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Abstract. This paper provides KKT and saddle point optimality conditions, duality theorems and
stability theorems for consistent convex optimization problems posed in locally convex topological
vector spaces. The feasible sets of these optimization problems are formed by those elements of a given
closed convex set which satisfy a (possibly infinite) convex system. Moreover, all the involved functions
are assumed to be convex, lower semicontinuous and proper (but not necessarily real-valued). The key
result in the paper is the characterization of those reverse-convex inequalities which are consequence of
the constraints system. As a byproduct of this new versions of Farkas’ lemma we also characterize the
containment of convex sets in reverse-convex sets. The main results in the paper are obtained under a
suitable Farkas-type constraint qualifications and/or a certain closedness assumption.
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1. Introduction

This paper deals with optimization problems of the form

(P) Minimize f(x)
subject to ft(x) ≤ 0, t ∈ T,

x ∈ C,

where T is an arbitrary (possibly infinite) index set, C is a non-empty closed convex subset of a locally convex
Hausdorff topological vector space X , and f, ft : X → R ∪ {+∞}, t ∈ T, are proper lower semicontinuous
(l.s.c., in brief) convex functions.
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Throughout the paper we assume that the (convex) constraint system

σ := {ft(x) ≤ 0, t ∈ T ; x ∈ C}, (1.1)

is consistent, with solution set represented by A (A �= ∅).
The system σ is called linear when ft(x) = at(x) − bt, at ∈ X∗ (topological dual of X), bt ∈ R, t ∈ T, and

C = X . Moreover, it is called infinite (ordinary or finite) if the dimension of X and the number of constraints
(|T |) are infinite (finite, respectively). If exactly one of these numbers is finite, then σ is called semi-infinite
(typically, T is infinite and X = Rn). An optimization problem is called infinite (finite, semi-infinite) when its
constraint system is infinite (finite, semi-infinite, respectively).

The objective of the paper is to provide optimality conditions, duality theorems, and stability theorems
for (P). To do that we introduce new Farkas-type constraint qualifications and new versions of Farkas lemma.
The classical Farkas lemma characterizes those linear inequalities which are consequences of a consistent ordinary
linear inequality system (i.e., they are satisfied by every solution of the system). Farkas-type results for convex
systems (characterizing families of inequalities which are consequences of a consistent convex system σ) are
fundamental in convex optimization and in other fields as game theory, set containment problems, etc. Since
the literature on Farkas lemma, and its extensions, is very wide (see, e.g., the survey in [15]), we just mention
here some works giving Farkas-type results for the kind of systems considered in the paper: [3, 11, 16, 22] for
semi-infinite systems, [9, 14, 17, 21] for infinite systems, and [8, 18, 19] for cone convex systems.

The paper is organized as follows. Section 2 contains the necessary notations and recalls some basic results
on convexity and convex systems. Section 3 extends to infinite convex systems two constraint qualifications
(c.q., in brief) which play a crucial role in linear semi-infinite programming, one of them (the so-called Farkas-
Minkowski property, FM in brief) being of global nature whereas the other one is a local property (and so
it is called locally Farkas-Minkowski, LFM in short). Section 4 provides new asymptotic and non-asymptotic
versions of Farkas’ lemma characterizing those reverse-convex inequalities f (x) ≥ α which are consequences of σ.
The non-asymptotic Farkas’ lemma requires the FM c.q. together with a certain closedness condition involving
ft, t ∈ T, and f (which holds whenever f is linear or it is continuous at some feasible point), and it provides
a characterization of the containment of convex sets in reverse-convex sets. Under these two assumptions we
obtain, in Section 5, a Karush-Kuhn-Tucker (KKT) optimality condition for (P), we show that the LFM c.q.
holds everywhere if the constraint system is FM, and, what is more important, that the LFM c.q. is, in a
certain sense, the weakest condition guarateeing that (P) satisfies the KKT condition at the optimal solutions.
Finally, in Section 6, a strong duality theorem and an optimality condition for (P), in terms of saddle points
of the associated Lagrange function, are established. The strong duality theorem allows us to show that the
optimal value of (P) is stable (in different senses) relatively to small arbitrary perturbations of the right-hand
side function (the null function).

2. Preliminaries

For a set D ⊂ X , the closure of D will be denoted by clD and the convex cone generated by D ∪ {0} by
coneD. The closure with respect to the weak∗-topology of a subset E of either the dual space X∗ or the product
space X∗ × R will be represented also by clE.

We represent by R
(T )
+ the positive cone in R(T ), the so-called space of generalized finite sequences λ = (λt)t∈T

such that λt ∈ R, for each t ∈ T, and with only finitely many λt different from zero. The supporting set of
λ ∈ R(T ) is suppλ := {t ∈ T | λt �= 0}. Observe that R(T ) is the topological dual of RT , endowed with the
product topology, and

λ (u) =
∑
t∈T

λtut :=
∑

t∈supp λ

λtut, ∀u ∈ RT , ∀λ ∈ R(T ).
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Given λ ∈ R
(T )
+ , we define ∑

t∈T

λtft :=
∑

t∈supp λ

λtft.

Analogously, if {Yt, t ∈ suppλ} is a class of non-empty subsets of some linear space, we define also∑
t∈T

λtYt :=
∑

t∈supp λ

λtYt,

so that coneD =
{∑

t∈T λtD | λ ∈ R
(T )
+

}
. Let further I be an arbitrary index set, {Yi, i ∈ I} be a family of

subsets of some linear space, and let � be the collection of all the non-empty finite subsets of I. Then

cone
(⋃

i∈I Yi

)
=
⋃

J∈� cone
(⋃

j∈J Yj

)
=
⋃

J∈�
(∑

j∈J coneYj

)
.

(2.1)

For a set D ⊂ X, the indicator function δD is defined as δD(x) = 0 if x ∈ D, and δD(x) = +∞ if x /∈ D. If D is
a non-empty closed convex set, then δD is a proper l.s.c. convex function. The normal cone of D at x is given
by

ND (x) := {u ∈ X∗ | u (y − x) ≤ 0 for all y ∈ D} ,
if x ∈ D, and ND (x) = ∅, otherwise.

Now let h : X → R ∪ {+∞} be a proper l.s.c. convex function. The effective domain, the graph, and the
epigraph of h are

domh = {x ∈ X | h(x) < +∞},
gphh = {(x, h (x)) ∈ X × R | x ∈ domh} ,

and
epi h = {(x, γ) ∈ X × R | x ∈ domh, h(x) ≤ γ},

respectively, whereas the conjugate function of h, h∗ : X∗ → R ∪ {+∞}, is defined by

h∗(v) := sup{v(x) − h(x) | x ∈ domh}.

It is well-known that h∗ is also a proper l.s.c. convex function, and that its conjugate, denoted by h∗∗, coincides
with h.

The support function of D ⊂ X is

sup
x∈D

u(x) = δ∗D (u) = δ∗cl(convD) (u) , u ∈ X∗.

Lemma 1. Let g, h : X → R ∪ {+∞} be proper l.s.c. convex functions such that at least one of them is
continuous at some point of domg ∩ domh. Then epig∗ + epih∗ is weak∗-closed.

Proof. If, for instance, g is continuous at c ∈ domh, it is clear that c ∈ int (domg)∩domh, and this implies that
0 belongs to the core of domg− domh, which, in turn, entails that cone(domg−domh) is a closed space. Then,
it follows from [4], Proposition 3.1, that the set epig∗ + epih∗ is weak∗-closed. �

We also define the subdifferential of h at a ∈ dom h as

∂h (a) := {u ∈ X∗ | h (x) ≥ h (a) + u (x− a) ∀x ∈ X} .

Thus, if D is a non-empty closed convex set, then ∂δD(a) = ND (a) for all a ∈ D.
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On the other hand, for g and h as in Lemma 1, we have ∂g(a)+∂h(a) ⊂ ∂(g+h)(a) for all a ∈ domg∩domh,
where the inclusion can be strict. The following lemma was established in [4], Theorem 3.1, assuming that X
is a Banach space, but the proof is exactly the same for locally convex vector spaces.

If g, h : X → R ∪ {+∞} are proper l.s.c. convex functions, then it is known that

epi (g + h)∗ = cl {epig∗ + epih∗} . (2.2)

Lemma 2. Let g, h : X → R ∪ {+∞} be proper l.s.c. convex functions. If epig∗ + epih∗ is weak∗-closed then,
for each a ∈ domg ∩ domh,

∂(g + h)(a) = ∂g(a) + ∂h(a).

For ε > 0, the ε-subdifferential of h at a ∈ dom h is defined as the non-empty weak*-closed convex set

∂εh(a) := {v ∈ X∗ | h(x) ≥ h(a) + v(x− a) − ε, ∀x ∈ X}.

It is worth observing that, if a ∈ domh, then (proved in [14], Lem. 2.1, in Banach spaces)

epih∗ =
⋃
ε≥0

{(v, v(a) + ε− h(a) | v ∈ ∂εh(a)}. (2.3)

The characteristic cone of σ = {ft(x) ≤ 0, t ∈ T ; x ∈ C} is

K := cone

{⋃
t∈T

epif∗
t ∪ epiδ∗C

}
.

Taking into account that epiδ∗C is a convex cone, we can also write

K := cone{
⋃
t∈T

epif∗
t } + epiδ∗C .

Since A �= ∅, and given v ∈ X∗ and α ∈ R,

v (x) ≤ α is a consequence of σ ⇔ (v, α) ∈ clK.

([9], Th. 4.1, extending [16], Th. 3.2.)

3. Farkas-type constraint qualifications

The following constraint qualification was introduced in [5] as a very general assumption for the duality
theorem in linear semi-infinite programming, and it has also been used in convex programming (see, e.g., [8]).

Definition 1. We say that σ is Farkas-Minkowski (FM, in brief) if K is weak∗-closed.

If cone{⋃t∈T gph f∗
t ∪ gph δ∗C} is weak∗-closed, then σ is FM ([9], Prop. 3.4). The converse is not true.

Observe that {δD(x) ≤ 0} is a FM representation of any closed convex set D �= ∅, because epi δ∗D is a weak∗-
closed cone. In particular, {δA(x) ≤ 0} is a FM system which has the same solutions as σ and, so, the same
continuous linear consequences (inequalities of the form v (x) ≤ α, with v ∈ X∗ and α ∈ R); i.e.,

clK = epiδ∗A. (3.1)

(This statement extends [16], (4.2).)
If S ⊂ T and |S| <∞, then σS := {ft(x) ≤ 0, t ∈ S; x ∈ C} is a finite subsystem of σ.
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Proposition 1. If σ is FM, then every continuous linear consequence of σ is also consequence of a finite
subsystem of σ. The converse statement holds if σ is linear.

Proof. Let σ be FM. If v (x) ≤ α, with v ∈ X∗, is consequence of σ, then (v, α) ∈ clK = K and, by (2.1), there
exist S ⊂ T , with |S| <∞, {ut, t ∈ S; w} ⊂ X∗, and {λt, t ∈ S; αt, t ∈ S; µ; β} ⊂ R+ such that

(v, α) =
∑
t∈S

λt (ut, f
∗ (ut) + αt) + µ (w, δ∗C (w) + β) ∈ KS ,

where KS denotes the characteristic cone of σS . Since (v, α) ∈ clKS , v (x) ≤ α is consequence of σS .
Now let C = X and ft (x) = at (x) − bt, with at ∈ X∗ and bt ∈ R, t ∈ T. Since f∗

t = bt + δ{at}, t ∈ T , and
δ∗X = δ{0}, we have K = cone {(at, bt) , t ∈ T ; (0, 1)} .

Let (v, α) ∈ clK. This is equivalent to assert that v (x) ≤ α is consequence of σ. By assumption, there exists
S ⊂ T , with |S| <∞, such that v (x) ≤ α is consequence of σS , so that (v, α) ∈ clKS, where KS denotes again
the characteristic cone of σS ; i.e., KS = cone {(at, bt) , t ∈ S; (0, 1)} . Since this cone is finite dimensional, it is
weak∗-closed and (v, α) ∈ KS ⊂ K. Thus, K is weak∗-closed. �

The following example shows that the converse statement of Proposition 1 is not true for convex systems
(even though X = C = Rn and |T | = 1).

Example 1. Let X = C = Rn, T = {1}, and σ =
{
f1 (x) := 1

2 ‖x‖2 ≤ 0
}
. Since f∗

1 (v) = 1
2 ‖v‖2, K =

(Rn × R++) ∪ {0} is not closed. Thus, σ is a finite non-FM convex system.

The following version of Farkas lemma ([9], Th. 4.4) will be used later on.

Lemma 3. Let σ be FM, v ∈ X∗, and α ∈ R. Then, the following statements are equivalent :
(i) v(x) ≥ α is consequence of σ;
(ii) (−v,−α) ∈ K;
(iii) there exists λ ∈ R

(T )
+ such that

v(x) +
∑
t∈T

λtft(x) ≥ α, ∀x ∈ C.

Let us introduce another constraint qualification. Given x ∈ X, consider the indices subset

T (x) := {t ∈ T | ft(x) = 0}.

If z ∈ A, T (z) is the set of indices corresponding to the active constraints at z, and it can be verified easily that

NC(z) + cone

⎛⎝ ⋃
t∈T (z)

∂ft(z)

⎞⎠ ⊆ NA(z). (3.2)

Definition 2. We say that σ in (1.1) is locally Farkas-Minkowski (LFM, in short) at z ∈ A if

NA(z) ⊆ NC(z) + cone

⎛⎝ ⋃
t∈T (z)

∂ft(z)

⎞⎠ . (3.3)

σ is said to be LFM if it is LFM at every feasible point z ∈ A.
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Thanks to (3.2), σ is LFM at z ∈ A if and only if

NA(z) = NC(z) + cone

⎛⎝ ⋃
t∈T (z)

∂ft(z)

⎞⎠ .

The LFM property, under the name of basic constraint qualification (BCQ), was introduced in [13], p. 307,
in relation to an ordinary convex programming problem, with equality/inequality constraints. It was extended
in [24] to the framework of linear semi-infinite systems in the Euclidean space, and deeply studied in [11],
Chapter 5. The consequences of its extension to convex semi-infinite systems were analyzed in [10].

In [22] and [21], the following indices subset is considered, instead of T (x),

T̃ (x) := {t ∈ T | ϕ(x) = ft(x)},

where ϕ is the supremum function
ϕ(x) := sup

t∈T
ft(x).

Since A �= ∅, ϕ is a proper l.s.c. convex function (epiϕ =
⋂

t∈T

epift). In [22] and [21] the continuity of ϕ on X

is assumed, and they formulate the so-called BCQ condition at z as follows:

(BCQ) : NA(z) ⊆ NC(z) + cone

⎛⎝ ⋃
t∈T̃ (z)

∂ft(z)

⎞⎠ . (3.4)

Whereas X is the Euclidean space in [22], and it is a Banach space in [21], our LFM condition is given in a
locally convex Hausdorff topological vector space X and the strong requirement of the continuity of ϕ on X is
removed. Nevertheless, the relationship between both conditions is shown in the following result.

Proposition 2. If ϕ is continuous at z ∈ A and z is an interior point of C, the conditions LFM and BCQ
at z, as they are respectively formulated in (3.3) and (3.4), are equivalent.

Proof. T (z) ⊂ T̃ (z) because

t ∈ T (z) ⇒ 0 = ft(z) ≤ ϕ(z) ≤ 0 ⇒ t ∈ T̃ (z).

If ϕ(z) < 0, the continuity assumption entails that z is an interior point of A. Then, NA(z) = {0} and (3.3)
and (3.4) are both trivially satisfied.

If ϕ(z) = 0, then T (z) = T̃ (z) because

t ∈ T̃ (z) ⇒ ft(z) = ϕ(z) = 0 ⇒ t ∈ T (z).

Once again (3.3) and (3.4) are equivalent. �

The following proposition is a LFM counterpart of Proposition 1.

Proposition 3. Let z ∈ A. If σ is LFM at z and for certain u ∈ X∗ we have

u(x) ≤ u(z), for all x ∈ A, (3.5)

then u(x) ≤ u(z) is also a consequence of a finite subsystem of σ. The converse statement holds provided that σ
is linear.
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Proof. We only consider the non-trivial case u �= 0.
(3.5) is equivalent to u ∈ NA(z)�{0}, and (3.3) entails the existence of

v1 ∈ NC(z) and v2 ∈ cone

⎛⎝ ⋃
t∈T (z)

∂ft(z)

⎞⎠ ,

such that u = v1 + v2.
If v2 = 0, then u = v1 ∈ NC(z) and u(x) ≤ u(z) is a consequence of any possible subsystems of σ, whose

solution set is always included in C.
If v2 �= 0, the convexity of the subdifferential set entails the existence of λ ∈ R

(T )
+ and ut ∈ ∂ft(z), t ∈

suppλ ⊂ T (z), such that

v2 =
∑

t∈supp λ

λtut.

Let
σ1 := {ft(x) ≤ 0, t ∈ suppλ; x ∈ C},

and let x ∈ A1, where A1 is the solution set of σ1. We have, for every t ∈ suppλ,

0 ≥ ft(x) ≥ ft(z) + ut(x− z) = ut(x− z),

and so

0 ≥
∑

t∈suppλ

λtft(x) ≥
∑

t∈suppλ

λtut(x− z)

= v2(x− z)
= (u− v1)(x− z)
= u(x− z) + (−v1)(x − z)
≥ u(x− z),

where the last inequality comes from v1 ∈ NC(z). Thus, we have proved that

u(x) ≤ u(z), for every x ∈ A1.

Now let C = X and ft (x) = at (x) − bt, with at ∈ X∗ and bt ∈ R, t ∈ T.
Let u ∈ NA(z)�{0}; i.e., u(x− z) ≤ 0 for all x ∈ A. By assumption, there exists S ⊂ T, S finite, such that

u(x) ≤ u(z) if at (x) ≤ bt for all t ∈ S.
By the same argument used in the proof of the converse in Theorem 1,

(u, u(z)) ∈ KS = cone {(at, bt) , t ∈ S; (0, 1)} .

Then, there will exist λt ≥ 0, t ∈ S, not all of them equal to zero, and µ ≥ 0 such that

(u, u(z)) =
∑
t∈S

λt (at, bt) + µ(0, 1),

so that
0 =

∑
t∈S

λt(at(z) − bt) − µ.
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Hence µ = 0 and S ⊂ T (z), which entails

u ∈ cone {at, t ∈ T (z)} = cone

⎛⎝ ⋃
t∈T (z)

∂ft(z)

⎞⎠ . �

The second statement in the previous proposition does not hold for convex systems without any additional
assumption, as the same Example 1 and any other finite convex system which is not LFM show. An example
of infinite convex system (similar to [10], Ex. 2.1) that also illustrates this fact is the following.

Example 2. Let X = C = R, T = N, and

σ =
{
ft (x) := max{0, x2t+1} ≤ 0, t ∈ T

}
.

We observe that A =] −∞, 0], and for z = 0, T (0) = T, and

NA(z) = [0,+∞[�= {0} = NC(z) + cone

⎛⎝ ⋃
t∈T (z)

∂ft(z)

⎞⎠ .

Thus, σ is not LFM despite that the condition in the last proposition is satisfied (every finite subsystem has
the same solution set).

4. Extended Farkas lemma

From now on we use the following closedness condition [4] involving ft, t ∈ T, f, and C:

(CC) : The set epif∗ + clK is weak∗-closed.

If epif∗ + K is weak∗-closed, then the closedness condition (CC) holds. The following theorem gives other
sufficient conditions.

Theorem 1. If σ is FM and f is either linear or continuous at some point of A, then condition (CC) holds.

Proof. If f is linear the statement is true by [9], Remark 5.6. So, we shall assume that f is continuous at some
point of A.

Let h : X∗ → R ∪ {+∞} be such that epih = K.
Since we assume that K is weak∗-closed, then h is a proper l.s.c. convex function, g := h∗ satisfies the same

properties, and

epig∗ = cone

{⋃
t∈T

epif∗
t ∪ epiδ∗C

}
.

Now we prove that A ⊂ dom g. By assuming the contrary, let x ∈ A such that x /∈ dom g.
Since h∗ (x) = +∞, there exists v ∈ X∗ such that v (x) − h (v) ≥ 1. Then (v, v (x) − 1) ∈ epih and, by (2.1),

we can write
(v, v (x) − 1) =

∑
t∈S

λt (ut, f
∗ (ut) + αt) + µ (w, δ∗C (w) + β) , (4.1)

with S ⊂ T , |S| <∞, {ut, t ∈ S; w} ⊂ X∗, and {λt, t ∈ S; αt, t ∈ S; µ; β} ⊂ R+.
From (4.1), we get

1 =
∑
t∈S

λt (ut (x) − f∗ (ut) − αt) + µ (w (x) − δ∗C (w) − β) . (4.2)
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On the other hand, since x ∈ A, we have

ut (x) ≤ ft (x) + f∗ (ut) ≤ f∗ (ut) , ∀t ∈ T,

and, similarly,

w (x) ≤ δC (x) + δ∗C (w) ≤ δ∗C (w) .

Hence (4.2) yields 1 ≤ 0.
Finally, since f is continuous at some point of A ⊂ dom g, by Lemma 1, we conclude that epif∗ + epig∗ =

epif∗ +K is weak∗-closed; i.e., (CC) holds. �

If σ is FM, then f (x) ≤ 0 is consequence of σ if and only if epif∗ ⊂ K ([9], Cor. 4.2, extending [14], Th. 2.1).
Since epi (f − α)∗ = (0, α)+epif∗, we get that the convex inequality f (x) ≤ α is consequence of σ if and only if

(0, α) + epif∗ ⊂ K. (4.3)

The next result provides a counterpart of (4.3) for the reverse-convex inequality f (x) ≥ α.

Lemma 4. Let σ be FM and α ∈ R. Then f (x) ≥ α is consequence of σ if and only if

(0,−α) ∈ cl (epif∗ +K) . (4.4)

Proof. Assume that f (x) ≥ α is consequence of σ. This means that f(x) ≥ α for all x ∈ A, or equivalently,
(f + δA)(x) ≥ α for all x ∈ X . Let h(x) = α for all x ∈ X . Then f + δA ≥ h and it follows that (f + δA)∗ ≤ h∗.
This inequality, together with (2.2) and (3.1), implies that

(0,−α) ∈ gphh∗ ⊂ epi(f + δA)∗ = cl{epif∗ + epiδ∗A)} = cl{epif∗ + clK}.

Since

cl{epif∗ + clK} = cl{epif∗ +K},

(4.4) has been proved.
Now we assume that (4.4) holds. Let {(yδ , βδ ) , δ ∈ ∆} be a net in

epif∗ +K = epif∗ + epiδ∗C + cone

{⋃
t∈T

epif∗
t

}

converging to (0,−α) . By (2.1), for each δ ∈ ∆ there exist zδ ∈ domf∗, µδ ≥ 0, λδ ∈ R
(T )
+ , uδ

t ∈ domf∗
t , α

δ
t ≥ 0

∀t ∈ T , vδ ∈ dom δ∗C , and γδ ≥ 0 such that

(yδ , βδ ) = (zδ , f∗ (zδ) + µδ) +
(
vδ , δ∗C (vδ ) + γδ

)
+
∑
t∈T

λδ
t

(
uδ

t , f
∗
t (uδ

t ) + αδ
t

)
.
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Thus, given x ∈ A, we have

yδ (x) − βδ = 〈(yδ , βδ ) , (x,−1)〉
= zδ (x) − f∗ (zδ) − µδ + vδ (x) − δ∗C (vδ ) − γδ

+
∑
t∈T

λδ
t

(
uδ

t (x) − f∗
t (uδ

t ) − αδ
t

)
≤ f (x) − µδ + δC (x) − γδ +

∑
t∈T

λδ
t

(
ft (x) − αδ

t

)
≤ f (x) + δC (x) +

∑
t∈T

λδ
tft (x) ≤ f (x) .

Hence f (x) ≥ limδ {yδ (x) − βδ} = α. �

Semi-infinite versions of Lemma 4, with ft : Rn → R convex for all t ∈ T , are [16], Theorem 4.1 (where
C = Rn and f : Rn → R) and [3], Theorem 5.6. Observe that if f is either linear or continuous at some point
of A then, by Theorem 1, we can replace (4.4) with

(0,−α) ∈ epif∗ +K.

The previous result applies immediately to the set containment problem, which consists of deciding whether
the solution set of a given system is contained in the solution set of another one. Dual characterizations
of such set containments have played a key role in solving large scale knowledge-based data classification
problems where they are used to describe the containments as inequality constraints in optimization prob-
lems. Recently, various extensions of the containment problem to general situations have been obtained in [23]
and [16] by means of mathematical programming theory and conjugacy theory, respectively. One of the prob-
lems considered in [23] is the containment A ⊂ B, where A is the solution set of σ, C = X = Rn, |T | < ∞,
B = {x ∈ X | gs (x) ≥ 0, s ∈ S}, |S| <∞, all the involved functions being convex and differentiable (for obvious
reasons, such a set B is called reverse-convex). In [16], Theorem 4.1, all the involved functions are assumed to
be finite-valued convex funtions on Rn.

In the following extension S and T are arbitrary sets, and the functions gs : X → R ∪ {+∞}, s ∈ S, are
proper l.s.c. convex functions.

Corollary 1. Let σ be FM. Then A ⊂ B if and only if 0 ∈ ⋂
s∈S

cl {epig∗s +K} .

Proof. A ⊂ B if and only if gs (x) ≥ 0 is consequence of σ for all s ∈ S. The conclusion follows from
Lemma 4. �

Now we give a new version of Farkas’ lemma.

Theorem 2. If σ is FM,(CC) holds, and α ∈ R, then the following statements are equivalent to each other :
(i) f (x) ≥ α is consequence of σ;
(ii) (0,−α) ∈ epif∗ +K;
(iii) there exists λ ∈ R

(T )
+ such that

f(x) +
∑
t∈T

λtft(x) ≥ α, ∀x ∈ C.

Proof. [(i) ⇒ (ii)] It is a straightforward consequence of Lemma 4.
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[(ii) ⇒ (iii)] Suppose that (ii) holds. Then, by (2.1), there exist u ∈ domf∗, β ≥ 0, ut ∈ domf∗
t , rt ≥ 0,

t ∈ T , v ∈ domδ∗C , r ≥ 0, and λ ∈ R
(T )
+ such that

(0,−α) = (u, f∗(u) + β) +
∑
t∈T

λt(ut, f
∗
t (ut) + rt) + (v, δ∗C(v) + r).

The last equality is equivalent to

0 = u+
∑

t∈T λtut + v
−α = f∗(u) + β +

∑
t∈T λt(f∗

t (ut) + rt) + δ∗C(v) + r

}
. (4.5)

Since f∗(u) ≥ u(x) − f(x) ∀x ∈ X, f∗
t (ut) ≥ ut(x) − ft(x) ∀t ∈ T and ∀x ∈ X, and δ∗C(v) ≥ v(x) ∀x ∈ C, it

follows from (4.5) that, for all x ∈ C,

−α ≥ u(x) − f(x) + β +
∑

t∈T λt(ut(x) − ft(x) + rt) + v(x) + r
≥ −f(x) −∑t∈T λtft(x) + β +

∑
t∈T λtrt + r

≥ −f(x) −∑t∈T λtft(x),

which is (iii).
As the implication [(iii) ⇒ (i)] is obvious, the proof is complete. �

Theorem 2 was established in [8], Theorem 2.2, under the assumption that C = X is a Banach space, σ is
FM, and all the involved functions (f, ft, t ∈ T ) are continuous. In the presence of a set constraint C, and
assuming the continuity of the involved functions, the equivalence between (i) and (iii) was established in [12]
under a closedness condition which is strictly stronger than the FM property [8]. By Theorem 1, the continuity
of all the involved functions can be replaced by either the linearity of f or by its continuity at some point in A.

5. Optimality conditions

In this section, and also in the next one, we consider the convex programming problem:

(P) Minimize f(x)
subject to ft(x) ≤ 0, t ∈ T,

x ∈ C,
(5.1)

under the assumptions of Section 1.
In [4], Proposition 4.1, it is shown that, under condition (CC), a ∈ A ∩ dom f is a minimizer of (P) if and

only if 0 ∈ ∂f(a) + NA(a). The next result provides a similar characterization involving the data (i.e., the
constraint functions) instead of the feasible set A.

Theorem 3. Given the problem (P), assume that σ is FM, that (CC) holds, and let a ∈ A ∩ dom f . Then
a is a minimizer of (P) if and only if there exists λ ∈ R

(T )
+ such that ∂ft(a) �= ∅, ∀t ∈ suppλ, and the

Karush-Kuhn-Tucker condition

0 ∈ ∂f(a) +
∑
t∈T

λt∂ft(a) +NC(a) and λtft(a) = 0, ∀t ∈ T, (5.2)

holds.

Proof. The point a ∈ A ∩ dom f is a minimizer of (P) if and only if

0 ∈ ∂(f + δA)(a). (5.3)
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By the assumptions, epiδ∗A = clK = K and epif∗ + epiδ∗A is weak∗-closed. Taking this fact into account,
Lemma 2 ensures that (5.3) is equivalent to

0 ∈ ∂f(a) +NA(a); (5.4)

i.e., there exists u ∈ ∂f(a) such that u(x) ≥ u(a) is consequence of σ.
First we assume that a is a minimizer of (P). Since σ is FM, by Lemma 3 we have

−(u, u(a)) ∈ K = cone

{⋃
t∈T

epif∗
t

}
+ epiδ∗C .

It follows from (2.1) and the representation (2.3), applied to f∗
t and δ∗C , that there exist λ ∈ R

(T )
+ , εt ≥ 0, ut ∈

∂εtft(a) ∀t ∈ T , γ ≥ 0, v ∈ ∂γδC(a) satisfying

−(u, u(a)
)

=

(∑
t∈T

λtut + v,
∑
t∈T

λt[ut(a) + εt − ft(a)] + v(a) + γ − δC(a)

)
,

which is equivalent to

−u =
∑

t∈T λtut + v

−u(a) =
∑

t∈T λt[ut(a) + εt − ft(a)] + v(a) + γ − δC(a)

}
. (5.5)

As a ∈ C, (5.5) implies that ∑
t∈T

λtεt −
∑
t∈T

λtft(a) + γ = 0.

Since λtεt ≥ 0, −λtft(a) ≥ 0 ∀t ∈ T , and γ ≥ 0, we get λtεt = 0, −λtft(a) = 0 ∀t ∈ T , and γ = 0. Thus,
εt = 0 whenever t ∈ suppλ, and −u (a) =

∑
t∈T λtut (a) + v (a), with ut ∈ ∂0ft(a) = ∂ft(a) ∀t ∈ T, and

v ∈ ∂0δC(a) = NC(a). Therefore,

0 ∈ ∂f(a) +
∑
t∈T

λt∂ft(a) +NC(a), with λtft(a) = 0, ∀t ∈ T.

The necessity is proved.
Conversely, if (5.2) holds for some λ ∈ R

(T )
+ such that ∂ft(a) �= ∅, ∀t ∈ suppλ, then there exists u ∈ X∗ such

that −u ∈ NC(a) and
u ∈ ∂f(a) +

∑
t∈T

λt∂ft(a) ⊂ ∂
(
f +

∑
t∈T

λtft

)
(a),

so that
f(x) +

∑
t∈T

λtft(x) ≥ f(a) +
∑
t∈T

λtft(a) + u (x− a) , ∀x ∈ X. (5.6)

Since λtft(a) = 0 ∀t ∈ T , and −u ∈ NC(a), (5.6) implies

f(x) +
∑
t∈T

λtft(x) − f(a) ≥ u(x− a) ≥ 0, ∀x ∈ C.

Then, if x ∈ A

f(x) ≥ f(x) +
∑
t∈T

λtft(x) ≥ f(a),

which proves a to be a minimizer of (P). �
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It was shown in [9], Theorem 5.5, that (5.2) is a necessary and sufficient optimality condition for a point
a ∈ A∩ dom f to be a minimizer of (P) assuming that σ is FM, (CC) holds, and all the functions ft, t ∈ T , are
continuous at a. We have shown that the last assumption is superfluous.

Corollary 2. If the system σ in (1.1) is FM, then it is also LFM.

Proof. If z ∈ A and u ∈ NA(z)�{0}, the point z turns out to be a minimum of the problem

Minimize −u(x)
subject to ft(x) ≤ 0, t ∈ T,

x ∈ C.

Since u is linear, Theorem 1 implies (CC), and Theorem 3 applies to conclude the existence of λ ∈ R
(T )
+ such

that
0 ∈ {−u}+

∑
t∈T

λt∂ft(z) +NC(z),

i.e.,

u ∈ NC(z) + cone

⎛⎝ ⋃
t∈T (z)

∂ft(z)

⎞⎠ . �

The converse of Corollary 2 fails even for linear semi-infinite systems (see, for instance, [11]).
The following theorem provides a counterpart in our context of the equivalence (i) ⇔ (iii) in [21], Theorem 4.1

(we do not require the involved functions to be finite-valued).

Theorem 4. Let a ∈ A, the solution set of σ. The following statements are equivalent :
(i) σ is LFM at a;
(ii) for any l.s.c. convex function f, with a ∈ dom f, and such that f is continuous at some point of A, the

point a is a minimizer of f on A if and only if there exists λ ∈ R
(T )
+ such that ∂ft(a) �= ∅, ∀t ∈ suppλ, and (5.2)

is satisfied.

Proof. [(i) ⇒ (ii)] The only thing that we have to prove is that if a is a minimizer of (P), then there exists
λ ∈ R

(T )
+ such that ∂ft(a) �= ∅, ∀t ∈ suppλ, and (5.2) is satisfied.

Since a ∈ A is a minimizer of (P), thanks to Lemmas 1 and 2, and to the LFM property, we can write

0 ∈ ∂(f + δA)(a) = ∂f(a) +NA(a)

= ∂f(a) + cone

⎛⎝ ⋃
t∈T (a)

∂ft(a)

⎞⎠+NC(a),

which brings the aimed conclusion.
[(ii) ⇒ (i)] We have just to repeat the argument in the proof of Corollary 2. �

6. Duality and stability

In this section we introduce a family of perturbed problems associated with the infinite convex optimization
problem (P) introduced in Section 1, but assuming now that all the involved functions, f, ft t ∈ T, are finite-
valued. We then consider the Lagrange dual problem of (P), denoted by (D). It is shown that, under the
assumptions that σ is FM and (CC) holds, we get strong duality between (P) and (D). Some kind of stability
for (P) is also analyzed.
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6.1. Duality and saddle point theorem

The following basic duality scheme is similar to the one developed in [25] (see, also, [2], Sect. 2.5, and [27],
Sect. 2.6).

Consider the parametric problem (Pu), u ∈ RT ,

(Pu) Minimize f(x)
subject to ft(x) ≤ ut, t ∈ T,

x ∈ C,

where u := (ut) ∈ RT , and whose feasible set is Au (Au can be empty for some u �= 0). We represent by h(u)
the optimal value of (Pu). Then, h(0) = v (P).

If we define the function ψ : X × RT → R ∪ {+∞}

ψ(x, u) := f(x) + δAu(x),

we can write
(Pu) Minimize ψ(x, u), x ∈ X,

and obviously,
(P) ≡ (P0) Minimize ψ(x, 0), x ∈ X.

By a standard argument we see that ψ is a proper l.s.c. convex function, whereas the optimal value function
h : RT → R ∪ {±∞} is convex (possibly non-proper).

Now let ψ∗ be the conjugate of ψ with respect to (x, u) ∈ X × RT . Then, for each (x∗, η) ∈ X∗ × R(T ) we
have

ψ∗(x∗, η) = supx∈X, u∈RT {x∗(x) + η(u) − ψ(x, u)}
= supx∈X supu∈RT

{
x∗(x) +

∑
t∈T ηtut − δAu(x) − f(x)

}
=

{
supx∈C

{
x∗(x) +

∑
t∈T ηtft(x) − f(x)

}
, if ηt ≤ 0, ∀t ∈ T,

+∞, otherwise.
Thus,

ψ∗(0, λ) =

{
− infx∈C

{
f(x) +

∑
t∈T λtft(x)

}
, if λ ∈ R

(T )
+ ,

+∞, otherwise.
On the other hand,

h∗(λ) = supu∈RT {λ(u) − infx∈X ψ(x, u)}
= supx∈X, u∈RT {λ(u) − ψ(x, u)}
= ψ∗(0, λ).

(6.1)

The dual problem of (P) is defined as

(D) Maximize −ψ∗(0, λ), λ ∈ R
(T )
+ .

Since the so-called Lagrangian function for (P), L : X × R(T ) → R ∪ {+∞}, is

L(x, λ) :=

{
f(x) +

∑
t∈T λtft(x), if x ∈ C and λ ∈ R

(T )
+ ,

+∞, otherwise,

it turns out that
(D) Maximize infx∈C L(x, λ), λ ∈ R

(T )
+ .
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It follows from (6.1) that

v (P) = h(0) ≥ h∗∗(0) = sup
λ∈R

(T )
+

{−h∗(λ)} (6.2)

= sup
λ∈R

(T )
+

{−ψ∗(0, λ)} = v (D), (6.3)

and the weak duality holds between (P) and (D). The next result shows that the strong duality holds between (P)
and (D) under the assumptions that σ is FM and that (CC) is satisfied for (P).

Theorem 5. If (P) is bounded, σ is FM, and (CC) holds, then v (D) = v (P) and (D) is solvable.

Proof. Let α := v (P) ∈ R. By definition of α we have

ft(x) ≤ 0, t ∈ T, x ∈ C ⇒ f(x) ≥ α.

Since σ is FM and (CC) holds, it follows from Theorem 2 that there exists λ̄ ∈ R
(T )
+ such that

f(x) +
∑
t∈T

λ̄tft(x) ≥ α, ∀x ∈ C,

which implies
infx∈CL(x, λ̄) ≥ α = v (P).

This, together with the weak duality, gives rise to

v (D) = v (P),

and λ̄ is a maximizer of (D). �
Theorem 6. Suppose that σ is FM and that (CC) holds. Then a point a ∈ A is minimizer of (P) if and only
if there exists λ̄ ∈ R

(T )
+ such that (a, λ̄) is a saddle point of the Lagrangian function L, that is,

L(a, λ) ≤ L(a, λ̄) ≤ L(x, λ̄), ∀λ ∈ R
(T )
+ and ∀x ∈ C. (6.4)

In this case, λ̄ is a maximizer of (D).

Proof. Let a ∈ A be a minimizer of (P). Then by an argument similar to the one in the proof of Theorem 5,
there exists λ̄ ∈ R

(T )
+ such that

f(x) +
∑
t∈T

λ̄tft(x) ≥ f(a), ∀x ∈ C.

It follows from this inequality (by letting x = a) that
∑

t∈T λ̄tft(a) = 0 and hence,

L(x, λ̄) ≥ L(a, λ̄) = f(a), ∀x ∈ C.

On the other hand, for each λ ∈ R
(T )
+ , and since ft(a) ≤ 0, we have

L(a, λ) = f(a) +
∑
t∈T

λtft(a) ≤ f(a) = L(a, λ̄).

Thus,
L(a, λ) ≤ L(a, λ̄) ≤ L(x, λ̄), ∀λ ∈ R

(T )
+ and ∀x ∈ C,
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which proves that (a, λ̄) is a saddle point of L.
Conversely, if there exists λ̄ ∈ R

(T )
+ such that (6.4) holds then, by letting λ = 0 in (6.4), we get

f(a) ≤ f(x) +
∑
t∈T

λ̄tft(x), ∀x ∈ C. (6.5)

Thus, if x ∈ A then f(x) ≥ f(a) as
∑

t∈T λ̄tft(x) ≤ 0. This means that a is a minimizer of (P).
Finally, we have seen that (6.4) implies (6.5). Then

v (P) = f(a) ≤ infx∈CL(x, λ̄) ≤ v (D),

and we conclude that λ̄ is a maximizer of (D) by the weak duality. �

6.2. Stability

We now recall two stability concepts for the problem (P) which were used in [20] (see also [7]).

Definition 3. (i) (P) is called inf-stable if h(0) is finite and h is l.s.c. at 0.
(ii) (P) is called inf-dif-stable if h(0) is finite and there exists λ0 ∈ R(T ) such that

h′(0, u) ≥ λ0(u), ∀u ∈ RT ,

where h′(0, u) is the directional derivative of h at 0 in the direction u.

The proof of the following result is rather similar to the proof of [20], Theorem 7.3.2 (see also [27], Th. 2.6.1 (v)).

Lemma 5. The following properties are equivalent :
(i) (P) is inf-stable;
(ii) strong duality holds for (P) and (D) (i.e., v (D) = v (P)), and the values of these problems are finite.

The condition (ii) in Lemma 5 is called normality in [27]. Now we turn to the inf-dif-stability of (P). We
begin by introducing a characterization of the inf-dif-stability, which proof is also quite similar to that given
in [20], Proposition 7.3.7 and, so, it is also omitted.

Lemma 6. The problem (P) is inf-dif-stable if and only if ∂h(0) �= ∅.
In [2] it is asserted that the last condition is, in our convex setting, equivalent to the notion of calmness

suggested in [6]. The relations between both notions of stability and normality are given in the following
theorem.

Lemma 7. The following statements are equivalent :
(i) (P) is inf-dif-stable;
(ii) strong duality holds between (P) and (D), and (D) is solvable;
(iii) (P) is inf-stable and (D) is solvable.

Proof. Observe first that the equivalence between (ii) and (iii) follows from Lemma 5. Moreover, the equivalence
between (i) and (ii) coincides, just taking into consideration Lemma 5, with [27], Theorem 2.6.1 (vi) (see also [2],
Th. 2.142). Nevertheless, we give here an alternative constructive proof which is not based on the Young-Fenchel
theorem.

[(i) ⇒ (ii)] Suppose that (Pu) is inf-dif-stable. Then by Lemma 6, ∂h(0) �= ∅, and let λ̃ ∈ R(T ) be a
subgradient of h at 0. Then, for each u ∈ RT ,

h(u) − h(0) ≥ λ̃(u). (6.6)
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Let λ̄ := −λ̃. We claim firstly that λ̄ ∈ R
(T )
+ . Assume, on the contrary, that λ̄ /∈ R

(T )
+ . Note that R

(T )
+ is a

weak∗-closed convex cone in R(T ). By the separation theorem, applied to the weak∗-closed convex set R
(T )
+ and

the weak∗-compact set {λ̄}, there exists µ ∈ RT
+ such that

λ̄(µ) = −1 and z∗(µ) ≥ 0 for all z∗ ∈ R
(T )
+ .

Take s > 0 arbitrarily. It follows from (6.6) that

h(sµ) − h(0) ≥ λ̃(sµ) = −λ̄(sµ) = −sλ̄(µ) = s > 0. (6.7)

On the other hand, since v (P) is finite, there exists a minimizing sequence {an}∞n=1 ⊂ A of (P), i.e.,
limn→∞ f(an) = v (P). Therefore, for any fixed n ∈ N, ft(an) ≤ 0 for all t ∈ T . Since µ = (µt) ∈ RT

+

and s > 0, ft(an) ≤ sµt for each t ∈ T , which means that an is a feasible point for (Pu), with u = sµ.
Thus, h(sµ) ≤ f(an). As the last inequality holds for arbitrary n ∈ N, we get h(sµ) ≤ v (P) or, equivalently,
h(sµ) − h(0) ≤ 0, which contradicts (6.7). Consequently, λ̄ ∈ R

(T )
+ .

Now, take x ∈ C. Then ft(x) ≤ ut for all t ∈ T where u = (ut) ∈ RT and ut = ft(x), t ∈ T . This means that
x is a feasible point for (Pu), and hence, h(u) ≤ f(x). It follows from this and from (6.6) that

h(0) ≤ h(u) + λ̄(u) = h(u) +
∑
t∈T

λ̄tft(x) (6.8)

≤ f(x) +
∑
t∈T

λ̄tft(x) = L(x, λ̄). (6.9)

Consequently, (6.8) holds for all x ∈ C and hence,

h(0) = v (P) ≤ inf
x∈C

L(x, λ̄).

It follows from this and from the weak duality that v (P) = v (D) and that λ̄ ∈ R
(T )
+ is an optimal solution

of (D).
[(ii) ⇒ (i)] Suppose that (ii) holds. Let λ̄ be an optimal solution of (D). Then

h(0) = v (D) = inf
x∈C

L(x, λ̄) ≤ f(x) +
∑
t∈T

λ̄tft(x), ∀x ∈ C. (6.10)

Let u ∈ RT arbitrary. We consider first the case where the feasible set of (Pu) is non-empty. If x ∈ C with
ft(x) ≤ ut for all t ∈ T, then λ̄t(ft(x) − ut) ≤ 0 for all t ∈ T . It then follows from (6.10) that, for each feasible
point x of (Pu),

f(x) +
∑
t∈T

λ̄tft(x) −
∑
t∈T

λ̄t(ft(x) − ut) ≥ h(0),

or equivalently,
f(x) ≥ h(0) + (−λ̄)(u).

Since the last inequality holds for each feasible point x of (Pu), we get

h(u) ≥ h(0) + (−λ̄)(u). (6.11)

If the feasible set of (Pu) is empty, then h(u) = +∞ and (6.11) holds. Consequently, (6.11) holds for all u ∈ RT ,
which proves −λ̄ ∈ ∂h(0). This and Lemma 6 together imply that (P) is inf-dif-stable, and (i) is proved. The
proof is complete. �

We are now in a position to give a sufficient condition for the inf-dif-stability of (P).
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Theorem 7. If (P) is bounded, σ is FM, and (CC) holds, then (P) is inf-dif-stable (and hence, inf-stable).

Proof. Under the assumptions of the theorem, it follows from Theorem 5 that the strong duality holds between
(P) and (D), and the problem (D) is solvable. The conclusion of the theorem follows from Lemma 7. �

Results of this type are also discussed and summarized in [26] for (P), under the extra assumptions that X
is a Banach space, that all the involved functions are real-valued, that T is a compact Hausdorff space, and
that G : X → RT , defined as G (x) (t) := ft (x) , has continuous images (i.e., G (x) ∈ C (T ) ∀x ∈ X). Sufficient
conditions for such a problem (P) to be inf-dif-stable (as in Th. 7) are also given in [26], assuming the continuity
of G : X → C (T ) and a Slater-type c.q. (which is strictly stronger than the FM c.q. (see [19])). Sufficient
conditions for the inf-stability in other context (non-convex objective function and linear equality constraints)
are given in [1].

References

[1] A. Auslender and M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer-Verlag,
New York (2003).

[2] J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000).
[3] R.I. Bot and G. Wanka, Farkas-type results with conjugate functions. SIAM J. Optim. 15 (2005) 540–554.
[4] R.S. Burachik and V. Jeyakumar, Dual condition for the convex subdifferential sum formula with applications. J. Convex

Anal. 12 (2005) 279–290.
[5] A. Charnes, W.W. Cooper and K.O. Kortanek, On representations of semi-infinite programs which have no duality gaps.

Manage. Sci. 12 (1965) 113–121.
[6] F.H. Clarke, A new approach to Lagrange multipliers. Math. Oper. Res. 2 (1976) 165–174.
[7] B.D. Craven, Mathematical Programming and Control Theory. Chapman and Hall, London (1978).
[8] N. Dinh, V. Jeyakumar and G.M. Lee, Sequential Lagrangian conditions for convex programs with applications to semidefinite

programming. J. Optim. Theory Appl. 125 (2005) 85–112.
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