dt −
∫ S3

0

(y3(t))2dt

∣∣∣∣∣ ≤ 142(Lβ(0)(β(π/2))−1)22(d − c)(cos(π/2 − r0))−1.

Combined with (4.57) and (4.56) this inequality implies that

∣∣∣∣∣
∫ S

0

(y(t))2dt −
∫ S3

0

(y3(t))2dt

∣∣∣∣∣ ≤ 81(d − c)(Lβ(0)(β(π/2))−1)2

+ 29(d − c)(cos(π/2 − r0))−1(Lβ(0)(β(π/2))−1)2

+ 284(d− c)(cos(π/2 − r0))−1(Lβ(0)(β(π/2))−1)2

≤ 400(d− c)(Lβ(0)(β(π/2))−1)(cos(π/2 − r0))−1. (4.60)
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By (1.5), (4.60), (4.6), (4.48), (4.53) and (4.5)

JL
ρσ(θ3, y3) − JL

ρσ(θ, y) = σ

[∫ S3

0

(y3(t))2dt −
∫ S

0

(y(t))2dt

]

+ ρ

[∫ S3

0

(θ′3(t))
2dt −

∫ S

0

(θ′(t))2dt

]
+
∫ S3

0

β(θ3(t))dt −
∫ S

0

β(θ(t))dt

≤ 400σ1((d − c)(Lβ(0)(β(π/2))−1)2(cos(π/2 − r0))−1 +
∫ S3

0

β(θ3(t))dt −
∫ S

0

β(θ(t))dt

≤ 400(d− c)σ1(L1β(0)(β(π/2))−1)2(cos(π/2 − r0))−1 − (d − c) sin(γ)β(π/2)/2 < 0,

a contradiction. The contradiction we have reached proves Theorem 1.1.

5. The parameter σ1 as a function of β, L1 and ρ1

Let ρ1, L1 > 0. We proved the existence of a positive number σ1 which depends on β, L1, ρ1 such that the
assertion of Theorem 1.1 holds. In this section we obtain an explicit expression for σ1 which is a function of β,
L1, ρ1. We assume that

L1 > 1 and 16−1π2ρ1L
−2
1 (β(0))−1 < 1, (5.1)

set
r1 = β(π/2)(β(0))−116−1 (5.2)

and observe that r1 satisfies (3.2). Clearly
0 < r1 < π/16, (5.3)

so that
r1/2 ≤ cos(π/2 − r1) ≤ r1. (5.4)

Relations (5.4) and (5.2) imply that

β(0) cos(π/2 − r1) = r1β(0) ≤ β(π/2)16−1.

Together with (5.3) this implies that (3.2) holds. Put

r0 = r1/3. (5.5)

Then (3.3) is valid. Set
σ0 = 10−3β(π/2)[16L1β(0)(β(π/2))−1]−2. (5.6)

Clearly (3.5) is true with L0 = L1 and ∆0 = 16r1β(0)β(π/2)−1. We showed that the assertion of Theorem 3.1
holds with L0 = L1. Thus (A1) holds (see Sect. 4). Now we need to choose positive numbers γ, σ1. Set

γ = arcsin(2−1(β(0))−1β(π/2))min{1, 16−1π2ρ1L
−2
1 (β(0))−1}. (5.7)

Clearly (4.3) holds.
Finally we need to choose σ1 > 0 which satisfies (4.4) and (4.5). Set

σ1 = (β(0))−6β(π/2)6L−5
1 ρ1(17 · 400 · 162 · 203)−1. (5.8)
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It follows from (5.7), (5.5), (5.3), (5.2), (5.1) and (5.8) that

8−1 sin(γ)β(π/2)[1 + (cos(π/2 − r0))−1]−1(4 + 16L1β(0)(β(π/2))−1)−3

= 2−1(β(0))−1β(π/2)min{1, 16−1π2ρ1L
−2
1 (β(0))−1}8−1β(π/2)[1

+(cos(π/2 − r0))−1]−1(4 + 16L1β(0)(β(π/2))−1)−3

≥ 2−1(β(0))−1β(π/2)min{1, π216−1ρ1L
−2
1 (β(0))−1}

×8−1β(π/2)[1 + 2r−1
0 ]−1(4 + 16L1β(0)(β(π/2))−1)−3

≥ 2−1(β(0))−1β(π/2)min{1, 16−1π2ρ1L
−2
1 (β(0))−1}8−1β(π/2)[1

+6 · 16β(0)(β(π/2))−1]−1(4 + 16L1β(0)(β(π/2))−1)−3

≥ 2−1(β(0))−1β(π/2)min{1, (π2/16)ρ1L
−2
1 (β(0))−1}

×8−1β(π/2)(17 · 6)−1(β(0))−1β(π/2)(20L1)−3(β(0))−3β(π/2)3

= (β(0))−5β(π/2)6(20L1)−3 min{1, (π2/16)ρ1L
−2
1 (β(0))−1}(17 · 6)−116−1

= (β(0))−6(β(π/2))6L−5
1 ρ1(203 · 17 · 162 · 6)−1π2

> (β(0))−6(β(π/2))6L−5
1 ρ1(203 · 162)−1 = 400σ1.

Thus (4.5) holds.
By (5.8), (5.6) and (5.1)

σ1 = 10−3β(π/2)[16L1β(0)(β(π/2))−1]−2(8 · 17)−1(β(0))−4(β(π/2))3L−3
1 ρ1

= σ0(8 · 17)−1(β(0))−4(β(π/2))3L−3
1 ρ1

< σ0(8 · 17)−1(β(0))−4(β(π/2))3L−1
1 2β(0) ≤ σ0(4 · 17)−1.

Thus (4.4) is true and the assertion of Theorem 1.1 holds with σ1 defined by (5.8).
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