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OPTIMAL LQ-FEEDBACK CONTROL FOR A CLASS OF FIRST-ORDER
HYPERBOLIC DISTRIBUTED PARAMETER SYSTEMS

ILYASSE AKSIKAS!, JOSEPH J. WINKIN? AND DENIS DOCHAIN®

Abstract. The Linear-Quadratic (LQ) optimal control problem is studied for a class of first-order
hyperbolic partial differential equation models by using a nonlinear infinite-dimensional (distributed
parameter) Hilbert state-space description. First the dynamical properties of the linearized model
around some equilibrium profile are studied. Next the LQ-feedback operator is computed by using
the corresponding operator Riccati algebraic equation whose solution is obtained wvia a related matrix
Riccati differential equation in the space variable. Then the latter is applied to the nonlinear model,
and the resulting closed-loop system dynamical performances are analyzed.
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1. INTRODUCTION

Phenomena in many chemical processes include transport processes that are described by partial differential
equations (PDE’s): see e.g. [12,15,18]. When diffusive transport is negligible and convective transport is dom-
inant, processes are described by first-order hyperbolic PDE’s. The class of such processes includes plug flow
reactors.

The dynamical analysis and (optimal) control of distributed parameter systems modeled by hyperbolic PDE’s
are important questions that have received a lot of attention in the system and control literature: see e.g. [7,8,20]
for the study of such questions from the applied mathematics point of view, and e.g. [12,16,24] for applications
to process control. In most practical situations the original infinite-dimensional systems described by PDE’s are
spatially discretized to obtain finite-dimensional approximate models, and then finite-dimensional controllers are
designed and implemented. However, the latter approach neglects the distributed nature of the original system;
this may lead to inappropriate control design that neglects the dynamical properties of the infinite-dimensional
system and may impose some limitations on the controller performances.

In [4,5], the Linear-Quadratic (LQ) problem is studied for a nonisothermal plug flow reactor model that
represents a particular process described by first-order hyperbolic PDE’s. In this paper, the LQ-optimal control
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problem is studied for a more general class of first-order hyperbolic PDE models by using a nonlinear infinite-
dimensional Hilbert state-space description. Section 2 describes both the nonlinear model and linearized model
of this class of systems. Section 3 focuses on dynamical properties (exponential stability, reachability and
observability) of the linearized model. The optimal control design is the object of Section 4. An LQ-optimal
feedback is computed by using the corresponding operator Riccati algebraic equation, whose solution is obtained
via a related matrix Riccati differential equation. Then, in Section 5, this LQ-optimal feedback is applied to
the nonlinear model, and the resulting closed-loop system dynamical performances are analyzed. Criteria are
given that guarantee that the closed-loop system is asymptotically stable. Moreover optimality is proved with
respect to a modified cost criterion.

2. MODELS DESCRIPTION

2.1. Nonlinear model

Let us consider the following semilinear first-order hyperbolic PDE system in one spatial dimension:

% = —gz + f(z,u) (2.1)
y = hiz) (2:2)

subject to the boundary condition: for all ¢ > 0:
2(0,t) = b (2.3)

and the initial condition: for almost all z € [0, 1]:
x(z,0) = x0(2) (2.4)

where z € [0, 1] (without loss of generality) and ¢ € [0,00) denote the spatial variable and the time variable
respectively, (t) := [21(-,1), ... 2 (-, t)]T € H := L2(0,1)", u(t) := [u1(-,1), ... um(-,1)]7 € U := L?(0,1)™, and
y(t) == [y1(,t), ... yp(-,1)]T € Y := L?(0,1)? denote the vectors of state (input, output, respectively) variables
at time ¢, the functions f := [f1...f,] : H XU — H and h := [h1...hy] : H — Y are continuous vector
functions, b € R™ is a constant (column) vector and zg is in H.

Let us assume that the system (2.1)—(2.2) has at least one equilibrium profile (z.,u.) € H x U, i.e. (¢, ue)
is a solution of the following ordinary differential equation

dx.
dz

= f(ze(2),ue(2), c(0)=b.

Remark 2.1. (a) In this paper, it will be assumed that the hyperbolic PDE (2.1), together with the boundary
condition (2.3) and the initial condition (2.4) is well posed, i.e. that, with any fixed input function w, the state
trajectories exist such that, for all ¢ > 0, x(¢) is in H. See e.g. [8], Chapter 3, for more detail concerning the
existence of solutions to semilinear and quasilinear systems; see also [22,23] for the analysis of the state trajecto-
ries of such models, by means of general mathematical descriptions involving abstract differential equations on
Banach or Hilbert spaces. In addition, specific existence conditions for the state trajectories will be established
in Section 5, for such hyperbolic PDE system under LQ-optimal state feedback.

(b) If the function f is assumed to be Lipschitz continuous on its domain, then the system (2.1)—(2.2) has
a unique equilibrium profile z., corresponding to a fixed input function u.. This applies in particular to the
nonisothermal plug flow reactor studied in [3-5].

In what follows, although we do not necessarily linearize the system (2.1)—(2.2) around the trivial equilib-
rium (0, 0), we shall keep for simplicity  and u as notations for the new variables  — x. and u—wu,, respectively.
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2.2. Linearized model

The linearization of the system (2.1)—(2.2) around an equilibrium profile leads to the following linear time-
invariant infinite-dimensional state-space system on the Hilbert space H:

{ #(t) = Ax(t) + Bu(t), z(0) =20 € H (2.5)
y(t) = Ca(t). '
Here A is the linear (unbounded) operator defined on its domain:
. dx
D(A)=<z€H:xisac., 4 € H and z(0) =0 (2.6)
(where a.c. means that the function x is absolutely continuous) by
7% — 041’1] 7041’2]’ e 7041’»,1.[
—0&2,1] —% — 042,2] e —OCQ,nI
A= (2.7)
—ap 1l —omol . =Ly, T

where I denotes the identity operator on L?(0,1). The operators B € L(U,H) and C € L(H,Y) are the
bounded linear operators defined by

I 51,11 51,21 coo Pimd U1

Bopl  Bopl ... [Boml Ug
L ﬂn,lI 671,2] e ﬁn,mI Um

and

I '(1)171[ 'LU172I e wl,nI X1

'(U271[ w272[ e ’LU27n1 X2

Cx = ) ) i i ) . (2.9)

| wpidl wpaol ... wpal Ty,

Denoting by k the set of positive integers {1,...,k}, the functions o ;(2), i,j € n, §;;(2), i € n, j € m and
w; j(2), © € p, j € n correspond to the Jacobians of the nonlinear functions f and A of the model equations
evaluated at the chosen equilibrium profile and are given by

__9f _ 9% Ok
Q5 = 8:E]- (Ievue)v ﬁ’t,] = 8uj (xevue); Wi, = 8:E]- (Ie)

Remark 2.2. It is assumed that all the functions «; j, 3;; and w; ; are in L°°(0, 1). These conditions guarantee
in particular that the linear operators B and C' defined above are bounded on U and H respectively.

Let us denote by M, N and C the following space-varying matrices, that will be useful in the rest of this
paper:
M = — [O‘i’j]i,jer N = [ﬂivj]’iEQ . jem > C:= [w'Lv]]ZGE :jen (210)
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3. DYNAMICAL PROPERTIES OF THE LINEARIZED MODEL

This section focuses on dynamical properties, viz. exponential stability, reachability and observability of the
linearized model (2.5)—(2.9). The fundamental observation leading to these properties is the strong relation
between the infinite-dimensional linear system X(A, B, C') (see e.g. [13]) and the finite-dimensional linear space-
varying system X(M, N, C) (see e.g. [10]) given by (2.10). This relation is observed thanks to the fact that the
solution of a related operator Lyapunov equation can be built from the solution of the corresponding matrix
Lyapunov equation: see Section 3.2. First let us define the controllability matrix of a matrix pair (M, N)
(see [25], p. 66):

Qc(z) := [Po(z)fPl (z) e an_l(z)] (3.1)
where
Pii1(z) = —M(2)Py(z) + %(Z), Py(z) = N(2). (3.2)

The observability matrix of a matrix pair (C, M) is defined similarly (see [25], p. 66):

where
Skp1(2) = =M"(2)85(2) + %(2), So(z) =C"(2). (3.4)

3.1. Exponential stability

The first focus concerns the exponential stability of the Cy-semigroup generated by the operator A. In order
to prove the exponential stability of this Cp-semigroup, the complete observability (see [25]) of some related
matrix pair is needed.

Lemma 3.1. The following matriz Lyapunov differential equation (MLDE)

dP
dz
admits a positive definite solution, viz. the observability gramian P, on [0,1).

=PM+M"P+1, P(1)=0 (3.5)

Proof. Observe that the corresponding observability matrix of the pair (I, M) (see Egs. (3.3)—(3.4)) is full rank,
whence by using [25], Theorem 5, p. 69, the matrix pair (I,,, M) is completely observable on the interval [0, 1).
Consequently, the MLDE (3.5) has a positive definite solution on the interval [0,1) (see e.g. [10]). O

By observing that the solution of the corresponding operator Lyapunov algebraic equation (OLAE) can be
built from the solution of the MLDE (3.5), Lemma 3.1 leads to the following exponential stability result.

Theorem 3.1. The operator A defined by (2.6)—(2.7) is the infinitesimal generator of an exponentially stable
Cy-semigroup of bounded linear operators on H.

Proof. In view of [13], Theorem 5.3.1, p. 217, it suffices to prove that there exists a positive definite operator P €
L(H) satisfying the following OLAE
PA+ A*"P+1=0 with P(D(A)) C D(A"). (3.6)

In view of the structure of the operator A, it seems natural to look for a solution of the form P = [P; ;(2) I]i jen,
where I is the identity operator and every P; ; is a real valued function defined on [0,1] and is the (4, j)-entry
of a symmetric matrix function z € [0,1] — P(z) € R"*". The notation [P; ;(2) I]i jen is adopted here in order
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to avoid any confusion between a matrix with scalar valued entries and an (multiplication) operator matrix.
By a straightforward calculation, the following identities can be shown to hold:

PA=PAy+ PM and A*P = AP+ M*P, (3.7)

where the operator Ay is the unbounded linear diagonal operator defined on its domain

D(Ap) == {:c € H:zis ac., j_:c € H and z(0) = 0}
z

by
d.
-4 9 0
0o -% 0
Ag = , , (3.8)
0 0o ... d

T
and the operator M is given by M = [M, ;(2) I]; jen. On the other hand, it can be shown that
dpP

Therefore, if the matrix P := [P; j(2)]:,jen is the positive definite solution of the MLDE (3.5), then the operator
P :=[P; j(2)I]i jen is a solution of the OLAE (3.6), since the final condition P(1) = 0 implies that P(D(A)) C
D(A*). Moreover this solution is positive definite. Indeed, for any = € H, one has

(P:c,ac}H:/O (zT (2)P(2)x(2))d2.

Hence one can conclude that P is also positive definite since the matrix function P is positive definite on [0, 1]
by Lemma 3.1. O

The following result is an obvious consequence of Theorem 3.1 (see e.g. [13]).

Corollary 3.1. The operator pair (A, B) is exponentially stabilizable and the operator pair (C, A) is exponen-
tially detectable.

3.2. Reachability and observability

The second question concerns the reachability of (A, B), where A is given by (2.6)—(2.7) and B is given
by (2.8). Noting that the fact that the reachability operator Lyapunov algebraic equation can be related to
some matrix Lyapunov differential equation leads to the following result:

Theorem 3.2. Let A and B be the operators defined by (2.6)-(2.7) and (2.8), respectively. Let M and N
be the matrices defined by (2.10). If the matriz pair (M, N) is totally controllable on [0,1] then the operator
pair (A, B) is reachable.

Proof. First recall that the operator A generates an exponentially stable Cy-semigroup. Then by [13], Theo-
rem 4.1.23, p. 160, the extended reachability gramian, denoted by Lp, is the unique self-adjoint solution of the
following OLAE:

Lp(D(A%)) C D(A), and [ALp+ LgA* + BB*lz =0, z € D(A%). (3.10)
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In order to prove the reachability of (A, B) and in view of [13], Theorem 4.1.22, p. 160, it is enough to show
that the solution Lp is positive definite. Note that by a straightforward calculation it can be shown that if the
matrix Lp = (l; j(2))1<i,j<n is the positive definite solution of the MLDE

dc

d—ZB = MLp + LsMT + NNT, Lp(0) =0, (3.11)
whose existence is guaranteed by the total controllability of the matrix pair (M, N), then the operator Lp :=
(15,;(2)1)1<i,j<n is the solution of the OLAE (3.10). Moreover Lp is positive definite since the matrix function £p
is positive definite on [0, 1]. O

In view of [25], Theorem 3, p. 69, the following corollary is a straightforward consequence of Theorem 3.2:

Corollary 3.2. If the controllability matric Q.(z), defined by equations (3.1)—(3.2), is full rank,
ie. rank(Q.(z)) =n for all z € [0,1], then the operator pair (A, B) is reachable.

By using duality and arguments similar to those used for the reachability analysis, it can be shown that the
observability follows from the total observability of some related space-varying system. This is summarized in
the following theorem and corollary:

Theorem 3.3. Let A and C be the operators defined by (2.6)—(2.7) and (2.9), respectively. Let M and C be
the matrices defined by (2.10). If the matriz pair (C, M) is completely observable on [0, 1] then the operator
pair (C, A) is observable.

Corollary 3.3. If the observability matriz Q,(z), defined by equation (3.3)—(3.4) is full rank,
ie. rank(Q,(z)) =n for some z € [0,1], then the operator pair (C, A) is observable.

4. LQ-OPTIMAL CONTROL DESIGN

This section is devoted to the design of an optimal LQ-feedback (see e.g. [11,13]) for the linearized model
given by (2.5)—(2.9). More precisely the aim is to find a control law which minimizes the following cost criterion:

A(zo;u) = /Ooo(<y(8)7 y(s)) + (u(s), u(s)))ds. (4.1)

First note that the fact that A generates an exponentially stable Cyp-semigroup (see Th. 3.1) implies that (A4, B)
is exponentially stabilizable and (C, A) is exponentially detectable.

It is well known (see e.g. [13]) that, under those conditions, the solution of this problem can be obtained
by finding the nonnegative self-adjoint operator ), € L(H) that solves the operator Riccati algebraic equation
(ORAE), wviz.

[A*Qo + QoA+ C*C — QoBB*Q,]x = 0, (4.2)

for all x € D(A), where Q,(D(A)) C D(A*).
In order to solve this equation, the following lemma, which can be easily proven by noting that the matri-
ces CTC and NNT are positive semi-definite (see [1], Cor. 6.7.36), is useful.

Lemma 4.1. Let us consider the following matriz Riccati differential equation (MRDE):

- g =M'®+dM+CTC - dNNTD, ®(1)=0. (4.3)

Then the latter has a unique positive semi-definite solution on [0, 1].
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Now we are in a position to state the following result:

Theorem 4.1. Let us consider the linearized model (2.5)—(2.9). Let N' € R™*™ be given by (2.10) and ® € R™*™
be the solution of the MRDE (4.3). Consider

U(z) = —NT(2)®(z) € R™*", (4.4)

Then Qo := [P ; I)ijen is the unique self-adjoint positive semi-definite solution of the operator Riccati differ-
ential equation (4.2). Hence the operator

Ko :=[Vi; Iiem , jen (4.5)
is the optimal LQ-feedback and the LQ-optimal control law is given by
Uopt (2,1) = ¥(2)z(2,1). (4.6)

Proof. Let us prove that @Q, is the unique self-adjoint positive semi-definite solution of the ORAE (4.2). First
observe that

A*QO = AS(I) + M*® and QQA = CI)AQ + (I)M,
where Ay is given by (3.8). By direct calculation, it can be easily shown that

P .
AiD 4+ DA = {d—” I] .
d 1,]EN

On the other hand C*C = [(C*C); ; I]ijen and QoBB*Qo = [(PNNT®); ; I]; jen. Therefore if the matrix ® is
a solution of the MRDE (4.3), then @, = ®I is a solution of the ORAE (4.2) since the initial condition ®(1) =0
implies that Q,(D(A)) C D(A*). Moreover the fact that the MRDE (4.3) has a unique positive semi-definite
solution ® on [0, 1] implies that the operator ), = ®I is the unique self-adjoint positive semi-definite solution
of the ORAE (4.2). O

Remark 4.1. In view of Theorem 3.2 and Corollary 3.2, if the matrix pair (M, N) is totally controllable, or
equivalently the controllability matrix Q. is full rank on the interval [0, 1], then the LQ-optimal feedback Ky can
also be uniquely determined by spectral factorization (see e.g. [9]). This alternative method was successfully
applied to a nonisothermal plug flow reactor in [4,5].

5. NONLINEAR CLOSED-LOOP SYSTEM PERFORMANCES ANALYSIS

This section focuses on the performances of the resulting closed-loop nonlinear system based on the imple-
mentation of the optimal LQ-feedback designed in the previous section. Here, we are interested in two questions.
The first one is the asymptotic stability. The second one is the optimality of the designed LQ-control for the
nonlinear system since its optimality is proved only on the linearized model with respect to a chosen quadratic
criterion. Without loss of generality let us assume that the optimal LQ-feedback is computed for the linearized
model around the zero equilibrium profile.

5.1. Stability analysis

In this subsection, we are interested in the asymptotic stability of the closed-loop nonlinear model. The
latter can be described by applying the LQ-optimal state feedback Kj, given by (4.5), to the nonlinear
model (2.1)—(2.2):

(5.1)
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where the operator Ay is the linear (unbounded) diagonal operator given by equation (3.8) and the nonlinear
operator Ny is defined on H by

No(x) := f(z, Kox). (5.2)
First we assume that the operator Nj is defined everywhere. The analysis of the following results is based on
concepts and results developed e.g. in [9,14,19,21].

Definition 5.1. Let A be an operator on a Banach space X with domain D(.A).
(i) A is said to be dissipative if, for all z, 2’ € D(A) and for all A > 0,

[ =2l < [|(z — &) — A(Az — Az")],

or equivalently, for all z, ' € D(A), there exists a bounded linear functional f on X such that
flz—a') =z —2'|]” = || f|? and f(Az — Az’) < 0.
In addition A is said to be strictly dissipative if the conditions above hold with strict inequalities, for
all z, 2’ € D(A) such that x # 2’
(ii) A is said to be (strictly) m-dissipative if it is (strictly) dissipative and R(I —.A) = X, where R(T)
denotes the range of an operator T'.
Theorem 5.1. Consider the closed-loop nonlinear system (5.1)—(5.2). If the operator Ny is strictly dissipative on
the Hilbert space H, then the operator Ao+ Ny is the generator of a unique nonlinear contraction semigroup I'(t)
on H. Moreover, for any xo € H,
x(t,zo) :=T(t)xo — 0 as t — o0
i.e. the zero state is an asymptotically stable equilibrium state.
Proof. Observe that each diagonal entry of the operator Ay generates an exponentially stable Cjy-semigroup of

contraction (see [13], Ex. 2.2.4, p. 34), whence it is m-dissipative. It follows that the operator A is m-dissipative.
On the other hand (I — AAg)~! is compact. Indeed, consider the operator

d.

Ad = *@

defined on the domain

d
D(Ag) = {ac € L?(0,1) : = is absolutely continuous, d—i € L?(0,1) and z(0) = 0} .

A straightforward computation shows that, for any A > 0 and for any g € L?(0, 1),

(1 =240 9 = e (<5) [ e (%) aman

Using this identity, it can be shown that (I — \Ay)~! is a Hilbert-Schmidt operator, whence it is compact. It
follows that the operator (I — AAp)~! is also compact, as a diagonal matrix of compact operators. Then, by
using the strict dissipativity of Ny the conclusion follows directly from [2], Theorem 4.3.1, pp. 59-60. (]

Theorem 5.2. Consider the closed-loop nonlinear system (5.1)—(5.2). Assume that the operator Ny is Lipschitz
continuous with Lipschitz constant ly. Then, if [ < e~!, the operator Ag + Ny is the generator of a unique
nonlinear contraction semigroup T'(t) on H. Moreover, for any xo € H,

x(t,z) :=T(t)xg — 0 as t — o0

i.e. the zero state is an asymptotically stable equilibrium state.
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Proof. Let us denote by wp the growth bound of the Cp-semigroup (e9*);~q. By using [13], Theorem 2.1.6(e),
p. 18, and its proof, for all w > wy, there exists a t,, such that

log ||e“ot
g et _

; w, fort>t,, or equivalently |[e!|| < e, fort > t,,.

Note also that [[e4|| is bounded on every finite subinterval of [0, o), in particular in the interval [0, ], i.e. there
exists My, > 0 such that
et < Mo, VO<t<t,.

Then Yw > wy, there exists a constant M, = { é\{gjfw’MO y gi z 8, such that
|edot|| < Me“t, for all t > 0. (5.3)

On the other hand, it can be shown that [e/f|| = 0, for all ¢ > 1 and ||e“o?|| = 1, for all # < 1. Then (a) the
growth bound of the Cy-semigroup (eAUt)tZO is equal to —oo, (b) the constant ¢, defined above is equal to 1
and (c) the constant My, is equal to 1. Consequently, for all w < 0

e < Met, for allt >0, where M, =e™“. (5.4)

By using [6], Corollary 13, p. 126, the asymptotic stability follows from [6], Comment 14, p. 126, since
sup,, co{—we} =e L. O

In the previous results, we have assumed that the nonlinear operator Ny is defined everywhere. Now we are
interested in the asymptotic stability of the system (5.1) when the operator Ny is defined on a convex closed
subset F' C H. First the following technical concept is recalled:

Definition 5.2. Let A be a dissipative operator. Let X, be a subset of X. A is said to be in Q(Xp) if
D(A) C Xy and X C R(I — MA) for all A > 0.

On the other hand, the following result, whose proof can be found in [2,6], is needed.

Lemma 5.1 (6], Th. 16). Let F be a closed convez subset of X. Consider a linear closed dissipative operator Ay
such that (I —XAg)~! is compact for some A > 0. Consider a Lipschitz continuous nonlinear operator No on F.
Assume that A = Ao+ Ny is strictly dissipative and the restriction of Ag to D(Ag) NF is in Q(F) and that the
condition

li)\miorif A Yd(F,x + ANy(x)) = 0, foraz € D(A),

holds, where d(F,p) denotes the distance from p € X to F. Let T'(t) be the contraction semigroup generated
by A. Assume that T is an equilibrium point of A. Then for any xo € D(A),

x(t,xg) :=T(t)xg — T as t — oo.

Now we are in a position to state the following result:

Theorem 5.3. Consider the closed-loop nonlinear model (5.1)—(5.2). Assume that the operator Ny is Lipschitz
continuous on F and the operator A := Ag + Ny is strictly dissipative. If F C R(I — MAg) for all A > 0 and if
the condition

li/\mirif A Y(F 2 + ANo(z)) =0, for x € D(A),
—0

holds, then, for any xo € D(A),
x(t,zg) :=T(t)xg — 0 as t — 0

i.e. the zero state is an asymptotically stable equilibrium state.
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Proof. This result is a consequence of Lemma 5.1. Indeed, the compactness and the m-dissipativity of Ay are
shown in the proof of Theorem 5.1. On the other hand, the fact that ¥ C R(I — AA) for all A > 0 implies that
the restriction of Ag on D(Ag) N F' is in Q(F) (see Def. 5.2) since D(Ag) N F C F. O

Remark 5.1. In view of (29) and since the state feedback operator Ky is linear, it suffices to check that the
function f is Lipschitz continuous, in order to prove that the operator Ny is Lipschitz continuous too. In addi-
tion, when the Hilbert space X x U is equipped with the inner product ((x, u); (y,v)) := (z,y)u + {u,v)v, if I5
is a Lipschitz constant for f, then a Lipschitz constant for Ny is given by lo = Iy - /1 + || Ko|?.

5.2. Optimality analysis

Obviously, the LQ-feedback designed in the previous section is not going to be optimal for the overall nonlinear
system since its computation is based on the linearized model with the objective to minimize a specific quadratic
criterion. This subsection in concerned with an inverse optimal control problem. This study is inspired by [17],
which deals with the inverse optimal control problem for finite-dimensional systems. The question under study
in this subsection is the following: what type of modification of the cost criterion can restore optimality? In
this subsection it will be assumed that the function f is linear with respect to the input variable i.e.

f(@) := fo(z) + Bu.

In this case the nonlinear open-loop system can be written as follows:
x(t) = Aox(t) + Bu(t) + fo(z(t)) (5.5)
z(0) = xo € D(Ao). '
The idea is to write the generator of the latter as the sum of the linearized generator and some nonlinear
operator:

i(t) = Axz(t)+ Bu(t) + f(z(t))
{x(O) = z0 € D(A) (5.6)

where the function f(z) = fo(x)—J fo(0)z, where J f5(0) denotes the Jacobian of the function fy evaluated at 0.
The LQ-control law w,p: given by (4.6) is not optimal for the nonlinear system (5.6) (except if the function fo
is linear), but it is optimal with respect to another type of cost criterion that includes the function f:

o0
Ao(zo,u) = / w(z, u)dt (5.7)
0
where the function 7 : H x U — R is defined as
7T(l‘, u) = <Cl‘, C:L'> - 2<fa Qox> + <’U,, u> (58)

where Qo := [®;; I]i jen is the solution of the operator Riccati algebraic equation (4.2) and ® is the solution
of the matrix Riccati differential equation (4.3). It turns out that the asymptotic stability of the nonlinear
closed-loop system (5.6) leads to the optimality of uep: with respect to the cost criterion (5.7).

Theorem 5.4. If zero is an asymptotically stable state for the nonlinear closed-loop system (5.6), then the LQ-
control law uep given by (4.6) is optimal for the nonlinear system (5.6) with respect to the cost criterion (5.7).

Proof. In view of (5.6) and by a straightforward calculation, one gets

Ao(zo,u) = /OOO {(C’:c,C:n) — 2, Qo) + <u,u>} at

t1—00

lim /t1 {{(Cx,Cz) — 2(i: — Az — Bu, Qo) + {u,u)}dt.
0
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Now by using the fact that @, is the unique solution of the ORAE (4.2), it follows that

t1
Ao(zo,u) = lim {—2(&, Qox) + | B*Qow||* + 2(u, B*Qox) + ||ul|*} dt
0

t1—o00

t1
= (20, QoTo) + tllim [—(x(tl), Qox(t1)) —|—/ {{u— Kox,u— Kyx)}dt| .
— 00 0
If we replace u by uep: of (4.6), we obtain
Ao (20, Uopt) = (0, Qoo) — t}grlm(x(tl)7 Qox(t1)).

Then
inf Ag(xo,u) = (x0, QoZo), (5.9)

since z(t) — 0 as t — oo. O

Comment 5.1. Since the operator @, is nonnegative, it follows from equation (5.9) that the lower bound of
the cost functional Ag, given by (5.7)—(5.8), is nonnegative. Therefore the functional Ay is nonnegative.

In view of Theorems 5.1 and 5.2, the following corollary is an immediate consequence of Theorem 5.4:

Corollary 5.1. If the operator Ny is defined everywhere and if one of the following conditions holds:

(i) the operator Ny is strictly dissipative;
(ii) the operator Ny is Lipschitz continuous with Lipschitz constant lo and ly < e !.

Then the LQ-control law uqp: given by (4.6) is optimal for the nonlinear system (5.6) with respect to the cost
criterion (5.7).

6. CONCLUDING REMARKS

In this paper, we have solved the LQ-optimal control problem for a class of first-order hyperbolic PDE’s
that includes convection reaction processes arising in chemical engineering. First the dynamical properties, viz.
exponential stability, reachability and observability of the linearized model have been analyzed. Each of these
properties can be characterized by a specific related operator Lyapunov algebraic equation whose solution can
be constructed from a matrix Lyapunov differential equation. Next, an optimal control has been designed on the
basis of a linearized model by using the corresponding operator Riccati algebraic equation, that can be solved
via certain matrix Riccati differential equation. The computed LQ-control was applied to the nonlinear model
and the closed-loop system performances were analyzed. Some simple conditions have been shown to guarantee
the asymptotic stability and the optimality of the closed-loop nonlinear system with respect to a modified cost
criterion.

From a physical point of view and in view of all the numerical experiments that we have made so far, we
state as an educated guess the conjecture that the asymptotic stability property of the closed-loop system still
holds without the condition Iy < e~!. However, it is not easy to prove this result by following the approach
used in this paper. We leave this interesting open question as a topic for further research.

Possible topics for further research include the extension of the approach developed here to reaction-diffusion
processes described by models taking axial dispersion phenomena into account, or the design of compensators
based on optimal LQ-control of the estimated state.
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