
ESAIM: COCV ESAIM: Control, Optimisation and Calculus of Variations
Vol. 14, No 1, 2008, pp. 71–104 www.esaim-cocv.org
DOI: 10.1051/cocv:2007051

OSCILLATIONS AND CONCENTRATIONS IN SEQUENCES OF GRADIENTS ∗
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Abstract. We use DiPerna’s and Majda’s generalization of Young measures to describe oscillations
and concentrations in sequences of gradients, {∇uk}, bounded in Lp(Ω; R

m×n) if p > 1 and Ω ⊂ R
n is

a bounded domain with the extension property in W 1,p. Our main result is a characterization of those
DiPerna-Majda measures which are generated by gradients of Sobolev maps satisfying the same fixed
Dirichlet boundary condition. Cases where no boundary conditions nor regularity of Ω are required
and links with lower semicontinuity results by Meyers and by Acerbi and Fusco are also discussed.
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1. Introduction

Oscillations and/or concentrations appear in many problems in the calculus of variations, partial differential
equations, or optimal control theory, which admit only Lp but not L∞ apriori estimates; cf. [17, 27]. While
Young measures [43] successfully capture oscillatory behavior of sequences they completely miss concentrations.
There are several tools how to deal with concentrations. They can be considered as generalization of Young
measures, see for example DiPerna’s and Majda’s treatment of concentrations [9], Alibert’s and Bouchitté’s
approach [2] or Fonseca’s method described in [13]. An overview can be found in [36,40]. In many cases we are
interested in oscillation/concentration effects generated by sequences of gradients. A characterization of Young
measures generated by gradients was completely given by Kinderlehrer and Pedregal [21,22], cf. also [32,33]. To
our knowledge, the first attempt to characterize both oscillations and concentrations in sequences of gradients
is due to Fonseca, Müller, and Pedregal [14]. They describe concentrations by means of a varifold while
oscillations by gradient Young measures, following the works [3, 4, 13, 35]. The authors give necessary and
sufficient conditions on the varifold, so that they can fully describe effects of concentrations and oscillations on
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1 Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland; Agnieszka.Kalamajska@mimuw.edu.pl
This research was done while A.K. was visiting Institute of Mathematics of the Polish Academy of Sciences at Warsaw in the
academic year 2004/2005.
2 Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic.
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sequences of integrands {g(x)v(∇uk(x))}k∈N where 1 < p <∞, {uk}k∈N ⊂W 1,p(Ω; Rm) (where W 1,p(Ω; Rm) is
the classical Sobolev space of R

m-valued functions), v/(1 + | · |p) is a real-valued function and has a continuous
extension on the compactification of R

m×n by the sphere, and g : Ω → R is continuous and vanishes on the
boundary of a bounded domain Ω ⊂ R

n.
In this paper we deal with general DiPerna-Majda measures generated by gradients of functions commonly

bounded in W 1,p(Ω; Rm). They encode oscillation and concentration effects in sequences of compositions like
{g(x)v(∇uk(x))} in a general case when the function v(s)/(1 + |s|p) has a continuous extension on an arbitrary
metrizable compactification of R

m×n and g : Ω̄ → R is continuous and does not necessarily vanish on the
boundary of Ω. This allows to study concentrations and oscillation effects for the more general class of functions v
admitted to the compositions with sequences {∇uk}k∈N. For example the function v0(λ) = sin(|λ|) is continuous
on R

n but it cannot be continuously extended to the compactification of R
m×n by the sphere (considered

in [14]) as the limits limt→∞ v0(tθ) where θ belongs to the unit sphere in R
m×n do not exist. Here we study the

oscillations and concentrations of sequences like {g(x)v0(∇uk(x))(1+ |∇uk|p)}k∈N as well. Also, the assumption
that g does not need to vanish on the boundary of Ω allows us to study concentrations of sequences on the
boundary of Ω.

Our main result is the characterization of those DiPerna-Majda measures which are generated by gradients
of Sobolev functions (bounded in W 1,p(Ω; Rm)), where 1 < p < ∞, with the same Dirichlet boundary data on
the boundary of Ω, provided that Ω is a bounded domain with an extension property in W 1,p. Here we solve
the case 1 < p < +∞. Meanwhile p = +∞ excludes concentrations and is completely described by gradient
Young measures [21]. The case p = 1 seems to be much more involved because of the loss of reflexivity. We
also derive the necessary conditions (for 1 < p <∞) for those DiPerna-Majda measures which are generated by
gradients of Sobolev mappings with no prescribed boundary conditions for an arbitrary bounded domain Ω. As
an application of our techniques we derive new lower semicontinuity results (Th. 2.9) for variational functionals,
generalizing some variants of Acerbi and Fusco theorem (see e.g. [1, 18, 28] and references therein). We also
obtain some variants of the lower semicontinuity results obtained previously by Meyers, [30]; cf. Theorem 2.10.

Let us mention that a few of our results seem to be of an independent interest. Particularly, it is Lemma 3.5
and Lemma 4.1 showing local and averaging properties of DiPerna-Majda measures, respectively.

Our methods are based on powerful techniques introduced in [21] and [22] to obtain the explicit characteri-
zation of Young measures generated by gradients. We also benefit from the characterization of DiPerna-Majda
measures generated by unconstrained sequences given in [25], see also [26] where numerical issues are discussed
in detail.

2. Preliminaries and result statements

2.1. Basic notation

Let us start with a few definitions and with the explanation of our notation. Having a bounded domain
Ω ⊂ R

n we denote by C(Ω) the space of continuous functions defined on Ω. In the sequel, Mg means the
continuity modulus of g ∈ C(Ω). In what follows rca(S) denotes the set of regular countably additive set
functions on the Borel σ-algebra on a metrizable set S (cf. [10]), its subset, rca+

1 (S), denotes regular probability
measures on a set S. We write “γ-almost all” or “γ-a.e.” if we mean “up to a set with the γ-measure zero”.
If γ is the n-dimensional Lebesgue measure we omit writing γ in the notation. The support of a measure
σ ∈ rca(Ω) is the smallest closed set S such that σ(A) = 0 if S ∩ A = ∅. If σ ∈ rca(Ω̄) we write σs and dσ

for the singular part and density of σ defined by the Lebesgue decomposition (with respect to the Lebesgue
measure), respectively. We denote by ‘w-lim’ or by ⇀ the weak limit. Analogously we indicate weak* limits.

If Ω is a Borel subset of R
n, µ ∈ rca+(Ω) and u ∈ L1(Ω, µ) by Lµ

u we denote the set of all Lebesgue points
of u with respect to µ. If µ is the Lebesgue measure we simply write Lu.

If not said otherwise, we will suppose in the sequel that Ω ⊂ R
n is a bounded domain with a Lipschitz

boundary (however, generalizations to less regular domains are possible).
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By Lp(Ω, µ) we denote the usual Lebesgue space equipped with the measure µ. We omit µ if it is the
Lebesgue measure. Further, W 1,p(Ω; Rm) where 1 ≤ p < +∞ denotes the usual Sobolev space (of R

m-valued
functions) and W 1,p

0 (Ω; Rm) denotes the completion of C∞
0 (Ω,Rm) (smooth functions with bounded support)

in W 1,p(Ω; Rm) (see e.g. [29]). If m = 1 then R
m is omitted from the notation. We say that Ω has the extension

property in W 1,p if every function u ∈ W 1,p(Ω) can be extended outside Ω to ũ ∈ W 1,p(Rn) and the extension
operator is linear and bounded. If Ω is an arbitrary domain and u,w ∈ W 1,p(Ω,Rm) we say that u = w on ∂Ω
if u− w ∈W 1,p

0 (Ω; Rm).

2.2. Quasiconvex functions

Let Ω ⊂ R
n be a bounded regular domain. We say that a function v : R

m×n → R is quasiconvex if for any
s0 ∈ R

m×n and any ϕ ∈W 1,∞
0 (Ω; Rm)

v(s0)|Ω| ≤
∫

Ω

v(s0 + ∇ϕ(x)) dx.

If v : R
m×n → R is not quasiconvex we define its quasiconvex envelope Qv : R

m×n → R as

Qv(s) = sup {h(s); h ≤ v; h : R
m×n → R quasiconvex} (2.1)

and we put Qv = −∞ if the set on the right-hand side of (2.1) is empty. If v is locally bounded and Borel
measurable then for any s0 ∈ R

m×n (see [8])

Qv(s0) = inf
ϕ∈W 1,∞

0 (Ω;Rm)

1
|Ω|
∫

Ω

v(s0 + ∇ϕ(x)) dx. (2.2)

If |v(s)| ≤ C(1 + |s|p) for some C > 0 and all s ∈ R
m×n then equivalently

Qv(s0) = inf
ϕ∈W 1,p

0 (Ω;Rm)

1
|Ω|
∫

Ω

v(s0 + ∇ϕ(x)) dx,

as pointed out in [14]. We refer to [6] for the notion of W 1,p-quasiconvexity.
Let us point out that

Qv(s0) = inf
ϕ∈W 1,p

s0 (Ω;Rm)

1
|Ω|
∫

Ω

v(∇ϕ(x)) dx,

where W 1,p
s0

(Ω; Rm) = {ϕ ∈ W 1,p(Ω; Rm); ϕ(x) = s0x on ∂Ω}.

We will also need the following elementary result. It can be found in a more general form e.g. in [8], Chapter 4,
Lemma 2.2, or in [31].

Lemma 2.1. Let v : R
m×n → R be quasiconvex with |v(s)| ≤ C(1 + |s|p), 1 ≤ p < +∞, C > 0, for all

s ∈ R
m×n. Then there is a constant α ≥ 0 such that for every s1, s2 ∈ R

m×n it holds

|v(s1) − v(s2)| ≤ α(1 + |s1|p−1 + |s2|p−1)|s1 − s2|. (2.3)



74 A. KA�LAMAJSKA AND M. KRUŽÍK

2.3. Young measures

For p ≥ 0 we define the following subspace of the space C(Rm×n) of all continuous functions on R
m×n:

Cp(Rm×n) = {v ∈ C(Rm×n); v(s) = o(|s|p) for |s| → ∞}.

The Young measures on a bounded domain Ω ⊂ R
n are weakly* measurable mappings x 
→ νx : Ω →

rca(Rm×n) with values in probability measures; and the adjective “weakly* measurable” means that, for any
v ∈ C0(Rm×n), the mapping Ω → R : x 
→ 〈νx, v〉 =

∫
Rm×n v(λ)νx(dλ) is measurable in the usual sense. Let us

remind that, by the Riesz theorem the space rca(Rm×n), normed by the total variation, is a Banach space which
is isometrically isomorphic with C0(Rm×n)∗, where C0(Rm×n) stands for the space of all continuous functions
R

m×n → R vanishing at infinity. Let us denote the set of all Young measures by Y(Ω; Rm×n). It is known that
Y(Ω; Rm×n) is a convex subset of L∞

w (Ω; rca(Rm×n)) ∼= L1(Ω;C0(Rm×n))∗, where the subscript “w” indicates
the property “weakly* measurable”. A classical result [39, 42] is that, for every sequence {yk}k∈N bounded in
L∞(Ω; Rm×n), there exists its subsequence (denoted by the same indices for notational simplicity) and a Young
measure ν = {νx}x∈Ω ∈ Y(Ω; Rm×n) such that

∀v ∈ C0(Rm×n) : lim
k→∞

v ◦ yk = vν weakly* in L∞(Ω), (2.4)

where [v ◦ yk](x) = v(yk(x)) and

vν(x) =
∫

Rm×n

v(λ)νx(dλ). (2.5)

Let us denote by Y∞(Ω; Rm×n) the set of all Young measures which are created by this way, i.e. by taking all
bounded sequences in L∞(Ω; Rm×n). Note that (2.4) actually holds for any v : R

m×n → R continuous.
A generalization of this result was formulated by Schonbek [37] (cf. also [5]): if 1 ≤ p < +∞: for every

sequence {yk}k∈N bounded in Lp(Ω; Rm×n) there exists its subsequence (denoted by the same indices) and a
Young measure ν = {νx}x∈Ω ∈ Y(Ω; Rm×n) such that

∀v ∈ Cp(Rm×n) : lim
k→∞

v ◦ yk = vν weakly in L1(Ω). (2.6)

We say that {yk} generates ν if (2.6) holds.
Let us denote by Yp(Ω; Rm×n) the set of all Young measures which are created by this way, i.e. by taking

all bounded sequences in Lp(Ω; Rm×n). The subset of Yp(Ω; Rm×n) containing Young measures generated by
gradients of W 1,p(Ω; Rm) maps will be denoted by GYp(Ω; Rm×n).

We will use the following lemma from [14] concerning Young measures from Yp(Ω; Rm×n) which are generated
by sequences of gradients. A similar result was also proved by Kristensen [23].

Lemma 2.2. Let 1 < p < +∞ and Ω ⊂ R
n be an open bounded set and let {uk}k∈N ⊂W 1,p(Ω; Rm) be bounded.

Then there is a subsequence {uj}j∈N and a sequence {zj}j∈N ⊂W 1,p(Ω; Rm) such that

lim
j→∞

|{x ∈ Ω; zj(x) �= uj(x) or ∇zj(x) �= ∇uj(x)}| = 0 (2.7)

and {|∇zj |p}j∈N is relatively weakly compact in L1(Ω). In particular, {∇uj} and {∇zj} generate the same
Young measure.
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2.4. DiPerna-Majda measures

2.4.1. Definition and basic properties

Let R be a complete (i.e. containing constants, separating points from closed subsets and closed with re-
spect to the Chebyshev norm) separable ring of continuous bounded functions R

m×n → R. It is known [11]
Section 3.12.21, that there is a one-to-one correspondence R ↔ βRR

m×n between such rings and metrizable
compactifications of R

m×n; by a compactification we mean here a compact set, denoted by βRR
m×n, into which

R
m×n is embedded homeomorphically and densely. For simplicity, we will not distinguish between R

m×n and
its image in βRR

m×n. Similarly, we will not distinguish between elements of R and their unique continuous
extensions defined on βRR

m×n. This means that if i : R
m×n → βRR

m×n is the homeomorphic embedding and
v0 ∈ R then the same notation is used also for v0 ◦ i−1 : i(Rm×n) → R and for its unique continuous extension
to βRR

m×n.
Let σ ∈ rca(Ω̄) be a positive Radon measure on a bounded domain Ω ⊂ R

n. A mapping ν̂ : x 
→ ν̂x belongs
to the space L∞

w (Ω̄, σ; rca(βRR
m×n)) if it is weakly* σ-measurable (i.e., for any v0 ∈ C0(Rm×n), the mapping

Ω̄ → R : x 
→ ∫
βRRm×n v0(s)ν̂x(ds) is σ-measurable in the usual sense). If additionally ν̂x ∈ rca+

1 (βRR
m×n) for

σ-a.a. x ∈ Ω̄ the collection {ν̂x}x∈Ω̄ is the so-called Young measure on (Ω̄, σ) ([43], see also [5, 36, 39, 41, 42]).
DiPerna and Majda [9] shown that having a bounded sequence in Lp(Ω; Rm×n) with 1 ≤ p < +∞ defined

on an open domain Ω ⊆ R
n, there exists its subsequence (denoted by the same indices) a positive Radon

measure σ ∈ rca(Ω̄) and a Young measure ν̂ : x 
→ ν̂x on (Ω̄, σ) such that (σ, ν̂) is attainable by a sequence
{yk}k∈N ⊂ Lp(Ω; Rm×n) in the sense that ∀g∈C(Ω̄) ∀v0∈R:

lim
k→∞

∫
Ω

g(x)v(yk(x)) dx =
∫

Ω̄

g(x)
∫

βRRm×n

v0(s)ν̂x(ds)σ(dx), (2.8)

where

v ∈ Υp
R(Rm×n) := {v0(1 + | · |p); v0 ∈ R}. (2.9)

In particular, putting v0 = 1 ∈ R in (2.8) we can see that

lim
k→∞

(1 + |yk|p) = σ weakly* in rca(Ω̄). (2.10)

If (2.8) holds, we say that {yk}∈N generates (σ, ν̂). Let us denote by DMp
R(Ω; Rm×n) the set of all pairs

(σ, ν̂) ∈ rca(Ω̄) × L∞
w (Ω̄, σ; rca(βRR

m×n)) attainable by sequences from Lp(Ω; Rm×n); note that, taking v0 = 1
in (2.8), one can see that these sequences must be inevitably bounded in Lp(Ω; Rm×n). The explicit description
of the elements from DMp

R(Ω; Rm×n), called DiPerna-Majda measures, for unconstrained sequences was done
in [25], Theorem 2.

Alternatively, DiPerna and Majda [9] worked with measures from rca(Ω̄ × βRR
m×n); let us put here

DMp
R(Ω; Rm×n) =

{
η ∈ rca(Ω̄ × βRR

m×n); ∃{yk}k∈N ⊂ Lp(Ω; Rm×n)

∀h0 ∈ C(Ω̄ × βRR
m×n) : 〈η, h0〉 = lim

k→∞

∫
Ω

h0(x, yk(x))(1 + |yk(x)|p)dx
}
.

Let η ∈ DMp
R(Ω; Rm×n) be generated by {yk}k∈N ⊂ Lp(Ω; Rm×n), i.e.

〈η, h0〉 = limk→∞
∫

Ω h0(x, yk(x))(1 + |yk(x)|p)dx whenever h0 ∈ C(Ω̄ × βRR
m×n). Then there is a uniquely

defined (σ, ν̂) ∈ DMp
R(Ω; Rm×n) such that

〈η, h0〉 =
∫

Ω̄

∫
βRRm×n

h0(x, s)ν̂x(ds)σ(dx), (2.11)
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if h0 ∈ C(Ω̄×βRR
m×n). Indeed, let at first h0 ∈ V := {g(x)v0(s) : g ∈ C(Ω̄), v0 ∈ R}. For each subsequence of

{yk}k∈N which generates some DiPerna-Majda measure the limit of limk→∞
∫

Ω h0(x, yk(x))(1 + |yk(x)|p)dx is
the same and equal 〈η, h0〉. Therefore the whole sequence must generate some DiPerna Majda measure which
we denote by (σ, ν̂) and (2.11) is true for all h0 ∈ V . By the Stone-Weierstrass theorem the set V is linearly
dense in C(Ω̄ × βRR

m×n) (it forms an algebra and separates points). Therefore (2.11) holds true for every
h0 ∈ C(Ω̄ × βRR

m×n). On the other hand if {yk}k∈N generates some (σ, ν̂) ∈ DMp
R(Ω; Rm×n) then it also

generates some η ∈ DMp
R(Ω; Rm×n) and moreover, η fulfills the identity (2.11). The proof of this fact follows

from (2.8) and the density of the linear hull of V in C(Ω̄ × βRR
m×n). Therefore, (2.8) can be generalized to

lim
k→∞

∫
Ω

h0(x, yk(x))(1 + |yk|p)dx =
∫

Ω̄

∫
βRRm×n

h0(x, s)ν̂x(ds)σ(dx), (2.12)

whenever {yk}k∈N generates (σ, ν̂) and h0 ∈ C(Ω̄ × βRR
m×n).

Without causing any misunderstanding, the elements of DMp
R(Ω; Rm×n) will be addressed as DiPerna-Majda

measures too and we write η ∼= (σ, ν̂) for η ∈ DMp
R(Ω; Rm×n) and (σ, ν̂) ∈ DMp

R(Ω; Rm×n) if (2.11) holds for
any h0 ∈ C(Ω̄ × βRR

m×n). It is sufficient to verify it for h0 ∈ V .
It is known (see [36]) that DMp

R(Ω; Rm×n) is a convex, closed, non-compact but locally compact and locally
sequentially compact subset of the locally convex space rca(Ω̄ × βRR

m×n) considered in its weak* topology.
Note that for (σj , ν̂j), (σ, ν̂) ∈ DMp

R(Ω; Rm×n) the sequence {(σj , ν̂j)}j∈N converges weakly* to (σ, ν̂) if
∫

Ω̄

∫
βRRm×n

h0(x, s)ν̂j
x(ds)σj(dx) →

∫
Ω̄

∫
βRRm×n

h0(x, s)ν̂x(ds)σ(dx) (2.13)

for every h0 ∈ C(Ω̄ × βRR
m×n). We denote this convergence by (σj , ν̂j) ⇀ (σ, ν̂). By the density argument it

suffices to verify (2.13) for each h of the form h(x, s) = g(x)v0(s) where g ∈ C(Ω̄) and v0 ∈ R.

2.4.2. Some special subsets

We say that (σ, ν̂) ∈ DMp
R(Ω; Rm×n) is homogeneous if x 
→ ν̂x is constant. This implies that σ is absolutely

continuous with respect to the Lebesgue measure with a constant density dσ. See formula (2.17) below.
The central question which we are about to answer in this contribution is which (σ, ν̂) ∈ DMp

R(Ω; Rm×n)
are generated by gradients, i.e., by yk := ∇uk, for {uk}k∈N ⊂ W 1,p(Ω; Rm) bounded. We denote the set of
DiPerna-Majda measures from DMp

R(Ω; Rm×n) which are generated by gradients GDMp
R(Ω; Rm×n).

2.4.3. Nonconcentrating modifications

Let us recall that for any (σ, ν̂) ∈ DMp
R(Ω; Rm×n) there is precisely one (σ◦, ν̂◦) ∈ DMp

R(Ω; Rm×n) such
that ∫

Ω

∫
Rm×n

v0(s)ν̂x(ds)g(x)σ(dx) =
∫

Ω̄

∫
Rm×n

v0(s)ν̂◦x(ds)g(x)σ◦(dx) (2.14)

for any v0 ∈ C0(Rm×n) and any g ∈ C(Ω̄) and (σ◦, ν̂◦) is attainable by a sequence {yk}k∈N such that the set
{|yk|p; k ∈ N} is relatively weakly compact in L1(Ω); see [25, 36] for details. We call (σ◦, ν̂◦) the nonconcen-
trating modification of (σ, ν̂). In general we call (σ, ν̂) ∈ DMp

R(Ω; Rm×n) nonconcentrating if
∫

Ω̄

∫
βRRm×n\Rm×n

ν̂x(ds)σ(dx) = 0, (2.15)

and property (2.15) completely describes all measures (σ, ν̂) which can be generated by such a sequence {yk}k∈N

that {|yk|p}k∈N is relatively weakly compact in L1(Ω). In particular if (σ◦, ν̂◦) the nonconcentrating modification
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of (σ, ν̂) then ν̂0
x(βRR

m×n \ R
m×n) = 0 for σ0 almost all x. Note also that σ0 is absolutely continuous with

respect to the Lebesgue measure (because the generating sequence is relatively weakly compact in L1(Ω)).
We wish to emphasize the following fact: if {yk} ∈ Lp(Ω; Rm×n) generates (σ, ν̂) ∈ DMp

R(Ω; Rm×n) and σ is
absolutely continuous with respect to the Lebesgue measure it generally does not mean that {|yk|p} is weakly
relatively compact in L1(Ω). Simple examples can be found e.g. in [26, 36].

The following lemma recalls some facts about of the p-nonconcentrating modification. Proofs can be found
in [25], Lemma 1, Theorems 1, 2 and [36], Proposition 3.2.17.

Lemma 2.3. Let (σ, ν̂) ∈ DMp
R(Ω; Rm×n) and let (σ◦, ν̂◦) ∈ DMp

R(Ω; Rm×n) be its p-nonconcentrating modi-
fication. Then for almost all x ∈ Ω

dσ◦(x) =
(∫

Rm×n

ν̂x(ds)
)
dσ(x)

and

ν̂◦x(ds) =
[ν̂x|Rm×n ](ds)∫

Rm×n ν̂x(ds)
,

where dσ◦ and dσ are densities (with respect to the Lebesgue measure) of σ◦ and σ, respectively.

Having a sequence bounded in Lp(Ω; Rm×n) generating a DiPerna-Majda measure (σ, ν̂) ∈ DMp
R(Ω; Rm×n)

it also generates an Lp-Young measure ν ∈ Yp(Ω; Rm×n). It easily follows from [36], Theorem 3.2.13, that

νx(ds) = dσ◦(x)
ν̂◦x(ds)
1 + |s|p for a.a. x ∈ Ω. (2.16)

This means that for every v ∈ Υp
R(Rm×n) (defined by (2.9)) we have

∫
Rm×n

v(s)νx(ds) = dσ0(x)
∫

βRRm×n

v(s)
1 + |s|p ν̂

0
x(ds) = dσ0(x)

∫
Rm×n

v(s)
1 + |s|p ν̂

0
x(ds).

As pointed out in [25], Remark 2, for almost all x ∈ Ω

dσ(x) =
(∫

Rm×n

ν̂x(ds)
1 + |s|p

)−1

. (2.17)

Observe that (2.14) can be improved to∫
Ω

∫
Rm×n

v0(s)ν̂x(ds)g(x)σ(dx) =
∫

Ω̄

∫
Rm×n

v0(s)ν̂◦x(ds)g(x)σ◦(dx) (2.18)

for any v0 ∈ R and any g ∈ C(Ω̄). Indeed, for any j ∈ N we define aj ∈ C0(Rm) such that 0 ≤ aj ≤ 1, aj(s) = 1
if |s| ≤ j. Then v0aj is admissible for (2.14) and the Lebesgue dominated convergence theorem for j → ∞
applied to both sides in (2.14) implies (2.18). There is a one-to-one correspondence between nonconcentrating
DiPerna-Majda measures and Young measures; cf. [36]. In particular (see (2.16), (2.18)) we deduce that for
almost all x ∈ Ω ∫

Rm×n

v(s)νx(ds) = dσ(x)
∫

Rm×n

v0(s)ν̂x(ds)

whenever v ∈ Υp
R(Rm×n). This finally yields that ∀g∈C(Ω̄) ∀v0∈R:

lim
k→∞

∫
Ω

g(x)v(yk(x))dx =
∫

Ω

∫
Rm×n

v(s)νx(ds)g(x) dx +
∫

Ω̄

∫
βRRm×n\Rm×n

v0(s)ν̂x(ds)g(x)σ(dx), (2.19)
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where ν ∈ Yp(Ω; Rm×n) and (σ, ν̂) ∈ DMp
R(Ω; Rm×n) are Young and DiPerna-Majda measures generated by

{yk}k∈N, respectively.

2.4.4. Characterization of DiPerna-Majda measures

The following proposition from [25] explicitly characterizes elements of DMp
R(Ω; Rm×n).

Proposition 2.4. Let Ω ⊂ R
n be a bounded open domain such that |∂Ω| = 0, R be a separable complete subring

of the ring of all continuous bounded functions on R
m×n and (σ, ν̂) ∈ rca(Ω̄) × L∞

w (Ω̄, σ; rca(βRR
m×n)) and

1 ≤ p < +∞. Then the following two statements are equivalent with each other:

(i) the pair (σ, ν̂) is the DiPerna-Majda measure, i.e. (σ, ν̂) ∈ DMp
R(Ω; Rm×n);

(ii) the following properties are satisfied simultaneously:

(1) σ is positive;
(2) σν̂ ∈ rca(Ω̄) defined by σν̂(dx) = (

∫
Rm×n ν̂x(ds))σ(dx) is absolutely

continuous with respect to the Lebesgue measure (dσν̂
will denote its density);

(3) for a.a. x ∈ Ω it holds

∫
Rm×n

ν̂x(ds) > 0, dσν̂
(x) =

(∫
Rm×n

ν̂x(ds)
1 + |s|p

)−1 ∫
Rm×n

ν̂x(ds);

(4) for σ-a.a. x ∈ Ω̄ it holds

ν̂x ≥ 0,
∫

βRRm×n

ν̂x(ds) = 1.

Remark 2.5. As pointed out to us by M. Hušek and T. Roub́ıček having a metrizable compactification of
R

m×n we can construct a finer one as follows
Consider a metrizable compactification βRR

m×n of R
m×n and the corresponding separable complete closed

ring R with its dense subset {vk}k∈N. We take a bounded continuous function ψ : R
m×n → R, ψ �∈ R and take

a closure (in the Chebyshev norm) of {ψj}j∈N∪{0} ∪ {ψjvk}j∈N∪{0}
k∈N

. As {ψj} ∪ {ψjvk} is again countable the
corresponding compactification is metrizable but strictly finer than βRR

m×n.

We will also use the following result, whose proof can be found in several places in various contexts (see [25],
Lem. 1, Ths. 1, 2 [36], Prop. 3.2.17), [2], Proposition 4.1, part (iii) and [19], Lemma 3.1, part (ii).

Lemma 2.6. Let Ω ⊂ R
n be a bounded open domain such that |∂Ω| = 0, R be a separable complete subring of

the ring of all continuous bounded functions on R
m×n and (σ, ν̂) ∈ DMp

R(Ω; Rm×n). Then for σs- almost all
x ∈ Ω̄ we have

ν̂x(Rm×n) = 0. (2.20)

2.5. The results statement

Our main results can be summarized to the following four theorems. The first one explicitly characterizes
DiPerna-Majda measures generated by gradients of maps with the same trace.
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Theorem 2.7. Let Ω ⊂ R
n be a bounded domain with the extension property in W 1,p, 1 < p < +∞ and

(σ, ν̂) ∈ DMp
R(Ω; Rm×n). Then then there is a bounded sequence {uk}k∈N ⊂ W 1,p(Ω; Rm) such that uk = uj

on ∂Ω for any j, k ∈ N and {∇uk}k∈N generates (σ, ν̂) if and only if the following three conditions hold

∃ u ∈W 1,p(Ω; Rm) : for a.a. x ∈ Ω: ∇u(x) = dσ(x)
∫

βRRm×n

s

1 + |s|p ν̂x(ds), (2.21)

for almost all x ∈ Ω and for all v ∈ Υp
R(Rm×n) the following inequality is fulfilled

Qv(∇u(x)) ≤ dσ(x)
∫

βRRm×n

v(s)
1 + |s|p ν̂x(ds), (2.22)

for σ-almost all x ∈ Ω̄ and all v ∈ Υp
R(Rm×n) with Qv > −∞ it holds that

0 ≤
∫

βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds). (2.23)

Our next theorem addresses an arbitrary domain and DiPerna-Majda measures generated by gradients of maps
with possibly different traces.

Theorem 2.8. Let Ω be an arbitrary bounded domain such that |∂Ω| = 0, 1 < p < +∞ and (σ, ν̂) ∈
GDMp

R(Ω; Rm×n) be generated by {∇uk}k∈N such that w-limk→∞ uk = u in W 1,p(Ω; Rm). Then the condi-
tions (2.21), (2.22) hold, and (2.23) is satisfied for σ-a.a. x ∈ Ω.

Condition (2.23) does not hold at the boundary of Ω, in general. For otherwise, consider a bounded sequence
{uk}k∈N ⊂W 1,p(Ω; Rm) converging weakly to u ∈W 1,p(Ω; Rm). Let further {∇uk} generate a gradient Young
measure ν ∈ Yp(Ω; Rm×n) and a DiPerna-Majda measure (σ, ν̂) ∈ GDMp

R(Ω; Rm×n). The characterization of
gradient Young measures by Kinderlehrer and Pedregal [22] implies that for 0 ≤ g ∈ C(Ω̄)∫

Ω

g(x)v(∇u(x)) dx ≤
∫

Ω

∫
Rm×n

v(s)g(x)νx(ds) dx (2.24)

for any v ∈ Υp
R(Rm×n) and quasiconvex. If (2.23) always held for σ-a.a.x ∈ Ω̄, we would obtain∫

Ω

g(x)v(∇u(x)) dx ≤
∫

Ω

∫
Rm×n

g(x)v(s)νx(ds) dx +
∫

Ω̄

∫
βRRm×n\Rm×n

g(x)
v(s)

1 + |s|p ν̂x(ds)σ(dx). (2.25)

However, by (2.18) the right-hand side equals limk→∞
∫

Ω g(x)v(∇uk(x)) dx and thus∫
Ω

g(x)v(∇u(x)) dx ≤ lim
k→∞

∫
Ω

g(x)v(∇uk(x)) dx. (2.26)

On the other hand, there are examples that (2.26) does not hold if v(s) = det s and g = 1; cf. [6, 8].
Nevertheless, our Theorem 2.8 illustrates the fact that the failure of sequential weak lower semicontinuity

only relates to the behavior of {∇uk} near the boundary of Ω. Some other related results can be found in the
paper [15] and references therein.

As a corollary we obtain the following variants of theorems by Meyers [30] and Acerbi and Fusco (see
e.g. [1, 18, 28]).
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Theorem 2.9. Let 0 ≤ g ∈ C(Ω̄), v ∈ C(Rm×n), |v| ≤ C(1 + | · |p), C > 0, quasiconvex, and 1 < p < +∞.
Let further {uk} ⊂W 1,p(Ω; Rm), uk → u weakly in W 1,p(Ω; Rm) and at least one of the following conditions be
satisfied:

(i) for any subsequence of {uk} (not relabeled) such that 1 + |∇uk|p → σ weakly* in rca(Ω̄) it holds
σ(∂Ω) = 0,

(ii) lim|s|→∞
v−(s)
1+|s|p = 0 where v− := max{0,−v},

(iii) uk = u on ∂Ω for any k ∈ N and Ω is Lipschitz.
Then I(u) ≤ lim infk→∞ I(uk), where

I(u) =
∫

Ω

g(x)v(∇u(x)) dx. (2.27)

Remark 2.1.
(i) If v ≥ 0 then the assumption (ii) in Theorem 2.9 is satisfied and we retrieve the variant of Acerbi and

Fusco theorem (it deals with nonnegative functions). On the other hand, in Acerbi Fusco’s theorem
one can relax the continuity assumptions on g and even consider Caratheodory functions instead of
(x, s) 
→ g(x)v(s). Therefore our theorem can be considered as a variant of Acerbi Fusco’s theorem
which deals with some class of continuous functions where the nonnegativity assumptions can be relaxed.
To our best knowledge such an extension is missing in the literature.

(ii) In fact, the assertion in the case of (iii) in Theorem 2.9 can be deduced from the result by Meyer [30],
Theorems 4 and 5. The use of Meyers’ theorem would allow for simpler but less constructive proofs of
necessity in our Theorems 2.7 and 2.8.

(iii) The condition (ii) in the theorem is satisfied if, for example, v− ≤ C(1 + | · |q) for some 1 ≤ q < p in
which case −C(1 + |s|q) ≤ v(s) ≤ C(1 + |s|p), C > 0. This result can be found e.g. in [8].

(iv) Using the formulae (2.12) one can obtain a more general variant of the above theorem. Here we present
its simplest possible formulation illustrating our result.

Some other applications of our results to the lower semicontinuity theory and their links with the results by
Acerbi, Fusco and Meyers will be discussed in our forthcoming paper [20].

Our next theorem characterizes sequential weak lower semicontinuity.

Theorem 2.10. Let 0 ≤ g ∈ C(Ω̄), v ∈ C(Rm×n), |v| ≤ C(1 + | · |p), C > 0, quasiconvex, and 1 < p < +∞.
Then the functional I defined by (2.27) is sequentially weakly lower semicontinuous in W 1,p(Ω; Rm) if and only if
for any bounded sequence {wk} ⊂W 1,p(Ω; Rm) such that ∇wk → 0 in measure we have lim infk→∞ I(wk) ≥ I(0).

3. Necessary conditions

This section is devoted to the analysis of necessary conditions on the measure (σ, ν̂) ∈ DMp
R(Ω; Rm×n) to

be generated by gradients. We start with an easy lemma whose proof is left to the reader.

Lemma 3.1. Let M ⊂ R
n be a bounded Borel measurable set and σ , γ ∈ rca(M) be nonnegative and such that

for any nonnegative function g ∈ C(M) we have
∫

M
g(x)σ(dx) ≥ ∫

M
g(x) γ(dx). Then σ(A) ≥ γ(A) for any

measurable set A ⊂M .

The following lemma shows in what cases the restriction of a DiPerna-Majda measure to a given subdomain
ω ⊆ Ω can be generated by its generating sequence restricted to ω.
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Lemma 3.2. Let (σ, ν̂) ∈ DMp
R(Ω; Rm×n) and an open domain ω ⊆ Ω be such that σ(∂ω) = 0. Let {yk}k∈N

generate (σ, ν̂) in the sense (2.8). Then for all v0 ∈ R and all g ∈ C(Ω̄)

lim
k→∞

∫
Ω

v(yk)g(x)χω(x) dx =
∫

Ω

∫
βRRm

v0(s)ν̂x(ds)g(x)χω(x)σ(dx), (3.1)

where χω is the characteristic function of ω in Ω.

Proof. Let η ∈ C0(Rn) be supported in ω (so that η ∈ C0(ω)). We may choose a subsequence (denoted by the
same expression) such that the restrictions of yk to ω, {yk|ω}k∈N, generate the measure (τ, µ̂) ∈ DMp(ω; Rm×n).
We have for any g ∈ C(Ω̄) and any v ∈ Υp

R(Rm×n)

lim
k→∞

∫
Ω

v(yk)g(x)η(x) dx =
∫

Ω

∫
βRRm

v0(s)ν̂x(ds)g(x)η(x)σ(dx) =
∫

ω

∫
βRRm

v0(s)ν̂x(ds)g(x)η(x)σ(dx) (3.2)

and also

lim
k→∞

∫
ω

v(yk)g(x)η(x) dx =
∫

ω

∫
βRRm

v0(s)µ̂x(ds)g(x)η(x) τ(dx). (3.3)

We construct a sequence ηj ∈ C0(ω) such that 0 ≤ ηj ≤ 1 and ηj(x) → χω(x) for every x ∈ ω, as j → ∞.
Comparing the right hand sides in (3.2) and (3.3) with η = ηj , letting j → ∞, and using the Lebesgue dominated
convergence theorem yield∫

ω

∫
βRRm

v0(s)ν̂x(ds)g(x)σ(dx) =
∫

ω

∫
βRRm

v0(s)µ̂x(ds)g(x) τ(dx) =
∫

ω̄

∫
βRRm

v0(s)µ̂x(ds)g(x) τ(dx). (3.4)

The last equality holds because by Lemma 3.1 τ is dominated by σ, so that τ(∂ω) = 0. As (3.4) holds for an
arbitrary subsequence of {yk} such that {yk|ω}k∈N generate some DiPerna-Majda measure, we see that it holds
for the whole sequence {yk} generating (σ, ν̂). �

The following lemma explains the diagonal procedure which will be used in the sequel.

Lemma 3.3. Let 1 ≤ p <∞ and A ⊂ Lp(Ω,Rm×n) be an arbitrary bounded subset. Denote by DMp
R,A(Ω; Rm×n)

the subset of DMp
R(Ω; Rm×n) consisting of all DiPerna-Majda measures that are generated by such sequences

{yk}k∈N that yk ∈ A for every k ∈ N. Then DMp
R,A(Ω; Rm×n) is a closed subset of DMp

R(Ω; Rm×n) (with respect
to the weak* convergence, see (2.13)). Moreover, if ηr ∼= (σr, ν̂r), η ∼= (σ, ν̂) ∈ DMp

R,A(Ω; Rm×n) are such that
(σr, ν̂r) ∗

⇀ (σ, ν̂) and (σr , ν̂r) are generated by {yr
k}k∈N, then there exist sequences {rl}l∈N, {kl}l∈N ⊂ N such

that (σ, ν̂) is generated by {yrl

kl
}l∈N.

Proof. Let (σr , ν̂r) ∈ DMp
R(Ω; Rm×n) be generated by sequences {yr

k}k∈N such that yr
k ∈ A for every k and r.

Let D = {hj
0}j∈N be an arbitrary countable dense subset in C(Ω × βRR

m×n). For every given l ∈ N and r ∈ N

we find k = k(l, r) such that

∣∣∣∣
∫

Ω

hj(x, yr
k(l,r))dx−

∫
Ω×βRRm×n

hj
0(x, s)η

r(ds dx)
∣∣∣∣ < 1

l
, for j = 1, . . . , l,

where hj
0(x, s) ∈ C(Ω × βRR

m×n) is identified with hj(x, s)/(1 + |s|p) defined on Ω̄ × R
m×n.
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For every l ∈ N we find r = r(l) such that∣∣∣∣
∫

Ω×βRRm×n

hj
0(x, s)η

r(ds dx) −
∫

Ω×βRRm×n

hj
0(x, s)η(ds dx)

∣∣∣∣ < 1
l
, for j = 1, . . . , l.

Now it is easy to see that the sequence {vl}l∈N where vl = y
r(l)
k(l,r(l)) ∈ A generates η ∼= (σ, ν̂). �

We are now going to show that if (σ, ν̂) ∈ DMp
R(Ω; Rm×n) is generated by gradients and σ is absolutely

continuous with respect to the Lebesgue measure then its generating sequence of gradients may be chosen to
satisfy the uniform boundary conditions.

Lemma 3.4. Let 1 < p < ∞, (σ, ν̂) ∈ DMp
R(Ω; Rm×n) and σ be absolutely continuous with respect to

the Lebesgue measure. Assume further that (σ, ν̂) is generated by a sequence {∇uk}k∈N where {uk}k∈N ⊂
W 1,p(Ω; Rm) and w-limk→∞ uk = u in W 1,p(Ω; Rm). Then there is the sequence {hk}k∈N ⊂ W 1,p(Ω,Rm×n)
such that {hk − u}k∈N ⊂W 1,p

0 (Ω; Rm×n) and {∇hk}k∈N generates (σ, ν̂).

Proof. Let Ωj := {x ∈ Ω; dist(x, ∂Ω) > 1/j} and {ηj}j∈N be a sequence of smooth functions defined on R
n

such that for any j ∈ N we have ηj ≡ 0 outside Ω, ηj ≡ 1 on Ωj |∇ηj | ≤ cj with c > 0 independent of j and
0 ≤ ηj ≤ 1. In particular ηj(x) → χΩ(x) for all x ∈ Ω.

Consider fjk = ηjuk+(1−ηj)u. Then {fjk−u} ⊂W 1,p
0 (Ω; Rm) and ∇fjk = ηj∇(uk−u)+∇u+(uk−u)⊗∇ηj.

Let us fix j and let (σj , ν̂j) be a DiPerna-Majda measures generated by a subsequence in k of {∇fjk}k∈N denoted
by the same expression. By an easy computation we have

(1 + |∇fjk|p) ≤ C(1 + |∇uk|p + |∇u|p + |(uk − u) ⊗∇ηj |p),

with some C > 0 independent of u, j, k,Ω. Therefore for any nonnegative g ∈ C(Ω̄)∫
Ω̄

g(x)σj(dx) = lim
k→∞

∫
Ω

(1 + |∇fjk(x)|p)g(x) dx

≤ C lim
k→∞

∫
Ω

(1 + |∇uk(x)|p + |∇u(x)|p)g(x) dx + C lim
k→∞

∫
Ω

|(uk(x) − u(x)) ⊗∇ηj(x)|pg(x) dx

and the first term on the right-hand side is the same as C
∫

Ω
g(x)π(dx) where π = σ + |∇u|pdx. The second

term is 0 because by the assumption uk → u strongly in Lp(Ω; Rm). According to Lemma 3.1 we we see that
σj ≤ π. Since π is absolutely continuous with respect to the Lebesgue measure, so is σj . Let us denote its
density by dσj .

Lemma 3.2 applied to Ωj and to Ω \ Ω̄j says that for any v ∈ Υp
R(Rm×n), g ∈ C(Ω̄)

lim
k→∞

∫
Ω

v(∇fjk(x))g(x) dx = lim
k→∞

∫
Ω

v(∇uk(x))χΩj (x)g(x) dx + lim
k→∞

∫
Ω

v(∇fjk)χΩ\Ωj
(x)g(x) dx

=
∫

Ω

∫
βRRm×n

v(s)
1 + |s|p ν̂x(ds)g(x)χΩj (x)dσ(x) dx + lim

k→∞

∫
Ω

v(∇fjk(x))χΩ\Ωj
(x)g(x) dx.

Then

lim
k→∞

∣∣∣∣
∫

Ω

v(∇fjk(x))χΩ\Ωj
(x)g(x) dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

∫
βRRm×n

v(s)
1 + |s|p ν̂

j
x(ds)g(x)χΩ\Ωj

(x)dσj (x) dx
∣∣∣∣

≤ ‖g‖C(Ω̄)‖v0‖C(βRRm×n)

∫
Ω

χΩ\Ωj
(x)dπ(x) dx.
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The Lebesgue dominated convergence theorem yields

lim
j→∞

lim
k→∞

∣∣∣∣
∫

Ω

v(∇fjk(x))χΩ\Ωj
(x)g(x) dx

∣∣∣∣ = 0

and finally, for v0(s) = v(s)/(1 + |s|p)

lim
j→∞

∫
Ω̄

∫
βRRm×n

v0(s)ν̂j
x(ds)g(x)σj(dx) =

lim
j→∞

lim
k→∞

∫
Ω

v(∇fjk(x))g(x) dx =
∫

Ω̄

∫
βRRm×n

v0(s)ν̂x(ds)g(x)σ(dx).

Now it suffices to apply Lemma 3.3 with A = {∇fjk; j, k ∈ N}. �

The following lemma shows that gradient DiPerna-Majda measures are “collected” from homogeneous ones.

Lemma 3.5. Let (σ, ν̂) ∈ GDMp
R(Ω; Rm×n), 1 < p < +∞. Then for almost all a ∈ Ω, the couple (π, µ̂),

where µ̂x = ν̂a for a.a. x ∈ Ω and π(dx) = dσ(a)dx, is a gradient DiPerna-Majda measure, i.e. (π, µ̂) ∈
GDMp

R(Ω; Rm×n) and by the formula (2.17) we have

π(dx) =
(∫

Rm×n

ν̂a(ds)
1 + |s|p

)−1

dx. (3.5)

Proof. Notice that (π, µ̂) ∈ DMp
R(Ω; Rm×n) by Proposition 2.4. Let {∇uk} be a generating sequence of

(σ, ν̂) ∈ DMp
R(Ω; Rm×n) with {uk} bounded in W 1,p(Ω; Rm). We look for a sequence {ua

k,j}k∈N, j>0 uniformly
bounded in W 1,p(Ω; Rm) such that

∇ua
k,j(x) = ∇uk(a+ j−1x), j > 0, x ∈ Ω. (3.6)

We proceed similarly as in [33], Theorem 7.2 and apply Lemma 3.2 for any ω := a+ j−1Ω with j large enough.
First we choose a ∈ Ω. Define V̄�(y) = dσ(y)

∫
βRRm×n v

�
0(s)ν̂y(ds) where {v�

0}�∈N is a dense subset of R. Then
we take a ∈ Ω, a ∈ Lu ∩Ldσ ∩∞

�=1 LV�
(see Sect. 2.1) for any � ∈ N. The set of such points has the full Lebesgue

measure.
We know that {∇uk} is bounded in Lp(Ω; Rm×n). Moreover, w∗ − limk→∞ 1 + |∇uk|p = σ. In other words,

for any ξ ∈ C(Ω̄)

lim
k→∞

∫
Ω

ξ(x)(1 + |∇uk(x)|p) dx =
∫

Ω̄

ξ(x)σ(dx).

We take ξa,j ∈ C0(Ω) such that

0 ≤ χa+j−1Ω(x) ≤ ξa,j(x) ≤ χa+2j−1Ω(x), x ∈ Ω.

Then for some constant C > 0 one gets

lim sup
j→∞

lim sup
k→∞

jn

∫
Ω

(1 + |∇uk(x)|p)χa+j−1Ω(x) dx ≤ lim sup
j→∞

lim sup
k→∞

jn

∫
Ω

(1 + |∇uk(x)|p)ξa,j(x) dx

= lim sup
j→∞

jn

∫
Ω

ξa,j(x)σ(dx) ≤ lim sup
j→∞

jn

∫
Ω

χa+2j−1Ω(x)σ(dx) ≤ Cdσ(a).



84 A. KA�LAMAJSKA AND M. KRUŽÍK

This and the Lebesgue differentiation theorem in the form

lim
j→∞

jn

∫
a+Ω/j

|V (x) − V (a)|dx = 0, (3.7)

whenever V ∈ L1(Ω) and for almost all a (see e.g. [12] p. 9, [16] p. 9, or [33] p. 120), give

lim sup
j→∞

lim sup
k→∞

jn

∫
Ω

|∇uk(x)|pχa+j−1Ω(x) dx = lim sup
j→∞

lim sup
k→∞

∫
Ω

|∇uk(a+ j−1x)|p dx < +∞. (3.8)

Suppose that w-limk→∞ uk = u in W 1,p(Ω; Rm), ua : Ω → R
m is given by ua(x) = ∇u(a)x and denote

Ca = |Ω|−1
∫

Ω
ua(x) dx. Take

ua
k,j(x) = j(uk(a+ j−1x) −Ma,k,j), (3.9)

where Ma,k,j is a constant chosen so that
∫

Ω
ua

k,j(x) dx = Ca. By the Poincaré inequality {ua
k,j}k∈N,j>0 is

uniformly bounded in W 1,p(Ω; Rm).
Taking v ∈ Υp

R(Rm×n) and g ∈ C(Ω̄) we have

∫
Ω

v(∇ua
k,j(x))g(x) dx =

∫
Ω

v(∇uk(a+ j−1x)g(x) dx = jn

∫
Ω

v(∇uk(y))χa+j−1Ω(y)g
(
y − a

j−1

)
dy.

Using Lemma 3.2 we get for all v� = v�
0(1 + | · |p) and all g ∈ C(Ω̄) that

lim
k→∞

∫
Ω

v�(ua
k,j(x))g(x) dx = jn

∫
Ω

V̄�(y)χa+j−1Ω(y)g
(
y − a

j−1

)
dy

+ jn

∫
Ω̄

∫
βRRm×n

v�
0(s)ν̂y(ds)χa+j−1Ω(y)g

(
y − a

j−1

)
σs(dy) (3.10)

except a countable number of j ∈ R. Passing to the limit for j → ∞ we get by the Lebesgue differentiation
theorem (3.7)

lim
j→∞

lim
k→∞

∫
Ω

v�(∇ua
k,j(x))g(x) dx = lim

j→∞

∫
Ω

V̄�(a+ j−1x)g(x) dx = V̄�(a)
∫

Ω

g(x) dx

=
∫

Ω

∫
βRRm×n

v�
0(s)ν̂a(ds)g(x)dσ(a) dx =

∫
Ω

∫
βRRm×n

v�
0(s)µ̂x(ds)g(x)π(dx).

Indeed, the second term on the right-hand side of (3.10) is in the absolute value bounded as follows (recall that
g, v�

0 are bounded)

lim
j→∞

jn

∫
Ω̄

∫
βRRm×n

∣∣∣∣v�
0(s)ν̂y(ds)χa+j−1Ω(y)g

(
y − a

j−1

)∣∣∣∣ σs(dy) ≤ lim
j→∞

Cjn

∫
a+j−1Ω

σs(dy) = 0

with some C > 0 because the density of σs with respect to the Lebesgue measure is zero and we supposed that
σs({a}) = 0. The proof is finished using Lemma 3.3 where we deal with the set A = {∇ua

k,j ; k, j ∈ N}. �

The following result will be useful when we deal with concentrations.

Lemma 3.6. Let σ ∈ rca(Ω) and ω ⊂ Ω be an arbitrary subdomain. Let us further denote for every r ∈ R the
set ωr := {x ∈ ω : dist(x, ∂ω) > r}. Then σ(∂ωr) �= 0 for at most a countable number of r.
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Proof. Obviously we can assume that σ is the nonnegative measure by substituting the total variation of σ
instead of σ. We define the function F : R → [0,∞) by the formulae

F (r) := σ(ωr).

As F is nondecreasing and bounded, therefore it cannot have an infinitely many jumps (this simple fact is often
used in the probability theory where one deals with the distribution function, see e.g. [7], Th. 14.1, p. 188). By
the monotonicity property of the (regular) measure we have

lim
t→r,t<r

F (t) = σ(
⋂

t:t<r

ωt) = σ(ωr) and lim
t→r,t>r

F (t) = σ(
⋃

t:t>r

ωt) = σ(ωr).

Therefore the jump of F at r equals −σ(∂ωr) and the lemma follows. �

Our next lemma gives a Jensen-like inequality characterizing behavior of ν̂ on the remainder βRR
m×n \ R

m×n.

Lemma 3.7. Let (σ, ν̂) ∈ GDMp
R(Ω; Rm×n), 1 < p < +∞. Then for σ-almost all x ∈ Ω

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds) ≥ 0. (3.11)

for all v ∈ Υp
R(Rm×n) with Qv > −∞.

Proof. Let {∇uk} generate (σ, ν̂) and let {zk} be the sequence constructed in Lemma 2.2. Denoting wk = uk−zk

for any k ∈ N we set Rk = {x ∈ Ω; ∇wk(x) �= 0}. Lemma 2.2 asserts that |Rk| → 0 as k → ∞. We get from
Lemma 2.1 that for any v ∈ Υp

R(Rm×n) quasiconvex with v(0) = 0 and any g ∈ C(Ω̄)

∣∣∣∣
∫

Ω

g(x)v(∇wk(x)) dx −
∫

Ω

g(x)(v(∇uk(x)) − v(∇zk(x))) dx
∣∣∣∣

≤ ‖g‖C(Ω̄)

(∫
Rk

|v(∇uk(x) −∇zk(x)) − v(∇uk(x))| dx +
∫

Rk

|v(∇zk(x))| dx
)

≤ C‖g‖C(Ω̄)

∫
Rk

[
(1 + |∇uk(x) −∇zk(x)|p−1 + |∇uk|p−1)|∇zk(x)| + (1 + |∇zk|p)

]
dx

≤ C′
((∫

Rk

|∇zk(x)|p dx
)1/p

+
∫

Rk

1 + |∇zk(x)|p dx+
∫

Rk

|∇zk(x)| dx
)

(3.12)

for constants C,C′ > 0 (which may depend also on supk‖∇uk‖Lp(Ω) and supk‖∇zk‖Lp(Ω) ). The last term goes
to zero as k → ∞ because {|∇zk|p} is relatively weakly compact in L1(Ω) and |Rk| → 0 as k → ∞. This
calculation shows that for v ∈ Υp

R(Rm×n) quasiconvex we can separate oscillation and concentration effects of
{∇uk} independently of the used compactification of R

m×n. Indeed, due to (2.12) we have for any g ∈ C(Ω̄)
and any v ∈ Υp

R(Rm×n) quasiconvex that

lim
k→∞

∫
Ω

v(∇wk(x))g(x) dx = v(0)
∫

Ω

g(x) dx +
∫

Ω̄

∫
β

Rm×n\Rm×n

v(s)
1 + |s|p ν̂(ds)g(x)σ(dx). (3.13)

Let x0 ∈ Ω and let ζ ∈ C∞
0 (B(x0, r)), 0 ≤ ζ ≤ 1. We have for any fixed v ∈ Υp

R(Rm×n) with Qv > −∞ that
|Qv(s)| ≤ c(1 + |s|p), for all s ∈ R

m×n with a constant c > 0, cf. [24], Lemma 2.5. Therefore if v ∈ Υp
R(Rm×n)



86 A. KA�LAMAJSKA AND M. KRUŽÍK

with Qv > −∞ we get by Lemma 2.1

|B(x0, r)|Qv(0) ≤
∫

B(x0,r)

Qv(∇(ζ(x)wk(x))) dx =
∫

B(x0,r)

Qv(ζ(x)∇wk(x) + wk(x) ⊗∇ζ(x)) dx

≤
∫

B(x0,r)

Qv(ζ(x)∇wk(x)) dx + α

∫
B(x0,r)

(1 + |ζ(x)∇wk(x) + wk(x) ⊗∇ζ(x)|p−1)|wk(x) ⊗∇ζ(x)| dx

+ α

∫
B(x0,r)

(|ζ(x)∇wk(x)|p−1)|wk(x) ⊗∇ζ(x)| dx ≤
∫

B(x0,r)

Qv(ζ(x)∇wk(x)) dx (3.14)

+ α

∫
B(x0,r)

(1 + 2p−1)|ζ(x)∇wk(x)|p−1)|wk(x) ⊗∇ζ(x)| dx

+ α

∫
B(x0,r)

(2p−1|wk(x) ⊗∇ζ(x)|p−1)|wk(x) ⊗∇ζ(x)| dx

≤
∫

B(x0,r)

Qv(ζ(x)∇wk(x)) dx + α(1 + 2p−1)‖ζ∇wk‖p−1
Lp(Ω;Rm×n)‖wk ⊗∇ζ‖Lp(Ω;Rm)

+ 2p−1α‖wk ⊗∇ζ‖p
Lp(Ω;Rn).

Since wk → 0 strongly in Lp(Ω; Rn) and {∇wk}k∈N is bounded in Lp(Ω; Rm×n) the last two terms tend to zero
if k → ∞. Therefore we have

|B(x0, r)|Qv(0) ≤ lim inf
k→∞

∫
B(x0,r)

Qv(ζ(x)∇wk(x)) dx. (3.15)

Let us choose such r > 0 that σ(∂B(x0, r)) = 0. This is possible due to Lemma 3.6. We continue with the
following estimate for a suitable subsequence of {∇wk} (not relabeled). Note that we use Lemma 3.2 with
ω := B(x0, r).

lim
k→∞

∫
B(x0,r)

Qv(ζ(x)∇wk(x)) dx ≤ lim
k→∞

∫
B(x0,r)

Qv(∇wk(x)) dx (3.16)

+ α lim
k→∞

∫
B(x0,r)

(1 − ζ(x))(1 + ζp−1(x))|∇wk(x)|p dx+ α lim
k→∞

∫
B(x0,r)

(1 − ζ(x))|∇wk(x)| dx

= lim
k→∞

∫
B(x0,r)

Qv(∇wk(x)) dx + α

∫
B(x0,r)

∫
βRRm×n

|s|p
1 + |s|p ν̂x(ds)(1 − ζ(x))(1 + ζp−1(x))σ(dx)

+ α

∫
B(x0,r)

∫
βRRm×n

|s|
1 + |s|p ν̂x(ds)(1 − ζ(x))σ(dx).

Taking into account (3.15) and (3.16) and a sequence {ζj}j∈N ⊂ C∞
0 (B(x0, r)), 0 ≤ ζj ≤ 1 pointwise tending to

χB(x0,r) σ-a.e. we have by Lebesgue’s dominated convergence theorem

|B(x0, r)|Qv(0) ≤ lim
k→∞

∫
B(x0,r)

Qv(∇wk(x)) dx.

The right-hand side is not greater than

|B(x0, r)|Qv(0) +
∫

B(x0,r)

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds)σ(dx). (3.17)

Indeed, we can consider a complete separable ring S of bounded continuous functions such that v
1+|·|p ∈ S as well

as Qv
1+|·|p ∈ S. The metrizable compactification βSR

m×n may be possibly finer than βRR
m×n; cf. Remark 2.5
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for the construction. Then we have (perhaps up to a subsequence; cf. (3.13))

lim
k→∞

∫
B(x0,r)

Qv(∇wk(x)) dx = |B(x0, r)|Qv(0) +
∫

B(x0,r)

∫
βSRm×n\Rm×n

Qv(s)
1 + |s|p ν̃x(ds)σ(dx)

for (σ, ν̃) ∈ GDMp
S(Ω; Rm×n). Notice that by (2.10) σ is independent of the used ring S. Since Qv ≤ v we have

lim
k→∞

∫
B(x0,r)

Qv(∇wk(x)) dx ≤ |B(x0, r)|Qv(0) +
∫

B(x0,r)

∫
βSRm×n\Rm×n

v(s)
1 + |s|p ν̃x(ds)σ(dx).

As v0 = v/(1 + | · |p) ∈ S, too, we have using (2.19)

lim
k→∞

∫
B(x0,r)

v(∇uk(x)) dx =
∫

B(x0,r)

∫
Rm×n

v(s)νx(ds)

+
∫

B(x0,r)

∫
βSRm×n\Rm×n

v(s)
1 + |s|p ν̃x(ds)σ(dx)

=
∫

B(x0,r)

∫
Rm×n

v(s)νx(ds)dx

+
∫

B(x0,r)

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds)σ(dx),

where ν ∈ Yp(Ω; Rm×n) is the Young measure generated by {∇uk}k∈N. Therefore,
∫

B(x0,r)

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds)σ(dx) =

∫
B(x0,r)

∫
βSRm×n\Rm×n

v(s)
1 + |s|p ν̃x(ds)σ(dx).

Combining (3.18) and (3.18) we arrive at (3.17).
Thus it yields

0 ≤
∫

B(x0,r)

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds)σ(dx).

Therefore, by Lebesgue-Besicovitch differentiation theorem [12], p. 43 for any σ-Lebesgue point x0 of x 
→∫
βRRm×n\Rm×n

v(s)
1+|s|p ν̂x(ds) and any sequence {rj}j∈N such thatB(x0, rj) ⊂ Ω, σ(∂B(x0, rj)) = 0, and limj→∞ rj =

0 (its existence follows from Lemma 3.6) we get

0 ≤ lim
j→∞

1
σ(B(x0, rj))

∫
B(x0,rj)

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds)σ(dx)

=
∫

βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x0(ds).

We continue similarly as in [14]. The previous calculation yields the existence of a σ-null set Ev ⊂ Ω such that

0 ≤
∫

βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds)

if x �∈ Ev. Let {vk
0}k∈N be a dense subset of R, so that {vk}k∈N = {vk

0 (1 + | · |p)}k∈N ⊂ Υp
R(Rm×n). We define

E =
⋃
k

⋃
{j∈N; Q(vk+(1/j)(1+|·|p))>−∞}

Evk+(1/j)(1+|·|p).
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Clearly σ(E) = 0. Fix x ∈ (Ω \ E), v ∈ Υp
R(Rm×n) such that Qv > −∞ and choose a subsequence (not

relabeled) {vk
0}k∈N such that

vk
0 → v0 in C(βRR

m×n) and ‖vk
0 − v0‖C(βRRm×n) <

1
j(k)

,

where j(k) → ∞ if k → ∞. We have

vk(s) +
1
j(k)

(1 + |s|p) ≥ vk(s) + (1 + |s|p)‖vk
0 − v0‖C(βRRm×n)

≥ vk(s) + |vk
0 (s) − v0(s)|(1 + |s|p) ≥ v(s).

Thus, Q(vk + 1
j(k) (1 + |s|p))+ > −∞, as well, and because x �∈ E then x �∈ Evk+(1/j(k))(1+|·|p) and

0 ≤ lim
k→∞

∫
βRRm×n\Rm×n

(
vk

0 (s) +
1
j(k)

)
ν̂x(ds) =

∫
βRRm×n\Rm×n

v0(s)ν̂x(ds)

=
∫

βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds). �

We are now ready to formulate necessary conditions for a gradient DiPerna-Majda measure.

Proposition 3.8. Let Ω ⊂ R
n be an arbitrary bounded domain. Let {uk} ⊂ W 1,p(Ω; Rm×n), 1 < p < +∞ be

bounded. Let further {∇uk} generate (σ, ν̂) ∈ DMp
R(Ω; Rm×n) Let dσ be the density of σ with respect to the

Lebesgue measure.
Then the following three conditions hold:

∃ u ∈W 1,p(Ω; Rm) : ∇u(x) = dσ(x)
∫

βRRm×n

s

1 + |s|p ν̂x(ds) (3.18)

for a.a. x ∈ Ω,
for a.a. x ∈ Ω and all v ∈ Υp

R(Rm×n) the following Jensen inequality is valid

Qv(∇u(x)) ≤ dσ(x)
∫

βRRm×n

v(s)
1 + |s|p ν̂x(ds) (3.19)

and for σ-almost all x ∈ Ω

0 ≤
∫

βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds) (3.20)

for all v ∈ Υp
R(Rm×n) with Qv > −∞.

Moreover, if Ω has extension property in W 1,p and additionally {uk−u}k∈N ⊂W 1,p
0 (Ω; Rm) then (3.20) holds

for σ-almost all x ∈ Ω̄.

Proof. We start with the proof of the first part of the proposition deriving conditions (3.18), (3.19), (3.20).
(i) Suppose first that Ω is Lipschitz. As p > 1 we assume that {uk}k converges weakly to u ∈W 1,p(Ω; Rm×n).

Thus for any g ∈ C(Ω̄)

lim
k→∞

∫
Ω

∇uk(x)g(x) dx =
∫

Ω

∫
βRRm×n

s

1 + |s|p ν̂x(ds)g(x)dσ(x) dx,
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which gives (3.18) by the density argument.
Let us take a fixed a ∈ Ω, a Lebesgue point of ∇u and dσ and denote Y := ∇u(a). By Lemma 3.5

(π, µ̂x) ∈ DMp
R(Ω; Rm×n), µ̂x = ν̂a and π(dx) = dσ(a)dx is a homogeneous DiPerna-Majda measure with a

generating sequence {∇w̃k}, where {w̃k} ⊂ W 1,p(Ω; Rm). Using Lemma 3.4 we can suppose that w̃k(x) = Y x
if x ∈ ∂Ω and k ∈ N. We have for any v ∈ Υp

R(Rm×n)
∫

Ω

v(∇w̃k(x)) dx ≥ |Ω|Qv(Y ). (3.21)

Hence, we calculate for any v ∈ Υp
R(Rm×n) with the finite quasiconvex envelope

lim
k→∞

∫
Ω

v(w̃k(x)) dx = dσ(a)|Ω|
∫

βRRm×n

v(s)
1 + |s|p ν̂a(ds)

≥ |Ω|Qv(Y ),

which proves the first part of the statement for Lipschitz Ω because (3.20) follows from Lemma 3.7.
(ii) Assume now that Ω is an arbitrary bounded domain. We cover Ω by a sequence of its subdomains

Ωj ⊂ Ω with a Lipschitz boundary such that dist(Ωj , ∂Ω) < 1
j . Using Lemma 3.6 we may additionally assume

that σ(∂Ωj) = 0. We use Lemma 3.2 and deduce that if {∇uk} generates (σ, ν̂) then the same sequence restricted
to each Ωj generates (σ, ν̂) restricted to Ωj . Therefore (3.18), (3.19), and (3.20) are satisfied on each Ωj with
the same (σ, ν̂) and u and it remains to let j → +∞.

Now we prove the last statement in the proposition.
Let ũ be an extension of u to R

n. Let us extend each function uk to R
n by plugging ũk(x) := ũ(x) outside Ω.

Nikodym ACL Characterization Theorem (see e.g. [29], Sect. 1.1.3, Th. 2) ensures us that each ũk belongs to
W 1,p(Rn,Rm). Let Ω̃ be an arbitrary bounded domain with Lipschitz boundary such that Ω ⊂ Ω̃ and let (σ̃, ν̃x)
be generated by {∇ũk}k∈N restricted to Ω̃. Decomposing for any v ∈ Υp

R(Rm×n) and g ∈ C(Ω):
∫

Ω̃

v(∇ũk(x))g(x)dx =
∫

Ω̃\Ω

v(∇ũ(x))g(x)dx +
∫

Ω

v(∇uk(x))g(x)dx

and letting k converge to +∞ we observe that {∇ũk}k∈N generates a DiPerna-Majda measure (σ̃, ν̃) on Ω̃ such
that

σ̃ =
{

(1 + |∇ũ(x)|p)dx on Ω̃ \ Ω
σ on Ω

, ν̃x =
{
δ∇u(x) if x ∈ Ω̃ \ Ω
νx if x ∈ Ω̄.

As Ω̃ is a bounded domain with a Lipschitz boundary, we observe by Lemma 3.7 that (3.11) holds true for
σ̃-almost all x ∈ Ω̃. In particular it holds true for σalmost all x ∈ Ω. �

A remark is in order.

Remark 3.9. (i) In fact, (3.20) together with the characterization of gradient Young measures by Kinderlehrer
and Pedregal [22] always imply (3.19). Namely, the characterization of gradient Young measures gives for v
continuous, v(s) ≤ C(1 + |s|p), that

Qv(∇u(x)) ≤ dσ(x)
∫

Rm×n

v(s)
1 + |s|p ν̂x(ds),

for almost all x ∈ Ω. This together with (3.20) implies (3.19).
On the other hand, if σ is absolutely continuous with respect to the Lebesgue measure we see that (3.19)

implies (3.20). To see this, decompose {uk} by means of Lemma 2.2 and observe that ∇wk → 0 weakly in



90 A. KA�LAMAJSKA AND M. KRUŽÍK

Lp(Ω; Rm×n). Moreover, taking v ∈ Υp
R(Rm×n) with Qv > −∞, Qv(0) = 0, we have applying (3.19) from

Proposition 3.8 to {∇wk}k∈N and in view of (3.13) and Lemma 3.2 that

0 ≤
∫

βRRm×n\Rm×n

Qv(s)
1 + |s|p ν̂x(ds) ≤

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds)

which gives (3.20). Note that the requirement Qv(0) = 0 does not restrict generality because we can always
put ṽ = v −Qv(0) for v ∈ Υp

R(Rm×n), Qv > −∞ and clearly

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds) =

∫
βRRm×n\Rm×n

ṽ(s)
1 + |s|p ν̂x(ds).

Saying otherwise, (3.20) gives an extra condition only if σ has a singular part.

(ii) An arbitrary bounded domain with Lipschitz boundary has the extension property in W 1,p. It is shown e.g.
in [38], Section VI.3.

(iii) Condition (3.20) is analogous to the formula (5.1) in [14]. Particularly, if βRR
m×n is the compactification

by the sphere (3.20) coincides with [14], formula (5.1). As (σ, ν̂) ∈ DMp
R(Ω; Rm×n) must be such that σ is

nonnegative our conditions (3.19) and (3.20) imply conditions (i) and (ii) in Step 1 [14], p. 748. Note that as
they use functions g : Ω → R vanishing on ∂Ω they do not need to take care about the behavior of the varifold
for x ∈ ∂Ω.

4. Sufficient conditions

This section is devoted to deriving sufficient conditions on a DiPerna-Majda measure to be generated by
gradients. First, we show that DiPerna-Majda measures generated by sequences with the same affine boundary
datum define homogeneous measures.

Lemma 4.1. Let 1 < p < +∞, {uk}k∈N ⊂ W 1,p(Ω; Rm) be a bounded sequence such that uk(x) − Y x ∈
W 1,p

0 (Ω,Rm) for any k ∈ N, any x ∈ ∂Ω where Y ∈ R
m×n is fixed. Let (σ, ν̂) ∈ GDMp

R(Ω; Rm×n) be generated
by {∇uk}. Then there is a bounded sequence {wk} ⊂ W 1,p(Ω; Rm) such that {uk − wk}k∈N ⊂ W 1,p

0 (Ω; Rm×n),
{∇wk}k∈N generates

(
σ̄, ν̂
) ∈ GDMp

R(Ω; Rm×n), σ̄ is absolutely continuous with respect to the Lebesgue measure
and its density dσ̄(x) = σ(Ω̄)/|Ω| for any x ∈ Ω. Moreover, for any v0 ∈ R and almost all x ∈ Ω∫

βRRm×n

v0(s)ν̂x(ds) =
1

σ(Ω̄)

∫
Ω̄

∫
βRRm×n

v0(s)ν̂x(ds)σ(dx), (4.1)

in particular
(
σ̄, ν̂
)

is homogeneous.

Proof. We follow the proof of [33], Theorem. 7.1. The family

A =
{
x ∈ a+ εΩ̄ ⊂ Ω; a ∈ Ω, ε ≤ j−1

}
is a covering of Ω. There exists a countable collection {x ∈ aij + εijΩ̄}, εij ≤ 1/j of pairwise disjoint sets and

Ω =
⋃
i

{x ∈ aij + εijΩ̄}
⋃
Nj , |Nj | = 0.
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We see that
∑

i ε
n
ij = |Ω|/|Ω| = 1. We now take for uY (x) = Y x, x ∈ Ω, the following sequence of mappings

wk(x) =

{
εikuk

(
x−aik

εik

)
+ uY (aik) if x ∈ aik + εikΩ

uY (x) otherwise.

Therefore, wk = uY on ∂Ω and for a.a. x ∈ Ω

∇wk(x) = ∇uk

(
x− aik

εik

)
.

We have ∫
Ω

|∇wk(x)|p dx =
∑

i

∫
aik+εikΩ

∣∣∣∣∇uk

(
x− aik

εik

)∣∣∣∣
p

dx =
∑

i

εnik

∫
Ω

|∇uk(x)|p dx < C.

Hence, the Poincaré inequality yields the bound on {wk} in W 1,p(Ω; Rm). Further, for any v ∈ Υp
R(Rm×n) and

g ∈ C(Ω̄) we get

∫
Ω

v(∇wk(x))g(x) dx =
∑

i

εnik

∫
Ω

v(∇uk(y))g(aik + εiky) dy = I + II,

I =
∑

i

εnik

∫
Ω

v(∇uk(y)) (g(aik + εiky) − g(aik + εikȳik)) dy

II =

(
1
|Ω|
∑

i

|Ω|εnikg(aik + εikȳik)

)∫
Ω

v(∇uk(y)) dy,

where ȳik ∈ Ω̄ is chosen arbitrarily. Note that |I| ≤Mg( 1
k )
∫

Ω
|v(∇uk(y))|dy → 0 as k → ∞.

The second term is the Riemann sum for
∫

Ω g(y) dy. Hence,

lim
k→∞

∫
Ω

v(∇wk(x))g(x) dx =
∫

Ω

g(x) dx
1
|Ω|
∫

Ω̄

∫
βRRm×n

v0(s)ν̂x(ds)σ(dx)

=
∫

Ω

g(x) dx
σ(Ω̄)
|Ω|

∫
βRRm×n

v0(s)ν̂x(ds)

=
∫

Ω

∫
βRRm×n

v0(s)ν̂x(ds)g(x)σ̄(dx). �

It is well known, see e.g. [33], that the set of homogeneous W 1,p-gradient Young measures ν given for any
v ∈ Cp(Rm×n) by∫

Rm×n

v(s)ν(ds) =
1
|Ω|
∫

Ω

v(∇u(x)) dx, u ∈W 1,p(Ω; Rm), u(x) = Y x, x ∈ ∂Ω (4.2)

is convex. Let us denote it by MY . As Young measures generated by sequences bounded in Lp(Ω; Rm×n) can
be embedded into DMp

R(Ω; Rm×n) (see [36], Rem. 3.2.16) we get that MY is mapped into a subset m̂Y of
DMp

R(Ω; Rm×n) where (π, µ̂) ∈ m̂Y if for some u ∈ W 1,p(Ω; Rm), u(x) = Y x if x ∈ ∂Ω we have

dπ =
1
|Ω|
∫

Ω

(1 + |∇u(x)|p) dx (4.3)
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and for any v ∈ Υp
R(Rm×n)

∫
βRRm×n

v0(s)µ̂(ds) =
1

dπ|Ω|
∫

Ω

v(∇u(x)) dx. (4.4)

Thus we can define ηu ∈ rca(Ω̄ × βRR
m×n) by

〈ηu, g ⊗ v0〉 =
1
|Ω|
∫

Ω

v(∇u(x)) dx
∫

Ω

g(y) dy, (4.5)

where v ∈ Υp
R(Rm×n) and g ∈ C(Ω̄). Here we used the fact that the linear hull of {g ⊗ v0; g ∈ C(Ω̄), v0 ∈ R}

is dense in C(Ω̄ × βRR
m×n). We see by the inspection of MY that ηu is a gradient DiPerna-Majda measure

from DMp
R(Ω; Rm×n). Namely, if {∇uk}k∈N generates ν from (4.2) then the same sequence generates ηu. Let

us also introduce η̂u ∈ rca(βRR
m×n) defined for any v0 ∈ C(βRR

m×n) by

〈η̂u, v0〉 = 〈ηu, 1 ⊗ v0〉 =
∫

Ω

v(∇u(x)) dx.

Clearly as MY is convex, so is

M̂Y := {η̂u; u ∈W 1,p(Ω; Rm), u(x) = Y x on ∂Ω} ⊂ rca(βRR
m×n).

We have the following result.

Lemma 4.2. Let 1 < p < +∞ and (σ, ν̂) ∈ DMp
R(Ω; Rm×n) be homogeneous, i.e., ν̂x = ν̂y for all x, y ∈ Ω and

σ be absolutely continuous with respect to Lebesgue’s measure with the constant density

dσ =
(∫

Rm×n

ν̂(ds)
1 + |s|p

)−1

(4.6)

such that for any v ∈ Υp
R(Rm×n)

dσ

∫
βRRm×n

v(s)
1 + |s|p ν̂(ds) ≥ Qv(Y ), (4.7)

where
Y = dσ

∫
βRRm×n

s

1 + |s|p ν̂(ds).
Then (σ, ν̂) is a homogeneous gradient DiPerna-Majda measure. Moreover, there is a sequence {∇wk}k∈N

generating (σ, ν̂) such that {wk − Y x}k∈N ⊂W 1,p
0 (Ω,Rm).

Proof. Multiplying (4.7) by |Ω| and defining ξ ∈ rca(Ω̄ × βRR
m×n) by

〈ξ, g ⊗ v0〉 =
∫

Ω

dσ

∫
βRRm×n

v(s)
1 + |s|p ν̂(ds)g(x) dx, (4.8)

for any v ∈ Υp
R(Rm×n) and g ∈ C(Ω̄) we get that (4.7) is equivalent to

〈Tξ, v0〉 = 〈ξ, 1 ⊗ v0〉 ≥ |Ω|Qv(Y ), (4.9)
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where Tξ ∈ rca(βRR
m×n) is defined by the relation 〈Tξ, v0〉 = 〈ξ, 1 ⊗ v0〉. We will use the Hahn-Banach theorem

to show that two subsets of rca(βRR
m×n): M̂Y and T̂ where T̂ is given by

T̂ := {Tξ; ξ given by (4.8) and satisfies (4.9)},

considered as sets of functionals on the space C(βRR
m×n) (with the weak* topology), cannot be separated by

an element of C(βRR
m×n). It is easy to see that M̂Y ⊂ T̂ . Suppose that there is a ∈ R such that for a fixed

v0 ∈ R 〈η̂u, v0〉 ≥ a for all u ∈W 1,p(Ω; Rm), u(x) = Y x if x ∈ ∂Ω. This means that
∫

Ω
v(∇u(x)) dx ≥ a for any

u ∈W 1,p(Ω; Rm), u(x) = Y x if x ∈ ∂Ω and therefore Qv(Y )|Ω| ≥ a; cf. (2.2). Hence, by (4.9)

〈Tξ, v0〉 = 〈ξ, 1 ⊗ v0〉 ≥ |Ω|Qv(Y ) ≥ a.

As this happens for each a, Hahn-Banach theorem implies that Tξ ∈ M̂Y , where the closure is in the weak*
topology. As C(βRR

m×n) is separable it follows that weak* topology of rca(βRR
m×n) is metrizable on

bounded sets. Therefore there is a sequence {uk} ⊂ W 1,p(Ω; Rm), uk(x) = Y x on the boundary such that
limk→∞ 〈ηuk

, 1 ⊗ v0〉 = 〈ξ, 1 ⊗ v0〉. In other words, for any v ∈ Υp
R(Rm×n)

lim
k→∞

∫
Ω

v(∇uk(x)) dx = dσ|Ω|
∫

βRRm×n

v(s)
1 + |s|p ν̂(ds). (4.10)

Let (τ, α̂) ∈ DMp
R(Ω; Rm×n) be generated by {∇uk} or its subsequence. Then for any v ∈ Υp

R(Rm×n) and
g ∈ C(Ω̄)

lim
k→∞

∫
Ω

v(∇uk(x))g(x) dx =
∫

Ω̄

∫
βRRm×n

v(s)
1 + |s|p α̂x(ds)g(x) τ(dx). (4.11)

Now we are going to apply Lemma 4.1 to (τ, α̂). It gives us the existence of {wk} ⊂W 1,p(Ω; Rm) with the same
boundary conditions as {uk − wk} ⊂W 1,p

0 (Ω; Rm×n) such that

lim
k→∞

∫
Ω

v(∇wk(x))g(x) dx =
∫

Ω

g(x) dx
1
|Ω|
∫

Ω̄

∫
βRRm×n

v(s)
1 + |s|p α̂x(ds)τ(dx). (4.12)

Expressing the equality (4.11) for g = 1 by means of (4.10) and plugging it into (4.12) yields

lim
k→∞

∫
Ω

v(∇wk(x))g(x) dx = dσ

∫
Ω

g(x) dx
∫

βRRm×n

v(s)
1 + |s|p ν̂(ds)

=
∫

Ω

∫
βRRm×n

v(s)
1 + |s|p ν̂(ds)g(x)σ(dx),

which implies the thesis. �

Lemma 4.3 (see [33], Lemma 7.9, for a more general case). Let Ω ⊂ R
n be an open domain with |∂Ω| = 0 and

let N ⊂ Ω be of the zero Lebesgue measure. For rk : Ω \N → (0,+∞) and {fk}k∈N ⊂ L1(Ω) there exists a set
of points {aik} ⊂ Ω \N and positive numbers {εik}, εik ≤ rk(aik) such that {aik + εikΩ̄} are pairwise disjoint
for each k ∈ N, Ω̄ = ∪i{aik + εikΩ̄} ∪Nk with |Nk| = 0 and for any j ∈ N and any g ∈ L∞(Ω)

lim
k→∞

∑
i

fj(aik)
∫

aik+εikΩ

g(x) dx =
∫

Ω

fj(x)g(x) dx.
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Proposition 4.4. Let (σ, ν̂) ∈ DMp
R(Ω; Rm×n), 1 < p < +∞, be such that σ is absolutely continuous with

respect to Lebesgue’s measure and let dσ be its density. Let further the following two conditions hold:

∃ u ∈W 1,p(Ω; Rm) : ∇u(x) = dσ(x)
∫

Rm×n

s

1 + |s|p ν̂x(ds), (4.13)

for a.a. x ∈ Ω and all v ∈ Υp
R(Rm×n) the following inequality is valid

Qv(∇u(x)) ≤ dσ(x)
∫

βRRm×n

v(s)
1 + |s|p ν̂x(ds). (4.14)

Then (σ, ν̂) is generated by gradients, i.e., belongs to GDMp
R(Ω; Rm×n).

Moreover, its generating sequence, {∇uk}k∈N, can be chosen in the way that {uk − u}k∈N ⊂W 1,p
0 (Ω,Rm).

Proof. We will divide the proof into two steps. Although step (ii) is a generalization of (i), we believe that it is
instructive to look first at a simpler case.

(i) Suppose first that u in (4.13) and (4.14) is zero. We are looking for a sequence {uk}k∈N ⊂ W 1,p(Ω; Rm)
satisfying

lim
k→∞

∫
Ω

v(∇uk(x))g(x) dx =
∫

Ω̄

∫
βRRm×n

v(s)
1 + |s|p ν̂x(ds)g(x)σ(dx)

for all g ∈ Γ and any v = v0(1 + | · |p), v0 ∈ S, where Γ and S are countable dense subsets of C(Ω̄) and R.
Take rk = 1/k and using Lemma 4.3 find aik ∈ Ω \N , εik ≤ 1/k such that for v0 ∈ S and g ∈ C(Ω̄)

lim
k→∞

∑
i

V̄ (aik)
∫

aik+εikΩ

g(x) dx =
∫

Ω

V̄ (x)g(x) dx, (4.15)

where

V̄ (x) = dσ(x)
∫

βRRm×n

v0(s)ν̂x(ds).

The system aik + εikΩ̄ exhausts almost all Ω. We may assume that aik �∈ N , |N | = 0, by (4.14) and by
Lemma 4.2 we can assume that (dσ(aik) dx, ν̂aik

) is a homogeneous gradient DiPerna-Majda measure living in
DMp

R(Ω; Rm×n) and we call {uik
j }j∈N its generating sequence. Recall that u = 0, so w-limj→∞ uik

j = 0 in
W 1,p(Ω; Rm) and by Lemma 3.4 we can even suppose that {uik

j }j∈N ⊂W 1,p
0 (Ω; Rm×n) and

lim
j→∞

∫
Ω

v(∇uik
j (x))g(x) dx = V̄ (aik)

∫
Ω

g(x) dx. (4.16)

Define the sequence

uk(x) =

{
εiku

ik
j

(
x−aik

εik

)
if x ∈ aik + εikΩ

0 otherwise.

Let Γ×S = ∪kEk with Ek ⊂ Ek+1, finite sets. For k, i fixed we take j = j(k, i) so large that for all (g, v0) ∈ Ek∣∣∣∣εnik
∫

Ω

g(aik + εiky)v(∇uik
j (y)) dy − V̄ (aik)

∫
aik+εikΩ

g(x) dx
∣∣∣∣ ≤ 1

2ik
·
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Here we exploited (4.16) written for g̃(y) = g(aik + εiky) instead of g. Using this estimate and (4.15) we get for
any (g, v0) ∈ Γ × S

lim
k→∞

∫
Ω

g(x)v(∇uk(x)) dx = lim
k→∞

∑
i

εnik

∫
Ω

g(aik + εiky)v(∇uik
j (y)) dy

= lim
k→∞

∑
i

V̄ (aik)
∫

aik+εikΩ

g(x) dx =
∫

Ω

V̄ (x)g(x) dx

=
∫

Ω

∫
βRRm×n

v0(s)ν̂x(ds)g(x)σ(dx)

as we wish. It is clear that uk − u ∈ W 1,p
0 (Ω,Rm) for every k.

(ii) If u �= 0 the proof is more technical. We follow [22]. As u ∈W 1,p(Ω; Rm) we take a ∈ Ω and for ε > 0 small
enough define

wa,ε(y) = ε−1[u(a+ εy) − u(a) − ε∇u(a)y].

We have that wa,ε ∈ W 1,p(Ω; Rm) and

∇wa,ε(y) = ∇u(a+ εy) −∇u(a).

Based on Reshetnyak’s result (see Th. 1 in [34] for Ω being a ball, an arbitrary case follows easily from this
particular one), we have that for ε→ 0 and a.a. a ∈ Ω

‖1
ε
[u(a+ εy) − u(a) − ε∇u(a)y]‖W 1,p(Ω) → 0.

Thus, for almost all a ∈ Ω,
lim
ε→0

‖∇wa,ε‖Lp(Ω;Rm×n) = 0,

and by the embedding theorem we find ∞ > p∗ > p such that

lim
ε→0

‖wa,ε‖Lp∗(Ω;Rm) = 0. (4.17)

Let’s say that this is true for all a ∈ Ω\N , where |N | = 0. Then for a ∈ Ω\N and any k ∈ N there is rk(a) > 0
such that if ε < rk(a) then a+ εΩ ⊂ Ω and

(∫
Ω

(
ε−1[u(a+ εy) − u(a) − ε∇u(a)y]

)p∗
dy
)1/p∗

≤ 1
k
· (4.18)

We are looking for a sequence {uk}k∈N ⊂W 1,p(Ω; Rm) satisfying

lim
k→∞

∫
Ω

v(∇uk(x))g(x) dx =
∫

Ω̄

∫
βRRm×n

v(s)
1 + |s|p ν̂x(ds)g(x)σ(dx)

for all g ∈ Γ and any v = v0(1 + | · |p), v0 ∈ S, where Γ and S are countable dense subsets of C(Ω̄) and R.
Take rk : Ω \N → R and using Lemma 4.3 find aik ∈ Ω \ N , εik ≤ rk(aik) such that for all v0 ∈ S and all

g ∈ C(Ω̄)

lim
k→∞

∑
i

V̄ (aik)
∫

aik+εikΩ

g(x) dx =
∫

Ω

V̄ (x)g(x) dx, (4.19)
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and

lim
k→∞

∑
i

|V̄ (aik)|
∫

aik+εikΩ

g(x) dx =
∫

Ω

|V̄ (x)|g(x) dx, (4.20)

where

V̄ (x) = dσ(x)
∫

βRRm×n

v0(s)ν̂x(ds).

We can assume by Lemma 4.2 that (dσ(aik)dx, ν̂aik
) is a homogeneous gradient DiPerna-Majda measure living

in DMp
R(Ω; Rm×n) and we call {∇uik

j }j∈N its generating sequence. It means that

lim
j→∞

∫
Ω

v(∇uik
j (x))g(x) dx = V̄ (aik)

∫
Ω

g(x) dx. (4.21)

We have that

w − lim
j→∞

uik
j = Lik in W 1,p(Ω; Rm), (4.22)

where for almost all x Lik(x) = ∇u(aik)x. Let Ω� = {x ∈ Ω; dist(x, ∂Ω) ≥ �−1}.
In view of Lemma 3.2 and (4.21) we have

lim
j→∞

∫
Ω\Ω�

v(∇uik
j (x))g(x) dx = V̄ (aik)

∫
Ω\Ω�

g(x) dx. (4.23)

Particularly,

lim
�→∞

lim
j→∞

∫
Ω\Ω�

v(∇uik
j (x))g(x) dx = V̄ (aik) lim

�→∞

∫
Ω\Ω�

g(x) dx = 0. (4.24)

By Lemma 4.3

Ω̄ =
⋃
i

{x ∈ aik + εikΩ̄}
⋃
Nk, |Nk| = 0.

We define a sequence of smooth cut-off functions {η�}�∈N such that

η�(x) =
{

0 in Ω�,
1 on ∂Ω

and |∇η�| ≤ C� for some C > 0.
Further, take a sequence {u�

k}k,�∈N ⊂W 1,p(Ω; Rm) defined by

u�
k(x) =

⎧⎪⎪⎨
⎪⎪⎩

[
u(aik) + εiku

ik
j

(
x−aik

εik

)](
1 − η�

(
x−aik

εik

))
+u(x)η�

(
x−aik

εik

)
if x ∈ aik + εikΩ,

u(x) otherwise,

where j = j(i, k, �) will be chosen later. Note that for every k and l we have ul
k − u ∈ W 1,p

0 (Ω,Rm).
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We calculate for x ∈ aik + εikΩ

∇u�
k(x) = ∇uik

j

(
x− aik

εik

)(
1 − η�

(
x− aik

εik

))

+ ∇u(x)η�

(
x− aik

εik

)
(4.25)

+
1
εik

[
u(x) − u(aik) − εik∇u(aik)

(
x− aik

εik

)]
⊗∇η�

(
x− aik

εik

)

+
[
∇u(aik)

(
x− aik

εik

)
− uik

j

(
x− aik

εik

)]
⊗∇η�

(
x− aik

εik

)
= A�

ik(x) +B�
ik(x) + C�

ik(x) +D�
ik(x)

and let A�
k(x), B�

k(x), C�
k(x), D�

k(x) be defined on the whole set Ω (up to a set of measure 0) by A�
ik(x), B�

ik(x),
C�

ik(x), D�
ik(x) respectively on each set aik + εikΩ.

Obviously, {|B�
k|p}k∈N is weakly compact in L1(Ω; Rm×n). Further, (4.18) implies that

lim�→∞ limk→∞ ‖C�
k ‖p

Lp(Ω;Rm×n) = 0. Moreover, lim�→∞ limk→∞ ‖D�
k‖p

Lp(Ω;Rm×n) = 0 if we take j = j(i, k, l)
so that

∫
Ω
|∇u(aik)x− uik

j (x)|pdx < 1
l2p due to (4.22).

Let us fix k, i, �. We can eventually enlarge each j = j(i, k, �) so that additionally for any (g, v0) ∈ Ek

∣∣∣∣εnik
∫

Ω

g(aik + εiky)v(∇uik
j (y)) dy − V̄ (aik)

∫
aik+εikΩ

g(x) dx
∣∣∣∣ ≤ 1

2ik
(4.26)

and ∣∣∣∣∣εnik
∫

Ω\Ω�

g(aik + εiky)v(∇uik
j (y)) dy − εnikV̄ (aik)

∫
Ω\Ω�

g(aik + εiky) dy

∣∣∣∣∣ ≤ 1
2ik

·

We have

∫
Ω

g(x)v(∇u�
k(x)) dx =

∑
i

εnik

∫
Ω

g(aik + εiky)v(∇uik
j (y)) dy −

∑
i

εnik

∫
Ω\Ω�

g(aik + εiky)v(∇uik
j (y)) dy

+
∑

i

εnik

∫
Ω\Ω�

g(aik + εiky)v(∇u�
k(aik + εiky)) dy = T 1

k� − T 2
k� + T 3

k�.

We see that

lim
�→∞

lim
k→∞

T 1
k� = lim

k→∞

∑
i

V̄ (aik)
∫

aik+εikΩ

g(x) dx =
∫

Ω

V̄ (x)g(x) dx

=
∫

Ω

∫
βRRm×n

v0(s)ν̂x(ds)g(x)σ(dx).

Applying (4.20) with g = 1 yields

lim
k→∞

∑
i

|V̄ (aik)|εnik|Ω| =
∫

Ω

|V̄ (x)| dx.
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Therefore, we have

lim
�→∞

lim
k→∞

|T 2
k�| = lim

�→∞
lim

k→∞

∣∣∣∣∣
∑

i

εnikV̄ (aik)
∫

Ω\Ω�

g(aik + εiky) dy

∣∣∣∣∣ (4.27)

≤ lim
�→∞

lim
k→∞

‖g‖C(Ω̄)

|Ω \ Ω�|
|Ω|

∑
i

εnik|Ω||V̄ (aik)|

= lim
�→∞

|Ω \ Ω�|
|Ω| ‖g‖C(Ω̄)

∫
Ω

|V̄ (x)| dx = 0

because |Ω \ Ω�| → 0. We show that also lim�→∞ limk→∞ T 3
k� = 0. Indeed, for a constant C̃ > 0 we have

∣∣∣∣∣
∑

i

εnik

∫
Ω\Ω�

g(aik + εiky)v(∇u�
k(aik + εiky)) dy

∣∣∣∣∣ ≤ C̃
∑

i

εnik

∫
Ω\Ω�

(1 + |∇uik
j (y)|p) dy

+ C̃
∑

i

εnik

∫
Ω\Ω�

|B�
k(aik + εiky)|p dy + C̃

∑
i

εnik

∫
Ω\Ω�

|C�
k(aik + εiky)|p dy

+ C̃
∑

i

εnik

∫
Ω\Ω�

|D�
k(aik + εiky)|p dy = J1

kl + J2
kl + J3

kl + J4
kl.

We prove that Pt := liml→∞ limk→∞ J t
kl = 0 for every t ∈ {1, 2, 3, 4}. Indeed,

P3/C̃ = lim
�→∞

lim
k→∞

J3
kl/C̄ = lim

�→∞
lim

k→∞

∑
i

∫
aik+εik(Ω\Ω�)

|C�
k(y)|p dy ≤ lim

�→∞
lim

k→∞

∑
i

∫
aik+εikΩ

|C�
k(y)|p dy

= lim
�→∞

lim
k→∞

∫
Ω

|C�
k(y)|p dy = 0

and by almost the same arguments P4 = 0. We also have P1 = 0 due to (4.27) computed for v0 = 1 and g = 1
and P2 = 0 because the sequence {|B�

k|p}k∈N is weakly compact in L1(Ω).
Consequently, for all (g, v0) ∈ Γ × S

lim
�→∞

lim
k→∞

∫
Ω

g(x)v(∇u�
k(x)) dx =

∫
Ω

∫
βRRm×n

v0(s)ν̂x(ds)g(x)σ(dx).

The proof is finished now by Lemma 3.3. The fact that {uk} can be chosen to have the same boundary conditions
as u follows from construction of ul

k. �

Remark 4.5. No regularity of the domain Ω other than |∂Ω| = 0 is required for this proof. The only place
where it could play a role is (4.17). But it is true for every Ω because wa,ε(y) uses the values of u only in the
set a+ εΩ which is contained in Ω together with its certain neighborhood.

Finally, we prove the general result with σ having possibly also a singular part.

Proposition 4.6. Let Ω be an arbitrary bounded domain such that |∂Ω| = 0, 1 < p < +∞ and (σ, ν̂) ∈
DMp

R(Ω; Rm×n) be such that the following three conditions hold:

∃ u ∈W 1,p(Ω; Rm) : for a.a.x ∈ Ω ∇u(x) = dσ(x)
∫

Rm×n

s

1 + |s|p ν̂x(ds), (4.28)
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for almost all x ∈ Ω and for any v ∈ Υp
R(Rm×n) the following inequality is fulfilled

Qv(∇u(x)) ≤ dσ(x)
∫

βRRm×n

v(s)
1 + |s|p ν̂x(ds), (4.29)

for σ-almost all x ∈ Ω̄ and all v ∈ Υp
R(Rm×n) with Qv > −∞ it holds that

0 ≤
∫

βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds). (4.30)

Then (σ, ν̂) ∈ GDMp
R(Ω; Rm×n). Moreover, its generating sequence, {∇uk}k∈N, can be chosen in the way that

{uk − u}k∈N ⊂W 1,p
0 (Ω,Rm).

Proof. Notice that if the singular part of σ vanishes then the assertion follows from Proposition 4.4. Hence, we
suppose that σs �= 0. The proof is divided into two steps.
(i) We first suppose that the singular part of σ, σs, consists of a finite sum of atoms, i.e., σs =

∑N
i=1 aiδxi ,

where ai > 0 and xi ∈ Ω, 1 ≤ i ≤ N .
First, note that by Lemma 2.3 inevitably

∫
βRRm×n\Rm×n ν̂xi(ds) = 1 for 1 ≤ i ≤ N . We define B(xi, r) ⊂ Ω

such that B(xi, r) = {x ∈ Ω; |xi −x| < r} for r > 0 sufficiently small , i = 1, . . . , N , and B(xi, r)∩B(xj , r) = ∅
if i �= j. We define for i = 1, . . . , N

λi(r) =
1
ai

∫
B(xi,r)

(1 + |∇u(x)|p) dx.

As limr→0 λi(r) = 0 we will only consider r < r0 for r0 > 0 so small that 0 < λi(r) < 1.
Further, put for a.a. x ∈ Ω

ν̂r
x =

{
ν̂x if x ∈ Ω̄ \ ∪N

i=1B(xi, r)
λi(r)δ∇u(x) + (1 − λi(r))ν̂xi if x ∈ B(xi, r)

(4.31)

and the measure σr = dσrdx defined through its density dσr as

dσr (x) =

{
dσ(x) if x ∈ Ω̄ \ ∪N

i=1B(xi, r)
1+|∇u(x)|p

λi(r) if x ∈ B(xi, r).
(4.32)

It is easy to verify by means of Proposition 4.4 that (σr , ν̂
r) ∈ DMp

R(Ω; Rm×n). We see that for almost all
x ∈ Ω

dσr (x)
∫

Rm×n

s

1 + |s|p ν̂
r
x(ds) = ∇u(x)

and that due to (4.30) for almost all x ∈ B(xi, r)

λi(r)(Qv(∇u(x)) − v(∇u(x)))
(1 − λi(r))(1 + |∇u(x)|p) ≤ 0 ≤

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂xi(ds).

Altogether we have for any v ∈ Υp
R(Rm×n) with Qv > −∞

Qv(∇u(x)) ≤ dσr (x)
∫

βRRm×n

v(s)
1 + |s|p ν̂

r
x(ds)
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and by Proposition 4.4 there is {ur
k} ∈W 1,p(Ω; Rm) such that {∇ur

k}k∈N generates (σr, ν̂
r) ∈ GDMp

R(Ω; Rm×n)
and {uk − u}k∈N ⊂W 1,p

0 (Ω,Rm×n).
We calculate for any v0 ∈ R and g ∈ C(Ω̄)

lim
r→0

∫
Ω̄

∫
βRRm×n

v0(s)ν̂r
x(ds)g(x)σr(dx) = lim

r→0

∫
Ω̄\∪N

i=1B(xi,r)

∫
βRRm×n

v0(s)ν̂x(ds)g(x)dσ(x) dx

+ lim
r→0

N∑
i=1

∫
B(xi,r)

v(∇u(x))g(x) dx

+ lim
r→0

N∑
i=1

1 − λi(r)
λi(r)

∫
B(xi,r)

g(x)(1 + |∇u(x)|p) dx
∫

βRRm×n

v0(s)ν̂xi(ds) =: I + II + III.

Obviously, I + II =
∫

Ω̄

∫
βRRm×n v0(s)ν̂x(ds)g(x)dσ(x) dx, while

III = lim
r→0

N∑
i=1

1
λi(r)

∫
B(xi,r)

g(x)(1 + |∇u(x)|p) dx
∫

βRRm×n

v0(s)ν̂xi(ds)

=
N∑

i=1

ai

(∫
βRRm×n

v0(s)ν̂xi(ds)
)

lim
r→0

1∫
B(xi,r)(1 + |∇u(x)|p) dx

∫
B(xi,r)

g(x)(1 + |∇u(x)|p) dx

=
N∑

i=1

aig(xi)
∫

βRRm×n

v0(s)ν̂xi(ds) =
∫

Ω̄

∫
βRRm×n

v0(s)ν̂x(ds)g(x)σs(dx).

Finally, it yields

lim
r→0

lim
k→∞

∫
Ω

v(∇ur
k(x))g(x) dx =

∫
Ω̄

∫
βRRm×n

v0(s)ν̂x(ds)g(x)σ(dx). (4.33)

Lemma 3.3 implies the existence of a bounded sequence {∇uk}k∈N such that {uk − u}k∈N ⊂ W 1,p
0 (Ω,Rm×n)

and

lim
k→∞

∫
Ω

v(∇uk(x))g(x) dx =
∫

Ω̄

∫
βRRm×n

v0(s)ν̂x(ds)g(x)σ(dx), (4.34)

whenever v ∈ Υp
R(Rm×n) and g ∈ C(Ω̄).

(ii) Now we prove a general case. Take l ∈ N. There exists a finite partition Pl = {Ωl
j}J(l)

j=1 of Ω̄ such that
Ωl

j1

⋂
Ωj2

= ∅, 1 ≤ j1 < j2 ≤ J(l) and all Ωl
j are measurable with diam(Ωl

j) < 1/l. Besides, we may suppose
that, for any l ∈ N, the partition Pl+1 is a refinement of Pl and that int(Ωl

j) �= ∅ for all j. Let σs be the singular
part of σ. We set al

i = σs(Ωl
i), where σs is the singular part of σ. Let us put

N(l) = {1 ≤ j ≤ J(l); al
j �= 0}

take if i ∈ N(l) take xi ∈ int(Ωl
i) and define a measure (σl, ν̂l) by the formula σl(dx) = dσ(x) +

∑
i∈N(l) a

l
iδxi

and

ν̂l
x =

{
ν̂x if x �= xi

ν̂l
xi

if x = xi,
(4.35)
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where supp ν̂l
xi

⊂ βRR
m×n \ R

m×n and for any v0 ∈ R
∫

βRRm×n

v0(s)ν̂l
xi

(ds) =
1

σs(Ωl
i)

∫
Ωl

i

∫
βRRm×n

v0(s)ν̂x(ds)σs(dx). (4.36)

Using Lemma 2.6 we can equivalently rewrite (4.36) as

∫
βRRm×n\Rm×n

v0(s)ν̂l
xi

(ds) =
1

σs(Ωl
i)

∫
Ωl

i

∫
βRRm×n\Rm×n

v0(s)ν̂x(ds)σs(dx).

Part (i) implies (σl, ν̂l) ∈ GDMp
R(Ω; Rm×n). Indeed, the fact that (σl, ν̂l) ∈ DMp

R(Ω; Rm×n) is checked by
using Proposition 2.4. Moreover, an easy verification shows that (4.28),(4.29) and (4.30) are also satisfied for
(σl, ν̂l) and (4.28) holds with the same function u.

Let {ul
k}k∈N ⊂ W 1,p(Ω; Rm) be such that {∇ul

k}k∈N generates (σl, ν̂l) and additionally {ul
k − u}k ⊂

W 1,p
0 (Ω,Rm). We have for any l ∈ N

lim
k→∞

∫
Ω

(1 + |∇ul
k(x)|p) dx = σl(Ω̄) = σ(Ω̄) (4.37)

and for any v0 ∈ R and any g ∈ C(Ω̄)

lim
l→∞

∣∣∣∣
∫

Ω̄

∫
βRRm×n

v0(s)ν̂l
x(ds)g(x)σl(dx) −

∫
Ω̄

∫
βRRm×n

v0(s)ν̂x(ds)g(x)σ(dx)
∣∣∣∣

= lim
l→∞

∣∣∣∣∣∣
∑

i∈N(l)

g(xi)σs(Ωl
i)
∫

βRRm×n\Rm×n

v0(s)ν̂l
xi

(ds) −
∫

Ω̄

∫
βRRm×n\Rm×n

v0(s)ν̂x(ds)g(x)σs(dx)

∣∣∣∣∣∣
= lim

l→∞

∣∣∣∣∣∣
∑

i∈N(l)

(∫
Ωl

i

∫
βRRm×n\Rm×n

v0(s)ν̂x(ds)g(xi)σs(dx) −
∫

Ωl
i

∫
βRRm×n\Rm×n

v0(s)ν̂x(ds)g(x)σs(dx)

)∣∣∣∣∣∣
≤ lim

l→∞

∑
i∈N(l)

∫
Ωl

i

∫
βRRm×n\Rm×n

|v0(s)|ν̂x(ds)|g(x) − g(xi)|σs(dx) ≤ Cσs(Ω̄) lim
l→∞

Mg(
1
l
) = 0,

where |v0| ≤ C. Hence, we get for any v ∈ Υp
R(Rm×n) and any g ∈ C(Ω̄)

lim
l→∞

lim
k→∞

∫
Ω

v(∇ul
k(x))g(x) dx =

∫
Ω̄

∫
βRRm×n

v0(s)ν̂x(ds)g(x)σ(dx)

and we finish the proof by using Lemma 3.3. �

Proof of Theorem 2.7. It follows directly from Propositions 3.8 and 4.6. �

Remark 4.7. Theorem 2.8 is a part of Proposition 3.8.
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5. Proofs of lower semicontinuity Theorems 2.9 and 2.10

Proof of Theorem 2.9. Let R be an arbitrary separable complete closed ring containing v/(1 + | · |p) and
corresponding to the compactification βRR

m×n of R
m×n. After extracting the subsequence we may suppose

that {∇uk}k∈N generates a DiPerna-Majda measure (σ, ν̂) ∈ GDMp
R(Ω; Rm×n) and we have (see (2.12))

lim
k→∞

I(uk) =
∫

Ω

∫
Rm×n

v(s)νx(ds)g(x) dx

+
∫

Ω̄

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds)g(x)σ(dx), (5.1)

where ν ∈ GYp(Ω; Rm×n) and (σ, ν̂) ∈ DMp
R(Ω; Rm×n) are gradient Young and DiPerna-Majda measures

generated by {∇k}k∈N, respectively.
Now, the sequential weak lower semicontinuity of I follows from Theorem 2.8 and (2.24). Indeed, if (i) or (iii)

holds Theorem 2.8 shows that∫
Ω̄

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds)g(x)σ(dx) ≥ 0. (5.2)

If (ii) is valid, we decompose the left-hand side of (5.2) to∫
Ω̄

∫
βRRm×n\Rm×n

v+(s)
1 + |s|p ν̂x(ds)g(x)σ(dx) −

∫
Ω̄

∫
βRRm×n\Rm×n

v−(s)
1 + |s|p ν̂x(ds)g(x)σ(dx) (5.3)

and realize that v+ := max(v, 0) ≥ 0 and due to (ii)∫
Ω̄

∫
βRRm×n\Rm×n

v−(s)
1 + |s|p ν̂x(ds)g(x)σ(dx) = 0,

i.e., (5.2) holds again. �

Proof of Theorem 2.10. Let us first prove the “only if part”. Hence, suppose that I is sequentially weakly lower
semicontinuous. Taking {wk} as in the theorem we have for any weakly convergent subsequence (not relabeled)
that wk ⇀ c in W 1,p(Ω; Rm), where c is a constant. Indeed, ∇wk converges in measure which means that it
generates the Young measure νx = δ0 for a.a. x ∈ Ω and, particularly, ∇wk ⇀ 0 in Lp(Ω; Rm×n). By sequential
weak lower semicontinuity of I we have lim infk→∞ I(wk) ≥ I(c) = I(0).

Now we are going to prove the “if part”. Let us take any bounded {uk} ⊂ W 1,p(Ω; Rm) such that w-
limk→∞ uk = u. Suppose that a subsequence of {∇uk} (not relabeled) generates (σ, ν̂) ∈ GDMp

R(Ω; Rm×n).
Using Lemma 2.2 and its notation we decompose uk = zk +wk for any k ∈ N. Then (3.13) and the assumption
lim infk→∞ I(wk) ≥ I(0) imply that∫

Ω̄

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds)g(x) dx ≥ 0 (5.4)

for any subsequence of {wk} (not relabeled) such that I(wk) converges. Let {∇uk}k∈N generate a gradient
Young measure ν = {νx}x∈Ω ∈ GYp(Ω; Rm×n). We have using (2.12)

lim
k→∞

∫
Ω

g(x)v(∇uk(x))dx =
∫

Ω

∫
Rm×n

v(s)νx(ds)g(x) dx

+
∫

Ω̄

∫
βRRm×n\Rm×n

v(s)
1 + |s|p ν̂x(ds)g(x)σ(dx) ≥

∫
Ω

v(∇u(x))g(x) dx.
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The last inequality follows from (5.4) and from Kinderlehrer’s and Pedregal’s characterization of gradient Young
measures (2.24). The theorem is proved. �
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