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OPTIMAL PARTIAL REGULARITY OF MINIMIZERS OF QUASICONVEX
VARIATIONAL INTEGRALS
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Abstract. We prove partial regularity with optimal Hölder exponent of vector-valued minimizers
u of the quasiconvex variational integral

∫
F (x, u, Du) dx under polynomial growth. We employ the

indirect method of the bilinear form.
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1. Introduction

We are interested in the regularity of the vector-valued minimizers u ∈ W 1,q(Ω,RN ) of the variational
integral

I(u,Ω) =
∫

Ω

F (x, u(x), Du(x)) dx.

Here Ω is a bounded open subset of Rn, n ≥ 2, N ≥ 1, q ≥ 2, and Du(x) ∈ RN×n denotes the gradient of
u at a.e. point x ∈ Ω. The integral I(u,Ω) is well-defined for u ∈ W 1,q(Ω,RN) if we admit as integrands
Carathéodory functions F (x, u, P ) : Ω×RN ×RN×n → R of polynomial growth in P , i.e. functions which are
measurable in x, continuous in (u, P ) and which satisfy the growth condition

|F (x, u, P )| ≤ c(1 + |P |q).

Definition 1. We say that u ∈ W 1,q(Ω,RN ) is a minimizer of the variational integral I if

I(u, suppϕ) ≤ I(u + ϕ, suppϕ)

for every ϕ ∈ C∞
c (Ω,RN).

The problem of regularity of a minimizer u ∈ W 1,q(Ω,RN ) of the variational integral I has been intensively
investigated over the last 23 years. As we know (see Exs. II.3.2 and II.3.4 of [6]), we can in general only expect
partial regularity if N > 1, i.e. Hölder continuity of the gradient Du outside of a closed set of Lebesgue measure
zero.
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The standard hypotheses are that F (x, u, P ) be uniformly strictly quasiconvex, Hölder continuous in (x, u)
and of class C2 in P , and to satisfy the coercivity and growth condition

γ|P |q ≤ F (x, u, P ) ≤ c(1 + |P |q).

Sometimes, a growth condition is also imposed on the second partial derivative FPP (x, u, P ), i.e.

|FPP (x, u, P )| ≤ c(1 + |P |q−2). (1)

We start with a short account of the development of the partial regularity theory for vector-valued minimizers of
variational integrals (see also [7]). The general method of the proof is to compare the given minimizer u with a
solution of a linear system with constant coefficients, for which standard elliptic estimates are available. For the
direct approach, this comparison is carried out on an arbitrary ball either under a Dirichlet boundary condition,
or with the so-called A-harmonic approximation (which is itself procured by a contradiction argument); for the
indirect approach, it is shown that a sequence of blow-up functions wm ∈ W 1,2(B,RN ), rescaled to the unit
ball B, converges weakly to such a solution.

Following the direct approach, Giaquinta and Giusti [9, 10] showed partial regularity of the minimizers
u ∈W 1,2(Ω,RN ) of the quadratic variational integral

Q(u,Ω) =
∫

Ω

A(x, u) · (Du,Du) dx,

and of the variational integral I for q = 2 under coercivity and strict convexity in P of the integrand F (x, u, P ).
The concept of quasiconvexity was introduced into this subject by Evans [3]. For quasiconvex integrands F (P )

depending solely on the variable P , he gave an indirect proof for partial regularity of minimizers u ∈W 1,q(Ω,RN)
(see also [4]). The same result holds true if the coercive and quasiconvex integrand F (x, u, P ) depends on all
the variables. Various proofs were proposed, some direct [12, 13], some indirect [5], and some allowing for a
generalized coercivity [20], or assuming no growth condition on FPP [1, 8]. All proofs in the general situation
are based on a reverse Hölder inequality with increasing supports for Du − P0, for any constant P0 ∈ RN×n.
This reverse Hölder inequality in turn is derived from Caccioppoli’s second inequality by invoking the higher
integrability theorem of Gehring, Giaquinta and Modica (see Th. 2).

As the higher integrability theorem is considered to be rather involved, it is desirable to find a simpler partial
regularity proof which avoids the use of a reverse Hölder inequality. Such proofs are available in the following two
special situations: (a) under a non-integrated version of convexity of the integrand F (x, u, P ) in the variable P ,
i.e. convexity or polyconvexity rather than quasiconvexity (see [15], Sect. 3, [17]); (b) for a variational integral∫
Ω F (x,Du) dx whose integrand does not depend explicitly on the variable u (see [2–4]). Nevertheless, at the

moment it seems that our main result, Theorem 1, is unattainable without resort to a reverse Hölder inequality.
Partial regularity with optimal Hölder exponent requires a more precise formulation of the continuity hy-

potheses on the integrand, namely that u �→ F (x, u, P ) and (x, u) �→ FP (x, u, P ) be Hölder continuous with
exponents δ and δ/(2 − δ) respectively. Thus we may admit discontinuities of F (x, u, P ) in x that do not
propagate to FP (x, u, P ) (cf. [15]). Indeed, such an integrand is of the unique form

F (x, u, P ) = f(x, u, P ) + g(x, u),

with f(x, u, 0) = 0, where f(x, u, P ) and fP (x, u, P ) are of class C0,δ/(2−δ) in (x, u), and f(x, u, P ) and g(x, u)
are of class C0,δ in u, but where g(x, u) is only measurable in x. The optimal Hölder exponent of the gradient
of the minimizer is then δ/(2− δ). This was shown in the scalar case N = 1 for q = 2 by Giaquinta and Giusti
[11] (see also [24] for a particular model). In the present paper we extend this result to the vectorial case N ≥ 1
for q ≥ 2. Moreover, as in [1, 8], we dispense with the growth condition on FPP .

Our indirect proof of partial regularity employs the method of the bilinear form, which was introduced by
Hamburger [15] in the context of minimizers of variational integrals in establishing convergencewm → w in W 1,2

loc
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of a sequence of blow-up functions wm ∈W 1,2(B,RN ), which is known to converge only weakly. This technique
has already been applied to solutions of nonlinear superelliptic and quasimonotone systems in [16, 18, 19], and
to minimizers of convex, quasiconvex and polyconvex variational integrals in [15,17]. Since we are not assuming
any growth condition on FPP , we need to define sets Er,m ⊂ Br, satisfying limm→∞ |Er,m| = 0, where the
functions wm or Dwm exceed a certain bound (cf. [8, 14]). A reverse Hölder inequality for Du − P0, for any
constant P0 ∈ RN×n, allows us to control the error integral of a rescaled power of |Dwm| over the set Er,m.
We show that the blow-up functions wm are approximate minimizers of suitable rescaled variational integrals.
This has two consequences. First, passing to the limit as m→ ∞ we infer that w solves a linear elliptic system
with constant coefficients. Secondly, we derive the key estimate

lim sup
m→∞

∫
Br

η2G(Y0) · (Dwm, Dwm) dz ≤
∫

Br

η2G(Y0) · (Dw,Dw) dz.

Here η is a cut-off function, the symmetric bilinear form G(Y ) depends continuously on Y , and the constant
function Y0 is the limit in L2 of a suitable sequence of functions {Ym}. We finally deduce from this estimate
with the help of strict quasiconvexity that wm → w in W 1,2

loc . In this manner we achieve partial regularity with
optimal Hölder exponent of minimizers of quasiconvex variational integrals.

For the integrand F : Ω×RN ×RN×n → R we shall assume the following hypotheses, for an exponent q ≥ 2.

Hypothesis 1. We suppose that F (x, u, P ) is of class C2 in P and of polynomial growth

|F (x, u, P )| ≤ c(1 + |P |q),

and we assume that FPP is continuous.

Hypothesis 2. We suppose that u �→ (1+ |P |q)−1F (x, u, P ) and (x, u) �→ (1+ |P |q−1)−1FP (x, u, P ) are Hölder
continuous uniformly with respect to P , with exponents δ and δ/(2 − δ) respectively:

|F (x, u, P ) − F (x, v, P )| ≤ (1 + |P |q)ω(|u|, |u− v|)
|FP (x, u, P ) − FP (y, v, P )| ≤ (1 + |P |q−1)χ(|u|, |x− y| + |u− v|)

for all (x, u, P ), (y, v, P ) ∈ Ω × RN × RN×n. Here ω(s, t) = K(s)min(tδ, 1) and χ(s, t) = K(s)min(tδ/(2−δ), 1)
for 0 < δ < 1 and for a nondecreasing function K(s); we note that ω(s, t) and χ(s, t), for fixed s, are nonde-
creasing and bounded in t.

Hypothesis 3. We suppose that F is uniformly strictly quasiconvex∫
Rn

(F (x0, u0, P0 +Dϕ) − F (x0, u0, P0)) dx ≥ γ

∫
Rn

(|Dϕ|2 + |Dϕ|q) dx

for some γ > 0, and all (x0, u0, P0) ∈ Ω × RN × RN×n and ϕ ∈ C∞
c (Rn,RN).

Hypothesis 4. We suppose that
F (x, u, P ) ≥ F̃ (x, P )

for all (x, u, P ) ∈ Ω × RN × RN×n, and for some function F̃ (x, P ), satisfying |F̃ (x, 0)| ≤ c, which is strictly
quasiconvex at P = 0, and for which (1 + |P |q)−1F̃ (x, P ) is continuous in x uniformly with respect to P :∫

Rn

(F̃ (x0, Dϕ) − F̃ (x0, 0)) dx ≥ γ̃

∫
Rn

|Dϕ|q dx

for some γ̃ > 0, and all x0 ∈ Ω and ϕ ∈ C∞
c (Rn,RN );

|F̃ (x, P ) − F̃ (y, P )| ≤ (1 + |P |q)ω̃(|x− y|)
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for all x, y ∈ Ω and P ∈ RN×n, where ω̃ is continuous and nondecreasing with ω̃(0) = 0.

Remark 1.
(a) Hypothesis 4 is fulfilled if F (x, u, P ) is coercive

F (x, u, P ) ≥ γ|P |q.

(b) If F (x, P ) is independent of the variable u and continuous in x uniformly with respect to P then Hy-
pothesis 4, with F̃ (x, P ) = F (x, P ), is already a consequence of Hypothesis 3.

(c) If we assume that u �→ F (x, u, P ) and (x, u) �→ FP (x, u, P ) are Hölder continuous with exponents β and
γ respectively then Hypothesis 2 holds with δ = min(β, 2γ/(1 + γ)). In this case, Theorem 1 asserts that the
gradient of the minimizer u is Hölder continuous in the regular set Ωu with exponent δ/(2−δ) = min(β/(2−β), γ).
Hölder continuity of (x, u) �→ F (x, u, P ) with exponent β together with growth condition (1) leads to the choice
γ = β/2 and the conclusion that u ∈ C1,β/2(Ωu,RN). Indeed, for q ≥ 2 the estimates

|F (x, u, P ) − F (y, v, P )| ≤ (1 + |P |q)ω(|u|, |x− y| + |u− v|)

and (1) imply
|FP (x, u, P ) − FP (y, v, P )| ≤ c(1 + |P |q−1)ω1/2(|u|, |x− y| + |u− v|).

This is shown for q = 2 on p. 247 of [11].
(d) Hypotheses 1 and 3 furnish the growth condition

|FP (x, u, P )| ≤ c(1 + |P |q−1). (2)

To prove (2), we note that Hypothesis 3 implies rank-one convexity of F (see [14], Prop. 5.2). Therefore, by
Hypothesis 1,

FP (x, u, P ) ·Q ≤ F (x, u, P +Q) − F (x, u, P ) ≤ c(1 + |P |q + |Q|q)

if rank Q ≤ 1. Setting Q = ±(1+ |P |)E, where E ∈ RN×n is a unit matrix (i.e. one entry is 1, all others are 0)
gives

|FP (x, u, P )|(1 + |P |) ≤ c(1 + |P |q),
whence (2) follows.

Our main result is contained in the following

Theorem 1. Let the integrand F satisfy Hypotheses 1 to 4, with exponent q ≥ 2, and let u ∈ W 1,q(Ω,RN ) be
a minimizer of the variational integral I.

Then there exists an open set Ωu ⊂ Ω, whose complement has Lebesgue measure zero, such that the gradient
Du is locally Hölder continuous in Ωu with exponent δ/(2 − δ), for 0 < δ < 1 the exponent of Hypothesis 2:

u ∈ C1,δ/(2−δ)(Ωu,RN ) and Ln(Ω \ Ωu) = 0.

Moreover, the regular set is characterized by

Ωu =

{
x0 ∈ Ω : sup

r>0
(|ux0,r| + |Dux0,r|) <∞ and lim inf

r↘0
−
∫

Br(x0)

|Du−Dux0,r|q dx = 0

}
.

The example treated in [24] shows that the Hölder exponent δ/(2− δ) is indeed optimal. For bounds on the
Hausdorff dimension of the singular set Ω\Ωu in certain cases, we refer to the interesting recent papers [21–23].



OPTIMAL PARTIAL REGULARITY OF MINIMIZERS OF QUASICONVEX VARIATIONAL INTEGRALS 643

2. A decay estimate for the excess

In what follows, all constants c may depend on the data including the integrand F , on the number L from
the proof of Proposition 1, and on the minimizer u itself. The Landau symbol o(1) stands for any quantity for
which limm→∞ o(1) = 0; this may in Section 4 also depend on the number β > 0 and the functions ϕ, w and ζ.
We write Br(x0) = {x ∈ Rn : |x− x0| < r}, Br = Br(0), and B = B1 for the unit ball. We denote the mean of
a function f on the ball Br(x0) by

fx0,r = −
∫

Br(x0)

f dx =
1

Ln(Br(x0))

∫
Br(x0)

f dx.

In this section we assume Hypotheses 1 to 4 with q ≥ 2, and we let u ∈ W 1,q(Ω,RN ) be a minimizer of the
variational integral I. We define the excess of Du on the ball Br(x0) ⊂⊂ Ω:

U(x0, r) = −
∫

Br(x0)

(|Du −Dux0,r|2 + |Du −Dux0,r|q) dx.

At first, we let α ≤ δ/(2−δ) be the positive exponent appearing in Theorem 4. The conclusions of Theorem 1, as
yet with exponent α instead of δ/(2−δ), follow in a routine way from the next proposition (see [6], pp. 197–199;
[8], Sect. 3; [14], pp. 349–352; [3], Sect. 7; [5], Sect. 6).

Showing that u ∈ C1,δ/(2−δ)(Ωu,RN) with the optimal exponent δ/(2 − δ) requires a second step. As soon
as we know that u ∈ C0,1(Ωu,RN ), we consider the restriction u ∈ C0,1(Σ,RN) to any open set Σ ⊂⊂ Ωu, for
which the next proposition is now valid with exponent α = δ/(2 − δ) (see Rem. 2). We thus conclude that
u ∈ C1,δ/(2−δ)(Σ,RN).

Proposition 1. Let L > 0 and τ ∈ ]0, 1[ be given. Then there exist positive constants c1(L), H(L, τ) and
ε(L, τ) such that if

Br(x0) ⊂⊂ Ω, |ux0,r| ≤ L, |Dux0,r| ≤ L and U(x0, r) ≤ ε

then
U(x0, τr) ≤ c1τ

2U(x0, r) +Hr2α.

Proof. We will determine the constant c1 later on. If the proposition were not true then there would exist a
sequence of balls Brm(xm) ⊂⊂ Ω such that, setting

um = uxm,rm , Pm = Duxm,rm , λ2
m = U(xm, rm), (3)

we have
|um| ≤ L, |Pm| ≤ L, λm ↘ 0, (4)

but
U(xm, τrm) > c1τ

2λ2
m +mr2α

m . (5)

Since (5) implies λm > 0, we can define the rescaled functions

wm(z) =
u(xm + rmz) − um − rmPm · z

rmλm

for z ∈ B. We notice that

Dwm(z) =
Du(xm + rmz) − Pm

λm
, (6)

(wm)0,1 = 0, (Dwm)0,1 = 0. (7)
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Then (3) and (5) become

−
∫

B

|Dwm|2 dz + λq−2
m −

∫
B

|Dwm|q dz = 1, (8)

c1τ
2 +mλ−2

m r2α
m < −

∫
Bτ

|Dwm − (Dwm)0,τ |2 dz + λq−2
m −

∫
Bτ

|Dwm − (Dwm)0,τ |q dz. (9)

From (8), (7) and the Poincaré inequality we immediately have

‖wm‖W 1,2(B) ≤ c, λ(q−2)/q
m ‖wm‖W 1,q(B) ≤ c. (10)

We infer from (9), (8) and (4) that
λ−1

m rα
m ↘ 0 and rm ↘ 0. (11)

It follows from (10) and (4) that, on passing to a subsequence and relabelling, we have

Dwm ⇀ Dw weakly in L2(B,RN×n),
wm → w in L2(B,RN ),
λmDwm → 0 in L2(B,RN×n);

λ
(q−2)/q
m Dwm ⇀ 0 weakly in Lq(B,RN×n),
λ

(q−2)/q
m wm → 0 in Lq(B,RN ) (for q > 2);

(xm, um, Pm) → (x0, u0, P0) in Ω × RN × RN×n.

(12)

Now suppose that we can show that w ∈ W 1,2(B,RN ) is a weak solution of the following linear system with
constant coefficients:

div(FPP (x0, u0, P0) ·Dw) = 0. (13)

We infer from Hypothesis 1 and (4) that

|FPP (x0, u0, P0)| ≤ c,

and from Hypothesis 3 that (13) is uniformly elliptic (see [14], Prop. 5.2):

FPP (x0, u0, P0) · (η ⊗ ξ, η ⊗ ξ) ≥ γ|η ⊗ ξ|2 for all η ∈ RN , ξ ∈ Rn.

Hence, from the relevant regularity theory (see [6], Th. III.2.1, Rems. III.2.2, III.2.3) we conclude that w is
smooth and

−
∫

Bτ

|Dw −Dw0,τ |2 dz ≤ c2τ
2 −
∫

B

|Dw −Dw0,1|2 dz, (14)

where by (12), (7) and (8)

Dw0,1 = 0 and −
∫

B

|Dw|2 dz ≤ lim inf
m→∞ −

∫
B

|Dwm|2 dz ≤ 1. (15)

On the other hand, if we also know that

Dwm → Dw in L2
loc(B,R

N×n), (16)

λ(q−2)/q
m Dwm → 0 in Lq

loc(B,R
N×n) (for q > 2) (17)
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then it would follow from (9) and (10) that

c1τ
2 ≤ −

∫
Bτ

|Dw −Dw0,τ |2 dz.

If we now choose c1 = 2c2, we obtain a contradiction to (14) and (15). This proves the proposition. �
The remainder of this work is devoted to showing (13), and (16), (17), which are the assertions of Lemmas 4

and 5 respectively.
We introduce some further notation. We set

Fm(z, w,R) = λ−2
m (F (xm + rmz, um + rmPm · z + rmλmw, Pm + λmR)

−F (xm + rmz, um + rmPm · z + rmλmw, Pm)

−FP (xm + rmz, um + rmPm · z + rmλmw, Pm) · λmR)

for (z, w,R) ∈ B × RN × RN×n. By Hypothesis 1, Remark 1(d) and (4), we note the estimate

|Fm(z, w,R)| ≤ c(λ−2
m + λq−2

m |R|q), (18)

and we also define the corresponding variational integrals

Im(w,U) =
∫

U

Fm(z, w,Dw) dz

for w ∈W 1,q(B,RN) and measurable subsets U ⊂ B. We define the set

Y = Ω × RN × RN×n × RN×n.

Next, we define a symmetric bilinear form G(Y ) on RN×n, for Y = (x, u, P,Q) ∈ Y, by

G(Y ) =
∫ 1

0

(1 − s)FPP (x, u, P + sQ) ds.

By Hypothesis 1, the bilinear form G(Y ) depends continuously on Y ∈ Y. We observe that

Fm(z, w,R) = G(xm + rmz, um + rmPm · z + rmλmw, Pm, λmR) · (R,R). (19)

We end this section by showing that wm is an approximate minimizer of the rescaled variational integral Im.

Lemma 1. Suppose that F satisfies Hypotheses 1 to 4. For ϕ ∈W 1,q
0 (B,RN) and E ⊂ B, we then have

Im(wm, B \ E) ≤ Im(wm + ϕ,B \ E)

+c
∫

E

(λ−2
m + λq−2

m |Dwm|q + λq−2
m |Dϕ|q) dz + o(1)(1 + ‖ϕ‖2

W 1,2). (20)

Proof. On rescaling, we find from the minimality of u that

∫
B

F (xm + rmz, um + rmPm · z + rmλmwm, Pm + λmDwm) dz

≤
∫

B

F (xm + rmz, um + rmPm · z + rmλm(wm + ϕ), Pm + λm(Dwm +Dϕ)) dz
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for every ϕ ∈ C∞
c (B,RN ). So it follows from (19) that

Im(wm, B \ E) ≤ Im(wm + ϕ,B \ E)

+ λ−2
m

∫
B

(F (xm + rmz, um + rmPm · z + rmλm(wm + ϕ), Pm)

−F (xm + rmz, um + rmPm · z, Pm)) dz

− λ−2
m

∫
B

(F (xm + rmz, um + rmPm · z + rmλmwm, Pm)

−F (xm + rmz, um + rmPm · z, Pm)) dz

+ λ−1
m

∫
B

(FP (xm + rmz, um + rmPm · z + rmλm(wm + ϕ), Pm)

−FP (xm, um, Pm)) ·Dwm dz

− λ−1
m

∫
B

(FP (xm + rmz, um + rmPm · z + rmλmwm, Pm)

−FP (xm, um, Pm)) ·Dwm dz

+ λ−1
m

∫
B

(FP (xm + rmz, um + rmPm · z + rmλm(wm + ϕ), Pm)

−FP (xm, um, Pm)) ·Dϕdz

− Im(wm, E) + Im(wm + ϕ,E)

= Im(wm + ϕ,B \ E) + (I) + (II) + (III) + (IV) + (V) + (VI).

By virtue of Hypothesis 2, we estimate term (I) as follows using (4), (10), (11), the Hölder inequality and the
fact that α ≤ δ/(2 − δ)

(I) ≤ λ−2
m (1 + |Pm|q)K(|um| + rm|Pm|)

∫
B

(rmλm|wm + ϕ|)δ dz

≤ c(λ−1
m rδ/(2−δ)

m )2−δ(1 + ‖wm + ϕ‖δ
L2) ≤ o(1)(1 + ‖ϕ‖δ

L2).

For term (V), we have

(V) ≤ λ−1
m (1 + |Pm|q−1)K(|um|)

∫
B

(rm + rm|Pm| + rmλm|wm + ϕ|)δ/(2−δ)|Dϕ| dz

≤ cλ−1
m rδ/(2−δ)

m (1 + ‖wm + ϕ‖δ/(2−δ)
L2 ) ‖ϕ‖W 1,2 ≤ o(1)(1 + ‖ϕ‖2

W 1,2 ).

We estimate (II), (III) and (IV) in a similar manner. Finally, by Hypothesis 1 and Young’s inequality, we infer
that

(VI) ≤ c

∫
E

(λ−2
m +λq−2

m |Dwm|q+λq−2
m |Dϕ|q) dz. �

3. Caccioppoli and reverse Hölder inequalities

We recall a simple algebraic lemma (see [6], Lem. V.3.1; [14], Lem. 6.1) and the higher integrability theorem
of Gehring, Giaquinta and Modica (see [6], Prop. V.1.1; [14], Th. 6.6).

Lemma 2. Let f(t) be a bounded nonnegative function defined for R/2 ≤ t ≤ R. Suppose that

f(t) ≤ θf(s) +A(s− t)−2 +B(s− t)−q + C
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for R/2 ≤ t < s ≤ R, where θ, A, B, C are nonnegative constants with θ < 1. Then

f

(
R

2

)
≤ c(θ, q)(AR−2 +BR−q + C).

Theorem 2. Let Ω be a bounded open subset of Rn, and let f ∈ L1
loc(Ω) and g ∈ Lt

loc(Ω) be nonnegative
functions with 0 < s < 1 < t <∞. Suppose that

−
∫

BR/2(x0)

f dx ≤ b

{
−
∫

BR(x0)

fs dx

}1/s

+ −
∫

BR(x0)

g dx (21)

for every ball BR(x0) ⊂⊂ Ω with R ≤ R0. Then f ∈ L1+ε
loc (Ω) for any 0 ≤ ε < ε0, and

{
−
∫

BµR(x0)

f1+ε dx

}1/(1+ε)

≤ c−
∫

BR(x0)

f dx+ c

{
−
∫

BR(x0)

g1+ε dx

}1/(1+ε)

for every ball BR(x0) ⊂⊂ Ω with R ≤ R0, and 0 < µ < 1, where ε0 = ε0(n, s, t, b) and c = c(n, s, t, b, µ, ε) are
positive constants.

For P0 ∈ RN×n with |P0| ≤ L, and (x, u, P ) ∈ Ω × RN × RN×n, we set

F̄ (x, u, P ) = F (x, u, P0 + P ) − F (x, u, P0) − FP (x, u, P0) · P .

Clearly, F̄ is strictly quasiconvex, and F̄ (x, u, 0) = 0.
The first part of the next lemma is contained in [8], Lemma 2.1 and [14], Lemma 9.1.

Lemma 3. There exists a constant c such that the estimates

|F̄ (x, u, P )| ≤ c(|P |2 + |P |q), (22)
|F̄P (x, u, P )| ≤ c(|P | + |P |q−1), (23)

|F̄ (x, u, P +Q) − F̄ (x, u, P )| ≤ c(|P | + |P |q−1 + |Q| + |Q|q−1)|Q| (24)

hold for all (x, u, P ) ∈ Ω × RN × RN×n with |u| ≤ L, and Q ∈ RN×n.
Moreover, the estimate

|F̄ (x, u, P ) − F̄ (y, v, P )| ≤ cχ(|u|, |x− y| + |u− v|)(1 + |P |q−1)|P | (25)

holds for all (x, u, P ), (y, v, P ) ∈ Ω × RN × RN×n.

Proof. We let K = supZL
|FPP | for the compact set

ZL = {(x, u, P ) ∈ Ω × RN × RN×n : |u|, |P | ≤ L+ 1}.

For |P | ≤ 1, we then have

|F̄ (x, u, P )| =
∣∣∣∣
∫ 1

0

(1 − s)FPP (x, u, P0 + sP ) · (P, P ) ds
∣∣∣∣ ≤ K|P |2,

while for |P | ≥ 1,
|F̄ (x, u, P )| ≤ c(1 + |P |q) ≤ c|P |q.
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These two estimates furnish (22). By quasiconvexity of F̄ , (22) implies (23) (cf. Rem. 1(d)). Further, (24) is
an immediate consequence of (23). To see (25), we write

F̄ (x, u, P ) =
∫ 1

0

(FP (x, u, P0 + sP ) − FP (x, u, P0)) · P ds,

and similarly for F̄ (y, v, P ), and we apply Hypothesis 2 to their difference. �
We first prove a reverse Hölder inequality for Du (cf. [8], Prop. 2.2 and (2.18); [14], Th. 6.7 and Prop. 9.1;

[9], Th. 4.1).

Theorem 3. Let u ∈ W 1,q(Ω,RN ) be a minimizer of the variational integral I, whose integrand F satisfies
Hypotheses 1 and 4.

Then Du ∈ L
q(1+ε′)
loc (Ω,RN×n) for any 0 ≤ ε′ < ε1, and

{
−
∫

BµR(x0)

(1 + |Du|q)1+ε′ dx

}1/(1+ε′)

≤ c−
∫

BR(x0)

(1 + |Du|q) dx

for every ball BR(x0) ⊂⊂ Ω with R ≤ R0, and 0 < µ < 1, where ε1, R0 and c(µ, ε′) are positive constants.

Proof. We fix some ball BR(x0) ⊂⊂ Ω with R ≤ R0, and we set u0 = ux0,R. For R/2 ≤ t < s ≤ R, we
let ζ ∈ C∞

c (Bs(x0)) be a cut-off function with 0 ≤ ζ ≤ 1, ζ = 1 on Bt(x0) and |Dζ| ≤ c(s − t)−1. We set
ϕ = ζ(u − u0). By Hypothesis 4 and the minimality of u, we then have

γ̃

∫
Bs

|Dϕ|q dx ≤
∫

Bs

(F̃ (x0, Dϕ) − F̃ (x0, 0)) dx

≤
∫

Bs

F̃ (x,Dϕ) dx + ω̃(R0)
∫

Bs

|Dϕ|q dx+ cRn

≤
∫

Bs

F (x, u,Dϕ) dx+ ω̃(R0)
∫

Bs

|Dϕ|q dx+ cRn

≤
∫

Bs

F (x, u− ϕ,Du−Dϕ) dx +
∫

Bs

(F (x, u,Dϕ) − F (x, u,Du)) dx

+ ω̃(R0)
∫

Bs

|Dϕ|q dx + cRn.

Thus, by Hypothesis 1 and the fact that Dϕ = Du on Bt(x0), we obtain for sufficiently small R0 that∫
Bt

|Du|q dx ≤ c1

∫
Bs\Bt

|Du|q dx+ c(s− t)−q

∫
BR

|u− u0|q dx+ cRn.

We now “fill the hole”, that is, we add c1 times the left-hand side to both sides and we divide the resulting
inequality by 1 + c1. This yields∫

Bt

|Du|q dx ≤ θ

∫
Bs

|Du|q dx+ c(s− t)−q

∫
BR

|u− u0|q dx+ cRn,

where θ = c1/(1 + c1) < 1. By an application of Lemma 2, we arrive at Caccioppoli’s first inequality∫
BR/2

|Du|q dx ≤ cR−q

∫
BR

|u− u0|q dx+ cRn.
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By the Poincaré-Sobolev inequality, we deduce estimate (21) with f = 1 + |Du|q, g = 0 and s = q∗/q =
n/(n+ q) < 1. The result now follows by Theorem 2. �

We are ready for a reverse Hölder inequality for Du − P0 plus an error term (cf. [8], Ths. 2.2 and 2.5). It
provides a uniform bound in L2(1+ε)

loc for the gradients of the blow-up functions wm (see Cor. 1).

Theorem 4. Let u ∈ W 1,q(Ω,RN ) be a minimizer of the variational integral I, whose integrand F satisfies
Hypotheses 1 to 4.

Then there exist positive constants ε, α ≤ δ/(2 − δ), R0 and c(µ) such that

{
−
∫

BµR(x0)

(|Du− P0|2 + |Du− P0|q)1+ε dx

}1/(1+ε)

≤ c−
∫

BR(x0)

(|Du− P0|2 + |Du− P0|q) dx+ cR2α

{
−
∫

BR(x0)

(1 + |Du|q) dx

}1+2α/q

holds for every ball BR(x0) ⊂⊂ Ω, 0 < µ < 1 and P0 ∈ RN×n, with R ≤ R0, |ux0,R| ≤ L and |P0| ≤ L.

Proof. We fix BR(x0) ⊂⊂ Ω and P0 ∈ RN×n, subject to the conditions R ≤ R0, |u0| ≤ L and |P0| ≤ L, where
u0 = ux0,R.

We next fix some ball Br(y0) ⊂⊂ BR(x0). For r/2 ≤ t < s ≤ r, we let ζ ∈ C∞
c (Bs(y0)) be a cut-off function

with 0 ≤ ζ ≤ 1, ζ = 1 on Bt(y0) and |Dζ| ≤ c(s− t)−1. We set

P (x) = uy0,r + P0 · (x− y0), ϕ = ζ(u − P ), ψ = (1 − ζ)(u − P ),

for which

ϕ+ ψ = u− P , Dϕ+Dψ = Du− P0.

The strict quasiconvexity of F̄ at P = 0, (24), (25) and Young’s inequality assert that

γ

∫
Bs

(|Dϕ|2 + |Dϕ|q) dx ≤
∫

Bs

F̄ (x0, u0, Dϕ) dx ≤
∫

Bs

F̄ (x0, u0, Du− P0) dx

+ c

∫
Bs\Bt

(|Dϕ| + |Dϕ|q−1 + |Dψ| + |Dψ|q−1)|Dψ| dx ≤
∫

Bs

F̄ (x, u,Du− P0) dx

+ c

∫
Bs

χ(|u0|, |x− x0| + |u− u0|)(1 + |Du|q−1)|Dϕ+Dψ| dx+ c

∫
Bs\Bt

(|Dϕ|2 + |Dϕ|q + |Dψ|2 + |Dψ|q) dx.

(26)

On the other hand, by the minimality of u

∫
Bs

F (x, u,Du) dx ≤
∫

Bs

F (x, u− ϕ,Du−Dϕ) dx,
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and thus ∫
Bs

F̄ (x, u,Du− P0) dx ≤
∫

Bs

F̄ (x, u− ϕ,Dψ) dx

+
∫

Bs

(F (x, u − ϕ, P0) − F (x, u, P0)) dx

+
∫

Bs

(FP (x, u− ϕ, P0) − FP (x, u, P0)) ·Dψ dx

+
∫

Bs

(FP (x0, u0, P0) − FP (x, u, P0)) ·Dϕdx.

By (25), (22), Hypothesis 2, the Cauchy inequality and the estimate χ2 ≤ cω, we deduce

∫
Bs

F̄ (x, u,Du− P0) dx ≤
∫

Bs

F̄ (x, u0, Dψ) dx+ c

∫
Bs

χ(|u0|, |u− u0| + |ϕ|)(1 + |Dψ|q−1)|Dψ| dx

+ c

∫
Bs

ω(|u0|, |u− u0| + |ϕ|) dx+ c

∫
Bs

χ(|u0|, |x− x0| + |u − u0|)|Dϕ| dx

≤ c

∫
Bs

(|u− u0|δ + |ϕ|δ +R2δ/(2−δ)) dx+ c

∫
Bs\Bt

(|Dψ|2 + |Dψ|q) dx+
γ

4

∫
Bs

|Dϕ|2 dx. (27)

Using the Young and the Poincaré inequality for ϕ on Bs(y0) we estimate the term

c

∫
Bs

|ϕ|δ dx ≤
∫

Bs

(εs−2|ϕ|2 + c(ε)s2δ/(2−δ)) dx ≤ γ

4

∫
Bs

|Dϕ|2 dx+ csn+2δ/(2−δ). (28)

By combining (26), (27) and (28), we conclude that∫
Bt

f dx ≤ c1

∫
Bs\Bt

f dx+ c(s− t)−2

∫
Br

|u− P |2 dx+ c(s− t)−q

∫
Br

|u− P |q dx+ c

∫
Br

g dx

for the functions

f = |Du− P0|2 + |Du− P0|q,
g = χq/(q−1)(|u0|, |x− x0| + |u− u0|)(1 + |Du|q) + |u− u0|δ +R2δ/(2−δ).

We note that the definitions of f and g do not involve y0 or r. “Filling the hole” and applying Lemma 2, with
θ = c1/(1 + c1) < 1, results in Caccioppoli’s second inequality∫

Br/2

f dx ≤ cr−2

∫
Br

|u− P |2 dx+ cr−q

∫
Br

|u− P |q dx + c

∫
Br

g dx.

By means of the Poincaré-Sobolev and Hölder inequalities, we deduce, for s = 2∗/2 = n/(n+ 2) < 1, that

−
∫

Br/2(y0)

f dx ≤ c

{
−
∫

Br(y0)

fs dx

}1/s

+ c−
∫

Br(y0)

g dx

for all Br(y0) ⊂⊂ BR(x0). Invoking Theorem 2 we finally arrive at

{
−
∫

BµR(x0)

f1+ε dx

}1/(1+ε)

≤ c−
∫

BνR(x0)

f dx+ c

{
−
∫

BνR(x0)

g1+ε dx

}1/(1+ε)

(29)
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for some exponent 0 < ε < ε′ and 0 < µ < ν < 1. Here the constant c also depends on µ/ν and ε, and ε′ is the
exponent from Theorem 3.

We next set

2α = min
(

qδ

(q − 1)(2 − δ)
, δ,

q∗(ε′ − ε)
(1 + ε′)(1 + ε)

)

for the Sobolev exponent q∗ = nq/(n−q) if q < n, and q∗ ∈ ]0,∞[ if q ≥ n. By the estimate χq/(q−1)(L, t) ≤ ct2α,
we have

g ≤ c(R+ |u− u0|)2α(1 + |Du|q) + |u− u0|δ.
Then, using the Hölder and Poincaré-Sobolev inequalities and Theorem 3 we control the last term of (29) by

{
−
∫

BνR

g1+ε dx
}1/(1+ε)

≤ c

{
−
∫

BνR

(R+ |u− u0|)q∗
dx

}2α/q∗ {
−
∫

BνR

(1 + |Du|q)1+ε′ dx
}1/(1+ε′)

+ c

{
−
∫

BR

|u− u0|δ(1+ε′) dx
}1/(1+ε′)

≤ c

(
R2α +

{
−
∫

BR

|u− u0|q∗
dx

}2α/q∗ )
−
∫

BR

(1 + |Du|q) dx

+ cRδ

{
−
∫

BR

|Du|q dx
}δ/q

≤ cR2α

{
−
∫

BR

(1 + |Du|q) dx
}1+2α/q

. �

Remark 2. In the special case that u ∈ C0,1(Ω,RN ), Theorem 4 is valid with exponent α = δ/(2 − δ) and a
constant c also depending on ‖u‖C0,1(Ω,RN ). In order to see this, we estimate the second last term of (26) by

c

∫
Bs

χ(|u0|, |x− x0| + |u− u0|)(1 + |Du|q−1)|Dϕ+Dψ| dx

≤ c

∫
Bs

Rδ/(2−δ)|Dϕ+Dψ| dx ≤ c

∫
Bs

(R2δ/(2−δ) + |Dψ|2) dx+
γ

4

∫
Bs

|Dϕ|2 dx.

Moreover, for estimate (27) we substitute

∫
Bs

F̄ (x, u,Du− P0) dx ≤
∫

Bs

F̄ (x, u,Dψ) dx+ c

∫
Bs

χ(|u|, |ϕ|)(1 + |Dψ|q−1)|Dψ| dx

+ c

∫
Bs

ω(|u|, |ϕ|) dx + c

∫
Bs

χ(|u0|, |x− x0| + |u− u0|)|Dϕ| dx

≤ c

∫
Bs

(|ϕ|δ +R2δ/(2−δ)) dx

+ c

∫
Bs\Bt

(|Dψ|2 + |Dψ|q) dx +
γ

4

∫
Bs

|Dϕ|2 dx.

Setting g = R2δ/(2−δ) the proof is then already complete with (29).

Corollary 1. In terms of wm ∈W 1,q(B,RN ), we have, for 0 < r < 1,

{
−
∫

Br

(|Dwm|2 + λq−2
m |Dwm|q)1+ε dz

}1/(1+ε)

≤ c(r).
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Proof. Substituting (6), x0 = xm, R = rm, µ = r and P0 = Pm in Theorem 4, and using (4) and (10) yields

{
−
∫

Br

(|Dwm|2 + λq−2
m |Dwm|q)1+ε dz

}1/(1+ε)

≤ c(r) −
∫

B

(|Dwm|2 + λq−2
m |Dwm|q) dz

+ c(r)λ−2
m r2α

m

{
−
∫

B

(1 + |Pm + λmDwm|q) dz
}1+2α/q

≤ c(r). �

4. Convergence of the blow-up functions

For 0 < r < 1 and β > 0, we define the sets

Er,m = {z ∈ Br : λm(|wm| + |Dwm|) ≥ β} .

By (10) and (4), we infer that

|Er,m| ≤ β−2λ2
m

∫
Er,m

(|wm| + |Dwm|)2 dz ≤ cβ−2λ2
m = o(1). (30)

Moreover, by the Hölder inequality, Corollary 1 and (30), we deduce

∫
Er,m

λq−2
m |Dwm|q dz ≤

{∫
Br

(λq−2
m |Dwm|q)1+ε dz

}1/(1+ε)

|Er,m|ε/(1+ε) = o(1).

In summary, ∫
Er,m

(λ−2
m + λq−2

m |Dwm|q) dz ≤ cβ−2 + o(1). (31)

By choosing for ϕ a test function in Lemma 1 and sending m→ ∞, we derive

Lemma 4. The function w ∈ W 1,2(B,RN ) is a weak solution of the linear elliptic system with constant
coefficients

div(FPP (x0, u0, P0) ·Dw) = 0.

In particular, we conclude that w is smooth.

Proof. We fix ϕ ∈ C∞
c (Br,RN ) with 0 < r < 1, and β > 0, and we define the functions

Ym = (xm + rmz, um + rmPm · z + rmλmwm, Pm, λmDwm),
Ȳm = Ym + (0, rmλmϕ, 0, λmDϕ).

By virtue of (4), (11) and (12), we notice the limits

Ym, Ȳm → Y0 = (x0, u0, P0, 0) in L2(B,Y). (32)

We define the compact set

Yβ = {(x, u, P,Q) ∈ Y : |u|, |P |, |Q| ≤ 2L+ β + ‖ϕ‖W 1,∞(Br)}



OPTIMAL PARTIAL REGULARITY OF MINIMIZERS OF QUASICONVEX VARIATIONAL INTEGRALS 653

and note that Ym(z), Ȳm(z) ∈ Yβ for a.e. z ∈ Br \ Er,m. Therefore

sup
Br\Er,m

{|G(Ym)|, |G(Ȳm)|} ≤ sup
Yβ

|G| = c(β). (33)

We claim by Lebesgue’s dominated convergence that

(1 − χEr,m)G(Ym) → G(Y0) in Lp(Br), (34)

(1 − χEr,m)G(Ȳm) → G(Y0) in Lp(Br), (35)

for 1 ≤ p < ∞, where χEr,m is the characteristic function of the set Er,m. Indeed, the left-hand sides of (34)
and (35) are bounded and converge pointwise a.e. on Br, by (30), which asserts that χEr,m → 0 in L1(Br), and
by (32), (33) and the continuity of G.

We then infer by Hölder’s inequality and Corollary 1 that

∣∣∣∣∣
∫

Br\Er,m

G(Ym) · (Dwm, Dwm) dz −
∫

Br

G(Y0) · (Dwm, Dwm) dz

∣∣∣∣∣
≤

{∫
Br

|(1 − χEr,m)G(Ym) −G(Y0)|(1+ε)/ε dz
}ε/(1+ε) {∫

Br

|Dwm|2(1+ε) dz
}1/(1+ε)

= o(1). (36)

Similarly, we obtain

∫
Br\Er,m

G(Ȳm) · (Dwm + Dϕ,Dwm + Dϕ) dz =
∫

Br

G(Y0) · (Dwm + Dϕ,Dwm + Dϕ) dz + o(1). (37)

For ϕ ∈ C∞
c (Br,RN) and E = Er,m, estimate (20) in combination with (4), (31), (19) and the definition of Ym

and Ȳm is easily seen to give
∫

Br\Er,m

G(Ym) · (Dwm, Dwm) dz ≤
∫

Br\Er,m

G(Ȳm) · (Dwm +Dϕ,Dwm +Dϕ) dz + cβ−2 + o(1).

As a consequence of (36) and (37), we deduce

∫
Br

G(Y0) · (Dwm, Dwm) dz ≤
∫

Br

G(Y0) · (Dwm +Dϕ,Dwm +Dϕ) dz + cβ−2 + o(1),

which we write as

0 ≤ 2
∫

Br

G(Y0) · (Dwm, Dϕ) dz +
∫

Br

G(Y0) · (Dϕ,Dϕ) dz + cβ−2 + o(1).

We conclude by (12), scaling of ϕ and since β > 0 was arbitrary that

0 ≤ 2
∫

Br

G(Y0) · (Dw,Dϕ) dz,

and the result follows by replacing ϕ by −ϕ, and noting that FPP (x0, u0, P0) = 2G(Y0). �
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Lemma 5. We have the limits

Dwm → Dw in L2
loc(B,R

N×n), (38)

λ(q−2)/q
m Dwm → 0 in Lq

loc(B,R
N×n) (for q > 2). (39)

In the proof we shall make use of the fact that, by Lemma 4, the function w and its gradient Dw are locally
bounded on B.

We fix 0 < s < r < 1 and β > 0, we let ζ ∈ C∞
c (Br) be a cut-off function with 0 ≤ ζ ≤ 1 and ζ = 1 on Bs,

and we also define the function η = ζ(2− ζ2)1/2. We note, since 2− ζ2 ≥ 1, that η has the same properties as ζ,
i.e. it is a cut-off function η ∈ C∞

c (Br) with 0 ≤ η ≤ 1 and η = 1 on Bs. Moreover, |Dη| ≤ 21/2|Dζ|. Next, we
set ϕ = ζ2(w − wm) and we define the functions

Ym = (xm + rmz, um + rmPm · z + rmλmwm, Pm, λmDwm),
Ȳm = Ym + (0, rmλmϕ, 0, λmDϕ),

Ỹm = (xm, um, Pm, λmη(Dwm −Dw) + λm(wm − w) ⊗Dη).

By virtue of (4), (11) and (12), we notice the limits

Ym, Ȳm, Ỹm → Y0 = (x0, u0, P0, 0) in L2(B,Y).

We define the compact set

Yβ = {(x, u, P,Q) ∈ Y : |u|, |P |, |Q| ≤ 2L+ 2(1 + β + ‖w, ζ‖W 1,∞(Br))
2}

and note that Ym(z), Ȳm(z), Ỹm(z) ∈ Yβ for a.e. z ∈ Br \ Er,m. Therefore

sup
Br\Er,m

{|G(Ym)|, |G(Ȳm)|, |G(Ỹm)|} ≤ sup
Yβ

|G| = c(β). (40)

By the same argument as that for (34) and (35), we show that

(1 − χEr,m)G(Ym) → G(Y0) in Lp(Br),

(1 − χEr,m)G(Ȳm) → G(Y0) in Lp(Br),

(1 − χEr,m)G(Ỹm) → G(Y0) in Lp(Br),

for 1 ≤ p <∞. Similarly to (36) and (37), we then obtain
∫

Br\Er,m

G(Ym) · (Dwm, Dwm) dz =
∫

Br

G(Y0) · (Dwm, Dwm) dz + o(1), (41)

∫
Br\Er,m

G(Ȳm) · (Dwm +Dϕ,Dwm +Dϕ) dz =
∫

Br

G(Y0) · (Dwm +Dϕ,Dwm +Dϕ) dz + o(1), (42)

∫
Br\Er,m

η2G(Ỹm) · (Dwm −Dw,Dwm −Dw) dz =
∫

Br

η2G(Y0) · (Dwm −Dw,Dwm −Dw) dz + o(1). (43)

We now insert ϕ = ζ2(w − wm) ∈ W 1,q
0 (Br,RN) and E = Er,m in (20), for which

Dwm +Dϕ = ζ2Dw + (1 − ζ2)Dwm + 2ζ(w − wm) ⊗Dζ.
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By (4), (10), (12), (31), (40), (19) and the definition of Ym and Ȳm, this easily yields

∫
Br\Er,m

G(Ym) · (Dwm, Dwm) dz ≤
∫

Br\Er,m

G(Ȳm) · (Dwm +Dϕ,Dwm +Dϕ) dz + cβ−2 + o(1).

As a consequence of (41), (42), (40) and (12), we deduce

∫
Br

G(Y0) · (Dwm, Dwm) dz ≤
∫

Br

G(Y0) · (Dwm +Dϕ,Dwm +Dϕ) dz + cβ−2 + o(1)

=
∫

Br

G(Y0) · (ζ2Dw + (1 − ζ2)Dwm, ζ
2Dw + (1 − ζ2)Dwm) dz + cβ−2 + o(1),

which by (12) immediately implies the key estimate

lim sup
m→∞

∫
Br

η2G(Y0) · (Dwm, Dwm) dz ≤
∫

Br

η2G(Y0) · (Dw,Dw) dz + cβ−2 (44)

with the function η = ζ(2 − ζ2)1/2.
According to Hypotheses 1 and 3, Young’s inequality, (18), (19) and the definition of Ỹm, we have

γ

∫
Br

(|Dϕ|2 + λq−2
m |Dϕ|q) dz ≤

∫
Br

Fm(0, 0, Dϕ) dz

≤
∫

Br\Er,m

G(Ỹm) · (Dϕ,Dϕ) dz + c

∫
Er,m

(λ−2
m + λq−2

m |Dϕ|q) dz,

where now ϕ = η(wm − w). By (31), (4), (12), (43) and (40), this gives

γ

∫
Bs

(|Dwm − Dw|2 + λq−2
m |Dwm − Dw|q) dz ≤

∫
Br

η2G(Y0) · (Dwm − Dw,Dwm − Dw) dz + cβ−2 + o(1).

Thus we infer, using (44) and (12), that

γ lim sup
m→∞

∫
Bs

(|Dwm − Dw|2 + λq−2
m |Dwm − Dw|q) dz ≤ (1 − 2 + 1)

∫
Br

η2G(Y0) · (Dw,Dw) dz + cβ−2.

Bearing in mind that β > 0 was arbitrary we conclude that

lim
m→∞

∫
Bs

|Dwm −Dw|2 dz = 0, lim
m→∞λq−2

m

∫
Bs

|Dwm −Dw|q dz = 0.

The last equation implies

lim
m→∞λq−2

m

∫
Bs

|Dwm|q dz = 0,

and we have shown that (38) and (39) hold. �
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