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LOCAL MINIMIZERS WITH VORTEX FILAMENTS
FOR A GROSS-PITAEVSKY FUNCTIONAL

Robert L. Jerrard
1

Abstract. This paper gives a rigorous derivation of a functional proposed by Aftalion and Rivière
[Phys. Rev. A 64, 043611 (2001)] to characterize the energy of vortex filaments in a rotationally
forced Bose-Einstein condensate. This functional is derived as a Γ-limit of scaled versions of the
Gross-Pitaevsky functional for the wave function of such a condensate. In most situations, the vortex
filament energy functional is either unbounded below or has only trivial minimizers, but we establish
the existence of large numbers of nontrivial local minimizers and we prove that, given any such local
minimizer, the Gross-Pitaevsky functional has a local minimizer that is nearby (in a suitable sense)
whenever a scaling parameter is sufficiently small.
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1. introduction

This paper presents a rigorous derivation of a reduced energy proposed in the physics literature to explain the
geometry of vortex filaments in rotationally forced Bose-Einstein condensates as observed in recent experiments,
see for example [17], [19]. A condensate is described by a wave function, and the wave function in the zero-
temperature limit is expected to be a critical point of the Gross-Pitaevsky energy

F (ψ) =
∫ |∇ψ|2

2
− a〈V, jψ〉 + bW (x)|ψ|2 + c|ψ|4 (1.1)

in a set of the form {ψ ∈ H1(R3; C) : ‖ψ‖2
L2 = m}. Here a, b are positive constants, W : R3 → [0,∞)

represents a confining potential, V represents the forcing, and jψ is the momentum density of the condensate,
defined in (3.2). The term −a〈V, jψ〉 is small (i.e., negative with large absolute value) if roughly speaking the
momentum density of the condensate is parallel to with the velocity field imposed on the condensate by the
rotational forcing; the notation denotes the dual pairing between a vector and a 1-form.

Various physical attributes of a Bose-Einstein condensate are encoded in the wave function ψ: for example,
|ψ|2 represents the density. A vortex filament may be thought of as a 1-dimensional curve in D along which the
complex-valued wave function ψ has a phase singularity.

In this paper I will always consider a model case, in which W is a paraboloid and V is generated by rotation
around one of the axes, a situation studied in a recent paper of Aftalion and Rivière [3]. These authors argue
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that minimizers of F with the constraint ‖ψ‖2
L2 = m will be exponentially small away from a set of the form

D := {x ∈ R
3 : ρ(x) > 0} (1.2)

where
ρ(x) = 1 − (a2

1x
2
1 + a2

2x
2
2 + a2

3x
2
3), for certain constants ai > 0. (1.3)

Moreover, in D the wave function is expected to be close to a critical point in the space H1
0 (D; C) := {u ∈

H1(D; C) : u = 0 on ∂D} of a functional that can be written

Gε
Ωε

(u) :=
∫
D

1
2
|∇u|2 − Ωε〈V, ju〉 +

1
4ε2

(ρ− |u|2)2 dx (1.4)

after a suitable nondimensionalization. Here Ωε is a real parameter corresponding to the rate of rotation and

V (x) := −x2e1 + x1e2 (1.5)

where ei denotes the standard unit vector in the ith direction. The value of ε in the experiments cited above is
on the order of 10−2 or smaller.

Aftalion and Rivière in [3] give a formal derivation, taking Gε
Ωε

as their starting point, of a functional EΩ that
describes the energy of a vortex filament when ε� 1 and Ω ≈ Ωε/| ln ε|. Such a filament can be represented by
an oriented curve, i.e. a Lipschitz function X : (a, b) ⊂ R → D. With this notation,

EΩ(X) =
∫ b

a

ρ(X(s))|Ẋ(s)| − Ωρ2(X(s))e3 · Ẋ(s) ds . (1.6)

For topological reasons vortex lines have no boundary in D, which means that

either X(a) = X(b) or X(a), X(b) ∈ ∂D (1.7)

where for example X(a) denotes the limit limt↘aX(t).
The goal of this paper is to make precise the relationship between Gε

Ωε
and EΩ, and to demonstrate some

ways in which the simpler functional EΩ captures the behavior of vortex lines in certain critical points of Gε
Ωε

when ε� 1 and Ω and Ωε are related in a suitable way. I define a critical value

Ω1 := inf{Ω > 0 : ∃X satisfying (1.7), and such that EΩ(X) < 0} (1.8)

such that for Ω < Ω1, the global minimizer of EΩ is vortex-free. It will follow from Lemma 7 that Ω1 > 0.
One of the main results shows that for corresponding values Ωε – more precisely for Ωε = Ω| ln ε|(1 + (a1

a2
)2)

– the global minizers of Gε
Ωε

are asymptotically vortex free as ε → 0. The other main results identify another
critical value Ω0 < Ω1, defined in (4.16), such that for Ω > Ω0, both EΩ and Gε

Ωε
, ε � 1 have nontrivial local

minimizers, with the corresponding vortex filaments in some sense close to each other. Here and throughout
this paper, Ω and Ωε are related as above. Note that for Ω ∈ (Ω0,Ω1) there exist stable vortex filaments with
positive energy, for both EΩ and Gε

Ωε
, ε� 1.

In all these results, “vorticity” is identified as follows: as in [3], I will write a wave function uε as a product
ηεvε, where ηε is a nearly optimal vortex-free profile (constructed at the beginning of Sect. 6) and |vε| ≈ 1.
To say that ηε is vortex-free means that it has the form ηε = fεe

iSε , where fε > 0 in D and Sε is real-valued.
Consequently, uε and vε have exactly the same phase singularities, and because |vε| ≈ 1, the asymptotic phase
singularities of vε can be identified by finding limits of the Jacobians Jvε, see for example [12]. Thus theorems
about the vorticity of uε will be stated as results about Jacobians of the auxiliary functions vε = uε/ηε.

The language of geometric measure theory is needed to make precise for example the sense in which EΩ has
local minimizers, or the sense in which the vorticity Jvε associated with a wave function uε is close to a limiting
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vortex filament. The relevant material is summarized in Section 3, where I review some general background and
then reformulate EΩ as a functional on certain weighted spaces of rectifiable currents. I also introduce some
weighted norms and seminorms and develop some facts about these spaces of currents, including compactness
and density properties.

Section 4 contains the proofs of Theorem 1 and Corollary 1, guaranteeing the existence for Ω > Ω0 of large
numbers of local minimizers of EΩ, with respect to the seminorms introduced in Section 3.

Section 5 recalls some estimates relating the Jacobian and the Ginzburg-Landau energy and proves a new
estimate in a similar vein, see Lemma 9. Although this estimate is an easy reformulation of known results, it is
useful and may be of independent interest. Section 6 uses this Jacobian estimate to prove (see Th. 2) that EΩ

arises as the Γ-limit of the functionals

u �→ 1
| ln ε|

(
Gε

Ωε
(u) −Gε

Ωε
(ηε)

)
under certain scaling assumptions, where as above ηε is a vortex-free profile and Ωε = Ω| ln ε|(1 + (a1

a2
)2). The

same theorem also contains some compactness assertions connected to the Γ-limit. These are quite delicate,
owing to the degeneracy of ρ near ∂D and the formation of boundary layers.

Section 7 contains the proof of Theorem 3, in which it is shown that if Ω is such that the minimizer of EΩ

is trivial, then minimizers of Gε
Ωε

are asymptotically vortex-free as ε → 0. Section 8 presents the proof of 4,
which shows roughly speaking that if X is a local minimizer of EΩ in the sense of Section 4, then for sufficiently
small ε there exist local minimizers uε of Gε

Ωε
with vorticity close to X in the sense that Jvε −X is small with

respect to the appropriate seminorms. Finally, Section 9 contains the proofs of some technical facts, mainly
auxiliary results about the spaces of integral currents used in this paper.

It is not hard to see that the limiting energy EΩ is either nonnegative or unbounded below, depending on the
value of Ω. This reflects the fact that in the derivation of EΩ, lower-order terms that vanish in the limit ε→ 0
include quadratic interaction terms that, for small but finite ε, make it energetically unfavorable to increase the
number of vortex lines arbitrarily. These terms can safely be neglected when studying suitable local minimizers
of Gε

Ωε
, as is done in Theorem 4, since these local minimizers can be sought in subsets of H1

0 (D; C) in which the
vorticity is controlled. A more careful accounting of these interaction terms would be required for a description
of global minimizers of Gε

Ωε
in the parameter range Ω > Ω1 in which EΩ is unbounded below.

Related works include the pioneering book of Bethuel, Brezis and Hélein [7] on Ginzburg-Landau vortices
in two dimensions, and subsequent work by Andre and Shafrir [6] and Lassoued and Mironescu [15] among
others, on the corresponding weighted problem; the analysis of asymptotics of Ginzburg-Landau minimizers in
3 and higher dimensions, initiated by Rivière [18] and subsequently explored in great depth by a large number
of researchers; work of Kohn and Sternberg [14] that developed the use of Γ-convergence results to prove the
existence of local minimizers of functionals containing a small parameter, and recent papers [13, 16] that carry
out this sort of argument for the Ginzburg-Landau functional on certain bounded domains in 3 dimensions,
with and without magnetic field.

2. notation and preliminaries

2.1. General notation

Recall that the domain D and the function ρ are defined in (1.2) and (1.3) respectively. I always assume that
a1 ≤ a2 and a3 ≤ a2, where a1, a2, a3 are the parameters in the definitions of ρ,D. The first assumption does
not entail any loss of generality, but the second does, since the x3 axis is distinguished as the axis of rotation
(recall (1.5)). The assumption a3 ≤ a2, which is needed only for Lemma 7, could almost surely be removed, but
in any case it is consistent with most physical experiments, in which the condensates are cigar-shaped, rather
than pancake-shaped.
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It is useful to define
D0 := {x ∈ D : x1 = 0}, (2.1)

D0
+ := {x ∈ D0 : x2 ≥ 0}. (2.2)

Since a1 ≤ a2, D0 is the thinnest cross-section of D that contains the distinguished x3 axis. I will often need
the function p : D → D0

+ defined by

p(x) = p(x1, x2, x3) :=

(
0,
(
a2
1

a2
2

x2
1 + x2

2

)1/2

, x3

)
= (p1(x), p2(x), p3(x)). (2.3)

Note that ρ(p(x)) = ρ(x) for all x ∈ D.
Throughout this paper I use the convention that repeated indices are summed over.
W ⊂⊂ U means that W̄ is a compact subset of U .
The characteristic function of a set W is denoted by χW , so that χW (x) = 1 if and only if x ∈ W .
For v, w ∈ C, I write (v, w) := 1

2 (vw̄ + v̄w) for the real inner product. Note that

(iv, w) = det
(

Re v Rew
Im v Imw

)
. (2.4)

The Ginzburg-Landau energy density will be denoted by

eε(u) :=
1
2
|∇u|2 +

1
4ε2

(|u|2 − 1)2. (2.5)

Notation relating to currents and differential forms is introduced in Section 3.

2.2. A lemma

The following easy lemma shows that individual terms in Gε
Ωε

are bounded above and below. It will be used
a number of times.

Lemma 1. There exists Cε depending only on εΩε and the parameters in the definitions of ρ,D, such that∫
1
2
|∇uε|2 +

1
4ε2

(ρ− |uε|2)2 dx + Ωε

∫
|juε| dx ≤ Cε(Ωε

2 +Gε
Ωε

(uε))

for every uε ∈ H1(D; C) and every ε ∈ (0, 1].

Throughout this paper the product εΩε will always be uniformly bounded, so that in effect Cε will be
independent of ε.

Proof. First note that

|ΩεV · juε| ≤ C Ωε |juε|
≤ 1

4
|∇uε|2 + CΩε

2(|uε|2 − ρ) + CΩε
2ρ

≤ 1
4
|∇uε|2 +

1
8ε2

(|uε|2 − ρ)2 + CΩε
2(ρ+ Ωε

2ε2)

≤ 1
4
|∇uε|2 +

1
8ε2

(|uε|2 − ρ)2 + CεΩε
2.

Thus the bound on Ωε

∫ |juε| follows from the bound on the other term. The above inequality also implies that

1
2
|∇uε|2 − ΩεV · juε +

1
4ε2

(ρ− |uε|2)2 + CεΩε
2 ≥ 1

2

(
1
2
|∇uε|2 +

1
4ε2

(ρ− |uε|2)2
)
.

The conclusion now follows by integrating this inequality over D. �
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3. forms and currents

It is convenient to reformulate EΩ as a functional acting on a weighted space of rectifiable 1-currents in D.
All the currents that occur in this paper admit simple representations, in terms of vector-valued measures or
skew-gradients of functions of bounded variation, and readers unfamiliar with geometric measure theory are
encouraged to consult Subsection 3.4, where these simple representations are discussed.

3.1. Basic definitions

I write ΛkRn to denote the space of k-covectors on Rn, a vector space with basis {dxα1 ∧ . . . ∧ dxαk : 1 ≤
α1 < . . . < αk ≤ n}. I define an inner product on ΛkRn by requiring that this basis be orthonormal, and I
write φ · ω for the inner product of k-covectors φ and ω. I also use the notation |φ| = (φ, φ)1/2.

Similarly, ΛkRn denotes the space of k-vectors, with the basis {eα1 ∧ . . .∧ eαk
: 1 ≤ α1 < . . . < αk ≤ n}. The

dual pairing between vectors and covectors is denoted by 〈· , · 〉, and the bases for ΛkRn and ΛkRn are assumed
to be dual, so that for example 〈φidxi, Tjej〉 =

∑
φi Ti when k = 1. The Hodge operator 
 : ΛkRn → Λn−kRn

is defined by stipulating that

〈
φ, ω〉 = φ ∧ ω for all φ ∈ Λk
R

n, ω ∈ Λn−k
R

n. (3.1)

A differential k-form on an open set U ⊂ Rn is a map φ : U → ΛkRn. I define exterior differentiation
and pullback as usual, so that for example if φ = φidxi is a one-form, then dφ = φi

xj
dxj ∧ dxi. And for

η = (η1, . . . , ηn) : W ⊂ Rm → U and φ a 1-form on U as above, the pullback η#φ is a 1-form on W defined by
η#φ = φi(η(y)) ∂ηi

∂yj
dyj .

A k-dimensional current T on an open set U ⊂ Rn is a bounded linear functional on the space of smooth
k-forms with compact support in U . The boundary of a k-dimensional current T is the k−1 dimensional current
∂T defined by ∂T (φ) = T (dφ). The image of a current T under a mapping η is defined by η#T (φ) = T (η#φ).

A current T is said to have locally finite mass in U ⊂ Rn if it can be represented in the form

T (φ) =
∫

U

〈φ, �T 〉 d‖T ‖ for φ ∈ C∞
c (U ; Λk

R
n)

where ‖T ‖ is a nonnegative Radon measure, locally finite in U , and �T is a ‖T ‖ measurable function taking
values in ΛkRn, normalized by requiring that |�T | = 1 almost everywhere. I use the notation

Mk(U) := { k-dimensional currents with locally finite mass in U}.

A current T ∈ Mk(U) is integer multiplicity rectifiable if there exists a k rectifiable1 set Γ and a Hk-measurable
function m : Γ → Z+ such that for Hk almost every x, |�T (x)| = 1 and �T (x) orients the approximate tangent
space apTxΓ, and if ∫

ψ d‖T ‖ =
∫

Γ

ψ(x)m(x)Hk(dx) for all ψ ∈ Cc(U ; R).

I will write
Rk(U) := {T ∈ Mk(U) : T is rectifiable}.

For currents defined on the domain D, we will often need the spaces

Mk,ρ(D) := {T ∈ Mk(D) :
∫
ρ d‖T ‖ <∞}, Rk,ρ(D) := Rk(D) ∩Mk,ρ(D).

1Recall that a set Γ ⊂ R
n is k rectifiable if there exists a set M0 such that Hk(M0) = 0 and C1 k-dimensional submanifolds

Mi ⊂ R
n, i = 1, 2, . . . such that Γ ⊂ ∪∞

i=0Mi. In particular if Γ is k rectifiable, then Γ has an approximate tangent space apTxΓ at

Hk a.e. x ∈ Γ, see for example [11] Vol. 1, Section 2.1.4.
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In particular we will often work with R1,ρ(D). Currents in this space have a fairly simple description as a sum
of oriented Lipschitz curves, see Lemma 3. Finally, a circle ˚ will be used to denote spaces of currents with no
boundary, for example

M̊1,ρ(D) = {T ∈ M1,ρ(D) : ∂T = 0 in D}, R̊1,ρ(D) = R1,ρ(D) ∩ M̊1,ρ(D).

3.2. Jacobians

Given an open subset U ⊂ Rm, m ≥ 2 and a function u ∈ H1(U ; C), we define the 1-form

ju = (iu, uxj) dxj . (3.2)

If u is a wave function then ju corresponds to its momentum density. Note that if u is written locally in the
form u = ρeiφ, then ju = ρ2dφ. we also define the Jacobian

Ju =
∑
j<k

(iuxj , uxk
) dxj ∧ dxk. (3.3)

From (2.4) one easily sees that Ju is just the pullback by u of the standard area form dx on C, that is
Ju = u#(dx).

It is convenient to associate with ju and Ju a m− 1-current and m− 2-current respectively, defined by


ju(ω) =
∫
D
ω ∧ ju, 
Ju(φ) =

∫
D
φ ∧ Ju. (3.4)

One easily verifies that Ju = 1
2d ju, and this implies that 
Ju = 1

2∂(
ju).

3.3. Some norms and seminorms

The mass of a current T ∈ Mk(U) is given by

MU (T ) := ‖T ‖(U) = sup
{
T (φ) : φ ∈ C∞

c (U ; Λk
R

n), ‖φ‖∞ ≤ 1
}
. (3.5)

According to my conventions, MU (T ) can be infinite for T ∈ Mk(U). For currents T ∈ Mk(D) I will often
need the weighted mass Mρ(T ), defined by

Mρ(T ) :=
∫
D
ρ d‖T ‖ = sup

{
T (φ) : φ ∈ C∞

c (D; Λk
R

n), ‖φ
ρ
‖∞ ≤ 1

}
. (3.6)

Here (and throughout this paper) ρ is the function defined in (1.3).
I next define several seminorms on currents in M̊1,ρ. The first, denoted Fρ, is a weighted analog of the flat

norm from geometric measure theory and will be used chiefly for currents in the two-dimensional cross-section
D0. For these it has a simple form, given in Lemma 4. We will also need a more complicated seminorm Fp,ρ,K .
As the subscripts indicate, the definition depends on the functions ρ and p defined in (1.3) and (2.3) and on a
compact K ⊂ D. The usefulness of these norms is based largely on the following compactness lemma:

Lemma 2. If {Rk} ⊂ M̊1,ρ(D0) is a sequence of currents for which Mρ(Rk) ≤ C, then there exists some
R ∈ M̊1,ρ(D0) such that, after passing to a subsequence,

Fρ(Rk −R) → 0 as k → ∞.
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And if {Tk} ⊂ M̊1,ρ(D) is a sequence of currents for which Mρ(Tk) ≤ C, then for every compact K ⊂ D there
exists some T ∈ M̊1,ρ such that after passing to a subsequence,

Fp,ρ,K(Tk − T ) → 0 as k → ∞.

The proof is deferred to Section 9; for now I only give the definitions. For a compact subset K ⊂ D and currents
T ∈ M̊1(D), I define the flat norm

FK(T ) = inf{MK(S) : S ∈ M2(D), ∂S = T in K}.

(This differs somewhat from the usual definition.) I also define, for T ∈ M̊1(D)

Fρ(T ) := inf{Mρ(S) : S ∈ M2,ρ(D), ∂S = T in D} (3.7)

and
Fp,ρ(T ) := Fρ(p#T ). (3.8)

Observe that if TX is the current associated with integration along a Lipschitz curve X as in (3.10) below, then
p#TX is just the current Tp◦X associated with p ◦X , which is a Lipschitz curve in the two dimensional ellipse
D0, indeed in the half-ellipse D0

+. Finally I define, for a given compact K ⊂ D

Fp,ρ,K(T ) = Fp,ρ(T ) + FK(T ). (3.9)

All facts stated about the Fp,ρ,K seminorm are valid as well for the Fp,ρ seminorm, which is just the Fp,ρ,K

seminorm for K = ∅.
For the arguments in Section 4 on local minimizers of EΩ, it is natural to work with the Fp,ρ seminorm, which

amounts to using the Fρ norm (in the simple form given in Lemma 4) in the two-dimensional cross-section D0.
A drawback of the Fp,ρ seminorm is that it is extremely degenerate: it is clear that Fp,ρ(T1 −T2) = 0 whenever
p#T1 = p#T2. This degeneracy makes it hard to find isolated local minimizers of EΩ. The Fp,ρ,K seminorms
are introduced because they are less degenerate, and therefore support isolated local minimizers.

3.4. Representations of currents

It is helpful to reformulate EΩ as a functional on R̊1,ρ(D). If X : (a, b) → D is a parametrized curve then
one can define a current TX ∈ R1(D) corresponding to integration along X :

TX(φidxi) =
∫ b

a

φi(X(t))Ẋ i(t)dt, φ = φidxi ∈ C∞
c (D; Λ1

R
3). (3.10)

In addition, ∂T = 0 in D if and only if X has no boundary in the sense of (1.7).
I will regard the functional EΩ defined in (1.6) as a special case of a functional, still denoted EΩ, defined on

currents T ∈ R̊1,ρ(D):

EΩ(T ) :=
∫
ρ ‖T ‖(dx)− ΩT (ρ2dx3), T ∈ R̊1,ρ(D). (3.11)

If X is a parametrized curve without boundary in D and TX ∈ R̊1(D) is defined as in (3.10) then EΩ(TX) =
EΩ(X), where the right-hand side is understood in the sense of (1.6). I will henceforth always take EΩ to be as
defined in (3.11). Note that the critical value Ω1 defined in (1.8) in terms of Lipschitz curves can be equivalently
defined by

Ω1 := inf{Ω > 0 : ∃T ∈ R̊1,ρ(D) such that EΩ(T ) < 0}. (3.12)
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I will also sometimes use the notation EΩ = E0 − ΩL, where

E0(T ) =
∫
ρ d‖T ‖ = Mρ(T ), L(T ) = T (ρ2dx3). (3.13)

The following decomposition is useful:

Lemma 3. If U ⊂ Rn, T ∈ R1(U) and ∂T has locally finite mass in U , then there exists a family of at most
countably many Lipschitz curves {Xi} such that T =

∑
i TXi , with

‖T ‖ =
∑

i

‖TXi‖ and ‖∂T ‖ =
∑

i

‖∂TXi‖ as measures. (3.14)

In particular, if T ∈ R̊1,ρ(D) then there exist Xi such that TXi ∈ R̊1,ρ(D), T =
∑
TXi , and EΩ(T ) =∑

iEΩ(TXi). (Here TXi is as in (3.10).)

The proof is given in Section 9.
I will later reduce the problem of finding Fp,ρ,K-local minimizers of EΩ in R̊1,ρ(D) to the study of Fρ-local

minimizers in R̊1,ρ(D0). This is useful because in the 2-dimensional domain D0 one can work with BV functions
instead of currents:

Lemma 4. If T ∈ R̊1,ρ(D0) then there exists u ∈ BVloc(D0; Z) such that

T (φ) =
∫
D0

u dφ =
∫
D0

φ ∧ du for all φ ∈ C∞
0 (D0; Λ1

R
2). (3.15)

When this holds I will write T = 
du. In addition,

Fρ(T ) = inf
c∈R

∫
D0

ρ|u− c|, E0(T ) =
∫
D0

ρ|∇u|. (3.16)

Conversely, given u ∈ BVloc(D0; Z) such that
∫
D0
ρ|∇u| <∞, the current T = 
du defined by (3.15) belongs to

R̊1,ρ(D0), and (3.16) holds. Finally, if T is supported in D0
+ then u can be taken to be supported in D0

+, and
when this is done, Fρ(T ) =

∫
D0
ρ|u|.

Proof. For T ∈ R̊1,ρ(D0), since ∂T = 0, there exists an integer multiplicity locally normal 2-current S on D0

such that ∂S = T . In general, n-dimensional locally normal currents in n-dimensional domains can be identified
with functions of locally bounded variation, so that there exists some u ∈ BVloc(D0) such that S(ψ) =

∫
D0
ψu for

all compactly supported 2-forms ψ, and hence (3.15) holds. Since S is integer multiplicity, u is integer-valued.
The claim that Fρ(T ) = infc∈R

∫
D0
ρ|u − c| follows from two observations. First, if S is a 2-current in D0

represented by integration against a function v, then Mρ(S) =
∫
D0
ρ|v| by definition. Second, if ∂S = ∂S′ = T ,

then ∂(S− S′) = 0 in D0, and so the current S−S′ is represented by integration against a constant function c.
The identity E0(T ) =

∫
D0
ρ|∇u| is a direct consequence of the definitions. Conversely, if u ∈ BVloc(D0; Z)

with
∫
ρ|∇u| <∞, then it follows from standard properties of BV functions2 that 
du ∈ R̊1,ρ(D0; Z) and (3.16)

holds.
If T is supported in D0

+ and (3.15) holds, then ∇u = 0 in the sense of distributions in D0 \D0
+. Thus u = c

almost everywhere in this set, and so by adding a constant we can arrange that the support of u is contained
in D0

+. Finally, if suppu ⊂ D0
+ and c′ is any constant, then |u| − |u − c′| = −|c′| a.e. in D0 \ D0

+, and
|u| − |u− c′| ≤ |c′| in D0

+, and so ∫
D0

ρ(|u| − |u− c′|) ≤ 0

2That is, the fact that the gradient of a function in BVloc is carried by an (n − 1) rectifiable set.
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for every c′. Thus
∫
D0
ρ|u| = infc′∈R

∫
D0
ρ|u− c′| = Fρ(T ). �

The following lemma shows that L is continuous with respect to the Fp,ρ,K seminorms.

Lemma 5. There exists a constant C such that for any current T ∈ M̊1,ρ(D)

|L(T )| = |T (ρ2dx3)| ≤ CFp,ρ(T ). (3.17)

As a result, |L(T )| ≤ Fp,ρ,K(T ) for all compact K ⊂ D.

Proof. First, one easily checks from the definitions (2.3), (1.3) of p and ρ that p#(ρ2dx3) = ρ2dx3, and so
T (ρ2dx3) = p#T (ρ2dx3). Also, by definition, Fp,ρ(T ) = Fρ(p#T ), so to prove (3.17), it suffices to check that

|T (ρ2dx3)| ≤ CFρ(T )

for all T ∈ M̊1,ρ(D0) with support in D0
+. Given such a current T , write T = 
du and using Lemma 4,

T (ρ2dx3) =
∫
D0

2ρρx2dx
2 ∧ dx3 ≤ C

∫
D0

ρ|u| = Fρ(T ). �

4. Local minimizers for the reduced energy

The main result of this section provides a description of large numbers of nontrivial local minimizers of the
line energy EΩ. The proof relies heavily on earlier joint work with A. Aftalion, including [1], which shows
among other results that the energy of a vortex filament in D can be lowered by pushing it forward via the
map p, see (2.3), into the two-dimensional cross-section D0 of the ellipsoid D; and [2], which constructs certain
constrained minimizers of EΩ in the space of Lipschitz curves in D0. The relevant results are described more
precisely below. The point here is to show that these constrained minimizers in D0 can be used to construct
large families of local (but unconstrained) minimizers of EΩ in spaces of integral currents on D, with respect to
the norms on these spaces introduced in Section 3.

First we give:

Definition 1. For compact K ⊂ D, a set M ⊂ R̊1,ρ(D) is said to be a Fp,ρ,K-local minimizing set of EΩ if M
is compact with respect to the Fp,ρ,K seminorm, and if there exists σ > 0 such that for

Oσ :=
{
T ∈ R̊1,ρ(D) : min

S∈M
Fp,ρ,K(T − S) < σ

}
, (4.1)

the functional EΩ attains its minimum in Oσ, and in addition, for T ∈ Oσ ,

EΩ(T ) = min
S∈Oσ

EΩ(S) if and only if T ∈M.

A current T ∈ R̊1,ρ(D) is said to be a Fp,ρ,K -local minimizer of EΩ if M = {T } is a Fp,ρ,K-local minimizing
set.

A Fρ-local minimizing set is defined in a strictly analogous way.
It is clear that if K1 ⊂ K2 are two compact sets, then any Fp,ρ,K1-local minimizing set is also a Fp,ρ,K2 -local

minimizing set.
In the statement of the theorem below, a1, a2 refer to parameters in the definitions of ρ,D; the condition

a1 = a2 means that D is rotationally symmetric about the x3 axis, and when this holds, the symmetry leads to a
large number of local minimizers. Recall that Ω1 is defined in (3.12) and that we have assumed for concreteness
that 0 < a1 ≤ a2.
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Theorem 1. There exists Ω0 < Ω1 such that for every Ω > Ω0, there exists a set MΩ ⊂ R̊1,ρ(D) of multiplicity
1 currents, compact with respect to the Fp,ρ seminorm, such that for every positive integer k,

Mk
Ω :=

{
k∑

i=1

Ti : Ti ∈MΩ

}
(4.2)

is a Fp,ρ,K-local minimizing set. Moreover, if a1 < a2 then for a.e. Ω > Ω0, MΩ contains exactly one element,
denoted T+

Ω , supported in {x ∈ D0 : x2 ≥ 0}, and exactly one element T−
Ω supported in {x ∈ D0 : x2 ≤ 0}, and

nothing else. Either T+
Ω and T−

Ω have disjoint support, or they are equal and supported on the x3-axis. In the
latter case, Mk

Ω consists of a single Fp,ρ,K-local minimizer.

One can think of Mk
Ω as the set of local minimizers that have k vortex lines (generally not all distinct). Note

that the sum on the right-hand side of (4.2) may include terms repeated according to multiplicity.
In physical terms, the fact that Ω0 < Ω1 shows the existence of stable vortex filaments in some parameter

range where the energy of a vortex line is necessarily positive.
The above theorem is true for any compactK ⊂ D, and in particular for the highly degenerate Fp,ρ seminorm,

corresponding to K = ∅. If K is chosen more carefully we generically obtain isolated local minimizers rather
than locally minimizing sets.

Corollary 1. For a1 < a2 and for a.e. Ω > Ω0, for every pair of nonnegative integers k1, k2, there exists a
compact set K ⊂ D such that TΩ;k1,k2 = k1T

+
Ω + k2T

−
Ω is a Fp,ρ,K-local minimizer for EΩ.

Proof. For a1 < a2 and a.e. Ω > Ω0, MΩ contains either one or two elements. In the former case, the
conclusion follows directly from the definition of local minimizer, so we assume that MΩ contains exactly two
distinct currents T+

Ω �= T−
Ω . Then Mk

Ω = {TΩ;k1,k2 : k1 + k2 = k, k1, k2 ≥ 0} is a finite set. As a result, if the
compact set K is sufficiently large and σ is sufficiently small, then

FK(TΩ;k1,k2 − TΩ;l1,l2) > 2σ

whenever k1 + k2 = l1 + l2 = k and k1 �= l1. Consequently Ok
Ω,σ (defined as in (4.1), with M replaced by Mk

Ω)
consists of k + 1 pairwise disjoint components, each of the form

{T ∈ R̊1,ρ(D) : Fp,ρ,K(T − TΩ;k1,k2) < σ},

and from this and the previous theorem, it is easy to see that each TΩ;k1,k2 is a Fp,ρ,K -local minimizer. �

I will prove Theorem 1 by first proving an analogous result for a class of currents in the two-dimensional
ellipse D0, and then showing that the theorem reduces to this special situation. The key point in this reduction
is supplied by the following lemma, which shows that a general current in D can be pushed forward into D0 in
a way that reduces its energy.

Lemma 6. If T ∈ R1,ρ(D), then (for p : D → D0 as defined in (2.3)),

L(p#T ) = L(T ) and E0(p#T ) ≤ E0(T ).

If equality holds in the latter then T can be written in the form T =
∑
TXi as in (3.14), where each TXi satisfies:

if a1 < a2 : supp TXi ⊂ D0; or �TXi(x) = ±e3 for ‖TXi‖ a.e. x. (4.3)

if a1 = a2 : after a rotation about the x3 axis, supp TXi ⊂ {x : x1 = 0}. (4.4)
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Recall that if TX is a current associated with integration along a Lipschitz curve X : R ⊃ [a, b] → D, then
p#TX = Tp◦X .

The proof is given in Section 9. The point is that it reduces, via Lemma 3, to the case of a current of the
form TX , where X is a Lipschitz curve. In this case the lemma is easy and has already been proved in [1], apart
from the conditions for equality, which are not hard to deduce.

The next lemma, whose proof also appears in Section 9, is similarly proved by combining analogous results
from [1] in the context of Lipschitz curves with Lemma 3.

Lemma 7. There exists a constant C > 0 such that

|L(T )| ≤ CE0(T )3/2

for every T ∈ R̊1,ρ(D).

Theorem 1 will be deduced from the following proposition. I use the notation

R̊∗
1,ρ := {T ∈ R̊1,ρ(D0) : supp(T ) ⊂ D0

+}.

Proposition 1. There exists Ω0 < Ω1 such that for every Ω > Ω0, there exists a set M∗
Ω ⊂ R̊∗

1,ρ of multiplicity
1 currents such that for every positive integer k

M∗,k
Ω :=

{
k∑

i=1

Ti : Ti ∈M∗
Ω

}
(4.5)

is a Fρ-local minimizing set in R̊1,ρ(D0). Moreover for almost every Ω > Ω0, M∗
Ω contains exactly one element,

and its support is either the x3 axis or is bounded away from the x3 axis.

Proof. I will first show that the conclusions of the proposition hold for Ω > Ω1 as defined in (3.12). In the final
step I will show how to modify the argument to obtain the same conclusions for Ω > Ω0, for Ω0 < Ω1 as defined
in (4.16).

A couple of times during the proof I will need the elementary facts that, if u±, v± denote the positive and
negative parts of functions u, v ∈ BVloc then

|u− v| = |u+ − v+| + |u− − v−|, (4.6)

|∇u| = |∇u+| + |∇u−| as measures. (4.7)

1. In view of Lemma 4, there is a one-to-one correspondence between currents T ∈ R̊1,ρ(D0) with support in
D0

+ and functions u ∈ BVloc(D0; Z) supported in D0
+ and satisfying

∫
D0
ρ|∇u| <∞. Throughout this proof I

will work with BVloc functions supported in D0
+, so that Fρ(T ) =

∫
D0
ρ|u| when T = 
du.

First note that if T = 
du as in (3.15), then

EΩ(T ) =
∫
D0

ρ|∇u| − 2Ω
∫
D0

ρρx2u dx2dx3 =: EΩ
∗(u). (4.8)

Note also that if u ∈ BVloc(D0; Z), u ≥ 0, and suppu ⊂ D0
+ then EΩ

∗(u) ≥ 0, as ρρx2 < 0 in D0
+. For the

same reason, E0(
du) = Mρ(
du) is bounded for any EΩ-minimizing sequence in

A := {u ∈ BVloc(D0; Z) : suppu ⊂ D0
+, u ≥ −1 a.e.}

It therefore follows from a standard lowersemicontinuity argument using the compactness Lemma 2 that EΩ
∗

attains its minimum in A. A proof with more details can be found in [2], Proposition 1.1, where it is also shown
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that the support of any minimizer is either compactly contained in {x ∈ D0 : x2 > 0} or else is all of D0
+. (In

the latter case, the associated current 
du is supported on the x3 axis.) It is clear that any minimizing function
is nonpositive for a.e. x. Moreover, the definition (3.12) of Ω1 implies that infv∈AEΩ

∗(v) < 0 for Ω > Ω1, and
so for such Ω any minimizer is nontrivial. Define

M∗
Ω := {
du : u ∈ A, EΩ

∗(u) = min
v∈A

E∗
Ω(v)} (4.9)

and let M∗,k
Ω be as in (4.5). It follows from [2], Theorem 1.3 that for a.e. Ω, M∗

Ω contains exactly one element.
Furthermore, the same compactness and lowersemicontinuity argument that proves existence of minimizers of
EΩ

∗ in A also shows that the set M∗
Ω of such minimizers is Fρ-compact, and the Fρ-compactness of M∗,k

Ω for
arbitrary k follows easily.

2. Now fix k ≥ 1 and T = 
dv ∈ O∗,k
Ω,σ, where

O∗,k
Ω,σ := {T ∈ R̊1,ρ(D0) : min

S∈M∗,k
Ω

Fρ(T − S) < σ}. (4.10)

I will show that if σ is taken to be sufficiently small, then v can be written in the form v = v0 + · · · + vk, with

EΩ
∗(v) =

k∑
j=0

EΩ
∗(vj), vj ∈ A for j = 1 . . . , k, and EΩ

∗(v0) ≥ 0, (4.11)

and moreover EΩ(v0) > 0 if v0 �= 0. This will prove that M∗,k
Ω is Fρ-local minimizing, because (4.11) implies

that

EΩ
∗(v) ≥

k∑
j=1

EΩ
∗(vj) ≥ k min

w∈A
EΩ

∗(w) (4.12)

with equality iff v0 = 0 and 
dvj ∈M∗
Ω for j = 1 . . . , k, in other words, if and only if v ∈M∗,k

Ω .
3. To decompose v, first define v′ = max{v,−k} = (v + k)+ − k and v0 = v − v′ = −(v + k)−. Then clearly

v = v0 + v′, and v′ ≥ −k almost everywhere, and in addition |∇v| = |∇v0|+ |∇v′| as measures (by (4.7) applied
to v + k), which implies that

EΩ
∗(v) = EΩ

∗(v0) + EΩ
∗(v′). (4.13)

I claim that EΩ
∗(v0) ≥ 0, with strict inequality unless v0 = 0. To prove this, note that by the definition (4.10)

of O∗,k
Ω,σ , there exists some S = 
du ∈M∗,k

Ω such that∫
ρ|u− v| = Fρ(
du− 
dv) < σ. (4.14)

By the definition of M∗,k
Ω , u ≥ −k a.e., so (4.6) applied to v+k, u+k implies that |v0| ≤ |v0|+ |u−v′| = |u−v|.

Thus

|L(
dv0)| =
∣∣∣∣∫D0

2ρρx2v0

∣∣∣∣ ≤ C

∫
D0

ρ|v0| ≤ C

∫
D0

ρ|u− v| < Cσ. (4.15)

It follows from this and Lemma 7 that

EΩ(
dv0) = E0(
dv0) − ΩL(
dv0) ≥ c|L(
dv0)|2/3 − ΩL(
dv0) > 0

for a suitably small choice of σ.
4. In view of (4.13), it now suffices to show that v′ can be written as a sum v′ = v1 + . . .+ vk with vj ∈ A

for all j = 1, . . . , k and EΩ
∗(v′) =

∑k
j=1 EΩ

∗(vj). In fact, by an induction argument, it is enough to show that
we can write v′ = v1 + v′′, where v1 ∈ A, v′′ ≥ −k+ 1 a.e., and EΩ

∗(v′) = EΩ
∗(v1) +EΩ

∗(v′′). To achieve this,
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simply let v′′ = max{−k+ 1, v′} and v1 = v′ − v′′; the verification that EΩ
∗(v′) = EΩ

∗(v1)+EΩ
∗(v′′) is exactly

like the proof of (4.13) above.
This completes the proof of the proposition for Ω > Ω1.
5. I now show that for sufficiently large there is a number Ω0 < Ω1 such that the conclusions of the proposition

remain valid for all Ω > Ω0.
Define L∗(u) = L(
du) = 2

∫
D0
ρρx2u, and, for 0 < 
 < 
max := maxu∈A L∗(u), define

A� := {u ∈ A : L∗(u) = 
},
A>� := {u ∈ A : L∗(u) > 
},
A≥� := {u ∈ A : L∗(u) ≥ 
},

and
e∗0(
) := min{E∗

0 (u) : u ∈ A�}
and finally

Ω0 := inf
�′>�

e∗0(

′) − e∗0(
)

′ − 


· (4.16)

The definition of Ω1 can be rewritten as Ω1 = inf�′>0
e∗
0(�′)
�′ = inf�′>0

e∗
0(�′)−e∗

0(0)
�′−0 . Lemma 7 implies that for all


 sufficiently close to 0, e∗0(
) ≥ c
2/3, and it follows that Ω0 < Ω1.
Now fix Ω > Ω0 and 
 < 
′ such that

Ω(
′ − 
) > e∗0(

′) − e∗0(
). (4.17)

Since A≥� is Fρ-closed, by Lemma 5, familiar compactness and lowersemicontinuity arguments yield at least
one minimizer of EΩ in A≥�. Define

M∗
Ω :=

{

du : u ∈ A≥�, EΩ

∗(u) = min
v∈A≥�

E∗
Ω(v)

}
. (4.18)

Note that if u ∈M∗
Ω then

E∗
Ω(u) ≤ inf

v∈A�′
E∗

Ω(v) = e∗0(

′) − Ω
′ < e∗0(
) − Ω
 = inf

v∈A�

E∗
Ω(v)

using the definition of e∗0 and (4.17). Thus in fact {u : 
du ∈ M∗
Ω} ⊂ A>�. Note also that every minimizer is

nontrivial, since 0 �∈ A>�.
Now define M∗,k

Ω and O∗,k
Ω,σ. Given v such that 
dv ∈ O∗,k

Ω,σ and 
du ∈ M∗,k
Ω such that Fρ(
du − 
dv) < σ,

it follows exactly as in step 3 above that if σ is sufficiently small then v = v0 + v′, where v′ ≥ −k almost
everywhere, and EΩ(v) = EΩ(v0) + EΩ(v′) ≥ EΩ(v′) with strict inequality unless v0 = 0.

As in step 4, define v′′ = max{v′, k − 1} and v1 = v′ − v′′ = −(v′ + k − 1)−. Also define u1 = −(u+ k− 1)−

for u ∈ M∗,k
Ω satisfying (4.14). The proof3 of Theorem 1.2, [1], shows that if u, ũ ∈ M∗

Ω then either u ≤ ũ or
ũ ≤ u almost everywhere, and it follows that u1 ∈M∗

Ω. In addition, (4.6) implies that∫
ρ|u1 − v1| ≤

∫
ρ|u− v| < σ.

As a result,
L∗(v1) = L∗(u1) + L∗(v1 − u1) ≥ L∗(u1) − Cσ

3The theorem cited is proved for M∗
Ω as defined in (4.9), but the proof works without change for M∗

Ω as defined in (4.18).
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as in (4.15). The compactness of M∗
Ω implies that there exists σ0 > 0 such that L∗(u1) > 
+ σ0 for u1 ∈ M∗

Ω.
It follows that v1 ∈ A>� if σ is sufficiently small. The remainder of the proof follows as in step 4 above. (The
results cited in step 1 above from [2] remain valid for Ω ∈ (Ω0,Ω1].) �

Theorem 1 is an easy consequence of Proposition 1:

Proof of Theorem 1. 1. Fix Ω > Ω0 and define M∗
Ω as in (4.18). Let m∗ = E∗

Ω(u) for 
du ∈M∗
Ω. Define

MΩ := {T ∈ R̊1,ρ(D) : p#T ∈M∗
Ω, EΩ(p#T ) = EΩ(T ) = m∗}.

Given T ∈Mk
Ω, write T = T1 + · · ·Tk, with Tj ∈MΩ for all j. Then using the triangle inequality, the definition

of MΩ, and the case of equality in (4.12),

EΩ(T ) ≤
∑

EΩ(Ti) =
∑

EΩ(p#Ti) = EΩ

(∑
p#Ti

)
= EΩ(p#T ).

Comparing this with Lemma 6, we find that EΩ(T ) = EΩ(p#T ). It follows that the set Mk
Ω defined in (4.2) can

be written
Mk

Ω = {T ∈ R̊1,ρ(D) : p#T ∈M∗,k
Ω , EΩ(p#T ) = EΩ(T ) = km∗}.

Define Ok
Ω,σ := {T ∈ R̊1,ρ(D) : minS∈Mk

Ω
Fp,ρ,K(T −S) < σ}. The definition (3.8) of the Fp,ρ seminorm implies

that T ∈ Ok
Ω,σ if and only if p#T ∈ O∗,k

Ω,σ. Thus if T ∈ Ok
Ω,σ, then

EΩ(T ) ≥ EΩ(p#T ) ≥ km∗,

and at least one of the inequalities is strict unless T ∈Mk
Ω. So Mk

Ω is Fp,ρ = Fp,ρ,∅ local minimizing, and hence
also a local minimizing set with respect to the (stronger) Fp,ρ,K seminorm for any nonempty compact K ⊂ D.

2. Recall that for almost every Ω > Ω0, M∗
Ω contains a unique element, and that the support of this current

is either the x3 axis or is bounded away from the x3 axis. Identifying R̊1,ρ(D0) as a subset of R̊1,ρ(D) in the
natural way, this implies that there is a unique current T+

Ω ∈MΩ with support in D0
+ ⊂ D. When a1 < a2, the

conditions for equality in Lemma 6 imply that any other element of MΩ must have its support in D0
−. But the

problem of finding minimizers of EΩ with support in D0
− is identical to the minimization problem for currents

supported in D0
+, and so there is a unique T−

Ω ∈MΩ with support in D0
−. �

5. The Jacobian and the Ginzburg-Landau energy

This section collects some results that make precise, in various ways, the principle that the scaled Ginzburg-
Landau energy 1

| ln ε|eε(u) defined in (2.5) controls the Jacobian Ju. The first results are refinements of estimates
from [12]. The 3-dimensional version of this refined estimate (see Lem. 9) is vital for the proof of Theorem 2.

Lemma 8. For any λ > 1 there exist C,α > 0 (depending only on λ) such that for any open set U ⊂ R2 and
u ∈ H1(U ; R2),∣∣∣∣∫

U

φJu

∣∣∣∣ ≤ λ

∫
|φ|eε(u)

| ln ε| + Cεα(1 + ‖φ‖W 1,∞)
(
‖φ‖∞ + 1 +

∫
supp φ

(|φ| + 1)eε(u) dx
)

(5.1)

for all 0-forms (i.e. functions) φ ∈ C0,1
c (U).

Proof. 1. In [12], Theorem 2.1, it is proved that given λ > 1 there exist C,α > 0 (depending on λ) such that
for any u, φ as above,∣∣∣∣∫

U

φJu

∣∣∣∣ ≤ λ‖φ‖∞
∫

supp φ

eε(u)
| ln ε| + Cεα‖φ‖C0,1

(
1 +

∫
supp φ

eε(u)
)

(1 + L2(supp φ)). (5.2)
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I will deduce the lemma from this estimate. The constants α in (5.1) and in (5.2) will end up not being the
same. Note also that the right-hand side of (5.1) can remain finite even when L2(suppφ) = +∞.

2. By considering the positive and negative parts of φ, it suffices to prove the lemma for φ ≥ 0. Fix such a
function φ, and for every s ∈ R define

χs(x) = χ0≤s<φ(x) =
{

1 if 0 ≤ s < φ(x)
0 if not.

Next, for s ∈ R and δ > 0 define

χδ
s(x) =

1
δ

∫ s+δ

s

χσ(x)dσ.

Note that

φ(x) =
∫ ∞

−∞
χs(x)ds =

1
δ

∫ δ

0

∫ ∞

−∞
χs+σ(x)ds dσ

=
∫ ∞

−∞
χδ

s(x) ds =
∫ ‖φ‖∞

−δ

χδ
s(x) ds. (5.3)

In the last line I have used the fact that χδ
s ≡ 0 when s < −δ or s > ‖χ‖∞, which is an obvious consequence of

the definition. I also claim that

χδ
s ≤ χmax{s,0}, ‖∇χδ‖∞ ≤ 1

δ
‖∇φ‖∞. (5.4)

The first of these follows from the fact that χs+σ ≤ χmax{s,0} for every s ∈ R and σ ≥ 0. To prove the second,
fix x, y ∈ U . Then

|χδ
s(x) − χδ

s(y)| =
1
δ

∫ s+δ

s

|χσ(x) − χσ(y)|dσ

≤ 1
δ

∫ ∞

−∞
|χσ(x) − χσ(y)|dσ

=
1
δ
|φ(x) − φ(y)|

≤ 1
δ
‖∇φ‖∞|x− y|

establishing (5.4).
3. Now combine (5.3) and (5.2) and use (5.4) as follows:∣∣∣∣∫ φJu dx

∣∣∣∣ =

∣∣∣∣∣
∫ ‖φ‖∞

−δ

(∫
χδ

sJu dx
)

ds

∣∣∣∣∣
≤
∫ ‖φ‖∞

−δ

λ

∫
supp χδ

s

eε(u)
| ln ε|dx

+ Cεα

(
1 +

1
δ
‖∇φ‖∞

)∫ ‖φ‖∞

−δ

(
1 +

∫
supp χδ

s

eε(u)

)(
1 + L2(supp χδ

s)
)
ds.

Using the first inequality of (5.4), the first integral on the right is bounded by

δλ

∫
supp φ

eε(u)
| ln ε| dx+ λ

∫ ‖φ‖∞

0

∫
χs
eε(u)
| ln ε|dxds = λ

∫
supp φ

(φ+ δ)
eε(u)
| ln ε|dx
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after using Fubini’s Theorem as in (5.3). The second term is similarly estimated by

Cεα

(
1 +

1
δ
‖∇φ‖∞

)(
‖φ‖∞ + δ +

∫
supp φ

(φ+ δ)eε(u)
)

(1 + L2(suppφ)). (5.5)

Now we take δ = εα/2 and rename α to deduce (5.1), with a constant C depending on the support of φ. To
eliminate this dependence, let {ψk} be a partition of unity on R

2 such that each ψk satisfies L2(suppψk) ≤ C,
‖∇ψk‖∞ ≤ C, 0 ≤ ψk ≤ 1. Then given an arbitrary φ, clearly

∣∣∫ φJu∣∣ ≤ ∑
k

∣∣∫ (ψkφ)Ju
∣∣ . Taking δ = εα/2

and renaming α as above, after summing the error terms (5.5) over k one gets an error term of the desired form:

Cεα(1 + ‖φ‖W 1,∞)
(
‖φ‖∞ + 1 +

∫
supp φ

(|φ| + 1)eε(u)
)
. �

Lemma 9. There exist universal constants C,α > 0 such that, given any U ⊂ R3, and u ∈ H1(U ; R2),∣∣∣∣∫
U

φ ∧ Ju
∣∣∣∣ ≤ C

∫
|φ|eε(u)

| ln ε| + Cεα

[
(1 + ‖∇φ‖∞)

(
εα + ‖φ‖∞ +

∫
supp φ

(|φ| + 1)eε(u)
)]

(5.6)

for all φ ∈ C0,1
c (U ; Λ1R3) and ε ∈ (0, 1].

Generalizations of this lemma hold in arbitrary dimensions, by essentially the same proof as given here.
It would be interesting to know whether one can take the constant C in front of

∫ |φ| eε(u)
| ln ε| to be arbitrarily

close to 1, at the expense of making the constant in from of the error term larger. The proof here is not
sharp enough to establish such an estimate; rather, it supplies a constant that can be arbitrarily close to 2 in 3
dimensions, with a worse constant in higher dimensions.

Proof. It suffices to prove that (5.6) holds for 1-forms φ = ψdxi, for i = 1, 2, 3. For i = 1 for example, the
estimate follows by writing∫

(ψdx1) ∧ Ju =
∫

R

(∫
{(x2,x3):(x1,x2,x3)∈U}

ψ ux2 ∧ ux3dx2dx3

)
dx1

and for each fixed x1, applying the previous lemma (with some fixed value of λ, say λ = 2) to the inner
integral. �
Remark 1. The above two lemmas as stated are not invariant under the scaling φ �→ κφ, for κ > 0. One
can obtain a scale-invariant estimate by writing down the estimate obtained upon replacing φ by κφ, and then
optimizing over κ.

The next lemma assembles known results due to a variety of authors.

Lemma 10. Suppose that K is a compact subset of D, and let {uε}ε∈(0,1] ⊂ H1(D; R2) be a sequence of
functions such that

1
| ln ε|

∫
K

eε(uε) dx ≤ Cmε (5.7)

for some sequence of numbers {mε} such that 1 ≤ mε ≤ C| ln ε|. Then
{

�Juε

mε

}
is precompact in the dual

norm C0,α
c (K)∗ for every α > 0. Moreover, if J is any limit in the above sense of a convergent subsequence

(still denoted 
Juε/mε), then J has finite mass in K. If in addition µ is a nonnegative measure such that
1

mε| ln ε|eε(uε) dx→ µ weakly as measures, then

‖J‖ � µ, and
d‖J‖
dµ

≤ 1 almost everywhere (5.8)
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where ‖J‖ denotes the total variation measure associated with J . Also, if mε ≡ 1, and 
Juε is a subsequence
and J a limiting current on K such that 
Juε → J in the above sense, then 1

πJ is 1-rectifiable and without
boundary in K. Finally, for any J such that 1

πJ ∈ R̊1(D) and with finite mass in D, there exists a sequence of
functions uε ∈ H1(D; R2) such that 
Juε → J in ∪α>0C

0,α
c (K)∗ and

1
π| ln ε|eε(uε)dx ⇀ ‖J‖ weakly as measures, as ε→ 0. (5.9)

It is known that (5.8) is sharp – in other words, that a statement like (5.9) holds – when mε � | ln ε| and not
sharp when mε ≥ c | ln ε|; see [20].

Proof. Most of these results were proven first in [12] in the case mε ≡ 1 and, in the generality stated here
(indeed in considerably greater generality) in [20]. The construction of a sequence satisfying (5.9) is given in
[4,5]. The last two papers also include for example new proofs of the other results in the case mε = 1, valid for
more general energies than considered in [12]. For early results in similar spirit, see also [8]. �

6. Asypmtotics of the Gross-Pitaevsky energy

In this section I prove Γ-convergence results characterizing the asymptotic behavior of the functional Gε
Ωε

.
Following [3], I will write uε = ηεvε, where ηε is a nearly optimal vortex-free profile that will be defined in

a moment. This leads to a nice splitting of the energy, see Lemma 11. The vortex-free profile ηε will have the
form ηε = fεe

iΩεS0 , for functions fε, S0 that I now define. First, let fε : D → R minimize Gε
Ωε

in H1
0 (D; R).

Note from the definition (3.2) that j f = 0 for real-valued f , so that

Gε
Ωε

(f) =
∫
D

1
2
|∇f |2 +

1
4ε2

(ρ− f2)2dx for f ∈ H1
0 (D; R).

Since Gε
Ωε

(f) = Gε
Ωε

(|f |) for real-valued f , we may assume that fε ≥ 0 in D. Using the Euler-Lagrange equation

−∆fε +
1
ε2

(f2
ε − ρ)fε = 0 (6.1)

and the strong maximum principle one can deduce that in fact fε is positive in D. Next, define

S0(x) := CDx1x2, CD :=
a2
2 − a1

2

a2
2 + a2

1

where a1, a2 are the parameters occurring in the definitions of ρ and D. As noted in [3], S0 satisfies4

∇ · (ρ(∇S0 − V )) = 0 in D. (6.2)

From (6.2) we see that ρ(∇S0 −V ) can be written in the form ∇×Ξ, and Aftalion and Rivière [3] observe that
one can explicitly find Ξ. It is convenient to write the resulting equation in the form

ρ(∇S0 − V ) = − 1
2(1 + (a1

a2
)2)


 d(ρ2dx3) (6.3)

where 
 is defined in (3.1). Define
ηε := fεe

iΩεS0 . (6.4)

4The definition of S0 is motivated by noting that f2
ε ≈ ρ and that the Euler-Lagrange equation associated with the functional

S �→ Gε
Ωε

(fεeiΩεS) is ∇ · (f2
ε (∇S − V )) = 0.
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Given u ∈ H1
0 (D), I will often write vε = u/ηε. Finally, I define

Hε(vε) =
∫

1
2
f2

ε |∇vε|2 +
f4

ε

4ε2
(1 − |vε|2)2. (6.5)

The main result of this section is the following. The statement is clearest in the case mε = 1 (see (6.7)) which
is also the case of most interest for us.

Theorem 2. Assume that

Gε
Ωε

(uε) ≤ C| ln ε|2, and
Ωε

(1 + (a1/a2)2)| ln ε| → Ω as ε→ 0. (6.6)

Assume also that mε is a sequence of numbers such that

1
| ln ε|Hε(vε) ≤ Cmε, 1 ≤ mε ≤ C| ln ε|. (6.7)

Then there exist ε0 > 0 and α > 0 such that for every ε ∈ (0, ε0), there exists a current J̃εvε such that

∂(J̃εvε) = 0, Mρ

(
J̃εvε

mε

)
≤ C (6.8)

and J̃εvε ≈ 
Jvε in the sense that for ‖T ‖Xε := sup{T (φ) : ‖ φ
f4

ε
‖∞ + ‖∇φ

f2
ε
‖∞ ≤ 1},

‖J̃εvε − 
Jvε‖Xε ≤ Cεα for some α > 0. (6.9)

(The constants C in (6.9), (6.8) depend only on C from (6.7).) In particular, by Lemma 2, { J̃εvε

mε
} is precompact

in the Fp,ρ,K seminorm for every compact K ⊂ D, and in addition { �Jvε

mε
} is precompact as a sequence of

distributions. And if J is any limit of a convergent subsequence �Jvε

mε
, then

lim inf
1

mε| ln ε|
(
Gε

Ωε
(uε) −Gε

Ωε
(ηε)

) ≥ EΩ(J). (6.10)

In addition, if mε = 1 for all ε, then 1
πJ ∈ R̊1,ρ(D). Moreover, for any J such that 1

πJ ∈ R̊1,ρ(D) there exists
a sequence of functions uε such that 
Jvε → J in the above sense (where vε = uε/ηε) and such that

lim
1

| ln ε|
(
Gε

Ωε
(uε) −Gε

Ωε
(ηε)

)
= EΩ(J). (6.11)

The current J̃evε is obtained from Jvε

mε
by modifying it in two ways. First, Jvε is regularized by convolution with

a smoothing kernel ωδ. This is necessary because | ln ε|−1eε(vε) does not control Jvε in L1, but does control
|ωδ ∗Jvε|. Secondly, ωδ ∗Jvε is modified near ∂D. This is needed because (using the L1-type control mentioned
above)

O(1) =
Hε(vε)
| ln ε|mε

≈ 1
| ln ε|mε

∫
D
f2

ε eε(vε) dx ≈
∫
D
f2

ε

∣∣∣∣ωδ ∗ Jvε

mε

∣∣∣∣ dx.

One can check that f2
ε /ρ→ 0 at ∂D, so the above estimate (even when carried out rigorously) cannot possibly

provide uniform bounds over Mρ(ωδ ∗ Jvε

mε
) =

∫
ρ|ωδ ∗ Jvε

mε
| due to the lack of control near ∂D.

The starting point for the proof of the theorem is the following decomposition of the energy. A slightly
different decomposition was the basis for the argument in [3]. Both this lemma and its counterpart in [3] rely
on very useful ideas from [15].
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Lemma 11. For any uε ∈ H1
0 (D; C), S0 and vε

Gε
Ωε

(uε) −Gε
Ωε

(ηε) = Hε(vε) +
Ωε

2

2

∫
f2

ε (|vε|2 − 1)(|∇S0|2 − 2V · ∇S0)

+ Ωε

∫
〈f2

ε (∇S0 − V ), jvε〉
:= Hε(vε) + Iε(vε) + Jε(vε).

The proof is essentially the same as that of the corresponding point in [3]. I present it here for the reader’s
convenience.

Proof. Note that juε = f2
ε jvε + f2

ε |vε|2ΩεdS0, and

(ρ− |uε|2)2 =
(
ρ− f2

ε + f2
ε (1 − |vε|2)

)2
= (ρ− f2

ε )2 + f4
ε (1 − |vε|2)2 + 2(1 − |vε|2)(ρ− f2

ε )f2
ε ,

and that

|∇uε|2 = f2
ε |∇vε|2 + |∇fε|2 + (|vε|2 − 1)|∇fε|2

+ Ωε
2f2

ε |vε|2|∇S0|2 +
1
2
∇(f2

ε ) · ∇|v|2 + 2Ωεf
2
ε 〈∇S0, jvε〉.

Using these it is easy to check that

Gε
Ωε

(uε) − Gε
Ωε

(ηε) = Hε(vε) + Iε(vε) + Jε(vε) (6.12)

+
1
2

∫ [
(|vε|2 − 1)

(
|∇fε|2 − 1

ε2
(ρ− f2

ε )f2
ε

)
+

1
2
∇(f2

ε ) · ∇|vε|2
]

dx.

So we only need to verify that the final term vanishes. To see this, use the identity |∇fε|2 = 1
2∆(f2

ε ) − fε∆fε

and the Euler-Lagrange equation (6.1) of fε to find that

|∇fε|2 +
1
ε2

(f2
ε − ρ)f2

ε =
1
2
∆(f2

ε ).

Now the lemma follows upon substituting and by integrating by parts; the boundary terms vanish because
f ∈ H1

0 . �

In order to prove that fε converges uniformly to
√
ρ, I need a preliminary.

Lemma 12. Gε
Ωε

(fε) ≤ C(1 + | ln ε|).
Proof. It suffices to exhibit any function gε ∈ H1

0 (D) such that Gε
Ωε

(gε) ≤ C(1+ | ln ε|). Look for gε of the form
gε = γε(ρ) for

γε(s) =
{
ε−αs when s ≤ ε2α√
s when s ≥ ε2α

where α > 0 will be selected below. Then∫
|∇gε|2 =

∫
γ′ε(ρ)

2|∇ρ|2 ≤ C

∫
γ′ε(ρ)

2|∇ρ| = C

∫ ‖ρ‖∞

0

γ′ε(s)
2 H2(ρ−1(s))ds



54 R.L. JERRARD

by the coarea formula. Clearly the level sets ρ−1(s) have uniformly bounded H2 measure, so∫
|∇gε|2 ≤ C

∫ C

0

γ′ε(s)
2ds = 1 + ln(Cε−2α).

To estimate the other term, note that |∇ρ| ≥ C−1 > 0 in the region where ρ− γ2
ε �= 0, and so using the coarea

formula as above,∫
1

4ε2
(ρ− γε(ρ)2)2 ≤ C

∫
1

4ε2
(ρ− γε(ρ)2)2|∇ρ| =

C

ε2

∫ ε2α

0

(s− γε(s)2)2 = Cε6α−2

after explicitly evaluating the integral. Taking α = 1/3 gives the desired estimate. �
Lemma 13. There exists a constant C > 0 such that

√
ρ(x) − Cε1/6 ≤ fε(x) <

√
ρ(x)

for all x ∈ D and ε ∈ (0, 1].

Proof. 1. Multiply the Euler-Lagrange equation (6.1) by 2fε and rewrite to find that

−∆(f2
ε ) + 2|∇fε|2 +

2
ε2

(f2
ε − ρ)f2

ε = 0.

Define v = f2
ε − ρ. From the explicit formula for ρ we find that ∆ρ < 0, and so

−∆v < −∆(f2
ε ) ≤ − 2

ε2
v(v + ρ).

Also, v = 0 on ∂D, and so the strong maximum principle implies that v < 0 in D.
2. To prove the other inequality, note that since 0 ≤ fε <

√
ρ, the Euler-Lagrange equation (6.1) implies

that fε is superharmonic in D. Now fix x ∈ D, and write δ :=
√
ρ(x) − fε(x). I assert that if we define

r = min
{

1
2
dist (x, ∂D), C−1δ dist (x, ∂D)1/2

}
for some suitable constant C, then

√
ρ(y) ≥ √

ρ(x) − δ/2 for y ∈ Br(x). Here is the proof: from the explicit
form of ρ one computes that

|∇√
ρ(x)| =

1
2
|∇ρ|ρ−1/2 ≤ Cρ−1/2 ≤ Cdist(x, ∂D)−1/2.

Since r ≤ 1
2dist(x, ∂D), clearly |∇√

ρ(y)| ≤ Cdist (x, ∂D)−1/2 for all y ∈ Br(x) , and so the mean value theorem
and the definition of r (with a suitable choice of the constant C) imply that

√
ρ(y) ≥ √

ρ(x)−δ/2 for all y ∈ Br,
which establishes the assertion.

Since fε is superharmonic, it follows that

δ/2 =
√
ρ(x) − δ/2 − fε(x) ≤ 1

|Br|
∫

Br(x)

(
√
ρ− fε) dy.

Thus using Jensen’s inequality and the fact that fε ≥ 0,(
δ

2

)4

≤ 1
|Br|

∫
Br(x)

(
√
ρ− fε)4dy ≤ 1

|Br|
∫

Br(x)

(ρ− f2
ε )2dy ≤ C

ε2

r3
| ln ε|.
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The last inequality uses Lemma 12. Clearly δ ≤ √
ρ(x) ≤ Cdist (x, ∂D)1/2, and thus δ2 ≤ Cr. Combining this

with the above inequality yields
δ10 ≤ Cr3δ4 ≤ Cε2| ln ε|,

which implies the desired inequality. �

I now present the

Proof of Theorem 2. First, γ denotes a constant that will be specified during the course of the proof. I start by
requiring that 0 < γ < 1/6. Throughout this proof I will write δ := εγ .

All constants C in this proof are taken to be uniform for 0 < ε < 1/2 unless mentioned otherwise; they may
however depend on the constants in (6.7).
Step 1 (construction of J̃εvε). In this step I modify Jvε as described following the statement of the theorem.
In order to satisfy ∂(J̃εvε) = 0, the modification near ∂D mentioned there cannot be carried out by simple
multiplication by a cutoff function; instead a more geometrically natural construction is used.

For σ > 0, let Dσ := {x ∈ D : ρ(x) > ‖∇ρ‖∞σ}. Note that if x ∈ Dσ and y ∈ Bτ (x) for τ < σ, then
y ∈ Dσ−τ . Since γ < 1/6, Lemma 13 implies that

|1 − ρ
f2

ε
| ≤ Cε1/6−γ → 0 in Dδ. (6.13)

Let ζ be a diffeomorphism from D2δ onto D with the following properties:

ζ(x) = x for x ∈ D4δ, (6.14)

‖∇ζ‖∞ ≤ C, ρ(x)|∇2ζ(x)| ≤ C for all x ∈ D2δ (6.15)

and
ρ(x) ≥ c sup

y∈Bδ(x)

ρ(ζ(y)) for all x ∈ Dδ. (6.16)

(All the constants above are independent of ε.) Since ρ(ax) = 1−a2+a2ρ(x) for all a > 0, such a diffeomorphism
can be constructed by defining ζ(x) = xq(ρ(x)), where q satisfies

q(s) =

{
1 if s ≥ 4δ‖∇ρ‖∞,
(1 − 2δ‖∇ρ‖∞)−1/2 when s = 2δ‖∇ρ‖∞,

and
0 ≥ q′(s) ≥ −C, |q′′(s)| ≤ C/δ.

Such a function is easily seen to satisfy (6.14) and (6.15). To verify (6.16), note that if x ∈ Dδ and y ∈ Bδ(x)
then ρ(ζ(y)) ≤ ρ(y) ≤ ρ(x) + ‖∇ρ‖∞δ ≤ 2ρ(x).

Now let ωδ(x) = δ−3ω(x/δ) be a nonnegative symmetric smoothing kernel supported in Bδ(0), and for
φ ∈ C∞

c (D; Λ1R3) define
φ1

ε = ωδ ∗ ζ#φ.

For purposes of defining the convolution, set ζ#φ = 0 in R3 \ D. Note that φ1
ε is supported in Dδ. Finally,

define J̃εvε := ζ#ωδ ∗ (�Jvε

mε
), that is,

J̃εvε(φ) := 
Jvε(ωδ ∗ ζ#φ) = 
Jvε(φ1
ε) ∀φ ∈ C∞

c (D; Λ1
R

3). (6.17)

Step 2 (estimates of φ1
ε). I state these as
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Lemma 14. There exists a constant C independent of ε, φ, such that∥∥∥∥φ1
ε

f2
ε

∥∥∥∥
∞

+ εγ
∥∥∇φ1

ε

∥∥
∞ ≤ C

∥∥∥∥φρ
∥∥∥∥
∞
. (6.18)

In addition, φ− φ1
ε can be decomposed as a sum of terms φ− φ1

ε = φ2
ε + φ3

ε, such that

ε−γ

∥∥∥∥φ2
ε

f2
ε

∥∥∥∥
∞

+
∥∥∇φ2

ε

∥∥
∞ ≤ C

(∥∥∥∥ φf4
ε

∥∥∥∥
∞

+
∥∥∥∥∇φf2

ε

∥∥∥∥
∞

)
, (6.19)

∥∥∥∥dφ3
ε

f2
ε

∥∥∥∥
4

≤ Cεγ/4

(∥∥∥∥ φf4
ε

∥∥∥∥
∞

+
∥∥∥∥∇φf2

ε

∥∥∥∥
∞

)
. (6.20)

I give the proof at the end of this section. For now, I assume the lemma and continue with proof of Theorem 2.
Step 3 (proof of (6.8)). By construction of the map φ �→ φ1

ε and the fact that ∂(
Jvε) = 0 in D,

∂J̃εvε(φ) = J̃εvε(∂φ) = 
Jvε((∂φ)1ε) = 
Jvε(∂φ1
ε) = ∂(
Jvε)(φ1

ε) = 0

for all compactly supported 1-forms φ. Next I claim that (once γ is taken to be sufficiently small) if ψ is any
smooth 1-form with support in Dδ, then∣∣∣∣∫ ψ ∧ Jvε

mε

∣∣∣∣ ≤ C

∥∥∥∥ ψf2
ε

∥∥∥∥
∞

+ Cεγ (1 + ‖∇ψ‖∞) (1 + ‖ψ‖∞) . (6.21)

For future reference I record that the constants C above have the form

C
Hε(vε)
mε| ln ε| = C′ 1

mε| ln ε|
∫
Dδ

f2
ε

|∇vε|2
2

+
f4

ε

4ε2
(|vε|2 − 1)2 dx, (6.22)

where C′ is an absolute constant. This implies (6.8), since for any smooth, compactly supported 1-form with
‖φ/ρ‖∞ ≤ 1, (6.21) and (6.18) imply that

J̃εvε

mε
(φ) =

∫
φ1

ε ∧
Jvε

mε
≤ C

∥∥∥∥φ1
ε

f2
ε

∥∥∥∥
∞

+ Cεγ
(
1 +

∥∥∇φ1
ε

∥∥
∞
) (

1 +
∥∥φ1

ε

∥∥
∞
) ≤ C,

and by (3.6) this implies a uniform bound on Mρ( J̃εvε

mε
).

To prove (6.21), first define ε̄ := cε1−(γ/2), where c is chosen so that ε̄−2 ≤ f2
ε /ε

2 on Dδ; this is possible due
to (6.13). The choice of ε̄ implies that∫

Dδ

f2
ε eε̄(vε) ≤

∫
f2

ε

|∇vε|2
2

+
f4

ε

4ε2
(|vε|2 − 1)2 = Hε(vε). (6.23)

For ψ with support in Dδ, use (5.6) u replaced by vε and with ε replaced by ε̄ to find that
∫
ψ ∧ Jvε

mε
≤ A+B,

with

A = C

∫
Dδ

|ψ| eε̄(vε)
mε| ln ε̄| ,

B =
C

mε
ε̄α (1 + ‖∇ψ‖∞)

(
ε̄α + ‖ψ‖∞ +

∫
Dδ

(|ψ| + 1)eε̄(vε)
)
.
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The constant α comes from Lemma 9. In view of (6.23) and (6.7),

|A| ≤
∥∥∥∥ ψf2

ε

∥∥∥∥
∞

∫
Dδ

f2
ε

eε̄(vε)
mε| ln ε̄| ≤

∥∥∥∥ ψf2
ε

∥∥∥∥
∞

Hε(vε)
mε| ln ε̄| ≤ C

∥∥∥∥ ψf2
ε

∥∥∥∥
∞
. (6.24)

As for the other term, (6.13) and the argument of (6.24) imply that∫
Dδ

(|ψ| + 1)eε̄(vε) ≤ Cmε| ln ε̄|
∥∥∥∥ |ψ| + 1

f2
ε

∥∥∥∥
∞

≤ Cε−γmε| ln ε|(‖ψ‖∞ + 1).

As a result, recalling the definition of ε̄,

B ≤ Cεα(1−(γ/2))(1 + ‖∇ψ‖∞)ε−γ | ln ε|(1 + ‖ψ‖∞).

So if γ < α/4. then B ≤ Cεγ(1 + ‖∇ψ‖∞)(1 + ‖ψ‖∞). With (6.24), this proves (6.21).
Step 4 (proof of (6.9)).

First, using Lemma 14,

1
mε

(
Jvε − J̃εvε)(φ) =
∫

(φ− φ1
ε) ∧

Jvε

mε
=
∫
φ2

ε ∧
Jvε

mε
+
∫
φ3

ε ∧
Jvε

mε
=: I2 + I3.

From (6.21) and (6.19), it follows that

|I2| ≤ Cεγ

(∥∥∥∥ φf4
ε

∥∥∥∥
∞

+
∥∥∥∥∇φf2

ε

∥∥∥∥
∞

)
. (6.25)

To control I3, I need the estimate
‖f2

ε jvε‖4/3 ≤ C(| ln ε| + 1). (6.26)

This is proved by first noting that f2
ε jvε = juε + Ωε|uε|2dS0 – this is a short calculation – and using Hölder’s

inequality ‖juε‖4/3 ≤ ‖uε‖4‖∇uε‖2 and bounds that follow easily from (6.6) and Lemma 1. For future reference
I record the fact that the constant C in (6.26) depends only on the assumed bounds in (6.6), and not on the
assumption Hε(vε) ≤ C| ln ε|.

Now recalling that 
Jvε = 1
2∂(
jvε) or, equivalently, using the identity Jvε = 1

2d jvε and integrating by
parts, we obtain (since mε ≥ 1)

|I3| =
1
2

∣∣∣∣∫ dφ3
ε ∧ jvε

∣∣∣∣ ≤
∥∥∥∥dφ3

ε

f2
ε

∥∥∥∥
4

∥∥f2
ε jvε

∥∥
4/3

≤ Cεγ/6

(∥∥∥∥ φf4
ε

∥∥∥∥
∞

+
∥∥∥∥∇φf2

ε

∥∥∥∥
∞

)
.

by (6.20) and (6.26). With (6.25) this proves (6.9).
Step 5 (properties of limiting currents). In this step I establish properties of any limit J of a convergent
subsequence, still denoted 1

mε

 Jvε.

First, it is clear from (6.9), (6.8), and the compactness Lemma 2 that if 1
mε


 Jvε → J in the sense of
distributions, then

Fp,ρ,K

(
J̃εvε

mε
− J

)
→ 0 (6.27)

for all compact K ⊂ D, and in addition 1
mε
J̃εvε → J in the sense of distributions. Since Mρ( 1

mε
J̃εvε) ≤ C and

∂J̃εvε = 0, these properties are inherited by J , and so J ∈ M̊1,ρ(D).
The final property to be proved is that if mε ≤ C and J is a limit of 
Jvε, then J ∈ R̊1,ρ. This however is a

direct consequence of Lemma 10.
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Step 6 (proof of (6.10)). I continue to assume that 1
mε


 Jvε → J along a subsequence, in the sense of
distributions, and hence that (6.27) holds. In view of the decomposition of the energy given in Lemma 11, it is
natural to break the proof of the lower bound (6.10) into three parts:
Step 6a (lower bound for Hε(vε)). I will prove that

lim inf
ε→0

1
mε| ln ε|Hε(vε) ≥

∫
D
ρ d‖J‖. (6.28)

Note that the right-hand side is finite as a result of Step 5.
Fix any W ⊂⊂ D, and define d = min{fε(x) : 0 < ε ≤ 1, x ∈ W̄}. Lemma 13 implies that d > 0. Given

ε > 0, define ε̃ = ε/d. Then for x ∈W ,

1
mε| ln ε|f

2
ε (

|∇vε|2
2

+
f2

ε

4ε2
(|vε|2 − 1)2) ≥ ρε̃

eε̃(vε)
mε| ln ε̃| , ρε̃ := f2

ε

| ln ε̃|
| ln ε| ·

Writing ṽε̃ := vε and similarly m̃ε̃ = mε, this yields

C ≥ 1
mε| ln ε|Hε(vε) ≥

∫
W

ρε̃
eε̃(ṽẽ)
m̃ε̃| ln ε̃| ·

Since ρε̃ is bounded away from zero on W for ε sufficiently small, this implies that that 1
m̃ε̃| ln ε̃|eε̃(ṽε̃) is

uniformly bounded as a sequence on measures on W . Upon passing to a subsequence we may thus assume that
1

m̃ε̃| ln ε̃|eε̃(ṽε̃) converges weakly as measures to a limit µ. Then (5.8) implies that ‖J‖ � µ, with d‖J‖/dµ ≤ 1
almost everywhere. Rewriting the above inequality yields

1
mε| ln ε|Hε(vε) ≥

∫
W

ρ
eε̃(ṽε̃)
m̃ε̃| ln ε̃| +

∫
W

(ρε − ρ)
eε̃(ṽε̃)
m̃ε̃| ln ε̃| ·

Since ρε → ρ uniformly, it follows that

lim inf
ε

1
mε| ln ε|Hε(vε) ≥

∫
W

ρ dµ ≥
∫

W

ρ d‖J‖.

Since this holds for all W ⊂⊂ D, this implies that (6.28) holds.
Step 6b (lower bound for Iε(vε)). Since S0 and V are fixed, smooth functions and f2

ε ≤ ρ for all ε,

Iε(vε) =
Ωε

2

2

∫
f2

ε (|vε|2 − 1)(|∇S0|2 − 2V · ∇S0)

≤ CΩε
2‖f2

ε (|vε|2 − 1)‖2

≤ CεΩε
2(Hε(vε))1/2. (6.29)

And the right-hand side tends to zero as ε→ 0 as a result of the assumed bounds (6.6), (6.7) on Hε(vε) and Ωε.

Step 6c (limit of Jε(vε)). I will finish Step 6 by proving that

1
mε| ln ε|Jε(vε) =

1
mε| ln ε|Ωε

∫ 〈
f2

ε (∇S0 − V ), jvε

〉 −→ −ΩJ(ρ2dx3). (6.30)

By assumption Ωε/| ln ε| → (1 + (a1/a2)2)Ω, so I only need to prove that∫ 〈
f2

ε (∇S0 − V ),
jvε

mε

〉
−→ −1

1 + (a1/a2)2
J(ρ2dx3). (6.31)
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Let χε ∈ C∞
0 (D) be a function such that 0 ≤ χ ≤ 1,

χε(x) =
{

1 if x ∈ D2δ

0 if x �∈ Dδ
|∇χ| ≤ C/δ, (6.32)

where I continue to write δ = εγ . The definition of χ also implies that ρ|∇χε| ≤ C.
I decompose the left-hand side of (6.31) as∫ 〈

f2
ε (∇S0 − V ),

jvε

mε

〉
=
∫

χε

〈
ρ(∇S0 − V ),

jvε

mε

〉
+
∫

χε

〈
(f2

ε − ρ)(∇S0 − V ),
jvε

mε

〉
(6.33)

+
∫

(1 − χε)
〈
f2

ε (∇S0 − V ),
jvε

mε

〉
.

The last two terms are error terms and are easily estimated. For example, (6.13) readily implies that ‖χε(1 −
ρ
f2

ε
)‖4 ≤ Cε(1/6)−γ , and so by Hölder’s inequality and (6.26),∫

χε

〈
(f2

ε − ρ)(∇S0 − V ),
jvε

mε

〉
≤ C

∫
χε |1 − ρ

f2
ε

|f
2
ε |jvε|
mε

≤ Cε(1/6)−γ | ln ε|.

And similarly one can use (6.26) and the support properties of χε to find that∫
(1 − χε)

〈
f2

ε (∇S0 − V ),
jvε

mε

〉
≤ C

mε
‖1 − χε‖4‖f2

ε jvε‖4/3 ≤ C

mε
εγ/4| ln ε|.

To estimate the first term in (6.33), use (6.3) to write∫
χε

〈
ρ(dS0 − V ),

jvε

mε

〉
=

−1
2 + 2(a1/a2)2

∫
χε

〈

d(ρ2dx3),

jvε

mε

〉
=

−1
2 + 2(a1/a2)2

(∫ 〈

d(χερ

2dx3),
jvε

mε

〉
−
∫ 〈


(ρ2dχε ∧ dx3),
jvε

mε

〉)
.

The second term is an error term and is handled like the error terms above. This leaves only
−1

2+2(a1/a2)2

∫ 〈
d(χερ
2dx3), jvε

mε
〉. On account of (3.4) and the fact that 
Ju = 1

2∂(
ju), our estimate so far
can be expressed as ∫ 〈

f2
ε (∇S0 − V ),

jvε

mε

〉
=

−1
1 + (a1/a2)2


Jvε

mε
(χερ

2dx3) +O(εα) (6.34)

for some α > 0. To estimate the right-hand side, note that (6.13) implies that there exists a constant C, as
always independent of ε, such that ∥∥∥∥χερ

2

f4
ε

∥∥∥∥
∞

+
∥∥∥∥∇(χερ

2)
f2

ε

∥∥∥∥
∞

≤ C.

Then (6.9) implies that
1
mε

(

Jvε − J̃εvε

)
(χερ

2dx3) ≤ Cεα (6.35)

for some C,α > 0. And using properties of the support of 1 − χε,

1
mε

∣∣∣J̃εvε

(
(1 − χε)ρ2dx3

)∣∣∣ ≤ 1
mε

∫
{ρ<2δ‖∇ρ‖∞}

ρ2d‖J̃εvε‖ ≤ CδMρ

(
J̃εvε

mε

)
≤ Cδ
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in view of (6.8). Finally, the fact (6.27) that 1
mε
J̃ε(vε) → J in Fp,ρ,K and Lemma 5 combine to show that

J̃εvε(ρ2dx3) → J(ρ2dx3) as ε→ 0.
The previous inequality and (6.35) therefore show that �Jvε

mε
(χερ

2dx3) → J(ρ2dx3), and with (6.34) this
proves (6.31) and completes Step 6c.

Now (6.10) follows immediately from combining Steps 6a through 6c and using the decomposition of Gε
Ωε

from Lemma 11.
For future use I remark that the estimates given in this step combine to show that∣∣∣∣Jε(vε) +

Ωε

1 + (a1/a2)2
J̃εvε(ρ2dx3)

∣∣∣∣ ≤ Cεα (6.36)

for some α > 0, and an inspection of the proof shows that α is independent of uε, while C depends only on the
bounds in (6.6).
Step 7 (proof of (6.11)). To complete the proof I need to establish the existence of sequences for which the
lower bound is attained in the case when the limiting measure J is rectifiable and Hε(vε) ≤ C| ln ε|.
Step 7a (the case of finite mass). First consider J such that 1

πJ ∈ R̊1,ρ and J has finite mass in D. For such
J , let vε be a sequence such that 
Jvε → J in the sense of Lemma 10 and such that (5.9) holds, and define
uε := ηεvε. We have already seen that {
Jvε}ε∈(0,1] is precompact in the sense of distributions and (up to an
error term that vanishes as in (6.9)) in the Fp,ρ,K seminorm for all K ⊂⊂ D, and in view of the construction
of vε, the only possible limit in any of these topologies is J . Thus 
Jvε → J in the desired sense.

To establish (6.11), note that for mε ≡ 1 and 
Jvε → J as above, since ‖f2
ε ‖∞ ≤ ‖ρ‖∞ ≤ 1.

1
| ln ε|Hε(vε) ≤

∫
D
ρ
eε(vε)
| ln ε| →

∫
D
ρd‖J‖

by (5.9), and combining this with (6.29), (6.30) yields

lim sup
1

| ln ε| (G
ε
Ωε

(uε) −Gε
Ωε

(ηε)) = lim sup
1

| ln ε| (Hε(vε) + Iε(vε) + Jε(vε))

≤ EΩ(J).

The opposite inequality (6.10) has already been established in step 6.
Step 7b (the general case).

By a standard diagonalization argument, the general case follows from the case of currents with finite mass
once it is verified that

F := {T :
1
π
T ∈ R̊1,ρ(D), T has finite mass}

is dense in πR̊1,ρ(D) := {T : 1
πT ∈ R̊1,ρ(D)} in the sense that for every T ∈ πR̊1,ρ(D), there exists a sequence

of currents {Tσ}σ∈(0,1] ⊂ F such that

Fp,ρ,K(Tσ − T ) → 0, for every compact K ⊂ D, and EΩ(Tσ) → EΩ(T )

as σ → 0. This is proved in Lemma 15 in Section 9. �
I conclude this section by establishing the lemma used in step 2 of the proof of Theorem 2:

Proof of Lemma 14. Recall that φ1
ε = ωδ ∗ ζ#φ, where ζ satisfies (6.14), (6.15), and (6.16), and ωδ is a

smoothing kernel. I continue to write δ = εγ , and I define

φ2
ε = ζ#φ− ωδ ∗ ζ#φ, φ3

ε = φ− ζ#φ,

so that φ = φ1
ε + φ2

ε + φ3
ε.
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Note that φ1
ε and φ2

ε are supported in Dδ, and that (6.13) and (6.16) imply that

f2
ε (x) ≥ C−1ρ(x) ≥ C−1 sup

y∈Bδ(x)

ρ(ζ(y)) for x ∈ Dδ. (6.37)

3. To estimate ‖φ1
ε/f

2
ε ‖∞, note that

|φ1
ε(x)| ≤ ωδ ∗ |ζ#φ|(x) ≤ sup

y∈Bδ(x)

|ζ#φ(y)| ≤ C sup
y∈Bδ(x)

|φ(ζ(y))|.

With (6.37) this implies that ∥∥∥∥φ1
ε

f2
ε

∥∥∥∥
∞

≤ C

∥∥∥∥φρ
∥∥∥∥
∞
.

To finish the proof of (6.18), note that ‖ζ#φ‖∞ ≤ C‖φ‖∞ ≤ C‖φ/ρ‖L∞(D), and so

∥∥∇φ1
ε

∥∥
∞ =

∥∥(∇ωδ) ∗ (ζ#φ)
∥∥
∞ ≤ ‖∇ωδ‖1

∥∥ζ#φ
∥∥
∞ ≤ Cδ−1

∥∥∥∥φρ
∥∥∥∥
∞
.

4. To estimate φ2
ε, note that by the mean value theorem,

|φ2
ε|(x) ≤ Cδ sup

y∈Bδ(x)

|∇(ζ#φ)|(y).

Recall that if φ = φidxi then ζ#φ(y) = φi(ζ(y))ζi
xj

(y)dxj , where ζi is a component of ζ. Thus (ζ#φ)xk
=

[φi
xl

(ζ)ζl
xk
ζi
xj

+ φi(ζ)ζi
xjxk

]dxj . Using this and the bounds (6.15) on the derivatives of ζ,

|∇(ζ#φ)|(y) ≤ (|∇ζ|2|∇φ| + |∇2ζ||φ|) (ζ(y)) ≤ C

(
|∇φ| + |φ|

ρ

)
(ζ(y)).

Again using (6.37), it follows that

|φ2
ε|
f2

ε

(x) ≤ Cδ sup
y∈Bδ(x)

|∇ζ#φ|
ρ

(y) ≤ Cδ

(∥∥∥∥ φρ2

∥∥∥∥
∞

+
∥∥∥∥∇φρ

∥∥∥∥
∞

)
. (6.38)

In addition,
|∇φ2

ε|(x) ≤ |∇(ζ#φ)|(x) + sup
y∈Bδ(x)

|∇(ζ#φ)|(y) ≤ 2 sup
y∈Bδ(x)

|∇(ζ#φ)|(y)
and so the estimate

‖∇φ2
ε‖∞ ≤ C

∥∥∥∥∇φ2
ε

ρ

∥∥∥∥
∞

≤ C

(∥∥∥∥ φρ2

∥∥∥∥
∞

+
∥∥∥∥∇φρ

∥∥∥∥
∞

)
follows from the last inequality in (6.38), thereby establishing (6.19).

5. Finally, note that φ3
ε is supported in D \ D4δ, a set whose Lebesgue measure is bounded by Cδ, so

‖dφ3
ε

f2
ε
‖4 ≤ Cδ1/4‖dφ3

ε

f2
ε
‖∞. And ∥∥∥∥dφ3

ε

f2
ε

∥∥∥∥
∞

≤
∥∥∥∥dφ
f2

ε

∥∥∥∥
∞

+
∥∥∥∥dζ#φ

f2
ε

∥∥∥∥
∞

≤ C

∥∥∥∥dφ
f2

ε

∥∥∥∥
∞
.

The last estimate is obtained as above: using the fact that dζ#φ = ζ#dφ is supported in D2δ and (6.13)
and (6.16),

|ζ
#dφ
f2

ε

|(x) ≤ C
|dφ|(ζ(x))
ρ(x)

≤ C
|dφ|
ρ

(ζ(x)) ≤ C

∥∥∥∥dφ
ρ

∥∥∥∥
∞

≤ C

∥∥∥∥dφ
f2

ε

∥∥∥∥
∞

at every x in the support of φ3
ε. �
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7. Vortex-free global minimizers

The main result of this section proves that minimizers of Gε
Ωε

are asymptotically vortex-free when for the
corresponding values of Ω, the minimizer of EΩ is vortex-free. It would be interesting to know whether for fixed,
small ε, a minimizer uε is vortex-free (i.e., can be written in the form uε = feiS with f, S real-valued).

The proof is more or less a routine application of the Γ-limit result established in the previous section, with
the one difficulty that one does not know at the outset the scale of the energy, which in this case is encoded in
the constants mε.

Theorem 3. Assume that Ω < Ω1 (as defined in (3.12)) and that Ωε is related to Ω as in (6.6). Let uε minimize
Gε

Ωε
in H1

0 (D; C), and define vε = uε/ηε, where ηε is the vortex-free profile defined in (6.4). Then 
Jvε → 0 in
the sense of distributions as ε→ 0.

Proof. First, it follows from Lemma 1 that Gε
Ωε

is bounded below and that for fixed ε, Gε
Ωε

is coercive n
H1, and so standard arguments show that a minimizer uε exists. Clearly Gε

Ωε
(uε) ≤ Gε

Ωε
(ηε), so we can use

Lemma 11, (6.29), Lemma 13 and Lemma 1 to estimate

He(vε) ≤ |Iε(vε)| + |Jε(vε)|
≤ CεΩε

2Hε(vε)1/2 + C‖fε‖∞Ωε

∫
D
|jvε|

≤ CεΩε
2Hε(vε)1/2 + C| ln ε|2.

It follows that Hε(vε) ≤ C| ln ε|2, so that the hypotheses of Theorem 2 are satisfied if mε is defined by mε :=
max{1, Hε(vε)/| ln ε|}. Thus there exists J ∈ M̊1,ρ(D) such that, after passing to a subsequence if necessary,

Jvε

mε
→ J in the sense of distributions, and

0 ≥ lim inf
1

mε| ln ε|
(
Gε

Ωε
(uε) −Gε

Ωε
(ηε)

) ≥ EΩ(J).

This implies that J = 0, since if J is nontrivial, it would follow from the above that EΩ′ (J) < 0 for all Ω′ > Ω,
which is impossible in view of the assumption that Ω < Ω1 and the definition (3.12) of Ω1.

To finish the proof it is only necessary to demonstrate that mε = 1 for all ε sufficiently small. If this is not
the case, then mε| ln ε| = Hε(vε), leading to a contradiction:

0 ≥ lim inf
1

mε| ln ε|
(
Gε

Ωε
(uε) −Gε

Ωε
(ηε)

)
= lim inf

1
mε| ln ε| (Hε(vε) + Iε(vε) + Jε(vε)) by Lemma 11

= 1 by (6.29) and (6.30), since J = 0. �

8. Local minimizers of the Gross-Pitaevsky energy

The main result of this section is

Theorem 4. Suppose that M ⊂ πR̊1,ρ is a Fp,ρ,K-local minimizing set for EΩ, for some compact K ⊂ D and
some Ω > 0. Assume that Ωε is a sequence such that limε→0

Ωε

| ln ε| = Ω(1 + (a1/a2)2), as in the hypotheses of
Theorem 2.

Then there exists σ, ε0 > 0 (depending on M , Ω and D) such that for every ε < ε0, Gε
Ωε

attains its minimum
in the set 5

Aε :=
{
u ∈ H1

0 (D; C) : min
S∈M

Fp,ρ,K(S − J̃εvε) < σ

}
, (8.1)

5The proof of the upper bound (6.11) shows that Aε is nonempty for small ε.
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for
vε := u/ηε, J̃εvε := ζ#ωδ ∗ (
Jvε)

as in (6.17), with δ = εγ and γ as in Theorem 2. Moreover, Aε is open in H1
0 (D; C), so the minimizer of Gε

Ωε

in Aε is a local minimizer of Gε
Ωε

and a solution of the Euler-Lagrange equations. Finally, if u∗ε denotes a local
minimizer of Gε

Ωε
in Aε and vε

∗ = uε/ηε, then minS∈M Fp,ρ,K(S − J̃εvε
∗) → 0 as ε → 0. In particular, if M

consists of a single, Fp,ρ,K-local minimizing current S, then 
Jvε
∗ → S is the sense of distributions as ε→ 0.

In view of Theorem 1, this immediately implies the existence, for every ellipsoidal domain D, all Ω > Ω0(D),
and sufficiently small ε, of large numbers of local minimizers of EΩ. In addition, when the domain D satisfies
the nondegeneracy condition a1 �= a2, then for a.e. Ω > Ω0 and every pair of positive nonnegative integers
k1, k2, it shows the existence (for ε ≤ ε0(Ω, k1, k2,D)) of a local minimizer u∗ε of EΩ whose vorticity is near the
current TΩ;k1,k2 constructed in Corollary 1.

The proof is essentially an application of the well-known Kohn-Sternberg scheme [14] for proving the existence
of local minimizers using Γ-convergence, see also for example [16]. To verify that their argument is available
here, it is necessary to check that the map uε �→ J̃εvε is continuous from H1 into M̊1,ρ(D) with the Fp,ρ,K

seminorm, and roughly speaking that uε �→ Fp,ρ,K(J̃εvε) is weakly lowersemicontinuous in H1. These are
carried out in Steps 1 and 2 respectively of the proof.

Proof of Theorem 4. Throughout this proof, δ = εγ , where γ is as in Theorem 2, and ζ = ζδ and ωδ are as
defined in Step 1 of the proof of Theorem 2.

1. I first assert that for every ε > 0 there exists a constant Cε > 0 such that for every u, ũ ∈ H1
0 (D),

Fp,ρ,K(J̃εvε − J̃εṽε) ≤ Cε‖u− ũ‖H1 (‖u‖H1 + ‖ũ‖H1) , (8.2)

where vε = u/ηε and ṽε = ũ/ηε. This will use the following fact, which is proved in Lemma 16 in Section 9: for
every compact K ⊂ D, there exists CK such that

Fp,ρ,K(T ) ≤ CKFρ(T ) = CK inf{Mρ(S) : S ∈ M2,ρ(D), ∂S = T }. (8.3)

Since
J̃εvε − J̃εṽε =

1
2
ζ#ωδ ∗ (∂(
jvε − 
jṽε)) =

1
2
∂ (ζ#ωδ ∗ (
jvε − 
jṽε))

we can use (8.3) to estimate

Fp,ρ,K(J̃εvε − J̃εṽε) ≤ CMρ (ζ#ωδ ∗ (
jvε − 
jṽε))

≤ C sup
{
ζ#ωδ ∗ (
jvε − 
jṽε)(φ) :

∥∥∥∥φρ
∥∥∥∥
∞

≤ 1
}

= C sup
{

(jvε − jṽε)(φ1

ε) :
∥∥∥∥φρ
∥∥∥∥
∞

≤ 1
}
.

using the notation φ1
ε := ωδ ∗ ζ#φ of Section 6. And


(jvε − jṽε)(φ1
ε) ≤

∫
D
|φ1

ε| |jvε − jṽε|

≤
∥∥∥∥φ1

ε

f2
ε

∥∥∥∥
L∞

∥∥f2
ε (jvε − jṽε)

∥∥
L1 .

Note that f2
ε jvε = j(fεvε) = j(e−iΩεS0u) = ju − |u|2ΩεdS0, and similarly for jṽε. Also, in view of (6.18),

‖φ1
ε/f

2
ε ‖∞ ≤ C‖φ/ρ‖∞. Thus the above inequalities yield

Fp,ρ,K(J̃εvε − J̃εṽε) ≤ Cε

(‖ju− jũ‖L1 + ‖ |u|2 − |ũ|2‖L1

)
,
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and from this one can easily deduce (8.2).
It follows from (8.2) that for every ε, Aε is open in H1

0 (D; C).
2. In this step I will show that for every fixed ε > 0,

Aε
∗ :=

{
u ∈ H1

0 (D; C) : min
S∈M

Fp,ρ,K(S − J̃εvε) ≤ σ, vε =
u

ηε

}
(8.4)

is weakly closed in H1
0 (D; C). To do this, suppose that uk ∈ Aε

∗ and uk ⇀ u∞ weakly in H1
0 . I must show that

u∞ ∈ Aε
∗. To do this, I first claim there exists Cε such that for any u ∈ H1

0 (D)∫
Dδ

f2
ε

|∇vε|2
2

+
f4

ε

4ε2
(|vε|2 − 1)2dx ≤ Cε(1 + ‖u‖4

H1
0
), vε = u/ηε as usual. (8.5)

Since vε = ue−iΩεS0/fε, with S0 a fixed, smooth function,∫
Dδ

f2
ε |∇vε|2 ≤ Cε

∫
Dδ

( |∇fε|2
f2

ε

|u|2 + |∇u|2 + |u|2
)

dx.

By elliptic regularity, |∇fε| ≤ Cε on Dδ, and Lemma 13 implies that fε ≥ C−1
ε on Dδ, and so∫

Dδ

f2
ε |∇vε|2 ≤ Cε

∫
Dδ

(|u|2 + |∇u|2) dx ≤ Cε‖u‖2
H1

0
.

Similarly ∫
Dδ

f4
ε (|vε|2 − 1)2 ≤ C

∫
Dδ

(|uε|4 + 1) dx ≤ Cε(1 + ‖u‖4
H1

0
)

using the Sobolev embedding. The two inequalities establish (8.5).
For any smooth 1-form φ with compact support, (8.5) together with (6.21), (6.22) shows that


Jvε(φ1
ε) ≤ Cε(1 + ‖u‖4

H1
0
)
(∥∥∥∥φ1

ε

f2
ε

∥∥∥∥
∞

+ εγ(1 + ‖∇φ1
ε‖∞)(1 + ‖φ‖∞)

)
.

Now the weak convergence uk ⇀ u implies that ‖uk‖H1
0

is uniformly bounded. Thus, writing vk,ε := uk/ηε, (6.18)
allows us to deduce that if ‖φ/ρ‖∞ ≤ 1, then

J̃εvk,ε(φ) = 
Jvk,ε(φ1
ε)

≤ Cε(1 + ‖uk‖H1
0
)
(∥∥∥∥φ1

ε

f2
ε

∥∥∥∥
∞

+ εγ(1 + ‖∇φ1
ε‖∞)(1 + ‖φ‖∞)

)
≤ Cε.

Thus Mρ(J̃εvk,ε) = sup{J̃εvk,ε(φ) : ‖φ/ρ‖∞ ≤ 1} is bounded independent of k, and so Lemma 2 implies that
there exists some current J ∈ M1,ρ(D) such that, after passing to a subsequence,

Fp,ρ,K(J̃εvk,ε − J) → 0

as k → ∞. Since uk ∈ Aε
∗ for all k, it follows that

min
S∈M

Fp,ρ,K(S − J) ≤ σ. (8.6)
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I now claim that
J = J̃εv∞,ε, v∞,ε := u∞/ηε. (8.7)

To establish this, it suffices to prove that J̃εvk,ε ⇀ J̃εv∞,ε in the sense of distributions. This follows by
observing that, since S0 and fε are fixed functions, smooth on Dδ, vk,ε ⇀ v∞,ε := u∞/ηε weakly in H1(Dδ),
and so standard facts about weak convergence of determinants imply that Jvk,ε → Jv∞,ε in the sense of
distributions on Dδ. Because the map Jvε �→ J̃εvε = ζ#ωδ ∗ Jvε is linear and depends only on the behavior of
Jvε in Dδ, this shows that J̃εvk,ε ⇀ J̃εv∞,ε in the sense of distributions as desired, and hence proves (8.7).

Combining (8.6) and (8.7), one finds that u∞ ∈ Aε
∗, and so Aε

∗ is weakly closed.
3. Now let uε minimize Gε

Ωε
in Aε

∗; indeed, Gε
Ωε

is bounded below, as a result of Lemma 1, and it is standard
that such a functional is weakly lower semicontinuous in H1, and so the existence of a minimizer in Aε

∗ follows
from the previous step.

In this step I show that Hε(vε) ≤ C| ln ε| with a uniform constant C for ε ∈ (0, 1/2). According to Theorem 2,
this will imply that {J̃εvε} is precompact with respect to the Fp,ρ,K seminorms for all compact K ⊂ D.

To do this, first note from Lemma 11 that

Hε(vε) ≤ (
Gε

Ωε
(uε) −Gε

Ωε
(ηε)

)
+ |Iε(vε)| + |Jε(vε)| (8.8)

we can select J ∈M and, by Theorem 2, construct a sequence ûε such that for limε
1

| ln ε| (G
ε
Ωε

(ûε)−Gε
Ωε

(ηε)) =
EΩ(J), and

Fp,ρ,K(J̃εvε − J) → 0, v̂ε = ûε/ηε.

Thus ûε ∈ Aε for all ε sufficiently small, and because Gε
Ωε

(uε) ≤ Gε
Ωε

(ûε), it follows that

lim inf
ε→0

1
| ln ε| (G

ε
Ωε

(uε) −Gε
Ωε

(ηε)) ≤ EΩ(J). (8.9)

Next, use (6.29) to estimate

|Iε(vε)| ≤ Cε| ln ε|2
√
Hε(vε) ≤ C

√
εHε(vε) ≤ C + εHε(vε). (8.10)

And using (6.36) 6 and Lemma 5,

Jε(vε) =
−Ωε

1 + (a1/a2)2
J̃εvε(ρ2dx3) +O(εα) ≤ C| ln ε|(Fp,ρ,K(J̃εvε) + 1)

for some α > 0. But the definition of Aε and the fact that M , as a locally minimizing set, is Fp,ρ,K -compact,
together imply that Fp,ρ,K(J̃εvε) ≤ C for all uε ∈ Aε. Thus |Jε(vε)| ≤ C| ln ε|, and this with (8.9) and (8.10)
shows that Hε(vε) ≤ C| ln ε|.

4. I now claim that for ε, σ sufficiently small, uε belongs to Aε.
Suppose toward a contradiction that this does not hold. Then there exists a subsequence, which for conve-

nience I continue to write as vε, such that

min
S∈M

Fp,ρ,K(S − J̃εvε) = σ, vε =
u

ηε
·

Upon passing to a further subsequence if necessary, we can also assume that there exists some limiting current
J ′ ∈ πR̊1,ρ such that Jvε → J ′ in the sense of distributions, and Fp,ρ,K(J ′ − J̃εvε) → 0. It follows that

min
S∈M

Fp,ρ,K(S − J ′) = σ. (8.11)

6Note that (6.36) does not require any assumed bounds such as (6.7) on Hε(vε), and uses only the assumption (6.6), so the
argument is not circular here.
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And (6.10), (8.9) imply that

EΩ(J) ≥ lim inf
ε→0

1
| ln ε| (G

ε
Ωε

(uε) −Gε
Ωε

(ηε)) ≥ EΩ(J ′). (8.12)

However, in view of the definition of a Fp,ρ,K-local minimizing set, if σ is small enough then (8.11) implies that
EΩ(J) < EΩ(J ′), contradicting (8.12).

5. To see that minS∈M Fp,ρ,K(S − J̃εvε) → 0, it suffices to note that one can replace σ by any 0 < σ′ < σ in
the above arguments.

And in the case when M contains a single current S, the above arguments show that Fp,ρ,K(S− J̃εvε) → 0 as
ε→ 0, for every compact K ⊂ D. In view of (6.9), this shows that 
Jvε → S in the sense of distributions. �

9. Appendix: some technical lemmas

In this appendix I collect the proofs of some technical results that are not central to the main argument.
First I give the

Proof of Lemma 2.
1. Given {Rk} ⊂ M̊1,ρ(D0) such that Mρ(Rk) ≤ C, let {uk} ⊂ BVloc(D0) be functions such that 
duk = Rk,
using notation of Lemma 4. I normalize uk by requiring that

∫
V uk dx = 0 for all k, where V ⊂ D0 is an open

subset that will be specified later. From (3.15) I deduce that∫
D0

ρ|∇uk| ≤ C for all k. (9.1)

I will show that there exists a function u ∈ BVloc(D0) with 
du ∈ M̊1,ρ(D0) such that after passing to a
subsequence, ∫

D0

ρ|uk − u| → 0 as k → ∞. (9.2)

In view of (3.15), this will prove that Fρ(Rk −R) → 0 for R = 
du.
2. To prove (9.2), I first claim that there exists a constant C such that∫

D0

|w| ≤ C

∫
D0

ρ|∇w| (9.3)

for all w ∈ BVloc(D0) such that
∫

V
w = 0. To do this, first note that since ρ = 0 and ∇ρ �= 0 on ∂D0, there

exists a constant C such that, if σ0 is chosen to be sufficiently small, then

∇ · (ρ∇ρ) = ρ∆ρ+ |∇ρ|2 ≥ C−1 whenever ρ < 2σ0.

Thus for every σ ∈ (σ0, 2σ0),∫
{x∈D0:ρ(x)≤σ}

|w| ≤ C

∫
{x∈D0:ρ(x)≤σ}

∇ · (ρ∇ρ) |w|

= −C
∫
{x∈D0:ρ(x)<σ}

ρ∇ρ · ∇w w

|w| + C

∫
{x∈D0:ρ(x)=σ}

|w|ρ∇ρ · ν.
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Averaging over σ ∈ (σ0, 2σ0) yields∫
{x∈D0:ρ(x)≤σ0}

|w| ≤ 1
σ0

∫ 2σ0

σ0

∫
{x∈D0:ρ(x)≤σ}

|w| dx dσ

≤ C

∫
{x∈D0:ρ(x)≤2σ0}

ρ|∇w| + C

∫
{x∈D0:σ0≤ρ(x)≤2σ0}

|w|.

Thus to prove (9.3) it suffices to show that∫
{x∈D0:ρ(x)≥σ0}

|w| ≤ C

∫
D0

ρ|∇w|.

To do this, let V = {x ∈ D0 : ρ(x) ≥ σ0}. Then since
∫

V
w = 0, Poincaré’s inequality yields∫

V

|w| ≤ C

∫
V

|∇w| ≤ C

∫
V

ρ|∇w|

establishing (9.3).
3. From (9.3) and (9.1) it follows that

∫
D0

|uk| ≤ C, and from this and (9.1) it follows that∫
D0

|ρuk| + |∇(ρuk)| ≤ C.

Then Rellich’s theorem implies that {ρuk} is precompact in L1, and so after passing to a subsequence there
exists a function u such that uk → u in L1

loc(D0) and ρuk → ρu in L1(D0), that is, such that (9.2) holds. To
verify that 
du ∈ M̊1,ρ(D0), note that∫

D0

ρ|∇u| = sup
W⊂⊂D0

∫
W

ρ|∇u| ≤ sup
W⊂⊂D0

lim inf
∫

W

ρ|∇uk| ≤ C

using the lower semicontinuity of the BV seminorm with respect to L1 convergence (see for example [9], Chap. 5).
4. The second claim of the lemma, i.e. the Fp,ρ,K compactmess of Mρ-bounded sequences in M̊1,ρ(D),

follows from the first. Let {Tk}∞k=1 ⊂ M̊1,ρ(D) be a sequence of currents such that Mρ(Tk) ≤ C. First, the
currents Tk have uniformly bounded mass on every compact subset of D and satisfy ∂Tk = 0, so compactness
in the FK seminorm for compact K ⊂ D is a consequence of a classical result of Federer and Fleming, see [10]
4.2.17. By a diagonal argument, one can find a subsequence (still labelled Tk) and a limiting current T such
that FK(Tk − T ) → 0 for every compact K ⊂ D.

I claim that Mρ(T ) < ∞. To see this, let Kn := {x ∈ D : 2−n−1 ≤ ρ(x) < 2−n}. Then using the lower
semicontinuity of mass with respect to FK convergence,∫

D
ρd‖T ‖ ≤

∑
n

2−nMKn(T ) ≤ lim inf
k→∞

∑
n

2−nMKn(Tk)

≤ lim inf
k→∞

2
∫
D
ρd‖Tk‖ ≤ C.

Finally, as is verified in the proof of Lemma 6, Mρ(p#S) ≤ Mρ(S) for all S ∈ M1,ρ(D), so Mρ(p#(Tk−T )) ≤ C.
It therefore follows the first part of the lemma that {p#(Tk − T )}k is Fρ-precompact, or equivalently that
{Tk − T }k is Fp,ρ-precompact. However, since Tk → T in FK for every compact K, it must be that Tk − T
converges in the Fp,ρ seminorm to 0. This completes the proof. �
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The next lemma provides a decomposition of a 1-current T into a sum of Lipschitz curves. This is known if
T has finite mass, and so the point is to prove that such a decomposition remains possible when T has infinite
mass (but ‖T ‖, ‖∂T ‖ are locally finite.)

Proof of Lemma 3.
1. In Federer [10] 4.2.25 it is shown that, if U is any open subset of some Euclidean space and T ∈ R1(U) is a
integral 1-current such that M(T ),M(∂T ) <∞, then there exist Lipschitz curves Xi in U such that T =

∑
TXi

and
MU (T ) + MU (∂T ) =

∑
MU (Ti) +

∑
MU (∂Ti). (9.4)

This implies (3.14). To see this, note that the identity T =
∑

i TXi easily implies that ‖T ‖ −∑i ‖TXi‖ is a
nonpositive measure, and similarly ‖∂T ‖ −∑i ‖∂TXi‖ is a nonpositive measure. So to prove (3.14), it suffices
show that MU (T ) −∑MU (Ti) ≥ 0 and MU (∂T ) − MU (∂Ti) ≥ 0, and both of these follow from (9.4).

2. Now fix T such that the ‖T ‖, ‖∂T ‖ are only locally finite. Let Ui be an increasing sequence of open
subsets of U such that Ūi ⊂ Ui+1, ∂Ui is smooth, and ∂(T �Ui) is a 0-current of finite mass for every i, where
T �Ui denotes the restriction of T to Ui. This is possible because ‖∂T ‖ has locally finite mass. Applying the
decomposition of step 1 on U1, we can write the result as T �U1 =

∑
j TXj +

∑
k TYk

, where the analog of (3.14)
holds, each TXj is compactly supported within Ui and each TYk

has support that intersects ∂Ui. Now let
T (1) = T −∑TXj , and decompose T (1) on U2, separating the currents thereby obtained into ones with compact
and non-compact support in U2. Proceeding inductively, we obtain a decomposition T = T ′ +

∑
TXi , with

‖T ‖ = ‖T ′‖ +
∑

‖TXi‖ and ‖∂T ‖ = ‖∂T ′‖ +
∑

‖∂TXi‖ as measures .

each TXi has compact support in U , and there do not exist any integral currents T ′
1, T

′
2 such that ‖T ′‖ =

‖T ′
1‖ + ‖T ′

2‖ and ‖∂T ′‖ = ‖∂T ′
1‖ + ‖∂T ′

2‖ as measures, with T ′
1 having compact support in U .

Now apply the decomposition procedure of step 1 to write T ′
i := T ′�Ui in the form

∑J(i)
j=1 S

i
j , where each Si

j is
the current associated with integration over a Lipschitz curve X i

j , and (3.14) holds for each i. The construction
of T ′ implies that ∂Si

j �= 0 for every i, j, and so for each i, the number J(i) of current in the decomposition of
T ′

i is bounded by ∑
MU (∂Si

j) = MU (∂T ′
i ) <∞

by the choice of Ui. Now relabel the currents inductively, as follows:
First, let T 1

j = S1
j , j = 1, . . . , J(1). Suppose we are given given {T i

j}J′(i)
j=1 ; I will define {T i+1

j }. Starting with
j = 1, if Si+1

1 �Ui equals zero, then set T i+1
J(i)+1 := Si+1

1 ; otherwise, Si+1
1 �Ui can be written as a sum of currents

T i
j1 + · · · + T i

jm
with j1 < · · · < jm. When this holds, relabel Si+1

j =: T i+1
j1

and set T i+1
jk

= 0 for k = 2, . . . ,m.
Then continue inductively, relabelling Si+1

j , j = 2, . . . J(i+ 1).
The construction implies that for each fixed j, the sequence {T i

j}∞i=1 of currents is either increasing (in the
obvious sense) or else equals zero after a finite number of steps. In addition, for every fixed J the sequence
{∑J

j=1 T
i
j}∞i=1 is increasing. It follows that Rj = limi→∞ T i

j exists for every j, and each Rj is the current
associated with integration over a (possibly infinite) Lipschitz curve. One can also pass to limits to find that

‖T ′‖ =
∑

‖Rj‖, ‖∂T ′‖ =
∑

j

‖∂Rj‖

as measures, since this holds in every compact subset. Thus the decomposition T =
∑
TXi +

∑
Rj satisfies the

conclusions of the lemma.
3. The conclusions about currents T ∈ R̊1,ρ follow immediately from the earlier conclusions. �
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I now present the

Proof of Lemma 6. First,
L(p#T ) = p#T (ρ2dx3) = T (p#(ρ2dx3)).

But since p3(x1, x2, x3) = x3 and ρ(p(x)) = ρ(x) for all x, p#(ρ2dx3) = ρ2dx3, proving the first claim.
If X : (a, b) → D is a Lipschitz curve,

E0(p#TX) = E0(Tp(X)) =
∫ b

a

ρ(p(X)
∣∣∣∣ d
dt
p ◦X

∣∣∣∣ = ∫ b

a

ρ(X)|∇p(X)Ẋ|.

One can check by direct calculation that for x ∈ D and v ∈ R3,

|∇p(x)v| ≤ |v|, with equality iff
{
x1 = 0 or v = (0, 0, v3) if a1 < a2

(−x2, x1, 0) · v = 0 if a1 = a2.
(9.5)

It follows that E0(p#T ) ≤ E0(T ). The conditions for equality (4.3) in the case a1 < a2 follow easily from (9.5).
In the case a1 = a2, (9.5) shows that equality holds if and only if (−X2, X1, ) · (Ẋ1, Ẋ2, Ẋ3) = 0 almost
everywhere, which implies that d

dt (X1/X2) = 0. Thus there exist constants ν1, ν2 with ν2
1 + ν2

2 = 1, such that
X1(t)ν1 +X2(t)ν2 = 0 for all t, and this is equivalent to (4.4).

For general T ∈ R̊1,ρ(D), we use Lemma 3 to write T in the form T =
∑

i TXi , where each TXi ∈ R̊1,ρ

corresponds to integration along a Lipschitz curve Xi, and such that EΩ(T ) =
∑

i EΩ(TXi). From this and the
case of a single Lipschitz curve it follows that

E0(T ) =
∑

i

E0(TXi) ≥
∑

i

E0(p#TXi) ≥ E0

(∑
i

p#TXi

)
= E0(p#T ). (9.6)

�
I now give the

Proof of Lemma 7. In [1], Theorem 4, this is proved for indecomposable currents T of the form TX in R̊1,ρ(D0).
If T is an arbitrary current in R̊1,ρ(D0), then the result follows by using the decomposition T =

∑
TXi and

arguing as in the proof of the previous lemma.
Finally, for a current T ∈ R̊1,ρ(D),

|L(T )| = |L(p#T )| ≤ CE0(p#T )3/2 ≤ CE0(T )3/2

using the previous lemma and the fact that p#T ∈ R̊1,ρ(D0). �
Next I present the proof of a lemma used in establishing the Γ-limit upper bound:

Lemma 15.
F := {T :

1
π
T ∈ R̊1,ρ, T has finite mass}

is dense in πR̊1,ρ := {T : 1
πT ∈ R̊1,ρ} in the sense that for for every T ∈ πR̊1,ρ, there exists a sequence of

currents {Tδ}δ∈(0,1] ⊂ F such that

Fp,ρ,K(Tδ − T ) → 0, for all compact K ⊂ D, (9.7)

and
EΩ(Tδ) → EΩ(T ). (9.8)
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Proof. As in the proof of Theorem 2, for σ > 0 let Dσ := {x ∈ D : ρ(x) > ‖∇ρ‖∞σ}, and for δ > 0, let
ζδ : D2δ → D be a diffeomorphism satisfying (6.14), (6.15), and (6.16). Given J ∈ πR̊1,ρ, define Jδ := (ζδ)#J ,
so that Jδ(φ) = J(ζ#

δ φ). In view of (6.14),

Jδ(φ) =
∫
D2δ

〈ζ#
δ φ,

�J〉d‖J‖ =
∫
D4δ

〈φ, �J〉d‖J‖ +
∫
D2δ\D4δ

〈ζ#
δ φ,

�J〉d‖J‖. (9.9)

I first verify that Jδ has finite mass for every δ > 0. Indeed, for every φ such that ‖φ‖∞ ≤ 1, the definition
of ζδ implies that ‖ζ#

δ φ‖∞ ≤ C, and so using (9.9),

Jδ(φ) ≤ ‖ζ#
δ φ‖∞
2δ

∫
D2δ

2δ d‖J‖ ≤ C

2δ
Mρ(J) <∞.

Because M(Jδ) = sup{Jδ(φ) : φ ∈ C∞
c (D; Λ1R3), |φ(x)| ≤ 1 ∀x}, this shows that Jδ has finite mass.

Next I claim that Mρ(Jδ) → Mρ(J) as δ → 0. Note that

Mρ(Jδ) = sup
{
Jδ(φ) : φ ∈ C∞

c (D; Λ1
R

3),
∥∥∥∥φρ
∥∥∥∥
∞

≤ 1
}
. (9.10)

Also, for any φ, arguments from the proof of Lemma 14, using (6.16) and (6.15), show that ‖ζ#
δ φ/ρ‖∞ ≤

C‖φ/ρ‖∞, with a constant independent of δ. Thus (9.9) and (9.10) imply that

Mρ(Jδ) ≤
∫
D4δ

ρ d‖J‖ + C

∫
D2δ\D4δ

ρ d‖J‖ → Mρ(J)

as δ → 0, by the dominated convergence Theorem.
In particular, Mρ(Jδ) ≤ C, and so it follows from Lemma 2 that {Jδ}δ∈(0,1] is precompact in the Fp,ρ,K

seminorm for all compact K ⊂ D. It is easy to see that Jδ → J in the sense of distributions, and so it follows
that (9.7) holds.

To verify (9.8), note that we have already checked that E0(Jδ) → E0(J), and so it suffices to show that
Jδ(ρ2dx3) → J(ρ2dx3). However this can be easily deduced from (9.9). �

Finally,

Lemma 16. If T ∈ M̊1,ρ(D) then for every compact K ⊂ D there exists a constant CK such that

Fp,ρ,K(T ) ≤ CKFρ(T ) = CK inf{Mρ(S) : ∂S = T }.

Proof. 1. First I claim that Mρ(p#S) ≤ Mρ(S) for all S ∈ M̊2,ρ(D) 7. Recall that p : D → D0 is Lipschitz
with Lipschitz constant 1, and ρ(p(x)) = ρ(x) for all x ∈ D. Thus for any k-form φ on D0,

|p#φ(x)|
ρ(x)

≤ |φ(p(x))|
ρ(p(x))

,

and so ‖p#φ/ρ‖∞ ≤ ‖φ/ρ‖∞. The claim follows from this and the expression for the weighted mass Mρ given
in (3.6). Note also that for T ∈ M̊1,ρ(D), if T = ∂S then p#T = ∂p#S. Thus

Fp,ρ(T ) ≤ inf{Mρ(p#S) : ∂S = T } ≤ inf{Mρ(S) : ∂S = T } ≤ Fρ(T ).

7The same fact was proved (along with conditions for equality) in Lemma 6 for R̊1,ρ; the proof we give here is easy and general,

but it is harder to extract from it the conditions for equality.
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2. For compact K ⊂ D, there exists some C such that ρ ≥ C−1 on K, which implies that MK(S) ≤ CMρ(S)
for all currents T . This immediately implies that

FK(T ) = inf{MK(S) : ∂S = T in K} ≤ C inf{Mρ(S) : ∂S = T } ≤ CFρ(T ). �
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