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SHAPE AND TOPOLOGY OPTIMIZATION OF THE ROBUST COMPLIANCE
VIA THE LEVEL SET METHOD

Frédéric de Gournay
1
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Abstract. The goal of this paper is to study the so-called worst-case or robust optimal design problem
for minimal compliance. In the context of linear elasticity we seek an optimal shape which minimizes
the largest, or worst, compliance when the loads are subject to some unknown perturbations. We first
prove that, for a fixed shape, there exists indeed a worst perturbation (possibly non unique) that we
characterize as the maximizer of a nonlinear energy. We also propose a stable algorithm to compute
it. Then, in the framework of Hadamard method, we compute the directional shape derivative of
this criterion which is used in a numerical algorithm, based on the level set method, to find optimal
shapes that minimize the worst-case compliance. Since this criterion is usually merely directionally
differentiable, we introduce a semidefinite programming approach to select the best descent direction
at each step of a gradient method. Numerical examples are given in 2-d and 3-d.

Mathematics Subject Classification. 49Q10, 74P10, 74P15, 74P20.

Received February 1st, 2006.
Published online September 21, 2007.

1. Introduction

Shape optimization is a widely addressed problem. Methods can be roughly divided into two classes: Topology
and Geometric optimization methods. Examples of topology optimization methods are the homogenization
method [1, 8, 25], the SIMP method [7], the vector variational method [19]. These latter methods amount to
optimize a material density for generalized composite designs. Other topology optimization methods are the
bubble method or topological gradient approach [2, 12, 13, 24], which amounts to create holes in a given shape,
and the thin ligament method [17], not yet implemented, which creates thin ligaments between two parts of the
boundary. Geometric optimization methods amount to move the boundaries of an initial domain [16, 20, 23].
Recently introduced in this context, the level set method [4,5,18,22,27] allows also to change the topology. We
shall use again the level set method in the numerical applications of the present work.

The most studied criterion in shape optimization is the compliance, which is defined as the work done by
the load or equivalently as the elastic stored energy. Indeed, compliance is a convenient measure of the global
rigidity of a structure. However, if a shape is optimized with respect to one load, it has no reason to be stable
with respect to perturbations of that load. Knowing how a shape is sensitive to perturbations and performing
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a “worst-case” shape optimization is of the highest engineering interest. This is our motivation for studying
the optimal design problem of minimal compliance for a structure submitted to a given load which is subject
to unknown perturbations. Such a problem is classical in control theory (where it is called robust control) and
has been first studied in topology structural optimization by [9] (see also [1] p. 294, [8, 10]).

To make things clear, take a domain Ω whose boundary ∂Ω is decomposed into two complementary sub-
sets ΓD and ΓN where Dirichlet homogeneous boundary conditions are imposed on ΓD and Neumann boundary
conditions on ΓN . Let d = 2, 3 be the dimension and denote by H1

D(Ω)d the set of vector fields belonging to
H1(Ω)d which vanish on ΓD. Assume that meas(ΓD) is positive so there is no rigid displacement in H1

D(Ω)d.
For a given load f = (f1, f2) with vector fields f1 ∈ L2(IRd)d and f2 ∈ H1(IRd)d, and for a given displacement

u ∈ H1
D(Ω)d, the elastic energy is defined by:

EΩ(u, f) = −
∫

Ω

Ae(u) : e(u) + 2
∫

Ω

f1 · u + 2
∫

ΓN

f2 · u,

where e(u) = 1/2(∇u + ∇uT ) is the strain tensor and A is the fourth-order elasticity tensor such that Ae(u) is
the stress tensor. The compliance is defined by:

CΩ(f) = max
u∈H1

D(Ω)d
EΩ(u, f),

and we want to optimize with respect to Ω the robust or worst-case compliance defined by:

J(Ω) = max
τ perturbation

CΩ(f + (χτ, 0)) , (1)

where τ ∈ L2(IRd)d is an unknown perturbation load, and χ is the characteristic function of a given smooth
subset of IRd, which allows to localize the perturbations. The set of perturbations τ has to be further constrained.
As an example, for a given real value m ∈ IR+, we ask that ‖τ‖L2(IRd)d ≤ m. Other choices are of course possible.

The first issue, that we address in Section 2, is to prove that the right hand side of (1) is well-posed, namely
that there exists a perturbation τ which is a maximizer in the right hand side of (1) and to characterize it.
The main result is presented in Section 2.1.1. Our approach is to change the problem into the maximization
of a nonlinear functional F (u) (Sect. 2.1), to show that the maximum is attained at a point where F is
differentiable (Sect. 2.2), to use the Euler-Lagrange equation to characterize the set of critical points (Sect. 2.3),
to characterize the critical points that can be maximizers (Sect. 2.4) and finally to give an algorithm that
computes the maximizers (Sect. 2.5).

Then, Sections 3 and 4 are devoted to the following shape optimization problem:

inf
Ω⊂D

(J(Ω) + η|Ω|) ,

where D is a given bounded domain and η is a Lagrange multiplier for a volume constraint. We shall not attempt
to prove that there exist optimal shapes. Rather we content ourselves in the rigorous derivation of the shape
derivative of this objective function and then use it into a level set method for numerically computing optimal
shapes in d = 2, 3 space dimensions. In practice, the resulting optimal designs are much more stable (from a
mechanical point of view) than the optimal shapes obtained by standard single load compliance minimization.

2. The direct problem

In this section, we study the problem of robust compliance when the domain is fixed. We prove that the
problem is well-posed and we characterize the set of worst perturbations so that we can differentiate this criterion
with respect to the domain in a latter section. For the sake of simplicity, the dependence with respect to the
domain is dropped.
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− Let V and H be two Hilbert spaces such that V is compactly and densely embedded in H . We denote by (·, ·)
the dual product on V and V ′. Because H is identified with its dual, the scalar product of H is also denoted
(·, ·). The norm in V is denoted by ‖ · ‖V and the subscript is dropped for the norm in H .
− Let A : V → V ′ be a linear coercive, bounded symmetric operator, f ∈ V ′ and define the energy as:
E(v, f) = −(Av, v) + 2(f , v).
− Let B : H → H be a continuous linear operator that characterizes the location of the perturbation and B∗

its adjoint. In the introduction B was simply the self-adjoint operator of multiplication by the characteristic
function χ, but other choices are possible. The perturbation B∗τ is further constrained to be not too large in
the sense that τ must satisfy the bound ‖τ‖ ≤ m for a fixed positive number m.

Definition 2.1. The robust compliance J is defined as:

J = sup
‖τ‖≤m

max
u∈V

E(u, f + B∗τ).

The link with the introduction is:
− V = H1

D(Ω)d, H = L2(Ω)d, V ′ = H−1(Ω)d × H−1/2(ΓN )d;
− A is the operator such that (Av, w) =

∫
Ω

Ae(v) : e(w) dx;
− f is the element of V ′ such that (f , v) =

∫
Ω

f1 · v dx +
∫
ΓN

f2 · v ds;
− B = B∗ is the multiplication by the characteristic function χ.

Remark 2.2. B could have been chosen in a different way: let S be an arbitrary Hilbert space and B∗ : S → V ′

so that B : V → S′. As long as B∗B : V → V ′ is continuous and compact, then the following development
stands with obvious changes. In this case, the perturbations are defined as B∗τ with ‖τ‖S ≤ m. In the elasticity
setting, it allows to deal with perturbations localized on a smooth subset Γ of the boundary of Ω and such that
‖τ‖L2(Γ) ≤ m.

2.1. Equivalent formulation

The functional J is defined as a double maximum, one on the u variable and one on the τ variable. They
can be permuted and solved in one of the variables to give rise to a nonlinear problem in the other variable.

Proposition 2.3. Let F (u) = −(Au, u)+2(f , u)+2m‖Bu‖ and G(τ) = (f +B∗τ,A−1(f +B∗τ)). They satisfy

sup
u∈V

F (u) = J = sup
‖τ‖≤m

G(τ). (2)

Proof. We write

J = sup
‖τ‖≤m

max
u∈V

E(u, f + B∗τ) = sup
u∈V

sup
‖τ‖≤m

E(u, f + B∗τ)

= sup
u∈V

(
−(Au, u) + 2(f , u) + 2 sup

‖τ‖≤m

(B∗τ, u)

)
.

Thanks to the Cauchy-Schwarz inequality, the latest supremum is attained by τ = m
‖Bu‖Bu. The problem to

study is then:
sup
u∈V

{
F (u) = −(Au, u) + 2(f , u) + 2m‖Bu‖

}
. (3)

The formulation in τ is obtained in the same way, remarking that, for a given τ , the optimal u is u = A−1(f +
B∗τ). �

The maximization problem in the right hand side of (2) is a quadratic problem in τ with a norm-constraint,
i.e. a trust-region problem. Despite the impressive literature on trust-region problems, we did not find a proof
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of existence of maximizers in the infinite dimensional case. Indeed the existence proof and computation of
maximizers of a trust-region problem rely on a duality approach for which there is no duality gap. The proof
of absence of gap relies on the so-called S procedure which is a pure finite-dimensional method (see [26] for this
approach and all the references herein). We do not see how to extend straightforwardly this technical argument
to the infinite-dimensional setting.

We prefer to use the formulation in u (i.e. Eq. (3)) because we can use tight bounds in our algorithm (see
Sect. 2.5.2) which have no equivalent in the trust-region setting (i.e. the formulation in τ). Nevertheless, there
is a correspondence between trust-region problems and the robust compliance problem. The results advanced
in papers dealing with trust-region problems will match the result proven here.

Remark 2.4. Setting m = 0 in (3) leads to the standard compliance problem. Setting f = 0 leads to an
eigenvalue problem (the so-called Auchmuty variational principle [6]). There is uniqueness of the maximizer in
the first case but not in the second one in full generality. This difference will be seen in the characterization of
the maximizers. The problem of robust optimization can be interpreted as an intermediate problem between
the standard compliance problem and the eigenvalue problem.

2.1.1. Statement of the result

Each implicit assertion of this section is to be proven later.

Definition 2.5. Consider the generalized eigenproblem: find u ∈ V and ρ ∈ IR such that Au = ρB∗Bu. We
define
− the eigenspaces: Eρ = Ker(A − ρB∗B),
− the set of eigenvalues: Sp(A,B) = {ρ s.t. Eρ �= {0}},
− the smallest eigenvalue: λ1 = min{λ ∈ Sp(A,B)}.
Definition 2.6 (Fredholm alternative). For a given ρ such that f ⊥ Eρ, we denote by uρ the unique solution
of

Auρ = f + ρB∗Buρ,

Auρ ∈ (Eρ)⊥.

Recall that Eρ being a subspace of V , its orthogonal (Eρ)⊥ is a subspace of the dual V ′. With these notations
we can now state our main result in this section.

Theorem 2.7 (Robust compliance). Let F (u) be defined by (3). The set of maximizers of F is:

{uρ∗ + rω s.t. ω ∈ Eλ1 and ‖Bω‖ = 1}

where ρ∗ and r are defined as:
– (ρ∗, r) = (λ1, m/λ1 − ‖Buλ1‖) when f ⊥ Eλ1 and λ1‖Buλ1‖ ≤ m
– (ρ∗, r) = (s, 0) when the above condition are not satisfied. In this case, s can be defined in two equivalent

ways:
– s is the unique real in ]0, λ1[ such that s‖Bus‖ = m;
– s is the only critical point on ]0, λ1[ of the convex function

ρ �→ (f , uρ) +
m2

ρ
·

2.2. The maximum is a critical value

The first thing to prove is that F (u) admits a maximizer and that the maximum is a critical value. Then,
we will be able to work with the critical point equation. The case B ≡ 0 being obvious, we shall consider non
zero perturbation operators.
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Proposition 2.8. Assume B is not equal to 0 on V . There exists at least one maximizer of (3). Furthermore,
no maximizer belongs to Ker(B∗B), so that every maximizer u of F satisfies the Euler-Lagrange equation:

Au = f +
m

‖Bu‖B∗Bu. (4)

Proof. Denoting by ν > 0 the coercivity constant of A, it is easily seen that F is negative outside the ball of
radius γ = 2 ‖f‖+m‖B‖

ν > 0. Since F (0) = 0, the maximum is attained inside this ball. Using the coercivity
of A, the continuity of B∗B, and the compact embedding of V in H , the functional F can be shown to be upper
semi-continuous. Then, the maximum of F is attained.

In order to show that the maximum is a critical value, we have to prove that no maximizer of F can belong
to the set of points where F is not differentiable, i.e. on Ker(B∗B). Suppose u ∈ Ker(B∗B) is a maximizer
of F , then

F (u) = −(Au, u) + 2(f , u) ≤ (f ,A−1f) ≤ (f ,A−1f) + 2m‖BA−1f‖ = F (A−1f).
The inequalities are then equalities. Then u = A−1f ∈ Ker(B∗B). For any v⊥ ∈ Ker(B∗B)⊥ it is easy to show
that F (A−1f + tv⊥) > F (A−1f) = F (u) for sufficiently small t, which contradicts the maximal character of u.�

2.3. Characterization of the set of critical points

In this section, we solve the critical point equation (4) by splitting it into two sub-equations:

Au = f + ρB∗Bu, (5)

ρ =
m

‖Bu‖· (6)

For any given ρ, we solve (5) in terms of u. Then we use the characterization of u when ρ is fixed to find the
admissible ρ.

2.3.1. The Fredholm alternative

For a given ρ, the problem of finding u solution of (5) is a direct application of the Fredholm alternative:

Proposition 2.9. Define the eigenspaces as Eλ = Ker(A − λB∗B) and the spectrum as Sp(A,B) = {λ ∈
IR s.t. Eλ �= {0}}. For given f ∈ V ′ and ρ ∈ IR, consider the following equation in u:

(A − ρB∗B)u = f . (5)
The set of solutions is given by the Fredholm alternative:

• if ρ �∈ Sp(A,B) then there exists a unique solution {uρ};
• if ρ ∈ Sp(A,B) then
– if f �⊥ Eρ then there is no solution;
– if f ⊥ Eρ then the set of solutions is {uρ} + Eρ.

In the last case, uρ is chosen as the unique normalized solution, i.e. Auρ ∈ E⊥
ρ .

Proof. By multiplying (5) by A1/2u we obtain:

(1 − ρA−1/2B∗BA−1/2)A1/2u = A−1/2f

which is a shifted problem posed on the Hilbert space H .
Because Λ = A−1/2B∗BA−1/2 is a compact self-adjoint operator from H onto H , Λ admits an orthonormal-

ized eigenbasis of H . This eigenbasis is orthogonal for Λ and the corresponding eigenvalues form a countable
sequence that converges to 0. Each eigenspace (except maybe for the kernel of Λ) is of finite dimension. Once
shifted, the solution to equation (5) obeys to the Fredholm alternative which is Proposition 2.9. �
Remark 2.10. The definition of A1/2 may be quite subtle if A is considered as an operator acting from V
into V ′. It is easier to understand A as an unbounded operator from H → H and to take f ∈ H .
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When f ⊥ Eρ and ρ is an eigenvalue, there are multiple choices for the definition of uρ. We chose here
Auρ ∈ E⊥

ρ so that uρ has the following property:

Lemma 2.11. If ρ ∈ Sp(A,B) and f ⊥ Eρ then ∀ω ∈ Eρ we have:

‖Buρ + Bω‖ = ‖Buρ‖ + ‖Bω‖. (7)

Proof. If ω ∈ Eρ, then Bω is proportional to Aω and the symmetry of the operator A together with the
orthogonality condition of uρ yields the orthogonality of B∗Bω and uρ. �

We now shift back the spectral decomposition of Λ to obtain a result in terms of A and B.

Proposition 2.12. There exist I1 and I2, two complementary subsets of IN, a sequence of real positive numbers
(λi)i∈I1 and (ei)i∈IN a basis of V such that:

Aei = λiB∗Bei ∀i ∈ I1

B∗Bei = 0 ∀i ∈ I2

(Aei, ej) = δi,j ∀i, j
(Bei,Bej) = 0 ∀i �= j

f =
∑
i∈IN

fiAei where fi = (f , ei) ∀f ∈ V ′.

The normalized solution uρ then admits the following expression, to which we will refer as “the analytical
expression” of uρ:

uρ =
∑
i∈I1

λifi
λi − ρ

ei +
∑
i∈I2

fiei, (8)

with the convention that, if there exists an i such that ρ = λi, then fi = 0 (or else uρ do not exist) and the
corresponding term λifi

λi−ρ is equal to 0.

2.3.2. The set of critical points

After (5) has been solved for a given ρ, we can now solve (6) and find the coupled solution (ρ, u).

Definition 2.13. Let Y1 and Y2 be the following subsets of IR:

Y1 = {ρ ∈ IR s.t. ρ‖Buρ‖ = m},
Y2 = {ρ ∈ Sp(A,B) s.t. f ⊥ Eρ and ρ‖Buρ‖ ≤ m}.

Proposition 2.14. The couple (u, ρ) is a critical point of F in the sense that it is a solution of equations (5)
and (6), if and only if

u = uρ and ρ ∈ Y1

or
u ∈ {uρ + rω ; ω ∈ Eρ, ‖Bω‖ = 1 and r =

m

ρ
− ‖Buρ‖} and ρ ∈ Y2

where uρ is defined in Definition 2.6.

Proof. The proof is a simple albeit lengthy computation, based on Proposition 2.9 which characterizes the solu-
tions of (5). We omit this proof that can be found in [14]. �
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2.4. Finding the adequate critical points

2.4.1. Restriction on the possible maximizers

We prove that the value of F (u) at a critical point (u, ρ) (which solves (5) and (6)) only depends on ρ. We
also prove that if we want to maximize F , then ρ should be taken the smallest possible.

Proposition 2.15. For any (u1, ρ1) and (u2, ρ2) critical points of F we have:

F (u1) ≥ F (u2) ⇐⇒ ρ1 ≤ ρ2 and F (u1) = F (u2) ⇐⇒ ρ1 = ρ2. (9)

Therefore the only possible maximizers are the (u, ρ∗) critical points such that ρ∗ = min (Y1 ∪ Y2). Once ρ∗ is
found, Proposition 2.14 gives the adequate u.

Proof Let u1 and u2 be two critical points of F . They satisfy

Aui = f +
m

‖Bui‖B∗Bui i = 1, 2 (10)

F (ui) = (f , ui) + m‖Bui‖ i = 1, 2. (11)

Using the symmetry of A and B∗B and equation (10) we obtain:

(f , u2) +
m

‖Bu1‖(B∗Bu1, u2) = (f , u1) +
m

‖Bu2‖ (B∗Bu2, u1) (12)

i.e.

(f , u1 − u2) = m
‖Bu2‖ − ‖Bu1‖
‖Bu1‖‖Bu2‖ (B∗Bu1, u2). (13)

Combining equations (13) and (11), we obtain

F (u1) − F (u2) = (f , u1 − u2) + m‖Bu1‖ − m‖Bu2‖
= m

‖Bu1‖ − ‖Bu2‖
‖Bu1‖‖Bu2‖

[‖Bu1‖‖Bu2‖ − (Bu1,Bu2)
]
.

Thanks to Cauchy-Schwarz inequality, F (u1) − F (u2) is of the same sign than ‖Bu1‖ − ‖Bu2‖. Moreover, if
F (u1) − F (u2) = 0 while ‖Bu1‖ �= ‖Bu2‖, then Bu1 and Bu2 are collinear. In this last case, equation (10)
shows that u1 = u2 which is impossible. �

2.4.2. Finding min (Y1 ∪ Y2)

Recalling Proposition 2.15, we now want to characterize ρ∗ = min (Y1 ∪ Y2), the only value of ρ which can
give rise to a maximizer. For that purpose, we use an auxiliary function g.

Definition 2.16. Define Z, the set of ρ for which the Fredholm alternative (Prop. 2.9) does not admit solutions,
i.e.

Z = {ρ ∈ Sp(A,B) such that f �⊥ Eρ} (14)

and call λ̄ the smallest element of Z.
We define the auxiliary function g on IR∗

+ \ Z by

g(ρ) = (f , uρ) + m2/ρ (15)

where uρ is defined by Definition 2.6.
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Proposition 2.17. The function g belongs to C∞(IR∗
+ \ Z) and is convex on (0, λ̄). Moreover g tends to +∞

in 0+ and λ̄−. Its derivative is equal to

g′(ρ) = ‖Buρ‖2 − m2/ρ2. (16)

Proof. The eigenbasis decomposition of Proposition 2.12 yields

g(ρ) =
∑
i∈I1

λi(fi)2

λi − ρ
+
∑
i∈I2

(fi)2 + m2/ρ. (17)

Computing the second-order derivative shows that g is convex. Equation (16) is a simple consequence of using
the “analytical expression of uρ” (8) in the first-order derivative of (17). �

Proposition 2.18. Let ρ∗ = min (Y1 ∪ Y2) and s be the only critical point of the convex function g on ]0, λ̄[.
The following alternative holds:

if (f ⊥ Eλ1 and g′(λ1) ≤ 0) then ρ∗ = λ1,
otherwise ρ∗ = s,

where λ1 = min Sp(A,B) is the smallest eigenvalue of the spectrum as introduced in Definition 2.5.

Proof. Using (16) and Definition 2.13 of Y1 and Y2, the following characterization of the set Y1 ∪ Y2 holds:

ρ ∈ Y1 ⇐⇒ g′(ρ) = 0
ρ ∈ Y2 ⇐⇒ g′(ρ) ≤ 0 and ρ ∈ Sp(A,B) \ Z.

Since g is convex over ]0, λ̄[, we have min Y1 = s. Due to the convexity of g, any 0 < ρ < s verifies g′(ρ) < 0. So
that ρ∗ = min (Y1 ∪ Y2) is not equal to s if and only if ρ∗ = min Y2 = min (Sp(A,B) \ Z) and ρ∗ < s. In this case
min (Sp(A,B) \ Z) < s < λ̄. Recall that λ̄ = min Z so that ρ∗ �= s if and only if ρ∗ = λ1 = min Sp(A,B) �∈ Z
and λ1 < s. The condition λ1 = min Sp(A,B) �∈ Z is by definition of Z, equivalent to f ⊥ Eλ1 .

Then ρ∗ �= s if and only if ρ∗ = λ1 and λ1 < s (i.e. g′(λ1) < 0 by convexity) and f ⊥ Eλ1 . �
We can now state the theorem announced in Section 2.1.1.

Theorem 2.19 (Robust compliance). Let F (u) be defined by (3), the set of maximizers of F is:

{uρ∗ + rω s.t. ω ∈ Eλ1 and ‖Bω‖ = 1}

where ρ∗ and r are defined as:
– (ρ∗, r) = (λ1, m/λ1 − ‖Buλ1‖) when f ⊥ Eλ1 and λ1‖Buλ1‖ ≤ m
– (ρ∗, r) = (s, 0) when the above condition are not satisfied.

Proof. The result is obtained by using Proposition 2.15 to state that the maximizers of F are the critical
points corresponding to ρ∗ = min (Y1 ∪ Y2), Proposition 2.18 that characterizes ρ∗, equation (16) to change the
condition g′(λ1) ≤ 0 of Proposition 2.18 into the condition ‖Buλ1‖ ≤ m/λ1 and finally by using Proposition 2.14
that characterizes the set of critical points of F when ρ∗ is given. �

2.5. An algorithm for the direct problem

It must be kept in mind that ρ∗ may only take two values: s (as defined in Prop. 2.18 as the only critical
point on ]0, λ̄[ of the convex function g) and λ1 (as defined in Def. 2.5 as the smallest eigenvalue). Computing
λ1 is a standard problem in numerical analysis, so it is difficult to compute ρ∗ merely when ρ∗ �= λ1. Even in
this case, one needs to compute the first eigenvalue λ1 in order to check in which case we are.
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The standard idea would be to calculate the maximizer of (3) by using a standard gradient or fixed-point
algorithm. Unfortunately we can exhibit simple cases where there exist local maxima that are not global (see
the Appendices). That is why we propose here a stable algorithm that minimizes g (a convex function) over
the bounded set (0, λ1). We will also obtain more accurate bounds on ρ∗ than 0 and λ1.

2.5.1. The Newton method

The first thing to do is to compute numerically λ1, the smallest eigenvalue together with its eigenspace Eλ1 .
If f belongs to (Eλ1)

⊥, one has to compute uλ1 , the unique solution to (A−λ1B∗B)uλ1 = f and Auλ1 ∈ (Eλ1)
⊥.

If ‖Buλ1‖ ≤ m/λ1 then we are done.
If these conditions are not met, we have to find s which is the minimizer of g on ]0, λ1[. Recall that g is

convex on this interval and is given by:

uρ = (A − ρB∗B)−1f
vρ = A−1B∗B(A − ρB∗B)−1Auρ

g(ρ) = (f , uρ) + m2/ρ
g′(ρ) = ‖Buρ‖ − m2/ρ2

g′′(ρ) = 2(B∗Buρ,B∗Bvρ) + 2m2/ρ3,

(18)

where the last equation is obtained by two derivations of the analytical expression of g (17) and identification
using Proposition 2.12.

Remark 2.20. The auxiliary function vρ = A−1B∗B(A − ρB∗B)−1Auρ seems a priori difficult to compute.
But if the LU or Cholesky factorization of A− ρB∗B has already been obtained when computing uρ, then it is
costless to reuse it. The inverse power algorithm that computes λ1 already used this factorization of A and we
just have to store it along the iterations.

Since the second derivative of g can be easily computed, we can use a Newton method to compute the
minimum s of g. Then, Theorem 2.19 gives the single maximizer {us}.
2.5.2. Bounds on s

Because each iteration of the Newton method can be costly, it is a good idea to find some bounds on ρ∗ = s
in order to have a good starting point for the algorithm. These bounds will be called sm and sM such that
sm ≤ s ≤ sM .

Assume that we already computed n eigenvectors (ei)i∈I and eigenvalues (λi)i∈I with I = {ik}k=1...n. Recall
that I ⊂ I1 where I1 is defined as in Proposition 2.12. We also have computed the coordinates fi = (f , ei) where
ei are normalized by (Aei, ej) = δi,j .

Proposition 2.21. Let λM = max
i∈I

λi and (sM , sm) be the solutions of

0 ≤ sM ≤ λ1 and
∑
i∈I

λifi2

(λi − sM )2
= m2/sM

0 ≤ sm ≤ λ1 and
λMα

(λM − sm)2
+
∑
i∈I

λifi2

(λi − sm)2
= m2/sm

where α is defined by:

α = min

{
(A−1f , f) −

∑
i∈I

(fi)
2

, λM (B∗BA−1f ,A−1f) −
∑
i∈I

(fi)
2 λM

λi

}
,

then sm ≤ s ≤ sM with an equality if and only if Sp(A,B) \ Z ⊂ {λi, i ∈ I}.
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Remark 2.22. Computing sM and sm is not a difficult task. Indeed, arrange I = {ik}k=1...n in increasing
order, define Ã = diag(λik

)k=1...n and B̃ the identity matrix of rank n, then sM and sm are respectively the
solutions of the robust optimization problem in finite dimension n with a source term equal to

fm = [
√

λi1 fi1
√

λi2 fi2 ...
√

λin−1 fin−1

√
λin fin ],

fM = [
√

λi1 fi1
√

λi2 fi2 ...
√

λin−1 fin−1

√
λin(α + fin)].

Solving these robust optimization problems is straightforward. The matrices Ã and B̃ are diagonal thus we can
use the explicit formula (8) without any extra computations for getting the spectrum Sp(Ã, B̃).

Proof of Proposition 2.21. We first prove that sM ≥ s. We have

∑
i∈I1

λi(fi)
2

(λi − sM )2
≥
∑
i∈I

λi(fi)
2

(λi − sM )2
= m2/sM

so that g′(sM ) ≥ 0. Since λ1 ≥ sM ≥ 0, g is convex on (0, λ1) and g′(s) = 0, we deduce sM ≥ s.
To prove the other inequality sm ≤ s, we must first find an upper estimate of

K =
∑

i∈I1\I

(fi)2

(λi
1/2 − λi

−1/2sm)2
=

∑
i∈I1\I

(fi)2/λi

(1 − λi
−1sm)2

·

We rely on the following identities

∑
i∈I1\I

(fi)2 = (A−1f , f) −
∑
i∈I

(fi)2 −
∑
i∈I2

(fi)2,

∑
i∈I1\I

(fi)2/λi = (B∗BA−1f ,A−1f) −
∑
i∈I

(fi)2/λi,

which yield

K =
∑

i∈I1\I

f2
i

(λi
1
2 − λi

− 1
2 sm)2

≤
∑

i∈I1\I f2
i

(λM
1
2 − λM

− 1
2 sm)2

≤ λM

(A−1f , f) −∑i∈I f2
i

(λM − sm)2

K =
∑

i∈I1\I

f2
i /λi

(1 − sm/λi)2

≤
∑

i∈I1\I f2
i /λi

(1 − sm/λM )2
= λM

2 (B∗BA−1f ,A−1f) −∑i∈I f2
i /λi

(λM − sm)2
·
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We can now conclude that

∑
i∈I1

λif2
i

(λi − sm)2
=

∑
i∈I

λif2
i

(λi − sm)2
+
∑

i∈I1\I

λif2
i

(λi − sm)2

=
∑
i∈I

λif2
i

(λi − sm)2
+ K

≤
∑
i∈I

λif2
i

(λi − sm)2
+

λMα

(λM − sm)2
= m2/sm,

so that g′(sm) =
∑
i∈I1

λif2
i

(λi − sm)2
−m2/sm ≤ 0 and therefore sm ≤ s. �

3. Shape differentiation

3.1. Setting of the problem

The goal of this section is to compute a shape derivative of the robust compliance. This shape derivative will
be later used in a numerical algorithm, the level set method, to optimize the domain. Recall from Section 2
that we consider the following shape optimization problem

min
Ω⊂D

(J(Ω) + η|Ω|)

where η is a given Lagrange multiplier for a volume constraint, D is a fixed bounded domain, and J is the
robust compliance defined by the following maximization problem

J(Ω)= max
u∈H1

D(Ω)d

[∫
Ω

(2f1 · u − Ae(u) : e(u)) dx + 2
∫

ΓN

f2 · u ds + 2m

(∫
Ω

χu · u dx

)1/2
]

. (19)

We denote by M the set of u that realize the maximum in the above expression. We reinterpret the abstract
Theorem 2.7 as:

Proposition 3.1. For a given smooth bounded open set Ω, the set M of maximizers of J is given by:

M = {uρ∗ + rω such that ω ∈ Eλ1 and ‖χω‖L2 = 1}

with (ρ∗, r) = (s, 0) when the maximizer is unique,

(ρ∗, r) = (λ1,
m

λ1
− ‖χuρ∗‖L2) when there are multiple maximizers.

We briefly recall the notion of shape differentiation, a standard tool that can be found in [16, 23].

Definition 3.2. For any vector field θ ∈ W 1,∞(IRd; IRd) define

Ωθ = (Id + θ) ◦ Ω = {x + θ(x) such that x ∈ Ω}.
For a given function J(Ω), its shape derivative J ′ is defined (when it exists) as the differential of the following
functional J at 0

J : W 1,∞(IRd; IRd) → IR
θ �→ J(θ) = J(Ωθ).

Whether J admits a directional derivative or a Fréchet derivative, we say that J ′ is a directional or Fréchet
derivative.
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3.2. A general derivation theorem

Definition 3.3.

− Let α > 0, β1 > 0 be constants and IL the space of linear unbounded self-adjoint operators from H → H
such that:

∀L ∈ IL, ∀u ∈ V β1‖u‖2
V ≥ (Lu, u)H ≥ α‖u‖2

V .

(In particular, the operators in IL have a “uniformly” compact resolvent in H , are uniformly coercive and
continuous in V .)

− Let β2 > 0 be a constant and IM the space of continuous positive linear self-adjoint operators from H → H
uniformly continuous with constant β2, i.e.:

∀M ∈ IM , ∀u ∈ H β2‖u‖2
H ≥ (Mu, u)H ≥ 0.

− Define the norm in those two spaces as follows: if N ∈ IL or N ∈ IM then

‖N‖ = max
u∈V

(Nu, u)H

‖u‖2
V

(20)

i.e., we endow IM with the natural norm of IL.
− Let X be a given Banach space X → IL×IM×V ′, θ �→ (L(θ),M(θ), l(θ)) be a Fréchet differentiable mapping

(for L and M, the differentiability is understood with respect to the norm just defined). Define DL(θ0) · θ the
derivative of the operator L with respect to θ at the point θ0 applied to θ. And define L′(θ) = DL(0) · θ. Use
consistent notations for the operator l and M.

We shall give precise examples of L, M and l in Proposition 3.6 below. For the moment, let us simply
indicate that, typically, L(0) is the elasticity operator A, M(0) is the perturbation localization operator B∗B
and l(0) is the applied force for the actual shape Ω0.

Theorem 3.4. Suppose that L and M and l satisfy the assumptions of Definition 3.3. Suppose also that there
exists a neighborhood U0 of 0 in X and a constant C such that for all θ ∈ W 1,∞, ∀θn, θ0 ∈ U0 the following
boundedness and continuity properties hold:

‖DL(θ0).θ‖ ≤ C‖θ‖W 1,∞ (21)
‖[DL(θn) − DL(θ0)].θ‖/‖θ‖W 1,∞ → 0 when θn → θ0, (22)

and assume that equations (21) and (22) hold true for M and l too. Define the following robust compliance
functional:

J(θ) = max
u∈V

{
F (θ, u) = −(L(θ)u, u) + 2(l(θ), u) + 2m(M(θ)u, u)1/2

}
,

and let M0 be the set of maximizers of J(0). Then, for all θ0 ∈ X, J(θ) is directionally differentiable at the
point θ = 0 in the direction θ0 and the value of the directional derivative is

J ′(θ0) = max
u∈M0

[−(L′(θ0)u, u
)

+ 2(l′(θ0), u) + ρ∗
(
M′(θ0)u, u

)]
where either ρ∗ = λ1, the smallest eigenvalue of Sp(L(0),M(0)), when there are multiple maximizers, or
ρ∗ = s = m/(M(0)us, us)1/2 when there is a single maximizer.

Proof (sketch). In order to rigorously prove Theorem 3.4, Clarke’s subgradient theory [11] has to be used. The
existence of subgradients is guaranteed by the uniform bounds imposed on the operators in Definition 3.3. The
directional derivative of J is just obtained by taking the supremum on the subgradient. Details can be found in
Appendix 7. �
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3.3. Application to shape optimization

The goal of this Section is to compute the directional derivative of the robust compliance. In order to simplify
the notations, only volume forces are considered (i.e. f2 = 0 in Sect. 2).

Theorem 3.5. The robust compliance (19) is directionally differentiable with respect to the domain (Def. 3.2)
and the value of the directional derivative in the direction θ is

J ′(θ) = max
u∈M0

∫
∂Ω

(θ · n)[v(u, u) + 2f1 · u]ds (23)

where M0 is the set of maximizers in the definition of J(Ω) and v is a bilinear term defined by

v(u, w) = −Ae(u) : e(w) + ρ∗χu · w on ΓN

v(u, w) = Ae(u) : e(w) on ΓD

where ρ∗ is the common value of m
‖χu‖ for every u in M0.

Theorem 3.4 cannot be directly applied here, because the spaces IL and IM, introduced in Definition 3.3, are
assumed to be invariant with respect to θ. So far, our formulation of the shape optimization problem has been
Eulerian in the sense that the elasticity operator A is defined from H1

D(Ω)d → H−1(Ω)d × H−1/2(ΓN )d where
Ω is the current shape. By varying the displacement field θ, we move the shape Ωθ, and thus the function
spaces on which A is defined are changing with θ. Therefore, we must first introduce a Lagrangian formulation
of the problem by mapping back to the reference shape Ω all objects defined on Ωθ (this is a standard practice
in shape optimization, see e.g. [16, 23]). We thus introduced transported or Lagrangian operators L and M as
follows.

Proposition 3.6. Let (·, ·) denotes the scalar product of L2(Ω). For every θ in W 1,∞(IRd; IRd), small enough,
the map T = Id + θ is a Lipschitz diffeomorphism and we can define:

− L(θ) ∈ IL such that (L(θ)v, w) =
∫

Ωθ

Ae(v ◦ T−1) : e(w ◦ T−1) dx;

− M(θ) ∈ IM such that (M(θ)v, w) =
∫

Ωθ

χ(v ◦ T−1) · (w ◦ T−1);

− l(θ) ∈ V ′ such that (l(θ), v) =
∫

Ωθ

f1 · (v ◦ T−1) dx.

Consequently the robust compliance is given by

J(Ωθ) = J(θ) = max
u∈H1(Ω)d

[
−(L(θ)u, u) + 2(l(θ), u) + 2m(M(θ)u, u)1/2

]
.

Proof. The fact that T = Id+θ is a Lipschitz diffeomorphism for small θ is well known [16,23]. As a consequence,
the following equivalence holds true: u◦T−1 ∈ H1(Ωθ)d ⇐⇒ u ∈ H1(Ω)d.

Then a simple computation shows that

J(θ) = max
u∈H1(Ω)d

[
−(L(θ)u, u) + 2(l(θ), u) + 2m(M(θ)u, u)1/2

]
= max

u∈H1(Ωθ)d

[
−(L(θ)u◦T, u◦T )+ 2(l(θ), u◦T ) + 2m(M(θ)u◦T, u◦T )1/2

]

= max
u∈H1(Ωθ)d

[
−
∫

Ωθ

Ae(u) : e(u) dx + 2
∫

Ωθ

f1 · u dx + 2m
( ∫

Ωθ

χu · u dx
)1/2

]
= J(Ωθ).
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We now prove that L(θ) belongs to IL for small θ (the other claims of Prop. 3.6 are proved in the same
way). Recall the symmetries of the elasticity tensor A, Aijkl = Ajikl = Aijlk = Aklij , so that, using Einstein
summation convention, Aijkl(∂ju

i)(∂lv
k) = Ae(u) : e(v). We have

(L(θ)v, w) =
∫

Ωθ

Aijkl∂j(v ◦ T−1)i∂l(w ◦ T−1)k dx

=
∫

Ω

|det∇T |Aijkl∂j(v ◦ T−1)i ◦ T∂l(w ◦ T−1)k ◦ T dx

=
∫

Ω

|det∇T |Aijkl(∂sv
i∂j(T−1)s)(∂mwl∂k(T−1)m) dx

=
∫

Ω

Ciskm(θ)∂sv
j∂mwl dx

with

Ciskm(θ) = Aiskm + Ciskm
θ + o(‖θ‖W 1,∞)

Ciskm
θ = (∂lθ

l)Aiskm − Aijkm(∂jθ
s) − Aiskl(∂lθ

m).

These coefficients are differentiable with respect to θ. This proves that the operator L(θ) is, at least for small θ,
uniformly coercive and bounded with respect to θ. �

The above computation gives also the value of the derivative L′(θ):

(L′(θ)v, w) =
∫

Ω

Ciskm
θ ∂sv

j∂mwl dx. (24)

Similarly we have

(l′(θ), v) =
∫

Ω

[div(θ)f1 · v + f1 · (∇vθ)] dx

(M′(θ)v, w) =
∫

Ω

χ [div(θ)v · w + (∇vθ) · w + v · (∇wθ)] dx.

Proof of Theorem 3.5. In order to apply Theorem 3.4 to J, it remains to prove the boundedness and continuity
condition of the derivative. It can be proved using the formula for the DL(θ0) · θ derivative of L at the point θ0

in the direction θ, which is obtained in the same way than (24) (valid for θ0 = 0) and which is given by:

([DL(θ0) · θ]v, w) =
∫

Ωθ0

Ciskm
θ ∂s(vj ◦ (Id + θ0)−1)∂m(wl ◦ (Id + θ0)−1) dx.

The term Ciskm
θ /‖θ‖W 1,∞ is uniformly bounded in L∞ norm by some D. Hence, for a small ball U0 in W 1,∞

centered in 0, the derivative is continuous and uniformly bounded in the norm (20):

∀θ0 ∈ U0 ‖DL(θ0) · θ‖ ≤ C‖θ‖W 1,∞

where C is a constant that depends only on the radius of the ball U0. Hence the Lipschitz condition.
Theorem 3.4 can then be applied to J which is locally equal to J(Ωθ). In order to prove Theorem 3.5, it is

sufficient to show that

−(L′(θ)u, u
)

+ 2(l′(θ), u) + ρ∗
(
M′(θ)u, u

)
=
∫

∂Ω

(θ · n)[v(u, u) + 2f1 · u] (25)
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where v(·, ·) is defined in Theorem 3.5. It is a lengthy algebraic computation. First, we perform an integration
by part on θ in the left hand side of (25) which yields two terms, a volume integral in Ω and a surface integral
on ∂Ω. The volume integral cancels out because u satisfies the Eulerian equations (5) and (6). The surface
integral is equal to ∫

∂Ω

(
(θ · n) [−Ae(u) : e(u) + ρ∗χu · u + 2f1 · u] + 2Aijkl∂su

iθsnj∂lu
k
)
ds (26)

where the last term takes different values on the Neumann part and on the Dirichlet part of the boundary. On
the Neumann part, the homogeneous condition Ae(u) · n = 0 means that Aijkl∂lu

knj = 0. Therefore this term
is equal to 0. On the Dirichlet part of the boundary, since ∇u = ∂u

∂nn, we have

∂su
iθsnj =

∂ui

∂n
nsθsnj = ∂ju

i(θ · n),

so that the last term in the integrand of (26) is equal to 2(θ ·n)Ae(u) : e(u). �

4. The algorithm of shape optimization

The function θ �→ J(Ωθ) and the Lagrangian L(Ωθ) = J(Ωθ) + η|Ωθ|, admit a directional derivative with
respect to θ ∈ W 1,∞(IRd; IRd) given by:

L′(θ) = J ′(θ) +
∫

∂Ω

(θ · n)η ds. (27)

The goal of this section is to develop a gradient-based algorithm for the minimization of L(Ωθ). There are two
main steps in this algorithm: the choice of a special descent direction and a level set method that moves the
domain. We do not describe the level set theory here, and refer to [18, 21] or [4] for an extensive explanation
of this method applied to shape optimization. The choice of a descent direction follows [15] where it has been
introduced for optimization of multiple eigenvalues.

As usual, the directional derivative L′(θ) only depends on the value of (θ · n) on the boundary of Ω that
we shall now denote by Θ. More precisely, according to (27) and Theorem 3.5, it has the following structure:
L′(θ) = g(θ · n) where g is a function defined by

g(Θ) = max
u∈M0

∫
∂Ω

Θ[v(u, u) + 2f1 · u + η]ds. (28)

Introduce an Hilbert space H (see [15] for the choices of H). Here we choose H = H1(D). Perform a steepest-
descent algorithm on the space H, i.e. find a descent direction Θ∗ ∈ H solution of the following problem

g(Θ∗) = min
‖Θ‖H=1

g(Θ). (29)

In this section, we will show that this problem is a Semi Definite Programming (SDP) problem in low dimension
that is easily solved.

4.1. Reduction to low dimension

The goal of this Section is to reduce the problem (29) to a problem in low dimension where the number
of variables are of the same order than the dimension of the first eigenspace. This so-called “low-dimension”
problem is then solved in Section 4.2 by an SDP method.
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Recall that the set of maximizers of F (u) is given by Theorem 2.19 (to which we refer for the notations) as

M0 = {uρ∗ + rω such that ω ∈ Eλ1 and ‖Bω‖ = 1} (30)

with (ρ∗, r) = (s, 0) when the maximizer is unique, and (ρ∗, r) = (λ1, m/λ1 − ‖Buρ∗‖) when there are multiple
maximizers.

Definition 4.1. The scalar product below is implicitly assumed to be that of H (that we chose to be H =
H1(D)).
− Define (ωi)i=1,...,d a basis of Eλ1 orthonormalized by (Bωi, Bωj) = δij .
− Define (aij)i,j=1,...,d,(bi)i=1,...,d and c in H by

(aij , X) =
∫

∂Ω

Xr2v(ωi, ωj)ds

(bi, X) =
∫

∂Ω

Xr[v(uρ∗ , ωi) + f1 · ωi]ds

(c, X) =
∫

∂Ω

X [v(uρ∗ , uρ∗) + 2f1 · uρ∗ + η]ds

where v(·, ·) is defined in Theorem 3.5 as the bilinear part of the directional derivative.
− Define (hk)k=1,...,m an orthonormal basis of Span(aij , bi, c)i,j (a subspace of H of finite dimension m), and
for any i, j let (ak

ij)k=1,...,m (resp. (bk
i )k=1,...,m and (ck)k=1,...,m) be the coordinates of aij (resp. bi and c) in

the basis (hk).

Proposition 4.2. An optimal descent direction Θ∗, solution of (29), is given by

Θ∗ =
m∑

k=1

X∗
khk + Θ⊥

where (hk) is the basis introduced in Definition 4.1, Θ⊥ is any vector of adequate norm in [Span(hk)k]⊥ and
X∗

k are minimizers of
min∑

m
k=1(Xk)2≤1

max∑
d
i=1(γi)2=1

[
γiγja

k
ijXk + 2γib

k
i Xk + ckXk

]
. (31)

Proof. Recall that g is defined in (28) as:

g(Θ) = max
u∈M0

∫
∂Ω

Θ[v(u, u) + 2f1 · u + η]ds

where v is bilinear. Using the characterization (30) of M0 we have:

g(Θ) = max
ω∈Eλ1
‖Bω‖=1

[∫
∂Ω

Θ [v(uρ∗ + rω, uρ∗ + rω) + 2f1 · uρ∗ + 2f1 · rω + η] ds

]
.

Decomposing ω =
∑

i γiωi and using Definition 4.1, we have:

g(Θ) = max∑
i γ2

i =1
[γiγj(aij , Θ) + 2γi(bi, Θ) + (c, Θ)] .

Decomposing the descent direction in Θ =
∑m

k=1 Xkhk +Θ⊥, then the Xk are minimizers of (31). �
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4.2. The semi definite programming problem

We solve the low dimensional problem (31) by a SDP (Semi Definite Programming) method. We refer to
[26] for an introduction to SDP problems. We shall only recall here that a SDP problem is of the following
type: given a matrix E(Y ) whose coefficients depend linearly on the vector Y and a given vector Y0, find the
vector Y ∗ which realizes the minimum

min
E(Y )≥0

Y T Y0

where ≥ stands for “symmetric nonnegative”.

Definition 4.3.
− For any X = (X1, ..., Xm) and (z, w) ∈ IR2, let Y = [X, w, z].
− Let A(X) be the d × d matrix A(X)ij = ak

ijXk, let B(X) be the d × 1 matrix B(X)i = bk
i Xk, let C(X) be

the scalar C(X) = ckXk, and let

D(Y ) =
[ −A(X) + zId B(X)

B∗(X) −C(X) − z + w

]
, E(Y ) =

⎡
⎣ D(Y ) 0 0

0 Id X
0 XT 1

⎤
⎦ ,

where the coefficients of E depend linearly on Y = [X, w, z].
− Let Y ∗ = [X∗, w∗, z∗] be the solution of the following SDP problem:

min
E(Y )≥0

w. (32)

We now prove that problems (29) and (32) are equivalent. Let us emphasize that (32) is easy to solve in practice
and that its computational time is negligible compared to the computational time of the evaluation of the robust
compliance.

Proposition 4.4. Let Y ∗ = [X∗, w∗, z∗] be the solution of the SDP problem (32). Then (X∗
k )k, the coordinates

of X∗, are minimizers of problem (31). Hence, in view of Proposition 4.2, a descent direction Θ∗, solution of
(29), is given by

Θ∗ =
m∑

k=1

X∗
khk.

Proof. First notice that the matrices A, B and C are defined so that

min∑
k(Xk)2≤1

max∑
i(γi)2=1

[
γiγja

k
ijXk + 2γib

k
i Xk + ckXk

]
= min

XT X≤1
max

γT γ=1

[
γT A(X)γ + 2γT B(X) + C(X)

]
.

Let us drop the X dependence for a moment. For any matrix A and vector B, it is known (see e.g. [26], p. 229)
that the following trust-region problems are equivalent

max
γT γ=1

[
γT Aγ + 2γT B

]
= min

−A+zId≥0

[
BT (−A + zId)−1B + z

]
,

with the convention that B must belong to the range of (−A+zId). Thus the following problems are equivalent

max
γT γ=1

[
γT Aγ + 2γT B + C

]
= min

−A+zId≥0

[
BT (−A + zId)−1B + z + C

]
= min

−A+zId≥0

−C−z+w≥BT (−A+zId)−1B

w = min
D≥0

w, (33)
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perturbations

Figure 1. The beam to cantilever problem and its initialization.

where D =
[ −A + zId B

BT −C − z + w

]
. Thanks to (33), problem (31) (and hence (29)) are equivalent to

min
XT X≤1

min
D(Y )≥0

w.

The constraint E(Y ) ≥ 0 is equivalent to XT X ≤ 1 and D(Y ) ≥ 0. So that (31) is equivalent to (32). �

5. Numerical results

5.1. Beam to cantilever transition

The working domain is a 1 × 1 square discretized by a 120× 120 quadrangular mesh. The shape is clamped
on the left wall and a unit horizontal load is applied in the middle of the right wall. Vertical perturbations are
allowed in an non-optimizable box (the black box of Fig. 1 left) in the middle of the right wall. We perform
several tests with an increasing parameter m, i.e. increasing the norm of the allowed perturbations. For each of
the nine following tests, the same initialization is used (Fig. 1 right). Lagrange multipliers are adjusted so that
the optimal shapes have always a volume equal to 0.2. The other parameters are the same for each test and are
set to 1 for the Young modulus and to 0.3 for the Poisson’s ratio. The weak-material approximation is used to
mimic the void. Its Young modulus is set to 10−4 with the same Poisson’s ratio than the plain material.

Figure 2 shows the solutions for increasing m (m increases from left to right and then from top to bottom).
When m is equal to 0 the robust-compliance problem is a standard compliance problem whose solution is a
beam. It can be seen that the upper-left shape is close to a beam (m is the smallest) and the lower-right shape
is close to a cantilever (m is the biggest). When m is large, the force term is negligible and the problem becomes
an eigenvalue problem (see Rem. 2.4). The optimal shape is then close to a classical cantilever.

5.2. The wheel-bridge

On a 16 × 12 rectangle, discretized by a 160 × 120 quadrangular mesh, we study the case of the wheel-
bridge. Namely, a unit vertical load is applied on the middle of the bottom of the domain and the shape is
only constrained by a zero vertical displacement on the two sides of the bottom of the bridge (the gray boxes of
Fig. 3 left). To eliminate rigid displacement, we enforce a null horizontal displacement at the node where the
load is applied. Vertical perturbations are located on the black boxes of Figure 3 left.

As for the previous example, the test was run for several different values of the parameter m. The same
initialization was used for the different parameters. Optimal shapes are displayed in Figure 4.
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Figure 2. Different values of m = 10−3, 5×10−3, 7×10−3, 8.5×10−3, 10−2, 2×10−2, 10−1, 1, 4
in the beam-to-cantilever problem.
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Figure 3. The wheel-bridge problem and its initialization.

We also performed a numerical test for the multiple loads wheel-bridge (see Fig. 5). Namely three sets of
vertical forces are applied, one on the middle of the bridge and two uniform volume loads, each being located on
one black box of Figure 3. The optimization criterion is then the sum of the three compliances, the L2-norm of
the three loads being the same. The optimal shapes of the robust compliance and of the multiple loads problem
are similar: this is in accordance with the fact that the worst perturbation for the optimal shape is made of two
vertical symmetric set of forces (and not asymmetric as pulling on one side and pushing on the other side).

5.3. The 2-d mast

The optimal mast problem is a T-shaped working domain meshed with 3600 square cells. The T shape has
an height of 6, a width of 2 at the bottom and 4 at the top. The bottom of the shape is fixed while two vertical
loads are applied at the lower corner of the horizontal branch of the T (see Fig. 6). This test was run in [2] for
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Figure 4. Different values of m = 10−3, 0.1, 0.3, 0.5, 1.3, 1.5, 2.3, 6 in the wheel-bridge problem.

Figure 5. The multiloaded wheel-bridge optimal shape.

Figure 6. Mesh and initialization of the 2-d mast problem.
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Figure 7. The perturbation parameter m is successively equal to 0, 0.01, 0.05, 0.1 for the 2d-
mast problem (vertical perturbations).

Figure 8. Increasing values of m from 0.02, 0.03, 0.1 to 0.2 for the 2d-mast problem (vertical
and horizontal perturbations).

single load compliance minimization. Vertical perturbations are allowed were the loads are sets. Figure 7 shows
the different optimal shapes for different values of the parameter m.

The 2-d mast test has also been performed with perturbations both horizontal and vertical. Figure 8 shows
the solutions for increasing values of m.

We have here a good example of how different sets of allowed perturbation (different operators B) give
different results. Optimal shapes of Figure 7 are less sensitive to vertical perturbations than the one of Figure 8
but more to horizontal ones. The Lagrange multiplier for the volume constraint η is higher when the set of
allowed perturbations is broader, i.e. for the second set of optimal shapes.

5.4. The 3-d beam

A 40×40×21 domain is discretized by a 20×20×21 quadrangular mesh. Denoting by (x1, x2, x3) the spatial
coordinates, the horizontal plane x3 = 0 is submitted to an homogeneous Dirichlet boundary condition and a
normal vertical unit load is applied on the middle of the plane x3 = 21. Perturbations are allowed everywhere
and in all directions. The Young modulus is 1 in the shape and 10−3 in the void. The Poisson ratio is 0.3
everywhere. For all the numerical tests, the same initialization is used and the Lagrange multiplier is set so that
the different shapes have the same volume: 14% of the total volume of the working domain. Optimal shape for
increasing m are displayed in Figure 9.

It is interesting to notice that, if the value of m is increased too much, then the algorithm will have the
tendency to remove the upper part of the shape. This behavior of the algorithm is well-known in optimization
of the first eigenvalue (see [15] for the same test with eigenvalue optimization). A common way to avoid this
problem is to put an heavier mass-tip at the top. The present test was designed so that we could avoid this trick
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Figure 9. Upper and bottom view of the optimal shapes for m = 10−2, 3 × 10−2 and 5 × 10−2.

of the mass-tip by imposing a balance between the optimization of the first eigenvalue and the optimization
with respect to the load.

5.5. The 3-d chair

This problem has also been studied in [3]. The four bottom corners are fixed while the back and the seat of
the chair are not subject to optimization and support pressure loads. The pressure applied on the back of the
chair is 5 times smaller than the pressure applied on the seat. Perturbations are allowed both on the back and
on the seat and are of the following type:

B∗τ = χSτ3e3 + 0.2χBτ1e1 with ‖τ‖L2(D)3 ≤ m,

where (e1, e2, e3) is the usual Cartesian basis of IR3 and τi are the corresponding coordinates of τ . χS denotes
the characteristic function of the seat while χB is the one of the back. Two optimal shapes, for m = 0 and
m = 1, are displayed on Figure 10. The robust-compliance optimal chair has a more complex topology and
is more stable. The topology of the robust-compliance optimal chair is not the same than the topology of the
multiple loads optimal chair (see [3]). The robust chair seems more stable than the multiple loads chair.

5.6. Computational performances

In terms of computational complexity the robust compliance optimization is definitely more expensive that
single load compliance minimization. However, it should be not too expensive compared to multiple loads
compliance minimization with many loads or the maximization of the first eigenvalues. Indeed, the most costly
step in the optimization process is the solution of the direct problem, as detailed in Section 2.5, which can be
done quite efficiently as we shall see. The other step of computing a descent direction is not so expensive since
there is no need of an adjoint state and the choice of the best descent direction is an SDP problem in small
dimension, as explained in Section 4.
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Figure 10. Loading and optimal shape of the chair for m = 0 (left) and m = 1 (right).

We now explain an efficient way of solving algorithm (18) for the direct problem of robust compliance. A
prerequisite of this algorithm is to compute the first eigenvalue and first eigenfunction (possibly multiple ones)
of

(A − λ1B∗B)v1 = 0.

This usually requires factorizing the matrix A which is the bottleneck in terms of CPU and memory requirement.
Let us show that it can be the only matrix factorization of the algorithm. The other steps of this Newton method
are the computation of

uρ = (A − ρB∗B)−1f and vρ = A−1B∗B(A − ρB∗B)−1Auρ,

for successive values of ρ < λ1 (usually less than 10 to 15 iterations are needed). Knowing the factorization
of A, the computations of uρ and vρ, which require a linear solve with the matrix (A − ρB∗B) can easily be
done by an iterative solver using A as a preconditioner. Since the matrix B corresponds to the discretization
of a characteristic function, the condition number of the preconditioned matrix should be not too large and the
resulting convergence of iterative methods very fast.

In truth we have not implemented such an iterative solver and we content ourselves in factorizing the matrix
(A− ρB∗B) at each iteration of the Newton method (which is, of course, time consuming but much simpler to
implement). Recall that in practice the number of Newton iterations is around 10 to 15, so each time the direct
problem is solved by Newton method (i.e. ρ∗ = s) we perform 10 to 15 matrix factorization where 1 would be
enough. Taking into account the fact that the Newton method is not always used (when ρ∗ = λ1), we guess our
computational times are probably larger by a factor of, at least, 5 to 10 than the best possible performances.

For 2-d test cases the robust compliance optimization usually requires of the order of 100 iterations (i.e. direct
problems to solve). For example, the wheel-bridge problem took around 5000 seconds for the robust compliance,
while only 500 s were necessary for the multiple loads optimization (with approximately the same number of
iterations). Convergence was detected when the relative error of the L2 norm of two successive iterates of the
material density is smaller than 10−3.

As an example of a 3-d test case, let us discuss the 3-d chair problem. The standard compliance problem is
solved in 80 iterations for a total of 1 hour and 35 minutes of computation time while the robust compliance
problem is solved with 112 iterations in 7 hours on a standard PC (Pentium 4 at 2.6GHz).

We expect that, with an efficient implementation, our robust compliance optimization algorithm should be
comparable in complexity to the standard multiple loads compliance minimization or the eigenvalues maximiza-
tion problem.
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6. Conclusion

We proved an existence result for the worst perturbation of a given set of loads f . We also characterized the
set of worst perturbations. We gave a stable algorithm that computes the set of worst perturbations and the
robust compliance. This algorithm relies on a Newton type method and we gave efficient bounds on the critical
point of the Newton method. Thanks to those bounds, in all the tests made, we did not need more than a
small number of iterations (of the order of 10 to 15) inside the Newton method. Each iteration requires solving
a linear system with a matrix that does not change too much. This could be done efficiently by an iterative
method. We thus expect that an efficient implementation makes the problem of finding the worst perturbation
of a given load of the same order of computational difficulty than computing the compliance for that load.

We then proved the existence of a shape directional derivative for the robust compliance problem and used
a local SDP problem in order to deduce a regularized and extended velocity for the level set method. Our
numerical algorithm successfully finds optimal shapes that are stable with respect to unknown perturbations
in the loading. Optimal designs are new and different from the previous designs obtained by multiple loads
optimization. They are, of course, more stable than those obtained by single load compliance optimization.

However we do not improve the level set algorithm in its standard drawbacks. Amongst them are the
dependency with respect to initialization and the dependency with respect to some numerical parameters.
Those drawbacks are linked to the possibility for the level set method (which is a simple steepest descent
algorithm here) to fall into local minima, often corresponding to different topologies. One possible remedy is
to incorporate a topological gradient step as in [2]. We did not try this idea so far in the context of robust
optimization.

Eventually, since the robust compliance problem is self-adjoint and is somehow intermediate between the
standard compliance and a generalized eigenvalue problem, it can be fully analysed in the context of homoge-
nization theory (see Th. 4.1.30 in [1]). This relaxation theory bears the advantage of proving the existence of
a global minimizer. However, a numerical implementation of the robust compliance objective function in the
setting of the homogenization theory has yet to be performed.

7. Appendices

Appendix A: Existence of a local maximum for the direct problem
of the robust compliance

We exhibit a simple problem of robust compliance where a local maximum is not a global maximum. Let
x ∈ IR be a parameter that will be chosen large enough. Let m = 3

√
x2 + 1 and

A =
[

1 0
0 2

]
, B =

[
1 0
0 1

]
, f =

[
x
1

]
, u =

[ −2x
2

]
.

It is easy to check that u is indeed a critical point of F (u) = −(Au, u) + 2(f , u) + 2m‖u‖, in the sense that
∂uF = −Au + f + m

‖u‖u = 0.
In order to prove that u is a local maximum, we have to prove that the Hessian of F is definite negative.

The Hessian is given by:

∂2
uF (v, w) = −(Av, w) +

m

‖u‖(v, w) − m

‖u‖
3
(v, u)(w, u)

which as a matrix is equal to:

∂2
uF =

1
2(x2 + 1)

[
(x2 + 1) − 3x2 3x

3x −(x2 + 1) − 3

]
.
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The trace of ∂2
uF is equal to −3/2 and setting x big enough gives det(∂2

uF ) > 0 which means that the two
eigenvalues of the matrix are strictly negative and that u is a local maximum. But u can not be a global
maximum because

F (2x, 2) = 12x2 + 8 > 4x2 + 8 = F (−2x, 2) = F (u).

Appendix B: Proof of Theorem 3.4

This section is devoted to the proof of Theorem 3.4 which is done in three steps. First we state Clarke’s
subgradient result, then we apply it to the robust compliance, and thirdly we compute the collection of directional
derivatives when the subgradient is given.

Clarke’s subgradient theorem

We simply state Theorem (2.8.2) of [11].

Definition 7.1. Let U ⊂ X be a subset of a Banach space X , S be a metrisable space and F : X × S → IR.
For any θ ∈ U ⊂ X define

J(θ) = max
u∈S

F (u, θ).

We introduce the following notations:

• ∂θF (u, θ0) ∈ X∗ is the differential of θ �→ F (u, θ) at the point θ0.

• M(θ) = {u ∈ S s.t. F (u, θ) = J(θ)} , i.e. the set of maximizers.
• P [M(θ)] is the set of Radon probability measures supported by M(θ).

•
〈∫

S

∂θF (u, θ0)µ(du), v
〉

〈X∗,X〉
=
∫

S

〈∂θF (u, θ0), v〉〈X∗,X〉µ(du).

Theorem 7.2. Under assumptions (i) to (vi) below

(i) S is sequentially compact;

(ii) ∀θ ∈ U the mapping u �→ F (u, θ) is upper semi-continuous;

(iii) ∃K > 0 independent of u such that, ∀u ∈ S, the mapping θ �→ F (u, θ) is Lipschitz of rank K;

(iv) ∀θ ∈ U , the set {F (u, θ)}u∈S is bounded;

(v) ∀(θ0, u) ∈ U × S, ∂θF (u, θ0) exists;

(vi) the mapping (θ0, u) �→ ∂θF (u, θ0), from U × S into X∗, is continuous,

there exists a subgradient of J at the point θ0 = 0 given by

∂J(0) =
{∫

S

∂θF (u, 0)µ(du) s.t. µ ∈ P [M(0)]
}

. (34)

The subgradient of J

We now apply Theorem 7.2 to the functional

F (u, θ) = −(L(θ)u, u) + 2(l(θ), u) + 2m(M(θ)u, u)1/2
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such that the robust compliance is just

J(θ) = max
u∈V

F (u, θ) = max
u∈H

F (u, θ) ∀θ ∈ X.

Unfortunately, the hypotheses of Theorem 7.2 are not satisfied for (S, U) = (H, X). Therefore, we have to find
some subsets S ⊂ H and U ⊂ X for which the assumptions of Theorem 7.2 hold true. We give in Lemma 7.1
some sufficient conditions that imply Theorem 7.2. In Proposition 7.3, we build some subsets to which we can
apply Lemma 7.1.

Lemma 7.1. Recall that M(θ) is the set of maximizers u of F (u, θ) over H. Let U be a neighborhood of 0
in X, and S ⊂ H be such that

(1) ∀θ ∈ U , ∀u ∈ M(θ), u belongs to S;

(2) ∃γ > 0 such that, ∀u ∈ S, ∀θ ∈ U , we have ‖u‖V ≤ γ;

(3) ∃β > 0 such that, ∀u ∈ S, ∀θ ∈ U , we have (M(θ)u, u) ≥ β.
Then, ∀θ ∈ U , J(θ) = maxu∈S F (u, θ) and J(θ) has a subgradient at θ = 0, given by Theorem 7.2.

Proof. Property (1) of S implies that J(θ) = maxu∈H F (u, θ) = maxu∈S F (u, θ). We check that S satisfies
the assumptions of Theorem 7.2. Using the norm of H , property (ii) is immediate. Property (iv) holds true
because S is a bounded set in V . Property (2) of S gives the compactness with respect to the norm of H . Of
course S is metrisable in the H topology. So that (i) is satisfied for the topology of H .

The differential ∂θF is defined as

∂θF (u, θ0) · θ=−(DL(θ0) · θu, u) + 2(Dl(θ0) · θu, u) + m
(DM(θ0) · θu, u)
(M(θ0)u, u)1/2

where the differentials DL(θ0),DM(θ0) and Dl(θ0) are defined in Definition 3.3. Assumption (3) on S implies
that ∂θF (u, θ0) is defined everywhere, this proves property (v).

We prove (iv) for the term (DM(θ0)·θu,u)

(M(θ0)u,u)1/2 , which, thanks to property (3) is continuous as long as (DM(θ0)·θu, u)
and (M(θ0)u, u) are continuous. For DM(θ0), it is an hypothesis of Theorem 3.4. For (M(θ0)u, u), Theorem 3.4
stipulates that ∃U0 so that θ0 �→ M(θ0) is Lipschitz continuous with respect to the norm defined in Definition 3.3:

‖M(θ0)‖ = max
v∈V

(M(θ0)v, v)
‖v‖2

V

·

This implies, using assumption (2), and the fact that S ⊂ V , (u, θ) �→ (M(θ0)u, u) is Lipschitz continuous on
S × U . This proves property (iv).

Property (v) is proved in the same way. If u is fixed, assumption (3) states that θ �→ F (u, θ) is Lipschitz
as long the three functionals θ �→ (A(θ)u, u) (resp. (M(θ)u, u); (l(θ)u, u)) are Lipschitz. This is a direct
consequence of the Lipschitz property of Theorem 3.4. �
Proposition 7.3. There exists a subset U ⊂ X such that if S = ∪θ∈UM(θ), then (S, U) verifies the assumption
of Lemma 7.1.

Proof. The subset U is defined as a ball of center 0 and radius τ . The value of τ will be adjusted later. For
every τ , Property (1) is immediate. We remark that F (u, θ) ≥ F (0, θ) = 0, ∀θ, ∀u ∈ M(θ), so that

−(L(θ)u, u) + 2(l(θ), u) + 2m(M(θ)u, u)1/2 ≥ 0.

Using the uniform properties of IL and IM, we deduce

α‖u‖2
V ≤ 2‖l(θ)‖V ′‖u‖V + 2m

√
β2‖u‖H.
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The continuous injection of V into H , and a uniform bound on ‖l(θ)‖V ′ ∀θ ∈ U yields the uniform upper
bound (2). Then, ∀θ ∈ U , a maximizer u of F (u, θ) over H , satisfies the Euler optimality condition

(M(θ)u, u)1/2 =
m

ρθ

where ρθ is always smaller than the first eigenvalue of the generalized eigenproblem L(θ)u = λM(θ)u. Expressing
the first eigenvalue as a Rayleigh quotient leads to

λ(θ) ≤ min
u∈H

(L(θ)u, u)
(M(θ)u, u)

·

For any v ∈ V such that (M(0)v, v) is not zero, upon a restriction on τ , there exist constants c1 > 0 and c2 > 0
independent of θ such that (M(θ)v, v) ≥ c1 and (L(θ)v, v) ≤ c2 for all θ in U . Then λ(θ) ≤ c2/c1 and

∀θ ∈ U, ∀u ∈ M(θ), (M(θ)u, u)1/2 =
m

ρθ
≥ m

λ(θ)
≥ mc1

c2

which is nothing else than the lower bound (3). �

Directional derivative

Let θ be given and denote by J(θ)′ the directional derivative of J(θ) in the direction θ at the point θ = 0.
The proof of Theorem 3.4 is reduced to proving the following result.

Proposition 7.4. For any direction θ, the directional derivative of the robust compliance at 0 exists and is
equal to

J(θ)′ = max
u∈M(0)

[−(L(θ)′u, u) + 2(l(θ)′, u) + ρ∗(M(θ)′u, u)] . (35)

Proof. Thanks to Lemma 7.1, the subgradient of the robust compliance J exists at θ0 = 0. A standard corollary
is that the directional derivative of F at 0 in the direction θ ∈ X exists and is equal to

J(θ)′ = max
ζ∈∂J(0)

〈ζ, θ〉〈X∗,X〉.

Recall that, if ζ ∈ ∂J(0), there exists µ ∈ P [M(0)] such that

〈ζ, θ0〉〈X∗,X〉 =
∫

S

〈∂θF (u, 0), θ0〉〈X∗,X〉µ(du). (36)

First, there exists u∗ ∈ M(0) such that

〈∂θF (u∗, 0), θ0〉〈X∗,X〉 = max
u∈M(0)

〈∂θF (u, 0), θ0〉〈X∗,X〉

since
〈∂θF (u, 0), θ0〉〈X∗,X〉 = −(DL(0) · θ0u, u) + 2(Dl(0) · θ0, u) + ρ∗(DM(0) · θ0u, u)

and the set of maximizers M(0) is finite dimensional and bounded (see Th. 2.19), thus compact.
Second, whatever the measure dµ, the convex sum (36) is always lower or equal to 〈∂θF (u∗, 0), θ0〉 and the

maximum of such convex sums over all probability measures is therefore attained and equal to 〈∂θF (u∗, 0), θ0〉
when dµ is a Dirac mass whose support is u∗. This yields formula (35) with the notation DL(0) · θ0 = L(θ0)′. �
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