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POSSIBLY WITH POINTWISE GRADIENT CONSTRAINTS
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Abstract. We propose a necessary and sufficient condition about the existence of variations, i.e., of
non trivial solutions η ∈ W 1,∞

0 (Ω) to the differential inclusion ∇η(x) ∈ −∇u(x) + D.
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1. A conjecture

Purpose of the present paper is to derive conditions for the existence of (non trivial) solutions η ∈W 1,∞
0 (Ω)

to the differential inclusion
∇η(x) ∈ −∇u(x) + D

where D is a given set and u is in W 1,1(Ω) and satisfies

∇u(x) ∈ co(D);

(in the case D is convex, η = 0 is always a solution).
The problem of characterizing conditions for the existence of solutions is complex: in R

2, consider the function
v(x1;x2) =

√
x2

1 + x2
2 whose gradient satisfies ‖∇v(·)‖ = 1, let B be the unit ball of R

2 and, on Ω ⊂ R
2, consider

the inclusion
∇η ∈ −∇v + B.

When Ω is the open disk x2
1 + x2

2 < R2, it is easy to see that non trivial solutions η do exist; however, when Ω
is the annulus r2 < x2

1 + x2
2 < R2, nontrivial solutions do not exist. Hence, the existence or non-existence of

nontrivial solutions depends on the geometry of Ω, and cannot be expressed by local conditions.
As a motivation for the problem, and for the name of variations proposed here for the solutions η, assume

we are considering the problem of minimizing ∫
Ω

L(∇v(x)) dx
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under given boundary conditions, where L is a convex function, for instance

L(ξ) =

{
1 −

√
1 − ‖ξ‖2 for ‖ξ‖ ≤ 1

+∞ elsewhere;

L is finite for ξ in B, the unit ball of R
N equipped with the Euclidean norm. Let u be a solution to the minimum

problem, and assume that we wish to derive the necessary conditions satisfied by u, hence to compare the values
of the integral functional at u and at u + η. To find these conditions, we have to ask ourselves whether there
are nontrivial variations η, such that ‖∇u(x) + ∇η(x)‖ ≤ 1, i.e., solutions to ∇η(x) ∈ −∇u(x) + B. In this
case the function u, appearing in the differential inclusion we are investigating, is interpreted as the solution to
a variational problem and the set D as the effective domain of a convex Lagrangean.

We propose the following conjecture, on the existence of non trivial variations. In it, and in the remainder
of the paper, by saying that a vector function p ∈ L1

loc(Ω) is such that div (p) = 0 we mean that, for every
η ∈ C∞

c (Ω), we have ∫
Ω

〈p(x),∇η(x)〉dx = 0.

Conjecture. Let D ⊂ R
N . Let u be a solution to

∇u(x) ∈ co(D).

Then, the following a) and b) are in alternative:
a) there exists a nontrivial η ∈W 1,∞

0 (Ω), solution to

∇η(x) ∈ −∇u(x) + D (1)

b) there exists a vector function p ∈ L1
loc(Ω), p(x) 	= 0 a.e., such that div (p) = 0, and

〈p(x),∇u(x)〉 = sup
k∈D

〈p(x), k〉 (2)

for almost every x ∈ Ω.

Examples.
1) In the case D = R

N , condition b) is never satisfied and variations do always exist.
2) Consider again the function v(x1;x2) =

√
x2

1 + x2
2 = ρ, whose gradient ∇v(x1;x2) = 1

ρ (x1;x2). When Ω
is the annulus r2 < x2

1 + x2
2 < R2, non trivial solutions do not exist, hence a) is never satisfied. Let us show

that b) is true: the vector function p(x1;x2) = 1
x2
1+x2

2
(x1;x2) has pointwise divergence zero everywhere in Ω;

moreover

sup
k∈B

〈p(x1;x2), k〉 =
1
ρ

= 〈p(x1;x2),∇v(x1;x2)〉 .

Hence b) is satisfied.
When Ω is the open disk x2

1 + x2
2 < R2, non trivial η exist, so a) is satisfied. The vector p as used before has

not weak divergence zero in Ω, hence it does not prove that b) is satisfied. The fact that b) cannot be satisfied
will be proved below.

In the present paper we prove the above conjecture under some additional regularity assumption.
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2. The case ∇u = 0

In this section we show that the Conjecture is verified in the case ∇u = 0.

Theorem 1. Let D ⊂ R
N and let u be such that ∇u = 0 ∈ co(D). Then, the following a) and b) are in

alternative:
a) there exists a nontrivial η ∈W 1,∞

0 (Ω), solution to ∇η(x) ∈ D;
b) there exists a vector function p ∈ L1

loc(Ω), p(x) 	= 0 a.e., such that div (p) = 0, and for a.e. x ∈ Ω,

sup
k∈D

〈p(x), k〉 = 0.

In the proof of Theorem 1 we will need the following lemma, whose proof is a consequence of a result appearing
in [4].

Lemma 1. Let Ω ⊂ R
N an open bounded set, and D ⊂ R

N . There exists a nontrivial function η ∈ W 1,∞
0 (Ω)

such that ∇η(x) ∈ D for a.e. x ∈ Ω, if and only if 0 ∈ int (co (D)).

Proof. When 0 ∈ int(co(D)), by Lemma 1, there exists η ∈ W 1,∞
0 (Ω) such that, a.e., ∇η(x) 	= 0, hence η

is non trivial and a) is always satisfied. We show that b) cannot be true: in fact, in this case, there must
exist a ball B(0, r) ⊂ co(D) so that, for every non trivial vector function p, we have 〈p(x),∇u(x)〉 ≡ 0, while
supk∈D 〈p(x), k〉 ≥ r‖p(x)‖, that is positive on a set of positive measure.

When 0 /∈ int(co(D)), again by Lemma 1, there is no η ∈ W 1,∞
0 (Ω) apart from η = 0, so that a) is not satisfied.

We show that b) is true: in fact, the convex sets 0 and co(D) can be weakly separated, i.e. there exists a non
zero vector v such that 〈v, k〉 ≤ 0 for every k ∈ co(D), i.e., such that supk∈co(D)〈v, k〉 ≤ 0. This constant vector
v is the required p : we have supk∈co(D)〈v, k〉 ≤ 〈v, 0〉 = 0 while, since 0 ∈ co(D), supk∈co(D)〈p, 0〉 ≥ 0. This
ends the proof. �

3. b) implies not a)

We prove that b) implies non a) under the additional assumption that p be locally Lipschitzian in Ω, but no
special assumptions on D.

Theorem 2. Let Ω ⊂ R
N be open, u ∈ W 1,1(Ω) with ∇u(x) ∈ co(D) for a.e. x ∈ Ω. Assume that there exists

a vector function p ∈W 1,∞
loc (Ω), p(x) 	= 0 for x ∈ Ω, such that div (p) = 0 and, for a.e. x ∈ Ω,

〈p(x),∇u(x)〉 = sup
k∈D

〈p(x), k〉 .

Then the only solution η ∈W 1,∞
0 (Ω) to the differential inclusion

∇η(x) ∈ −∇u(x) + D

is η ≡ 0.

In the proof we will need the following lemma, a well known result (Liouville’s Theorem) for the case of a
differentiable p.

Lemma 2. Let p as in Theorem 2. Let S(t;x) be the solution to the Cauchy problem ẋ(t) = p(x(t)), x(0) = x.
Then the map x→ S(t;x) is measure preserving.

Proof of Lemma 2. Let Ω̃ ⊂ Ω and δ > 0 be such that solutions issuing from Ω̃ are defined on the interval [0, δ].
We wish to prove that for t ∈ [0, δ] and x ∈ Ω̃, J(t;x), the Jacobian of the transformation x → S(t;x), equals
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1 a.e. By Rademacher’s Theorem, for a.e. x, (Dp), the matrix of (pointwise) partial derivatives of p exists. By
a result of Tsuji [9], for a.e. x,

J(t;x) = e
∫ t
0 tr((Dp)(τ)) dτ

where the matrix (Dp) is computed along the solution S(τ ;x). We wish to show that for a.e. x ∈ Ω, for a.e.
t ∈ [0, δ], we have tr((Dp)(τ)) = 0. Let g be any of the components of the vector p; fix η ∈ C∞

c (Ω). The
sequence g(x+hnei)−g(x)

hn
converges pointwise a.e. to ∂g(x)

∂xi
and it is (locally) uniformly bounded, so that

1
hn

∫
[g(x+ hnei) − g(x)]η(x) dx

converges both to
∫ ∂g(ξ)

∂ξi
η(ξ) dξ and ([6], p. 132), to

∫
gi(x)η(x) dx, with gi the ith Sobolev partial derivative of

g. So
∫ [∂g(x)

∂xi
− gi(x)

]
η(x) dx = 0, hence ∂g(x)

∂xi
− gi(x) = 0, for all components g and all i, with the exception

of a set E ⊂ Ω of N dimensional measure zero. In particular, on Ω \ E, the pointwise divergence of S with
respect to x, tr(Dp) and the weak divergence div (p), coincide and are zero.

For t in [0, δ] and y in
{
S(t;x) : x ∈ Ω̃

}
define the inverse map

S−1(t; y) = (t;x).

S−1 is locally Lipschitzian in its variables and sends the set [0, δ] × E into a set E∗ ⊂
(
[0, δ] × Ω̃

)
of N + 1

dimensional measure zero. By Fubini’s Theorem, with the exception of a set XE∗ of N dimensional measure
zero, the segments {(t;x) : t ∈ [0, δ]} meet the set E∗ on a set of 1 dimensional measure zero. This means that
for x /∈ XE∗ , for a.e. t ∈ [0, δ], S(t;x) /∈ ([0, δ] × E), i.e., that tr(Dp(x)) and div (p), computed along S(t;x),
coincide. �

Proof of Theorem 2.
a) We first notice that condition (2) implies that ∇u(x) ∈ ∂(co(D)) for a.e. x ∈ Ω.
In fact, otherwise, we can find a set, of positive measure, Ω∗ ⊂ Ω and ε > 0 such that ∇u(x)+εp(x) ∈ co(D).

For x ∈ Ω∗, we have

sup
k∈co(D)

〈p(x), k〉 ≥ 〈p(x),∇u(x) + ε p(x)〉 = 〈p(x),∇u(x)〉 + ε‖p(x)‖2 >

〈p(x),∇u(x)〉 = sup
k∈D

〈p(x), k〉 .

Recalling that supk∈co(D) 〈p(x), k〉 = supk∈D 〈p(x), k〉, we obtain a contradiction.

b) To prove the theorem, suppose, by contradiction, that there exists a nontrivial η ∈W 1,∞
0 (Ω), that verifies

condition (1) almost everywhere.
In the case that int(co(D)) = ∅, D is contained in a hyperplane, and condition (1) implies that also ∇η is

in a hyperplane, a contradiction to Lemma 1. Hence, in what follows, we consider int(co(D)) 	= ∅.

c) Claim. For every x ∈ Ω, there exists c such that η(S(t;x)) = c for t ∈ (αx, βx), the maximal interval of
existence for the solution S.
Proof of this claim. By assumption, for almost every x ∈ Ω,

〈∇u(x), p(x)〉 = sup
k∈D

〈k, p(x)〉
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and
〈∇η(x), p(x)〉 = 〈−∇u(x), p(x)〉 + 〈∇η(x) + ∇u(x), p(x)〉 ≤

− 〈∇u(x), p(x)〉 + sup
k∈D

〈k, p(x)〉 ,

so that
〈∇η(x), p(x)〉 ≤ 0.

Since η ∈W 1,∞
0 (Ω), the assumption on the divergence of p implies∫

Ω

〈∇η(x), p(x)〉 dx = 0,

hence we obtain that, for almost every x ∈ Ω,

〈∇η(x), p(x)〉 = 0.

Fix x∗ ∈ Ω. Consider the N − 1 dimensional affine space

V = x∗ + p(x∗)⊥.

There exists δ > 0 and r > 0, such that a solution S(t; v) to ẋ = p(x) and x(0) = v exists for v ∈ V ∩ B(x∗, r)
on an interval (−δ, δ). The map (t; v) → S(t; v) is Lipschitzian and invertible. Hence, by the coarea theorem,
with the exception of a subset of V of N − 1 dimensional measure zero, S(t; v) meets the set M , where
〈∇η(x), p(x)〉 	= 0, on a subset of (−δ, δ) of 1-dimensional measure zero, and, outside of this exceptional set, we
have

d
dt
η(S(t; v)) = 〈∇η(S(t; v)), p(S(t; v))〉 = 0.

Hence, there exists a sequence vn → x∗ such that η(S(t; vn)) ≡ cn on (−δ, δ). Since the limit of solutions is a
solution and η is continuous, we have that η(S(t;x∗)) ≡ c on (−δ, δ). This local reasoning can be extended to
the maximal interval of existence, proving the claim.

d) Let x be such that η(x) > 0, and define

E =
{
x ∈ Ω : η(x) ≥ 1

2
η(x)

}
⊂ Ω.

The set E is nonempty, compact, int(E) 	= ∅ and d(E, ∂Ω) > 0. As a consequence of c), it cannot happen that
there exists x ∈ E such that, for some t ∈ (αx, βx), S(t;x) /∈ E. Hence for every x ∈ E and every t ∈ (αx, βx),
S(t;x) ∈ E. By the basic theorems on the prolongability of solutions to ordinary differential equations, it follows
then that the solution S(t;x) must be defined for every t ∈ R, since d(E, ∂Ω) > 0. Hence, for every t ∈ R, the
map S(t; ·) is a bijection of E into itself and, in addition, by Lemma 1, it is measure preserving.

e) We wish to apply the following Poincaré recurrence Theorem to the map S(t; ·), (see for instance [1] for
the proof).

Lemma 3 (Poincaré). Let E be a compact, nonempty set such that int(E) 	= ∅, and let ψ : E → E a bijective,
measure preserving function. Then, for every x0 ∈ int(E) and every ε > 0, there exists an integer k > 0 such
that

ψk (B(x0, ε)) ∩B(x0, ε) 	= ∅.
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Going back to the proof, let r0 > 0 and x0 be such that B(x0, r0) ⊂ E and let t0 > 0 be such that S(t0;x0) 	= x0.
Let V ⊂ Ω be a neighborhood of the trajectory{

S(t;x0) : t ∈ [0, t0]
}

and let p0 > 0 be such that ‖p(x)‖ ≥ p0 for x in V . Let r ≤ r0 be so small that:

S(t0;B(x0, r)) ∩B(x0, r) = ∅

and, for every ξ ∈ B(x0, r), the solution S(t; ξ) ∈ V for t ∈ [0, t0]. Applying Poincaré’s method we obtain that,
for every ρ < r, there exist ξρ ∈ B(x0, ρ) and an integer νρ > 1, such that∣∣S(t0νρ; ξρ) − x0

∣∣ ≤ ρ.

f) Choose v ∈ int(D) and let s > 0 be such that B(v, s) ⊂ D. Consider the function u0 defined by

u0(x) = u(x) − 〈v, x〉 .
Condition (2) implies that u0, computed along S(t;x), for x ∈ B(x0, r), is strictly increasing:

d
dt
u0(S(t;x)) = 〈∇u(S(t;x)) − v, p(S(t;x))〉 = sup

k∈D
〈k − v, p(S(t;x))〉

≥ s ‖p(S(t;x))‖ > 0;
in particular, for ξ ∈ B(x0, ρ), with ρ ≤ r, we obtain

u0(S(t0νρ; ξ)) − u0(ξ) ≥ t0νρsp
0 ≥ t0sp

0.

This last estimate is independent of ρ.
Apply this estimate to ξρ; we have that both ξρ and S(t0νρ; ξρ) are in B(x0, ρ). By the continuity of u0 at

x0, the difference u0(S(t0νρ; ξρ)) − u0(ξρ) can be made arbitrarily small by decreasing ρ, a contradiction. �
The following result completes the discussion of the example in Section 2.

Theorem 3. Let Ω ⊂ R
2 be the open disk x2

1 + x2
2 < 1 and v(x1;x2) =

√
x2

1 + x2
2. There is no vector function

p ∈ L1
loc(Ω), p(x) 	= 0 a.e., such that div (p) = 0, and

〈p(x),∇v(x)〉 = sup
k∈B

〈p(x), k〉

for almost every x ∈ Ω.

Proof of Theorem 3. The function η = −√x2
1 + x2

2 + 1 is in W 1,∞
0 (Ω) and is a solution to the differential

inclusion
∇η(x) ∈ −∇v(x) + B.

Assume that p exists. By assumption we must have, for almost every x ∈ Ω,

〈p(x),∇v(x)〉 = ‖p(x)‖
so that p(x) = α(x) x

‖x‖ , and α ≥ 0. On the other hand, in c) of the proof of the previous theorem we have
obtained that, for almost every x ∈ Ω,

〈∇η(x), p(x)〉 = 0,
so that α(x) = 0 a.e. in Ω. �
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4. When D = B, not a) implies b)

We prove this part of the conjecture in the case D = B.

Theorem 4. Let u ∈ W 1,∞(Ω) be a solution to ∇u(x) ∈ B and assume that there exist no nontrivial η ∈
W 1,∞

0 (Ω), solution to the differential inclusion

∇η(x) ∈ −∇u(x) + B.

Then:
i) the solution u belongs to C1(Ω) ∩W 2,∞

loc (Ω);
ii) there exists p ∈ L1

loc(Ω), p(x) 	= 0 for almost every x ∈ Ω, such that div (p) = 0, and

〈p(x),∇u(x)〉 = sup
k∈B

〈p(x), k〉

for almost every x ∈ Ω.

Remark 1. In the proof of Theorem 4, we will construct a function p that verifies ii). This function p can
be interpreted as a mass-transfer vector field, and from condition (2) we see that ∇u determines the optimal
direction for p. Hence, we expect p to be of the form p = λ∇u, for a suitable function λ(x), and we compute λ
by the equation div(λ∇u) = 0. As appears in [7], this equation is related to the Monge-Kantorovich transport
problem. In particular, λ plays the role of a transport density, and is the Lagrange multiplier for the constraint
∇u ∈ B.

Proof of Theorem 4. The proof makes use of some results and techniques developed in [5].
a) Fix any point x0 ∈ Ω. Using Lemmas 2.2 and 2.3 of [5], from the fact that there is no variation η such

that u(x0)+ η(x0) < u(x0), we infer the existence of at least one unit vector, a direction, d+, with the property
that, for every r such that the ball B(x0, r) is contained in Ω, we have u(x0 +rd+)−u(x0) = r. Such a direction
will be called a direction of maximal growth. By the same reasons, since there is no variation η such that
u(x0) + η(x0) > u(x0), we infer the existence of at least one direction, d−, such that u(x0) − u(x0 + rd−) = r.
However we must have that d+ = d−, in fact, since u is Lipschitzian of constant 1, we have

r
∥∥d+ + d−

∥∥ ≥ ∣∣u(x0 + rd+) − u(x0 − rd−)
∣∣ =

∣∣u(x0 + rd+) − u(x0) − u(x0 + rd−) + u(x0)
∣∣ = 2r,

i.e. ‖d+ + d−‖ = ‖d+‖ + ‖d−‖, that implies d+ = d−. Notice that this result implies that d+ and d−

are unique. Hence, from the assumption that there is no variation η, to each x ∈ Ω we associate a unique
direction d(x) such that u(x + rd(x)) − u(x) = r as long as x + rd(x) ∈ Ω; i.e., there exists a unique segment
(x + α(x)d(x), x + β(x)d(x)), α(x) < 0 < β(x), such that: x + α(x)d(x) ∈ ∂Ω, x + β(x)d(x) ∈ ∂Ω and
u(x + λ1d(x)) − u(x + λ2d(x)) = λ1 − λ2 for every λ1, λ2 ∈ (α(x), β(x)). The direction d has the following
interpretation: at every point x0 such that ∇u(x0) exists, we have that ∇u(x0) = d(x0). In fact, from

u(x) − u(x0) =
〈∇u(x0), x − x0

〉
+
∥∥x− x0

∥∥ o (∥∥x− x0
∥∥) ,

we obtain
r = r

〈∇u(x0), d(x0)
〉

+ ro(r),
that implies ∇u(x0) = d(x0). Moreover, the following property holds: for no y ∈ Ω we can have

y = x+ λd(x) = x′ + λ′d(x′)

unless d(x′) = d(x). In fact, otherwise, both d(x) and d(x′) would be directions of maximal growth at y,
contradicting the uniqueness of d(y).
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b) Claim. Let ρ be such that B(x0, ρ) ⊂ Ω. Then, on B(x0, ρ
6 ), the map x→ d(x) is Lipschitzian of constant

Λ = 3
ρ .

Proof of this Claim. Let P and P ′ in B(x0, ρ
6 ), so that ‖P − P ′‖ ≤ ρ

3 . Set d = d(P ) and d′ = d(P ′); let O on the
line r = {P + λd} and O′ on the line r′ = {P ′ + λd′} be such that ‖O −O′‖ = infQ∈r,Q′∈r′ ‖Q−Q′‖. We have
that (O−O′) is orthogonal both to r and to r′. Two cases are possible: either, a), inf {‖P −O‖ , ‖P ′ −O′‖} > ρ

3
or, b), inf {‖P −O‖ , ‖P ′ −O′‖} ≤ ρ

3 .
Consider case a). Call P the point such that ‖P −O‖ ≤ ‖P ′ −O′‖. We will need the line r′′ = r′ +(O−O′):

it is the parallel to r′ in the plane containing r and orthogonal to (O −O′). Let P ′′ be the projection of P ′ on
r′′. Since ‖P ′′ −O‖ = ‖P ′ −O′‖ ≥ ‖P −O‖, on the segment [O,P ′′] choose Pi such that ‖Pi −O‖ = ‖P −O‖
and consider the isosceles triangle O,P ′, Pi: we have

‖d− d′‖
1

=
‖Pi − P‖
‖P −O‖ ,

so that ‖P −O‖ ≥ ρ
3 implies

‖d− d′‖ ≤ 3
ρ
‖Pi − P‖ .

We claim that ‖P ′′ − P‖ ≥ ‖Pi − P‖. In fact, the angle P, Pi, P
′′ is larger than π

2 , being the triangle O,P ′, Pi

isosceles, so that

‖P ′′ − P‖2 = ‖P − Pi‖2 + ‖Pi − P ′′‖2 + 2 〈P − Pi, Pi − P ′′〉
≥ ‖P − Pi‖2 + ‖Pi − P ′′|2 ≥ ‖P − Pi‖2

.

We have shown that

‖d− d′‖ ≤ 3
ρ
‖Pi − P‖ ≤ 3

ρ
‖P ′′ − P‖ ≤ 3

ρ
‖P ′ − P‖ .

Consider case b). Consider the two points O and O′; since ‖O −O′‖ ≤ ‖P − P ′‖, we obtain that both points
O and O′ are in B(x0, ρ), so that u is defined at O and O′. For case b), we assign names to the points P and
P ′ by assuming that u(O′) ≥ u(O). With this choice of names, consider again the lines r, r′ and set again
r′′ = r′ + (O − O′). On r consider the segment [A,D], centered at O, such that ‖A−O‖ = ‖D −O‖ = ρ

3 ; on
r′, the segment [B′, C′], centered at O′, such that ‖B′ −O′‖ = ‖C′ −O′‖ = ρ

3 ; orientations are chosen so that
A = O + ρ

3d and B′ = O′ + ρ
3d

′. Call B and C the projections of B′ and C′ on the line r′′. We obtain

‖B′ −D‖ ≥ u(B′) − u(D) = u(B′) − u(O′) + u(O′) − u(O) + u(O) − u(D)

≥ u(B′) − u(O′) + u(O) − u(D) =
ρ

3
+
ρ

3
·

Set H = 1
2A+ 1

2B. We have:

‖H −O‖2 =
∥∥∥∥1

2
(A−O) +

1
2
(B −O)

∥∥∥∥2

=
∥∥∥∥1

2
(O −D) +

1
2
(B −O)

∥∥∥∥2

=
∥∥∥∥1

2
(B −D)

∥∥∥∥2

=
1
4

(
‖B′ −D‖2 − ‖O −O′‖2

)
,
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the last equality deriving from the Pytagorean Theorem applied to the triangle D,B,B′. Hence we have:

1
4
‖A−B‖2 = ‖B −H‖2 = ‖B −O‖2 − ‖H −O‖2

=
(ρ

3

)2

− 1
4

(
‖B′ −D‖2 − ‖O −O′‖2

)
≤
(ρ

3

)2

− 1
4

(
2ρ
3

)2

+
1
4
‖O −O′‖2

=
1
4
‖O −O′‖2

.

We obtain
‖A−B‖ =

∥∥∥O +
ρ

3
d−

(
O +

ρ

3
d′
)∥∥∥ ≤ ‖O −O′‖ ≤ ‖P − P ′‖ .

We conclude that, for case b) as well, we have

‖d− d′‖ ≤ 3
ρ
‖P − P ′‖

proving the claim.

c) We claim that, as a consequence of the Lipschitzianity of d, we have that u ∈ C1(Ω) ∩W 2,∞
loc (Ω). The

directions of the coordinate axis are denoted by ei.
Fix x; let B(x, r) ⊂ Ω and let Λ be a Lipschitz constant for d in B(x, r). We first notice that if it happens

that on the intersection of the line {x+ tei : t ∈ R} with B(x, r), u is differentiable at x + tei for almost every
t, then we must have

|u(x+ hei) − u(x) − h 〈d(x), ei〉| ≤ h2Λ.
In fact, the Lipschitzian map t → u(x + tei) is the integral of its derivative, that coincides, for a.e. t, with
〈d(x + tei), ei〉, so that

|u(x+ hei) − u(x) − h 〈d(x), ei〉| =
∣∣∣∣h ∫ 1

0

〈d(x+ shei) − d(x), ei〉 ds
∣∣∣∣ ≤ h2Λ.

Notice next that, since ∇u(x) exists for a.e. x ∈ Ω, there must exists a sequence xn → x such that, on the
intersection of the line {xn + tei : t ∈ R} with B(x, r), ∇u(xn + tei) exists for a.e. t. Then we have:

|u(x+ hei) − u(x) − h 〈d(x), ei〉| = |u(xn + hei) − u(xn) − h 〈d(xn), ei〉 + h 〈d(xn) − d(x), ei〉
+ u(x+ hei) − u(xn + hei) + u(xn) − u(x)|
≤ h2Λ + hΛ |xn − x| + 2 |xn − x| .

Letting n→ ∞ we obtain that ∂u
∂xi

exists at x and equals 〈d(x), ei〉. Since the gradient is continuous, we obtain
that u is differentiable and that u ∈ C1(Ω).

Fix η ∈ C∞
c (Ω). Then on supp(η), ∇u(x) = d(x) is uniformly Lipschitzian: hence, see [8], for each component

di and each j there is gi
j such that ∫

Ω

gi
jη dx = −

∫
Ω

di ∂η

∂xj
dx.

This proves i).

d) As established in the Remark, the map p, as required in ii), will be of the form λ(x)d(x). To find λ
amounts to finding a weak solution to the equation div (λ(x)d(x)) = 0, where div(d(x)) ∈ L∞

loc(Ω).
Fix x∗ ∈ Ω and consider the corresponding level set for the function u, i.e. {x : u(x) = u(x∗)}. We claim

that we can parametrize locally this set by a differentiable and invertible map φx∗ from an open set Vx∗ in
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a N − 1 space, to Ω, i.e. that there exists Vx∗ , φx∗ , r∗ such that u (φx∗(ξ)) ≡ u(x∗), for every ξ ∈ Vx∗ and
φ (Vx∗) = {u(x) = u(x∗)} ∩B(x∗, r∗).
Proof of this Claim. Consider the N − 1 dimensional space d(x∗)⊥, defined by the equation 〈d(x∗), x〉 =
〈d(x∗), x∗〉; let di(x∗) 	= 0, set the N − 1 vector ξ be ξj = xj , j 	= i, and set ξ∗ be ξ∗j = x∗j , j 	= i, so that d(x∗)⊥

is the image of the affine map �, given by �(ξ)j = xj , j 	= i, and

�(ξ)i =
〈d(x∗), x∗〉 −∑j �=i dj(x∗)ξj

di(x∗)
·

The map � is one to one from R
N−1 to R

N . For ξ in a sufficiently small neighborhood Vx∗ of ξ∗, so that the
maps are defined, we have that u(�(ξ) + td(�(ξ))) = u(�(ξ)) + t and u(�(ξ) + td(�(ξ))) assumes the value u(x∗)
for u(x∗)− u(�(ξ)). The required parametrization is given by the (differentiable) map φx∗(ξ) = �(ξ) + (u(x∗)−
u(�(ξ)))d(�(ξ)). The map φx∗ is invertible: assume that �(ξ) + t(ξ)d(�(ξ)) = �(ξ′) + t(ξ′)d(�(ξ′)) = P ; then
u(P ) − u(x∗) = t(ξ), u(P ) − u(x∗) = t(ξ′) and, by the results of a), d(�(ξ)) = d(�(ξ′)), so that �(ξ) = �(ξ′) and
ξ = ξ′.

e) Consider the flow S(t;x) = x+ td(x): it is a solution to the Cauchy problem

d

dt
S(t;x) = d(S(t;x)), S(0;x) = x.

In particular, consider the map (t; ξ) → S(t;φx∗(ξ)): by the basic theorems on uniqueness for ordinary differ-
ential equations, and by the invertibility of φx∗ , it is an invertible map.

We will denote by D the square matrix of partial derivatives of the vector field d(x) and by Mx(t) the square
matrix of partial derivatives of S(t;x) with respect to the space variables, computed at x, i.e. Mx(t) = I+tD(x).
Since the vector field d is autonomous, we have the basic identity

Mx(t)d(x) = d(S(t;x)).

In addition, Lindelöf’s Theorem on differentiability with respect to initial conditions implies that

det(Mx(t)) = e
∫

t
0 trD(s) ds

where the trace of D appearing at the right hand side is computed along S(s;x). As a consequence of the
uniform Lipschitzianity of d on compact subsets of Ω, we have that on a compact set, there exists k such that
det(Mx(t)) ≥ k > 0. Denote by Φξ the N × (N − 1) matrix of partial derivatives of φ with respect to ξ. We
obtain that

D(t;ξ)(S(t;φ(ξ))) =
(
d(S(t;φ(ξ)));Mφ(ξ)(t)Φξ

)
and, recalling that d(S(t;φ(ξ))) = d(φ(ξ)) = Mφ(ξ)(t)d(φ(ξ)), we obtain

det
(
D(t;ξ)(S(t;φ(ξ)))

)
= det(Mφ(ξ)(t)) det(d(φ(ξ));φξ1 ; . . . ;φξN−1).

f) An easy contradiction argument shows that the set

Ox∗ = {(t; ξ) : α(φx∗(ξ)) < t < β(φx∗(ξ)); ξ ∈ Vx∗}

is an open subset of R×R
N−1 and, being the continuous map S(t;φx∗(ξ)) one to one, its image Sx∗ is an open

subset of Ω.
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Consider a countable covering of Ω by sets Sxn , n = 1, . . . (for brevity we will set Sxn = Sn, Vxn = Vn and
φxn = φn). Fix x ∈ Sn; let t and ξ be such that x = S(t;φn(ξ)) and set

λn(x) =
1

detMφn(ξ)(t)
·

This definition sets (arbitrarily) λn to be 1 on the level set {x : u(x) = u(xn)} ∩ Sn. Set E1 = Ω ∩ S1; En+1 =
Ω ∩ [Sn+1 \ En], so that Ω =

⋃
En, and the En are disjoint.

In general, define λ(x) =
∑
λn(x)χEn . On a compact subset of Ω, we have that λn(x) ≤ h where h does not

depend on n, so that λ ∈ L∞
loc(Ω). We claim that, for every η ∈ C∞

c (Ω), we have∫
Ω

λ(x) 〈d(x),∇η(x)〉 dx =
∑

n

∫
En

λn(x) 〈d(x),∇η(x)〉 dx = 0

i.e. that the map p(x) = λ(x)d(x) has divergence zero.
OnEn consider the change of variables given by x = S(t;φn(ξ)), with Jacobian Jn(t; ξ) =

∣∣detD(t;ξ)(S(t;φ(ξ)))
∣∣.

We have

λn(S(t;φn(ξ)))Jn(t; ξ) =
1

detMφn(ξ)(t)

∣∣detMφ(ξ)(t) det
(
d(φ(ξ));φξ1 ; . . . ;φξn−1

)∣∣
=
∣∣det

(
d(φ(ξ));φξ1 ; . . . ;φξn−1

)∣∣ ,
so that∫

En

λn(x) 〈d(x),∇η(x)〉 dx =
∫

En

λn(S(t;φn(ξ))) 〈d(S(t;φn(ξ))),∇η(S(t;φn(ξ)))〉 Jn(t; ξ) d(t; ξ)

=
∫ (∫ β(φn(ξ))

α(φn(ξ))

λn(S(t;φn(ξ))) 〈d(S(t;φn(ξ))),∇η(S(t;φn(ξ)))〉 Jn(t; ξ)dt

)
dξ

=
∫ (∫ β(φn(ξ))

α(φn(ξ))

d
dt
η(S(t;φn(ξ)))dt

) ∣∣det
(
d(φ(ξ));φξ1 ; . . . ;φξn−1

)∣∣ dξ.

Since, for every ξ, S(α(φn(ξ));φn(ξ)) and S(β(φn(ξ));φ(ξ)) belong to ∂Ω, we obtain that η(S(α(φ(ξ));φ(ξ))) =
η(S(β(φ(ξ));φ(ξ))) = 0 for every ξ, so that∫

Ω

λ(x) 〈d(x),∇η(x)〉 dx = 0.

g) We have
〈p(x),∇u(x)〉 = 〈λ(x)d(x),∇u(x)〉 = λ(x) = sup

k∈B
〈p(x), k〉 ,

concluding the proof. �
Remark 2. The vector p(·) admits a divergence in the integral sense, but need not belong to W 1,1

loc (Ω).

In fact, in R
2 consider

Ω =
{
(x; y) : x2 + y2 < 1, x ≤ 0, y > 0

} ∪ {(x; y) : x2 + (y − 1)2 < 1, x ≥ 0, y < 1
}
.

On Ω set P = (x; y) and

u(P ) =
{ √

x2 + y2 if x ≤ 0
1 −√x2 + (y − 1)2 otherwise.
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Then

∇u(P ) =

{
P

‖P‖ if x ≤ 0
(0;1)−P

‖P−(0;1)‖ otherwise

and

∆u(P ) =

{
1

‖P‖ if x ≤ 0
−1

‖P−(0;1)‖ otherwise.

One verifies that the differential equation for λ

〈∇λ(P ),∇u(P )〉 + λ(P )∆u(P ) = 0

admits the solution

λ(P ) =

{
1

‖P‖ if x ≤ 0
1

‖P−(0;1)‖ otherwise.

Hence

p(P ) =

{
P

‖P‖2 if x ≤ 0
(0;1)−P

‖P−(0;1)‖2 otherwise,

that has a jump discontinuity through the line x = 0. Hence p cannot belong to W 1,1(Ω).
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