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Abstract. A second-order Hamiltonian system with time recurrence is studied. The recurrence con-
dition is weaker than almost periodicity. The existence is proven of an infinite family of solutions
homoclinic to zero whose support is spread out over the real line.
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1. Introduction

In this paper we study a second-order Hamiltonian system with a time recurrence property that is weaker
than almost periodicity. The zero function is a hyperbolic fixed point solution. We prove the existence of
infinitely many solutions homoclinic to zero, that is, solutions v with v(t) → 0 and v′(t) → 0 as t → ±∞. The
solutions are scattered infinitely far to the left and to the right along the real line.

The Hamiltonian system has the form

−u′′ + u = W ′(t, u), (1.1)

where u : R → R
N , W ∈ C1(R × R

N , R), W ′(t, u) ≡ ∇qW (t, q) ≡< ∂W
∂q1

, . . . , ∂W
∂qN

>, and W (t, u) is a “su-
perquadratic” function of u, and satisfies a time recurrence property in t that is weaker than almost periodicity.
To be precise, let N ∈ N

+ and let W satisfy
(W1) W ∈ C1(R × R

N , R) and W ′(t, ·) is locally Lipschitz, uniformly in t.
(W2) W (t, 0) = 0 for all t ∈ R. |W ′(t, q)|/|q| → 0 as |q| → 0, uniformly in t.
(W3) There exists µ > 2 with W ′(t, q) · q ≥ µW (t, q) ≥ 0 for all (t, q) ∈ R × R

N . There exists (t̄, q̄) ∈
R × (RN \ {0}) such that 1

2 |q̄|2 − W (t̄, q̄) ≤ 0.
(W4) There exists a sequence (tm) ⊂ R

+ such that W ′(t− tm, q) → W ′(t, q) as m → ∞ for all t ∈ R, q ∈ R
N .

These assumptions are the same as in [2]. The reader is referred to that paper for more background on the
equation. Both [2] and this paper prove that (1.1) has infinitely many solutions homoclinic to zero. Both papers
prove a stronger result than [5]. In [5], W is assumed to be in “factored” form α(t)G(q), with α almost periodic
in t, which is a stronger assumption than (W4). Also, [5] proves the existence of only one nontrivial solution
homoclinic to zero.
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In [2], it is proven that the set of solutions of (1.1) homoclinic to zero is uncountable, or there exists an
infinite familty of “multibump” solutions, which resemble the sums of translates of a particular homoclinic
solution. This is done by assuming the set of solutions homoclinic to zero to be countable, then finding one
critical point of the corresponding functional with local “mountain-pass” geometry, then “gluing” that critical
point to translates of itself. This paper also proves that (1.1) has infinitely many solutions homoclinic to zero,
relying on the recurrence property of W rather than a multibump construction. We obtain the following result,
which is independent of the very strong result of [2].

Theorem 1.1. If W satisfies (W1)–(W4), then there exist r0 > 0, sequences (t+m) and (t−m) with t+m → ∞ and
t−m → −∞ as m → ∞, and sequences of solutions (v+

m), (v−m) of (1.1) homoclinic to zero with |v+
m(t+m)| > r0

and |v−m(t−m)| > r0 for all m.

The proof of the theorem is shorter and simpler than that of [2], but does not describe the structure of
solutions in such detail.

This paper is organized as follows: In Section 2 the variational setting of the problem is set up, the theorem
is proved for a special case, and some technical lemmas are proven. Section 3 completes the proof for the more
difficult case.

2. Variational setting and preliminary lemmas

Define E = W 1,2(R, RN ). Let (·, ·) be the standard inner product on E, that is, (u, w) =
∫

R
u′ ·w′ + u ·w dt,

with corresponding norm ‖u‖2 = (u, u). Define the functional I : E → R by I(u) = 1
2‖u‖2 −

∫
R

W (t, u) dt.
By (W1)-(W2), I is Fréchet differentiable, with I ′(u)w = (u, w) −

∫
R

W ′(t, u) · w dt, and I ′ is locally Lipschitz.
Critical points of I correspond exactly to solutions of (1.1) homoclinic to zero. By (W2), I(u) = 1

2‖u‖2−o(‖u‖2)
as ‖u‖ → 0. By (W3), there exists u0 ∈ E with I(u0) < 0. Therefore, I satisfies the geometric conditions of the
Mountain Pass Theorem of Ambrosetti and Rabinowitz [3]. That is, the set of “mountain-pass curves”

Γ = {γ ∈ C([0, 1], E) | γ(0) = 0, I(γ(1)) < 0} (2.1)

is nonempty, and the mountain-pass value

c = inf
γ∈Γ

max
[0,1]

I(γ(θ)) (2.2)

is positive. I does not satisfy the Palais-Smale condition, however, so the Mountain Pass Theorem cannot be
applied. The Palais-Smale condition holds if any sequence (um) ⊂ E with I(um) convergent and I ′(um) → 0 has
a convergent subsequence. I does not satisfy the Palais-Smale condition, because the domain R is unbounded.
Even if, for example, W is periodic in t, the Palais-Smale condition fails even modulo the periodicity: suppose
W is 1-periodic in t, and v is a nontrivial solution of (1.1) homoclinic to zero. Define the translation operator τ
as follows: for a function u defined on R and real a, let τau be u shifted a units to the right; that is, (τau)(t) =
u(t − a). Then the sequence (v + τnv) satisfies I(v + τnv) → 2I(v) and I ′(v + τnv) → 0 as n → ∞, but the
sequence has no convergent subsequence, even if we are allowed to shift functions by integer multiples of a
period.

With µ as in (W3), define

B = 1 +
200cµ

µ − 2
· (2.3)

Let r0 > 0 be small enough that

|W ′(t, q)| ≤ 1
64

|q| (2.4)

for all (t, q) ∈ R × R
N with |q| ≤ r0. This is possible by (W2). Finally, let M be an integer with

M >
4B2

r2
0

· (2.5)
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Define T : R → R
+ by

T (t) = inf{‖I ′(u)‖ | ‖u‖ ≤ B, ‖u‖L∞(t−M,t+M) ≥ r0}. (2.6)
Then one of the following alternatives holds:

Case I: T (t) = 0 for all t ∈ R, or

Case II: T (t̃) > 0 for some t̃ ∈ R.
(2.7)

Suppose Case I holds. The precise values of r0, B, and M are unimportant in this case, only that they are
positive. Let t0 ∈ R be arbitrary. There exists a sequence (um) with ‖I ′(um)‖ → 0 as m → ∞, ‖um‖ ≤ B for
all m, and ‖u‖L∞(t0−M,t0+M) ≥ r0 for all m. Along a subsequence (also denoted (um)), (um) converges weakly
and in L∞

loc(R, RN ) to ū with ‖ū‖ ≤ B and ‖ū‖L∞(t0−M,t0+M) ≥ r0. By arguments of [1], or arguments from
Lemma 2.1 of this paper, ū is a critical point of I, hence a solution of (1.1). t0 was arbitrary, so Theorem 1.1
holds.

The rest of this paper is devoted to Case II. First, if T is positive somewhere, it is bounded away from zero
on a sequence of t’s that approaches infinity:

Lemma 2.1. If T (t̃) > 0, then there exist δ > 0 and K ∈ N with m ≥ K ⇒ T (t̃ + tm) > δ.

Proof. Suppose otherwise, that there exist t̃ ∈ R with T (t̃) > 0 and a subsequence of (tm) (also denoted (tm))
with T (t̃ + tm) → 0. Pick a sequence (um) ⊂ E with ‖um‖ ≤ B and

‖um‖L∞(t̃+tm−M,t̃+tm+M) ≥ r0 (2.8)

for all m, and ‖I ′(um)‖ → 0. (τ−tmum) converges weakly and in L∞
loc(R, RN ) along a subsequence (also denoted

(τ−tmum)) to ū ∈ E with ‖ū‖ ≤ B and
‖ū‖L∞(t̃−M,t̃+M) ≥ r0. (2.9)

We will show that I ′(ū) = 0, contradicting the fact that T (t̃) > 0. Let w ∈ E be arbitrary with ‖w‖ = 1. Then
I ′(um)(τtmw) → 0. Now,

I ′(um)(τtmw) − I ′(ū)w = (um, τtmw) − (ū, w) +
∫

R

W ′(t, ū)w(t) dt −
∫

R

W ′(t, um)τtmw(t) dt

= (τ−tmum, w) − (ū, w) +
∫

R

W ′(t, ū)w(t) − W ′(t + tm, um(t + tm))w(t) dt

= (τ−tmum − ū, w) +
∫

R

(W ′(t, ū) − W ′(t + tm, um(t + tm)))w(t) dt.

(2.10)

τ−tmum → ū weakly, so the inner product at the end of (2.10) goes to 0 as m → ∞. Now let ε > 0. Let R > 0
with ∫

|t|>R

|w|2 dt < ε2. (2.11)

Since τ−tmum → ū in L∞(R, RN ), (W1) and (W4) imply that

(W ′(t, ū(t)) − W ′(t + tm, um(t + tm)))w(t) → 0 (2.12)

as m → ∞ for all t ∈ R. Since (um) is bounded in L∞(R, RN ) and w is continuous, there exists C2 > 0 with

|(W ′(t, ū(t)) − W ′(t + tm, um(t + tm)))w(t)| ≤ C2 (2.13)

for all t ∈ R, m ∈ N. By the Dominated Convergence Theorem,∫ R

−R

(W ′(t, ū(t)) − W ′(t + tm, um(t + tm)))w(t) → 0 (2.14)
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as m → ∞. By (W2), since (um) is bounded in L∞(R, RN ), there exists C > 0 with

|W ′(t, ū(t))| ≤ C|ū(t)| and |W ′(t, um(t))| ≤ C|um(t)| (2.15)

for all t ∈ R and m ∈ N. By the Cauchy-Schwarz Inequality, for all m,∫
|t|≥R

(W ′(t, ū(t)) − W ′(t + tm, um(t + tm)))w(t) dt

≤
(∫

|t|≥R

|W ′(t, ū(t)) − W ′(t + tm, um(t + tm))|2 dt

) 1
2
(∫

|t|≥R

|w|2 dt

) 1
2

≤ ε

(∫
|t|≥R

|Cū(t) + Cum(t + tm)|2 dt

) 1
2

≤ 2Cε

(∫
R

|ū(t)|2 + |um(t + tm)|2
) 1

2

≤ 4BCε.

(2.16)

Thus, by (2.14) and (2.16),
lim supm→∞|I ′(um)(τtmw) − I ′(ū)w| ≤ 4BCε. (2.17)

ε > 0 was arbitrary, so
lim

m→∞ |I ′(um)(τtmw) − I ′(ū)w| = 0. (2.18)

Since I ′(um)(τtmw) → 0, I ′(ū)w = 0. w ∈ E was arbitrary with ‖w‖ = 1, so I ′(ū) = 0. This contradicts the
assumption that T (t̃) > 0. Lemma 2.1 is proven. �

For u ∈ E, define ∇I(u) to be the gradient of u, satisfying (∇I(u), w) = I ′(u)w for all w ∈ E. Let
ϕ : E → [0, 1] be locally Lipschitz continuous with ϕ(u) = 1 if I(u) ≥ −1 and ϕ(u) = 0 if I(u) ≤ −2. Define
the gradient vector flow η to be the solution of the initial value problem

dη

ds
= −ϕ(u)∇I(u), η(0, u) = u. (2.19)

η is well-defined on R
+ × E (see [4]). We will need several lemmas about η. First, for the functions u that we

will be most interested in, there is an a priori bound on η(s, u) for s ≥ 0:

Lemma 2.2. If u ∈ E with I(u) ≤ 2c and lims→∞ I(η(s, u)) > 0, then ‖u‖ ≤ B, where B is from (2.3).

Proof. For all w ∈ E with I(w) ≤ 2c and ‖w‖ ≥ B/2,

‖I ′(w)‖ ≥ −I ′(w)w
‖w‖ =

−‖w‖2 +
∫

R
W ′(t, w)w dt

‖w‖

≥
−‖w‖2 + µ

∫
R

W (t, w) dt

‖w‖ =
−‖w‖2 + µ

2 ‖w‖2 − µI(w)
‖w‖

≥
(µ

2
− 1
)
‖w‖ − 2cµ

‖w‖ ≥ 1
4

(µ

2
− 1
)

B

(2.20)

by (W3) and the definition of B ((2.3)). Now let u ∈ E with I(u) ≤ 2c, lims→∞ I(s, u) > 0, and ‖u‖ ≥ B.
We will arrive at a contradiction. Define η(s) ≡ η(s, u). If ‖η(s)‖ ≥ B/2 for all s ≥ 0, then by (2.20),
d
dsI(η(s)) = −‖I ′(η(s))‖2 ≤ − 1

16 (µ
2 − 1)2B2 for all s > 0, so I(η(s)) → −∞ as s → ∞, contradicting our
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assumption on u. Therefore there exists s > 0 with ‖η(s)‖ ≤ B/2, and we may pick 0 < s1 < s2 with
‖η(s1)‖ = B1, ‖η(s2)‖ = B1/2, and ‖η(s)‖ ∈ (B/2, B) for all s ∈ (s1, s2). Then

2c ≥ I(η(s1)) − I(η(s2)) = −
∫ s2

s1

d
ds

I(η) ds

=
∫ s2

s1

‖I ′(η)‖2 ds ≥ 1
16

(s2 − s1)
(µ

2
− 1
)2

B2.

(2.21)

On the other hand, the Cauchy-Schwarz Inequality yields

B/2 ≤ ‖η(s1) − η(s2)‖ =
∥∥∥∥
∫ s2

s1

dη

ds
ds

∥∥∥∥ ≤
∫ s2

s1

∥∥∥∥dη

ds

∥∥∥∥ ds

≤
√

s2 − s1

(∫ s2

s1

∥∥∥∥dη

ds

∥∥∥∥
2

ds

) 1
2

≤
√

2c
√

s2 − s1.

(2.22)

Therefore
128c

B2(µ − 2)
≥ s2 − s1 ≥ B2

8c
, B4 <

1024c2

(µ − 2)2
, (2.23)

contradicting the definition of B ((2.3)). Lemma 2.2 is proven. �

Lemma 2.2 is needed for the following:

Lemma 2.3. There exists a > 0 such that if I(u) ≤ 2c and lims→∞ I(η(s, u)) > 0, then

‖I ′(η(s, u))‖3 ≤ a(I(u) − lim
s→∞ I(η(s, u))) (2.24)

for all s ≥ 0.

Proof. If I ′(u) = 0, then both sides of the inequality (2.24) are zero, so assume I ′(u) �= 0. Define η ≡ η(s) ≡
(s, u). By Lemma 2.2, ‖η(s)‖ ≤ B for all s ≥ 0. I ′ is Lipschitz on bounded subsets of E, so there exists β > 0
with ‖I ′(w) − I ′(y)‖ ≤ β‖w − y‖ for all w, y ∈ E with ‖w‖, ‖y‖ ≤ B. Since I ′(0) = 0, ‖I ′(w)‖ ≤ βB for all
w ∈ E with ‖w‖ ≤ B. Suppose that for some s∗ > 0,

‖I ′(η(s∗))‖ > A1 ≡ 3 3

√
Bβ2(I(u) − lim

s→∞ I(η(s, u))). (2.25)

This will lead to a contradiction. Let

A2 =
A1

2β2B
· (2.26)

Then for all s ∈ [s∗, s∗ + A2],

‖η(s) − η(s∗)‖ =
∥∥∥∥
∫ s

s∗

dη

ds
ds

∥∥∥∥ ≤
∫ s

s∗

∥∥∥∥dη

ds

∥∥∥∥ ds =
∫ s

s∗
‖I ′(η)‖ ds ≤ βBA2. (2.27)

So for all s ∈ [s∗, s∗ + A2],

‖I ′(η(s))‖ ≥ ‖I ′(η(s∗))‖ − ‖I ′(η(s)) − I ′(η(s∗))‖
≥ ‖I ′(η(s∗))‖ − β‖η(s∗) − η(s)‖

≥ ‖I ′(η(s∗))‖ − β2BA2 ≥ 1
2
A1.

(2.28)
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So
I(η(s∗ + A2)) = I(η(s∗)) + (I(η(s∗ + A2)) − I(η(s∗))

= I(η(s∗)) +
∫ s∗+A2

s∗

d
ds

I(η(s)) ds

= I(η(s∗)) −
∫ s∗+A2

s∗
‖I ′(η(s))‖2 ds

≤ I(u) −
∫ s∗+A2

s∗
(A1/2)2 ds

= I(u) − 1
4
A2

1A2 = I(u) − A3
1

8Bβ2

≤ I(u) − 2(I(u) − lim
s→∞ I(η(s)))

< I(u) − (I(u) − lim
s→∞ I(η(s))) = lim

s→∞ I(η(s)).

(2.29)

This is impossible. The assumption is false, and the lemma is proven, with a = 27Bβ2. �

Several more lemmas are needed. First, two simple lemmas regarding cutoff functions:

Lemma 2.4. Let u ∈ E and ϕ ∈ W 1,∞(R, R) with 0 ≤ ϕ(t) ≤ 1 for all t ∈ R and |ϕ′| ≤ d almost everywhere.
Then ‖ϕu‖ ≤ (1 + d)‖u‖.

Proof.

‖ϕu‖2 =
∫

R

ϕ2|u|2 + |ϕ′u + ϕu′|2 dt

≤
∫

R

|u|2 + |ϕ′|2|u|2 + 2|ϕ′|ϕ|u||u′| + ϕ2|u′|2 dt

≤
∫

R

|u|2 + d2|u|2 + 2d|u||u′| + |u′|2 dt

≤
∫

R

|u|2 + d2|u|2 + d|u|2 + d|u′|2 + |u′|2 dt

≤ (1 + d + d2)
∫

R

|u|2 + |u′|2 dt ≤ (1 + d)2‖u‖2. �

Lemma 2.5. Let u, w ∈ E and ϕ ∈ W 1,∞(R, R) with 0 ≤ ϕ(t) ≤ 1 for all t ∈ R and |ϕ′| ≤ d almost everywhere,
then |(ϕu, w) − (u, ϕw)| ≤ d‖u‖‖w‖.

Proof.

|(ϕu, w) − (u, ϕw)| =
∣∣∣∣
∫

R

(ϕu)′ · w′ − u′ · (ϕw)′ dt

∣∣∣∣
=
∣∣∣∣
∫

R

(ϕ′u + ϕu′) · w′ − u′ · (ϕ′w + ϕw′) dt

∣∣∣∣
=
∣∣∣∣
∫

R

ϕ′(u · w′ − u′ · w) dt

∣∣∣∣ ≤ d

∫
R

|u||w′| + |u′||w| dt ≤ d‖u‖‖w‖

by the Cauchy-Schwarz Inequality. �
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The next lemma, on the properties of ∇I, is needed for Lemma 2.7. Define W : E → E by

(W(u), w) =
∫

R

W ′(t, u) · w(t) dt

for all u, w ∈ E. ∇I has the form ∇I(u) = u −W(u). Now

Lemma 2.6. If u ∈ E with ‖u‖L∞(R) ≤ r0, then ‖W(u)‖L∞(R) ≤ r0/2.

Proof. Let u ∈ E with ‖u‖L∞(R) ≤ r0. Define tmax ∈ R by

‖W(u)‖W 1,2(tmax−4,tmax+4) = max{‖W(u)‖W 1,2(t−4,t+4) | t ∈ R}

and define
Wmax = ‖W(u)‖W 1,2(tmax−4,tmax+4).

Define the piecewise linear cutoff function ϕ by

ϕ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0; t ≤ tmax − 8
2 − 1

4 (tmax − t); tmax − 8 ≤ t ≤ tmax − 4
1; tmax − 4 ≤ t ≤ tmax + 4
2 − 1

4 (t − tmax); tmax + 4 ≤ t ≤ tmax + 8
0; t ≥ tmax + 8.

Now
Wmax ≤ ‖ϕW(u)‖ = sup

‖w‖=1

(ϕW(u), w).

By Lemmas 2.4 and 2.5,

Wmax ≤ sup
‖w‖=1

(W(u), ϕw) +
1
4
‖W(u)‖W 1,2(tmax−8,tmax+8).

By the definition of Wmax,

‖W(u)‖2
W 1,2(tmax−8,tmax+8) = ‖W(u)‖2

W 1,2(tmax−8,tmax) + ‖W(u)‖2
W 1,2(tmax,tmax+8) ≤ 2W 2

max. (2.30)

So

Wmax ≤ sup
‖w‖=1

∫
R

W ′(t, u) · ϕw +
√

2
4

Wmax,

and by (2.4),
1
2
Wmax ≤ sup

‖w‖=1

1
64

∫ tmax+8

tmax−8

|ϕ||w| dt ≤ sup
‖w‖=1

r0

64

∫ tmax+8

tmax−8

|w| dt

≤ sup
‖w‖=1

r0

64
(
√

16)
(∫ tmax+8

tmax−8

|w|2 dt

) 1
2

≤ 1
16

r0.

(2.31)

So
Wmax ≤ 1

8
r0

and for all t ∈ R,

‖W(u)‖W 1,2(t−4,t+4) ≤
1
8

r0. (2.32)
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By the embedding W 1,2(0, 8) ⊂ L∞(0, 8), with embedding constant

‖u‖L∞(0,8) ≤
1

1 − e−16
‖u‖W 1,2(0,8) ≤ 2‖u‖W 1,2(0,8) (2.33)

for all u ∈ W 1,2(0, 8) (equality achieved when u(t) = e−ta, for any nonzero vector a ∈ R
N ), |W(t)| < r0/4 for

all t ∈ R. �

The next lemma is essential to our variational argument. It enables us to conclude that trajectories of the
gradient vector flow that are localized along the real line converge to nonzero critical points of I.

Lemma 2.7. If u ∈ E with η(s, u) �→ 0 as s → ∞, then ‖u‖L∞(R) ≥ r0.

Proof. We will prove the contrapositive. Let u ∈ E with ‖u‖L∞(R) < r0. Then for all s > 0, ‖η(s, u)‖L∞(R) < r0:
the proof is indirect – otherwise, let s′ = min{s > 0 | ‖η(s, u)‖L∞(R) = r0}. There exists t′ ∈ R with
|η(s′, u)(t′)| = r0 and d

ds |η(s′, u)(t′)|2 ≥ 0. But then, by (2.32)–(2.33),

0 ≤ d
dt

|η(s′, u)(t′)|2 = −2η(s′, u)(t′) · ∇I(η(s′, u))(t′)

= −2η(s′, u)(t′) · [η(s′, u)(t′) −W(η(s′, u)(t′)]

≤ −2|η(s′, u)(t′)|2 + 2|η(s′, u)(t′)||W(η(s′, u)(t′)|

≤ −2r2
0 + 2r0

(r0

2

)
< 0.

(2.34)

This is a contradiction. So ‖η(s, u)‖L∞(R) < r0 for all s > 0. Now define φ(s) = ‖η(s, u)‖2. For all s > 0,
Lemma 2.6 and (2.4) imply

d
ds

φ(s) = −2(η(s, u),∇I(η(s, u))) = −2I ′(η(s, u)) η(s, u)

= −2‖η(s, u)‖2 + 2
∫

R

W ′(t, η(s, u)) η(s, u)

≤ −2‖ η(s, u)‖2 +
1
32

∫
R

|η(s, u)|2 dt ≤ −‖η(s, u)‖2 = −φ(s),

(2.35)

so φ(s) ≤ e−s for all s > 0, and φ(s) → 0 as s → ∞. �

3. Proof of Theorem 1.1

Theorem 1.1 follows from the following proposition:

Proposition 3.1. Let r0 be as in (2.4), and A > 0. There exist t+ > A, t− < −A, and homoclinic solutions
v+ and v− to (1.1) with

|v+(t+)| > r0 and |v−(t−)| > r0. (3.1)

Proof. we will prove the existence of v+. The proof for v− is similar. Either Case I or Case II of (2.7) holds.
The existence of v+ in Case I is proven in the argument following (2.7), so assume Case II holds. Let t̃ and δ
be as in Case II and Lemma 2.1. Taking a subsequence of (tm) if necessary, assume that for all m ∈ N,

(
‖u‖ ≤ B and ‖u‖L∞(t̃+tm−M,t̃+tm+M) ≥ r0

)
⇒ ‖I ′(u)‖ > δ. (3.2)

Let m∗ be large enough so that
t̃ + tm∗ − M > A. (3.3)
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Let a be as in Lemma 2.3. Define

ε = min
(

δ3

2a
,
c

3
,

r6
0

8000B3a

)
· (3.4)

Let γ0 ∈ Γ with
max

θ∈[0,1]
I(γ0(θ)) < c + ε/2. (3.5)

Let m̄ be large enough so that
t̃ + tm̄ − M > t̃ + tm∗ + M, (3.6)

I(τtm̄γ0)(1) < 0, (3.7)
I(τtm̄γ0(θ)) < c + ε for all θ ∈ [0, 1], (3.8)

and
|τtm̄γ0(t)| < r0 for all t < t̃ + tm∗ + M , θ ∈ [0, 1]. (3.9)

Let m′ > m̄ be large enough so that
t̃ + tm′ − M > t̃ + tm̄ + M,

and
|τtm′ γ0(θ)(t)| < r0 for all t > t̃ + tm′ − M, θ ∈ [0, 1]. (3.10)

There exists θ̄ ∈ [0, 1] with
lim

s→∞ I(η(s, τtm̄γ0(θ̄))) ≥ c. (3.11)

Define
ū = τm̄γ0(θ̄). (3.12)

Now
I(ū) < c + ε, lim

s→∞ I(η(s, ū)) ≥ c, and |ū(t)| < r0

for all t < t̃ + tm∗ + M and all t > t̃ + tm′ − M.
(3.13)

By Lemma 2.3 and the definition of ε,

‖I ′(η(s, ū))‖ <
r2
0

16B
for all s > 0 and ‖I ′(η(s, ū))‖ → 0 as s → ∞. (3.14)

By Lemma 2.7, ‖η(s, ū)‖L∞(R) ≥ r0 for all s ≥ 0. We will show that

|η(s, ū)(t)| < r0 for all s > 0, t < t̃ + tm∗ − M and t > t̃ + tm′ + M. (3.15)

Thus
‖η(s, ū)‖L∞(t̃+tm∗−M,t̃+tm′+M) ≥ r0 (3.16)

for all s ≥ 0. Defining un = η(n, ū), we obtain a Palais-Smale sequence (un) with ‖un‖ ≤ B and
‖un‖L∞(t̃+tm′−M,t̃+tm′+M) ≥ r0. (un) converges along a subsequence weakly and in L∞

loc(R, RN ) to a criti-
cal point v+ of I with

‖v+‖L∞(A,∞) ≥ ‖v+‖L∞(t̃+tm∗−M,t̃+tm′+M) ≥ r0, (3.17)
proving Proposition 3.1 and Theorem 1.1.

Let us now prove that |η(s, ū)(t)| < r0 for all s ≥ 0, t < t̃+ tm∗ −M . The proof for t > t̃+ tm′ +M is similar
and is omitted. Suppose to the contrary, that |η(s′, ū)(t)| ≥ r0 for some s′ > 0, t < t̃ + tm∗ − M . Define

s0 = min{s > 0 | ‖η(s, ū)‖L∞(−∞,t̃+tm∗−M) = r0}. (3.18)

s0 is well-defined by (3.9). Let t̂ ∈ [t̃ + tm∗ , t̃ + tm∗ + M − 1] with

‖η(s0, u)‖2
W 1,2(t̂,t̂+1)

< B2/M < r2
0/4, (3.19)
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using (2.5). Define

ϕ(t) =

⎧⎪⎨
⎪⎩

1; t ≤ t̂

t̂ + 1 − t; t̂ ≤ t ≤ t̂ + 1
0; t ≥ t̂ + 1.

(3.20)

Define
u0 = η(s0, ū), w = ϕu0. (3.21)

|ϕ| ≤ 1 and |ϕ′| ≤ 1, so by Lemma 2.4, ‖w‖ ≤ 2‖u0‖ ≤ 2B. Now, using (2.4),

I ′(u0)w =
∫

R

u′
0 · w′ + u0 · w − W ′(t, u0)w(t) dt

=
∫ t̃+tm∗−M

−∞
|u′

0|2 + |u0|2 − W ′(t, u0)u0(t) dt

+
∫ t̂

t̃+tm∗−M

|u′|2 + |u0|2 − W ′(t, u0)u0(t) dt

+
∫ t̂+1

t̂

u′
0 · (ϕu0)′ + ϕ(t)|u0|2 − W (t, ϕu0)ϕu0 dt

≥ 1
2

∫ t̃+tm∗−M

−∞
|u′

0|2 + |u′
0|2 dt +

1
2

∫ t̂

t̃+tm∗−M

|u′
0|2 + |u′

0|2 dt

+
∫ t̂+1

t̂

u′
0 · (ϕu′

0 + ϕ′u0) + ϕu2
0 −

1
2

ϕ2u2
0 dt

≥ 1
2
‖u0‖2

L∞(−∞,t̃+tm∗−M) −
∫ t̂+1

t̂

|u′
0|2 + u2

0 dt ≥ 1
2

r2
0 − 1

4
r2
0 =

1
4

r2
0 .

(3.22)

Thus ‖I ′(u0)‖ ≥ |I ′(u0)w|/‖w‖ ≥ r2
0/(8B), contradicting (3.14). Proposition 3.1, and hence Theorem 1.1, is

proven. �
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