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PARTIAL REGULARITY FOR ANISOTROPIC FUNCTIONALS
OF HIGHER ORDER
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Abstract. We prove a Ck,α partial regularity result for local minimizers of variational integrals of
the type I(u) =

∫
Ω

f(Dku(x))dx, assuming that the integrand f satisfies (p, q) growth conditions.
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1. Introduction

Higher order variational functionals, emerging in the study of problems from materials science and engineer-
ing, have attracted a great deal of attention in last few years [4,5,7]. In particular, the regularity of minimizers of
such functionals has been studied very recently. In [15] and [16] the partial Ck,α regularity has been established
for quasiconvex integrals with a p-power growth with respect to the gradient and in [3] for convex integrals
having subquadratic nonstandard growth condition, only in dimension 2.

The aim of this paper is to establish the partial regularity of minimizers of integral functionals of the type

I(u) =
∫

Ω

f(Dku(x))dx (1)

where Ω is a bounded subset of IRn, u : Ω ⊂ IRn → IRN , N ≥ 1, k > 1 and f is a C2 convex integrand satisfying
the non standard growth condition:

C|ξ|p ≤ f(ξ) ≤ L(1 + |ξ|q) (2)
with p < q, without restriction on the dimension and on the order of derivatives involved, in the superquadratic
case.

Nonstandard growth conditions have been introduced by Marcellini, in the scalar case for k = 1. He observed
that, even in the scalar case, minimizers of (1) may fail to be regular (see [13, 17, 18]), when q is too large with
respect to p. On the other hand, one can prove regularity of scalar minimizers of (1) if q is not too far away
from p (see e.g. [19] and its references). More precisely, in [19] it is shown that if one writes down the Euler
equation for the functional I, under suitable assumptions on p and q, the Moser iteration argument still works,
thus leading to a sup estimate for the gradient Du of the minimizer.
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Clearly this approach can not be carried on in the vector valued case, i.e. when N > 1. First regularity
results for systems are proved in [1] and [20] under special structure assumptions and in [22] in a more general
setting. Moreover, higher integrability results for the gradient of the minimizers of (1) are avalaible in the
vectorial case (see the references in [2, 8, 9]).

In this paper we prove that, for k > 1, differently from all previous quoted results, if f satisfies (2) and the
strong ellipticity assumption

〈D2f(ξ)η, η〉 ≥ γ(1 + |ξ|2) p−2
2 |η|2 (3)

where

2 ≤ p < q < min
{
p+ 1,

pn

n− 1

}
, (4)

a minimizer u ∈ W k,p(Ω; IRN ) of functional (1) is Ck,α for all α < 1 in an open set Ω0 ⊂ Ω such that
meas(Ω \ Ω0) = 0.

We point out that apart from condition (4), no special structure assumption is needed on f and the condition
on the exponents does not depend on k, i.e. the order of derivatives involved.

The proof of our result goes through a more or less standard blow-up argument aimed to establish a decay
estimate on the excess function for the k- order derivatives

U(x0, r) =
∫

Br(x0)

|Dku− (Dku)x0,r|2 + |Dku− (Dku)x0,r|pdx.

Here, first order techniques have to be combined with new theoretical arguments needed to face the analytical
and geometrical constraints of higher order derivatives. In particular, the essential tool is a lemma due to
Fonseca and Malý (see [11] and also Lem. 2.4 below) which makes possible to connect in an annulus Br \ Bs

two W k,p functions v and w with a more regular function function z ∈ W k,q(Br \Bs) with p < q < pn
n−1 .

2. Statements and preliminary lemmas

Let us consider the functional

I(u) =
∫

Ω

f(Dku(x))dx

where Ω is a bounded open subset of IRn, n ≥ 2. Let f : IRMN → IR, where M = (n+k−1)!
k!(n−1)! and N ≥ 2, satisfy

the following assumptions:
f ∈ C2 (H1)

C|ξ|p ≤ f(ξ) ≤ L(1 + |ξ|q) (H2)

〈D2f(ξ)η, η〉 ≥ γ(1 + |ξ|2) p−2
2 |η|2 (H3)

where

2 ≤ p < q < min
{
p+ 1,

pn

n− 1

}
.

It is well known that
|Df(ξ)| ≤ c(1 + |ξ|q−1). (H4)

We say that u ∈W k,p(Ω, IRN ) is a minimizer of I if

I(u) ≤ I(u+ v)

for any v ∈ u+W k,p
0 (Ω; IRN ).
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Remark 2.1. If u is a local minimizer of I and φ ∈ Ck
0 (Ω; IRN ) from the minimality condition one has for any

ε > 0

0 ≤
∫

Ω

[f(Dku+ εDkφ) − f(Dku)]dx = ε

∫
Ω

dx
∫ 1

0

∂f

∂ξi
α

(Dku+ εtDkφ)Dαφ
idt

where |α| = k. Dividing this inequality by ε, and letting ε go to zero, from (H4) and the assumption q ≤ p+ 1
we get ∫

Ω

∂f

∂ξi
α

(Dku)Dαφ
idx ≥ 0

and therefore, by the arbitrariness of φ, the usual Euler-Lagrange system holds:

∫
Ω

∂f

∂ξi
α

(Dku)Dαφ
idx = 0 ∀φ ∈ Ck

0 (Ω; IRN ).

The aim of this paper is proving the following

Theorem 2.1. Let f satisfy the assumptions (H1)–(H3) and let u ∈ W k,p(Ω; IRN ) be a minimizer of I. Then
there exists an open subset Ω0 of Ω such that

meas(Ω \ Ω0) = 0

and

u ∈ Ck,α(Ω0, IR
N ) for all α < 1.

In what follows, we will denote by u a W k,p(Ω; IRN ) minimizer of the integral functional (1) and assume that
its integrand f satisfies (H1)–(H3). We set for every Br(x0) ⊂ Ω

∫
Br(x0)

g = (g)x0,r =
1

meas(Br(x0))

∫
Br(x0)

g.

Moreover, given p > 1 and u ∈W k,p(Ω; IRN ), k ≥ 1, we will denote by P (y) = Pu(x,R, y) the unique polynomial
of degree k − 1 such that

∫
Br(x)

Dl(u(y) − P (y))dy = 0 l = 1, . . . , k − 1.

Its coefficients depend on x,R and also on the derivatives of u (see [12]). When no confusion will arise, we will
omit the dependence of P on x,R and u.

Next lemma can be found in [11], (Th. 3.3), in a slightly different form.

Lemma 2.2. Let v ∈ W k,p(B1(0)) and 0 < s < r < 1. There exists a linear operator T : W k,p(B1(0)) →
W k,p(B1(0)) such that

Tv = v on (B1 \Br) ∪Bs

and for all µ > 0 , for all q < p n
n−1
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(∫
Br\Bs

|DkTv|2
) 1

2

+ µ

(∫
Br\Bs

|DkTv|q
) 1

q

≤ C(r − s)ρ

{⎡
⎣ sup

t∈(s,r)

(t− s)−
1
2

(∫
Bt\Bs

|Dkv|2
) 1

2

+ sup
t∈(s,r)

(r − t)−
1
2

(∫
Bt\Bs

|Dkv|2
) 1

2
⎤
⎦

+ µ

⎡
⎣ sup

t∈(s,r)

(t− s)−
1
p

(∫
Br\Bt

|Dkv|p
) 1

p

+ sup
t∈(s,r)

(r − t)−
1
p

(∫
Br\Bt

|Dkv|p
) 1

p

⎤
⎦
}

(5)

where C = C(n, p, q) > 0, and ρ = ρ(n, p, q) > 0.

Let us recall an elementary Lemma proved in [10].

Lemma 2.3. Let ψ be a continuous nondecreasing function on an interval [a, b], a < b. There exist a′ ∈
[a, a+ 1

3 (b − a)], b′ ∈ [b− 1
3 (b− a), b] such that a ≤ a′ < b′ ≤ b and

ψ(t) − ψ(a′)
t− a′

≤ 3
(ψ(b) − ψ(a))

b− a

ψ(b′) − ψ(t)
b′ − t

≤ 3
(ψ(b) − ψ(a))

b− a

for all t ∈ (a′, b′).

Finally, combining the previous two lemmas we obtain a generalization to the case of higher order derivatives
of Lemma 2.4 in [10]. We give the proof here for completeness.

Lemma 2.4. Let v, w ∈ W k,p(B1(0)) and 1
4 < s < r < 1. Fix p < q < np

n−1 , for all µ > 0 and m ∈ IN there
exist a function z ∈W k,p(B1(0)) and 1

4 < s < s′ < r′ < r < 1 with r′, s′ depending on v, w and µ, such that

z = v on Bs′ , z = w on B1 \Br′ , (6)

r − s

m
≥ r′ − s′ ≥ r − s

3m
and

(∫
Br′\Bs′

|Dkz|2
) 1

2

+ µ

(∫
Br′\Bs′

|Dkz|q
) 1

q

≤ C
(r − s)ρ

mρ

[∫
Br\Bs

(
1 +

k∑
l=0

|Dlv|2 +
k∑

l=0

|Dlw|2 +
m2

(r − s)2

k−1∑
l=1

|Dl(v − w)|2
)

+ µp

∫
Br\Bs

(
1 +

k∑
l=0

|Dlv|p +
k∑

l=1

|Dlw|p +
mp

(r − s)p

k−1∑
l=0

|Dl(v − w)|p
)] 1

2

(7)

where C = C(n, p, q) > 0 and ρ = ρ(p, q, n) > 0.
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Proof. As in Lemma 2.4 in [10], choose m ∈ IN and set

f = 1 +
∑k

l=0 |Dlv|2 +
∑k

l=0 |Dlw|2 + m2

(r−s)2

∑k−1
l=0 |Dl(v − w)|2

+µp(1 +
∑k

l=0 |Dlv|p +
∑k

l=0 |Dlw|p + mp

(r−s)p

∑k−1
l=0 |Dl(v − w)|p).

We may find h ∈ {1, ...,m} such that∫
B

s+ h(r−s)
m

\B
s+ (h−1)(r−s)

m

fdx ≤ 1
m

∫
Br\Bs

fdx.

Set, for t ∈
[
s+ (h−1)(r−s)

m , s+ h(r−s)
m

]
,

ψ(t) =
∫

Bt\Bs

fdx

which is a continuous increasing function. By Lemma 2.3, there exists [s′, r′] ⊂
[
s+ (h−1)(r−s)

m , s+ h(r−s)
m

]
such

that
r − s

m
≥ r′ − s′ ≥ r − s

3m
and ∫

Bt\Bs′
fdx ≤ 3

(t− s′)m
r − s

∫
B

s+ h(r−s)
m

\B
s+(h−1)(r−s)

m

fdx ≤ 3
t− s′

r − s

∫
Br\Bs

fdx, (8)

∫
Br′\Bt

fdx ≤ 3
r′ − t

r − s

∫
Br\Bs

fdx (9)

for all t ∈ (s′, r′). Set

u =

⎧⎪⎨
⎪⎩
v(x) if x ∈ Bs′
(r′−|x|)v(x)+(|x|−s′)w(x)

r′−s′ if x ∈ Br′ \Bs′

w(x) if x ∈ B1 \Br′ .

A direct computation shows that

k∑
l=0

|Dlu|2 + µq

(
k∑

l=0

|Dlu|p
)

≤ Cf.

If we apply Lemma 2.2 to the function u, we then find z ∈ W k,p(B1) satisfying (6). Moreover, from (8) and
(9), using (5), one readily cheks that

(∫
Br′\Bs′

|Dkz|2
) 1

2

+ µ

(∫
Br′\Bs′

|Dkz|q
) 1

q

≤ c(r′ − s′)ρ

{
|Br′ \Bs′ | 12
(r′ − s′)

1
2

(∫
Br\Bs

f

) 1
2

+
|Br′ \Bs′ | 1p
(r′ − s′)

1
p

(∫
Br\Bs

f

) 1
p
}

≤ c(r′ − s′)ρ

{(∫
Br\Bs

f

) 1
2

+

(∫
Br\Bs

f

) 1
p
}
,

from which (7) follows. �
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3. The decay estimate

As usual, to get the partial regularity result stated in Theorem 2.1, we need a decay estimate for the excess
function U(x0, r) defined as follows

U(x0, r) =
∫

Br(x0)

[|Dku− (Dku)x0,r|2 + |Dku− (Dku)x0,r|p]dy,

which measures how the k-order derivatives are far from being constant in the ball Br(x0). The desired decay
estimate is established in the next proposition.

Proposition 3.1. Fix M > 0. There exists a constant CM > 0 such that for every 0 < τ < 1
4 , there exists

ε = ε(τ,M) such that, if
|(Dku)x0,r| ≤M and U(x0, r) ≤ ε

then
U(x0, τr) ≤ CM τ2U(x0, r).

Proof. Fix M and τ . We shall determine CM later. We argue by contradiction assuming that there exists a
sequence Brh

(xh) satisfying

Brh
(xh) ⊂ Ω, |(Dku)xh,rh

| ≤M, lim
h
U(xh, rh) = 0,

but
U(xh, τrh) > CM τ2U(xh, rh). (10)

Set
Ah = (Dku)xh,rh

λ2
h = U(xh, rh)

and let P the polynomial such that∫
Brh

(xh)

Dl(u− P ) = 0 l = 0, . . . , k.

Step 1. Blow up. We rescale the function u in each Brh
(xh) to obtain a sequence of functions on B1(0). Set

vh(y) =
1

λhrk
h

[u(xh + rhy) − P (xh + rhy)],

then
Dkvh(y) =

1
λh

[Dku(xh + rhy) −Ah].

Clearly we have
(Dlvh)0,1 = 0 l = 0, . . . , k.

Moreover,
U(xh, rh)

λ2
h

=
∫

B1

[|Dkvh|2 + λp−2
h |Dkvh|p]dy = 1. (11)

Then, passing possibly to a subsequence, we may suppose that

vh ⇀ v weakly in W k,2(B1; IRN ) (12)
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and, since ∀h |Ah| ≤M ,
Ah → A. (13)

Step 2. v solves a linear system. Now we show that

∫
B1(0)

∂2f

∂ξi
α∂ξ

j
β

(A)Dβv
jDαφ

idy = 0 ∀φ ∈ Ck
0 (B1; IRN ). (14)

Since we assume q − 1 ≤ p we can write the usual Euler-Lagrange system for u (see Rem. 2.1). Then, rescaling
in each Brh

(xh), we get for any φ ∈ Ck
0 (B1; IRN ) and any 1 ≤ i ≤ N

∫
B1(0)

∂f

∂ξi
α

(Ah + λhD
kvh)Dαφ

idy = 0

where |α| = k. Then
1
λh

∫
B1(0)

[
∂f

∂ξi
α

(Ah + λhD
kvh) − ∂f

∂ξi
α

(Ah)]Dαφ
idy = 0. (15)

Let us split
B1 = E+

h ∪ E−
h = {y ∈ B1 : λh|Dkvh(y)| > 1} ∪ {y ∈ B1 : λh|Dkvh(y)| ≤ 1}

then, by (11), we get

|E+
h | ≤

∫
E+

h

λ2
h|Dkvh|2dy ≤ λ2

h

∫
B1(0)

|Dkvh|2dy ≤ cλ2
h. (16)

Now, by (H4) and Hölder’s inequality, we observe that

1
λh

∣∣ ∫
E+

h

[Df(Ah + λhD
kvh) −Df(Ah)]Dφdy

∣∣
≤ c

λh
|E+

h | + cλq−2
h

∫
E+

h

|Dkvh|q−1dy

≤ cλh + c

(∫
E+

h

λp−2
h |Dkvh|pdy

) q−1
p

λ
2q−p−2

p

h |E+
h | p−q+1

p ≤ cλh

where we used again the assumption q − 1 ≤ p.
From this it follows that

lim
h

1
λh

∫
E+

h

[Df(Ah + λhD
kvh) −Df(Ah)]Dφdy = 0. (17)

On E−
h we have

1
λh

∫
E−

h

[Df(Ah + λhD
kvh) −Df(Ah)]Dφ dy =

∫
E−

h

∫ 1

0

D2f(Ah + sλhD
kvh)DkvhDφ ds dy

=
∫

E−
h

∫ 1

0

[D2f(Ah + sλhD
kvh) −D2f(Ah)]DkvhDφ ds dy

+
∫

E−
h

D2f(Ah)DkvhDφ dy.
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Note that (16) ensures that χE−
h

→ χB1 in Lr(B1) for all r < ∞ and by (11) we have, passing possibly to a
subsequence,

λhD
kvh(y) → 0 a.e. in B1.

Then, by (12), (13) and the uniform continuity of D2f on bounded sets, we get

lim
h

1
λh

∫
E−

h

[Df(Ah + λhD
kvh) −Df(Ah)]Dφ dy =

∫
B1

D2f(A)DkvDφ dy.

Collecting (15), (17) and the above equality, we obtain that v satisfies system (14), which is linear and elliptic
with constant coefficients by (H3). By standard regularity results (see [12]), we have for any 0 < τ < 1

∫
Bτ

|Dkv − (Dkv)τ |2dy ≤ cτ2

∫
B1

|Dkv − (Dkv)1|2dy ≤ cτ2. (18)

Moreover we have

v ∈ C∞(B1; IRN ) (19)

and

λ
p−2

p

h (vh − v) ⇀ 0 weakly in W k,p
loc (B1; IRN ).

Step 3. Upper bound. We set

fh(ξ) =
1
λ2

h

[f(Ah + λhξ) − f(Ah) − λhDf(Ah)ξ]

and, for every r < 1, we consider

Ih,r(w) =
∫

Br

fh(Dkw)dy.

Note that, by the strong ellipticity assumption (H3), it follows that fh(ξ) ≥ 0, for any ξ, and remember that
vh is a local minimizer for each Ih,r. Fix 1

4 < s < 1. Passing to a subsequence we may always assume that

lim
h

[Ih,s(vh) − Ih,s(v)]

exists.
We shall prove that

lim
h

[Ih,s(vh) − Ih,s(v)] ≤ 0. (20)

Consider r > s and fix m ∈ IN . Observe that, since v ∈ W k,p(B1) and vh ∈ W k,p(B1), Lemma 2.4, with

µ = λ
q−2

q

h , implies that there exist zh ∈ W k,p(B1) and 1
4 < s < sh < rh < r < 1 such that

zh = v on Bsh
zh = vh on B1 \Brh
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and

(∫
Brh

\Bsh

|Dkzh|2
) 1

2

+ λ
q−2

q

h

(∫
Brh

\Bsh

|Dkzh|q
) 1

q

≤ C
(r − s)ρ

mρ

[∫
Br\Bs

(1 +
k∑

l=0

|Dlv|2 +
k∑

l=0

|Dlvh|2 +
m2

(r − s)2

k−1∑
l=1

|Dl(v − vh)|2)

+ λ
q−2

q p

h

∫
Br\Bs

(1 +
k∑

l=0

|Dlv|p +
k∑

l=0

|Dlvh|p +
mp

(r − s)p

k−1∑
l=1

|Dl(v − vh)|p)
] 1

2
. (21)

Since by (19), Dkv is locally bounded on B1 we get

Ih,s(vh) − Ih,s(v) ≤ Ih,rh
(vh) − Ih,rh

(v) + Ih,rh
(v) − Ih,s(v)

= Ih,rh
(vh) − Ih,rh

(v) +
∫

Brh
\Bs

fh(Dkv)

≤ Ih,rh
(zh) − Ih,rh

(v) + c(r − s)

≤
∫

Brh
\Bsh

[fh(Dkzh) − fh(Dkv)] + c(r − s) (22)

where we used the minimality of vh.
As |fh(ξ)| ≤ c(|ξ|2 + λq−2

h |ξ|q), we get by (21), using the fact that r−s
m < 1 and that the quantity on square

brackets is greater or equal than 1,

Ih,rh
(zh) − Ih,rh

(v) ≤ c

∫
Brh

\Bsh

|Dkzh|2 + λq−2
h |Dkzh|q

≤ c
(r − s)2ρ

m2ρ

[∫
Br\Bs

(1 +
k∑

l=0

|Dlv|2 +
k∑

l=0

|Dlvh|2 +
m2

(r − s)2

k−1∑
l=1

|Dl(v − vh)|2)
] q

2

+ c
(r − s)2ρ

m2ρ

[
λ

q−2
q p

h

∫
Br\Bs

(1 +
k∑

l=0

|Dlv|p +
k∑

l=0

|Dlvh|p +
mp

(r − s)p

k−1∑
l=1

|Dl(v − vh)|p)
] q

2

= Jh,1 + Jh,2.

Since Dlvh → Dlv strongly in L2(B1; IRN ) for every l < k, we have, using (11)

lim sup
h→∞

Jh,1 ≤ cm−2ρ.

Moreover, since for l = 0, . . . , k

λ
p(q−2)

q

h

∫
B1

|Dlvh|p ≤ cλ
2(q−p)

q

h λp−2
h

∫
B1

|Dkvh|p ≤ cλ
2(q−p)

q

h

and
λ

p(q−2)
q

h

∫
B1

|Dl(vh − v)|p ≤ cλ
p(q−2)

q

h

∫
B1

|Dkvh|p ≤ cλ
2(q−p)

q

h

we have
lim
h
Jh,2 = 0.
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Hence we conclude letting first m→ ∞ and then r → s in (22).

Step 4. Lower bound. We shall prove that, for a.e. 1
4 < r < 1

2 , if t < r then

lim sup
h

∫
Bt

|Dkv −Dkvh|2(1 + λp−2
h |Dkv −Dkvh|p−2) ≤ lim

h
[Ih,r(vh) − Ih,r(v)].

For any Borel set A ⊂ B1, let us define

µh(A) =
∫

A

k∑
l=0

|Dlvh|2 dx.

Passing possibly to a subsequence, since µh(B1) ≤ c, we may suppose

µh ⇀ µ weakly ∗ in the sense of measures,

where µ is a Borel measure over B1, with finite total variation. Then for a.e. r < 1

µ(∂Br) = 0

and let us choose such a radius r. Consider 1
4 < t < s < r, also such that µ(∂Bs) = 0, and fix m ∈ IN . Observe

that, as vh ∈ W k,p(B1) Lemma 2.4 implies that there exist zh ∈ W k,p(B1) and 1
4 < s < sh < rh < r < 1 such

that
zh = vh on Bsh

zh = vh on B1 \Brh

rh − sh ≥ r − s

3m
and

(∫
Brh

\Bsh

|Dkzh|2
) 1

2

+ λ
q−2

q

h

(∫
Brh

\Bsh

|Dkzh|q
) 1

q

≤ C
(r − s)ρ

mρ

[∫
Br\Bs

(
1 +

k∑
l=0

|Dlvh|2
)

+ λ
(q−2)p

q

h

∫
Br\Bs

(1 +
k∑

l=0

|Dlvh|p)
] 1

2
. (23)

Passing possibly to a subsequence, we may suppose that

zh ⇀ vr,s weakly in W k,2(B1).

and
vr,s = v in (B1 \Br) ∪Bs.

Moreover, from (23) and the interpolation inequality with 1
p = θ

2 + 1−θ
q , we deduce that

λp−2
h

∫
B1

|Dkzh|p ≤ cλp−2
h

(∫
B1

|Dkzh|2
) θp

2
(∫

B1

|Dkzh|q
) (1−θ)p

2

≤ cλp−2
h

(∫
B1

|Dkzh|q
) (1−θ)p

2

≤ cλp−2
h (cλ2−q

h )
p−2
q−2 ≤ c, (24)
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since θ = p−2
q−2

q
p .

Consider ζh ∈ C∞
0 (Brh

) such that 0 ≤ ζh ≤ 1, ζh = 1 on Bsh
and |Dlζh| ≤ C

(rh−sh)l , for l = 0, . . . , k, and set

ψε
h = ζh(zh − vε

r,s),

where vε
r,s = ρε � vr,s, and ρε is the usual sequence of mollifiers. Now, setting vε = ρε � v, we observe that

Ih,rh
(vh) − Ih,rh

(vε) = Ih,rh
(vh) − Ih,rh

(zh) + Ih,rh
(zh) − Ih,rh

(vε
r,s + ψε

h)
+ Ih,rh

(ψε
h + vε

r,s) − Ih,rh
(vε

r,s) − Ih,rh
(ψε

h) + Ih,rh
(vε

r,s) − Ih,rh
(vε)

+ Ih,rh
(ψε

h)
= Rh,1 +Rh,2 +Rh,3 +Rh,4 +Rh,5. (25)

To bound Rh,1 we observe that

Ih,rh
(vh) − Ih,rh

(zh) =
∫

Brh
\Bsh

fh(Dkvh) −
∫

Brh
\Bsh

fh(Dkzh) ≥ −
∫

Brh
\Bsh

fh(Dkzh)

on the other hand we have∫
Brh

\Bsh

fh(Dkzh) ≤
∫

Brh
\Bsh

|Dkzh|2 + λq−2
h |Dkzh|q

≤ cm−2ρ

[∫
Br\Bs

(1 +
k∑

l=0

|Dlvh|2) + λ
q−2

q p

h

∫
Br\Bs

(1 +
k∑

l=0

|Dlvh|p)
] q

2

and then arguing as we did in Step 3 to bound Jh,1 we get

lim sup
h

∫
Brh

\Bsh

fh(Dkzh) ≤ Cm−2ρ

hence, letting h→ ∞ we get
lim inf

h
Rh,1 ≥ −Cm−2ρ. (26)

We obtain that

Rh,2 =
∫

Brh
\Bsh

fh(Dkzh) − fh(Dkψε
h +Dkvε

r,s)

≥ −c
∫

Brh
\Bsh

|Dkψε
h +Dkvε

r,s|2 + λq−2
h |Dkψε

h +Dkvε
r,s|q

≥ −c
∫

Brh
\Bsh

|Dkzh|2 + λq−2
h |Dkzh|q + |Dkvε

r,s|2 + λq−2
h |Dkvε

r,s|q

− c

∫
Brh

\Bsh

(
k−1∑
l=0

m2(k−l)

(r − s)2(k−l)
|Dl(zh − vε

r,s)|2 + λq−2
h

k−1∑
l=0

mq(k−l)

(r − s)q(k−l)
|Dl(zh − vε

r,s)|q)

= −Sh,1 − Sh,2

where we used the bound rh − sh ≥ r−s
3m . Denoting by Pl the polynomial of degree k − 1 such that

∫
B1

(Dl(Pl − zh)) = 0,
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for l < k, and setting

p∗ =

{
np

n−lp if p < n
l

r > p if p ≥ n
l ,

since q < p∗, we get by (23), for every l = 0, . . . , k − 1

∫
B1

λq−2
h |Dlzh|q ≤ cλq−2

h

{∫
B1

|Dl(zh − Pl)|q + |Dl(Pl)|q
}

≤ cλq−2
h

{(∫
B1

|Dl(zh − Pl)|p∗
) q

p∗
+
(∫

B1

|Dl(Pl)|p∗
) q

p∗
}

≤ cλq−2
h

(∫
B1

|Dkzh|p
) q

p

≤ cλ
2(q−p)

p

h

(
λp−2

h

∫
B1

|Dkzh|p
) q

p

.

Therefore, using (24), we obtain

lim sup
h→∞

Sh,2 ≤ c

k−1∑
l=0

m2(k−l)

(r − s)2(k−l)

∫
B 1

2

|Dl(vr,s − vε
r,s)|2 .

To bound Sh,1, observe that for every h

∫
Brh

\Bsh

|Dkvε
r,s|2 ≤ c

∫
Br\Bs

|Dkvr,s|2 + c

∫
B 1

2

|Dkvr,s −Dkvε
r,s|2

≤ lim inf
j

c

∫
Br\Bs

|Dkzj|2 + c

∫
B 1

2

|Dkvr,s −Dkvε
r,s|2

= c lim inf
j

∫
(Br\Bs)\(Brj

\Bsj
)

|Dkvj |2

+ c lim sup
j

∫
Brj

\Bsj

|Dkzj |2 + c

∫
B 1

2

|Dkvr,s −Dkvε
r,s|2.

We control the second integral as usual using Lemma 2.4, while the first is less or equal than cµ(Br \Bs).
Moreover we can estimate ∫

Brh
\Bsh

|Dkzh|2 + λq−2
h |Dkzh|q

as we did in Step 3 to bound Jh,1. Hence

lim infhRh,2 ≥ −cm−2ρ − cµ(Br \Bs)

−c ∫
B 1

2

|Dkvr,s −Dkvε
r,s|2 −

∑k−1
l=0

m2(k−l)

(r−s)2(k−l)

∫
B 1

2

|Dl(vr,s − vε
r,s)|2. (27)
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To bound Rh,3 we observe that

fh(A+B) − fh(A) − fh(B) =
∫ 1

0

∫ 1

0

D2fh(sA+ tB)ABds dt

and, by the definition of fh,

D2fh(sDkvε
r,s + tDkψε

h) = D2f(Ah + sλhD
kvε

r,s + tλhD
kψε

h)

is bounded and converges to D2f(A) a.e. Since

Rh,3 =
∫

Brh

dx
∫

[0,1]×[0,1]

D2f(Ah + sλhD
kvε

r,s + tλhD
kψε

h)Dkvε
r,sD

kψε
hds dt

and we may suppose that ψε
h ⇀ ψε weakly in W k,2(B1), and arguing as in the proof of (27), we have

∫
B1

|Dkψε|2 ≤
k−1∑
l=0

m2(k−l)

(r − s)2(k−l)

∫
B 1

2

|Dl(vr,s − vε
r,s)|2 + c

∫
B 1

2

|Dkvr,s −Dkvε
r,s|2.

Then we get easily
lim sup

h
|Rh,3| ≤ c(M)||Dkvε

r,s||L2(B 1
2
)||Dkψε||L2(B 1

2
). (28)

To bound Rh,4 we observe that

Rh,4 =
∫

Brh
\Bs

[fh(Dkvε
r,s) − fh(Dkvε)] ≥ −

∫
Brh

\Bs−ε

fh(Dkvε) ≥ −c|Br \Bs−ε|.

Then
lim inf

h
Rh,4 ≥ −c|Br \Bs−ε|. (29)

Moreover (H3) implies

|Rh,5| = Ih,rh
(ψε

h) =
∫

Brh

fh(Dkψε
h) ≥ γ

∫
Bt

(1 + λp−2
h |Dkvε −Dkvh|p−2)|Dkvε −Dkvh|2 (30)

for ε small enough.
Passing to a subsequence we may suppose that

lim sup
h

Rh,5 = lim
h
Rh,5.

Therefore returning to (25), from (26), (27), (28), (29) and (30) we get

lim inf
h

[Ih,r(vh) − Ih,r(vε)]

≥ γ lim sup
h

∫
Bs

(1 + λp−2
h |Dkvε −Dkvh|p−2)|Dkvε −Dkvh|2 − c|Br \Bs−ε| − cµ(Br \Bs)

− c||Dkvε
r,s||L2(B 1

2
)||Dkψε||L2(B 1

2
) − cm−2ρ −

∫
B 1

2

|Dvr,s −Dvε
r,s|2

− c

k−1∑
l=0

m2(k−l)

(r − s)2(k−l)

∫
B 1

2

|Dl(vr,s − vε
r,s)|2.
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Passing to the limit as ε→ 0+ we get easily

lim inf
h

[Ih,r(vh) − Ih,r(v)]

≥ γ lim sup
h

∫
Bs

(1 + λp−2
h |Dkv −Dkvh|p−2)|Dkv −Dkvh|2 − c|Br \Bs| − cµ(Br \Bs) − cm−2ρ

then passing to the limit as m→ ∞ and s→ r we get

lim sup
h

∫
Br

|Dkv −Dkvh|2(1 + λp−2
h |Dkv −Dkvh|p−2) ≤ lim

h
[Ih,r(vh) − Ih,r(v)].

Step 5. Conclusion. From the two previous steps we conclude that, for any Bτ , with 0 < τ < 1
4

lim
h

∫
Bτ

|Dkv −Dkvh|2(1 + λp−2
h |Dkv −Dkvh|p) = 0.

Now, from this equality and by (18) we get

lim
h

U(xh, τrh)
λ2

h

= lim
h

1
λ2

h

∫
Bτrh

(xh)

(|Dku− (Dku)τrh
|2 + |Dku− (Dku)τrh

|p)dx

= lim
h

∫
Bτ

(|Dku− (Dku)τ |2 + λp−2
h |Dku− (Dku)τ |p)dy

=
∫

Bτ

(|Dkv − (Dkv)τ |2)dy

≤ C∗
Mτ2

which contradicts (10) if we choose CM = 2C∗
M . �

The proof of Theorem 2.1 follows by Proposition 3.1 by a standard iteration argument, see [12].

References

[1] E. Acerbi and N. Fusco, Partial regularity under anisotropic (p, q) growth conditions. J. Diff. Eq. 107 (1994) 46–67.
[2] M. Bildhauer, Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lect. Notes Math. 1818,

Springer-Verlag, Berlin (2003).
[3] M. Bildhauer and M. Fuchs, Higher order variational problems with non-standard growth condition in dimension two: plates

with obstacles. Ann. Acad. Sci. Fennicae Math. 26 (2001) 509–518.
[4] M. Carriero, A. Leaci and F. Tomarelli, Strong minimizers of Blake & Zisserman functional. Ann. Scuola Norm. Sup. Pisa

Cl. Sci. 15 (1997) 257–285.
[5] R. Choksi, R.V. Kohn and F. Otto, Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Comm.

Math. Phys. 201 (1999) 61–79.

[6] B. Dacorogna, Direct methods in the calculus of variations. Appl. Math. Sci. 78, Springer Verlag (1989).
[7] G. Dal Maso, I. Fonseca, G. Leoni and M. Morini, Higher order quasiconvexity reduces to quasiconvexity Arch. Rational Mech.

Anal. 171 (2004) 55–81.
[8] L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with (p, q) growth. Forum

Math. 14 (2002) 245–272.
[9] L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with (p, q) growth. J. Diff. Eq. 204 (2004) 5–55.
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