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Abstract. This paper is concerned with mathematical modelling in the management of a wastewater
treatment system. The problem is formulated as looking for a Nash equilibrium of a multiobjective
pointwise control problem of a parabolic equation. Existence of solution is proved and a first order
optimality system is obtained. Moreover, a numerical method to solve this system is detailed and
numerical results are shown in a realistic situation posed in the estuary of Vigo (Spain).
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1. Introduction

Management, treatment and elimination of waste are one of the most important environmental problems. In
the particular case of wastewater, a widespread solution consists of discharging it into rivers or directly into the
sea. Current legislation in developed countries requires that wastewater be treated in a purifying plant before
being discharged. These treatments can be not only necessary but also very expensive, and its management
involves environmental and economical aspects. The problem becomes more complicated when several purifying
plants are going to discharge wastewater into the same domain (a lake, an estuary, ...).

In the last years, several works (see, for example, [2–4,12,13]) have used mathematical models and opti-
mal control techniques to solve this type of problems. In [12], a wastewater treatment system consisting of
several purifying plants discharging into the same domain is considered and, by assuming that every plant is
controlled by a unique organization, the management of the treatment system is formulated and studied as an
optimal control problem with state and control pointwise constraints. The main goal of this work consists of
studying the problem when each purifying plant is controlled by a different organization (industries, municipal
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Figure 1. Scheme of domain Ω.

governments, ...). In this case, the problem has to be formulated in the framework of the multiobjective control
problems and noncooperative games theory.

In a multiobjective control problem the minimization of some functionals depending on some controls is
considered. At first glance, the goal could be to obtain the controls minimizating simultaneously every functional.
However, in the general case, there are not those controls and the objective has to be formulated in other terms.
There are several strategies in order to choose the controls, depending on the character of the problem. These
strategies can be cooperative (when the controls cooperate between them in order to achieve the goals) and
noncooperative. We are going to use the Nash equilibrium, which define a multiobjective optimization strategy
in noncooperative problems. Essentially, a number of players equal to the number of controls is considered
(in our case, the players are the different organizations controlling every purifying plant). For each player,
we consider a functional to minimize and a strategy space defined as the set which the corresponding control
belongs to. A strategy for every player is looked for, in such a way that no player could change its strategy
without increase its functional, if the other players do not change their strategies. In a formal way, we can give
the following definition [8]:

Definition 1.1. Let be a multiobjective control problem with controls u1, . . . , uG and functionals to minimize
Ji = Ji(u1, . . . , uG), i = 1, . . . , G. Let be Mi the admissible control set (strategy space) for the i-th control.
The element (u∗1, . . . , u∗G) ∈ ∏G

i=1Mi is a Nash equilibrium of the problem if the following equality holds

Ji(u∗1, . . . , u
∗
i−1, u

∗
i , u

∗
i+1, . . . , u

∗
G) = min

ui∈Mi

Ji(u∗1, . . . , u
∗
i−1, ui, u

∗
i+1, . . . , u

∗
G),

for all i = 1, . . . , G.

In the next section we are going to formulate the problem of the management of a wastewater treatment
system in terms of finding a Nash equilibrium for a multiobjective control problem of parabolic type. In Section 3
we do a mathematical analysis of the problem. In Section 4 we prove the existence of a Nash equilibrium. In
Section 5 we give a first order optimality system. In Section 6 we propose a numerical algorithm to solve the
problem. Finally, in Section 7, we present the numerical results obtained in a realistic situation posed in the
estuary of Vigo (Spain).

2. Mathematical formulation

We consider a bounded domain Ω ⊂ R
2 occupied by shallow waters, where polluting wastewaters are dis-

charged through NE submarine outfalls located at points Pj ∈ Ω, j = 1, ..., NE and connected to their respective
purifying plants located on the coast (see Fig. 1). Moreover, we assume the existence of several areas Al ⊂ Ω,
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l = 1, . . . , NZ , representing fisheries, beaches or marine recreation zones, where it is necessary to guarantee a
water quality with pollution levels lower than some allowed threshold levels (an indicator of the water quality
is fixed and its concentration in the l-th zone must be lower than a maximum value σl). In order to do it, we
assume that the j-th plant is taking care of nj zones and a penalty is imposed on that plant if the concentration
of indicator in one of its zones is greater than the threshold level. Usually each area is controlled by only
one plant and then

∑nNE

j=1 nj = NZ , but the case
∑nNE

j=1 nj > NZ , several plants controlling common areas,
is also permitted. Obviously, the manager of each purifying plant looks for a purification strategy which min-
imize the sum of penalties and cost purification and we look for a whole strategy accepted by all plant managers.

State system. The first step to formulate this problem is to choose an indicator of water quality and to provide
a mathematical model which gives, from the discharges at Pj ∈ Ω, j = 1, ..., NE, the indicator concentration
in Ω. By assuming domestic (no industrial) discharges, we take faecal coliphorm (CF) as indicator of water
quality. CF concentration in a shallow water domain is given by (see, for instance [5])

∂ρ

∂t
+ �u · ∇ρ− βΔρ+ κρ =

1
h

⎡
⎣NE∑

j=1

mj(t)δ(x − Pj)

⎤
⎦ in Ω × (0, T )

ρ(x, 0) = ρ0(x) in Ω

∂ρ

∂n
= 0 on ∂Ω × (0, T )

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

where ρ is depth-averaged CF concentration, h ∈ C(Ω̄ × [0, T ]) is the height of water (which we suppose that
satisfies h(x, t) ≥ α > 0, ∀(x, t) ∈ Ω̄×[0, T ]), �u ∈ [L∞(0, T ;W 1,∞(Ω))]2 is the depth-averaged horizontal velocity
of water, β > 0 is a viscosity coefficient collecting turbulent and dispersion effects, κ ∈ R is an experimental
coefficient related to the loss rate of CF, mj ∈ L∞(0, T ) is the mass flow rate of CF discharged at Pj , δ(x−Pj)
denotes the Dirac measure at Pj and ρ0 ∈ C(Ω̄) is the initial CF concentration.

Controls. In this model (system (2.1)), each purifying plant has one control associated with it. In effect,
the management of the purification in a plant is equivalent to determine the amount of CF discharged after
purification and then, the control associated with the j-th plant is the function mj(t).

Objective functionals. The functional to minimize corresponding to the j-th plant, as we have said, must
collect two different aspects: purification process cost and cost because of insufficient purification. Firstly, we
assume that the purification process cost in a particular plant is known and dependent on CF discharge through
the corresponding outfall, in a similar way as it is shown in Figure 2. Moreover, if we denote by m̄j the maximum
mass flow rate of CF arriving to the j-th plant and mj the minimum mass flow rate of CF discharging at Pj

(corresponding with the maximum purification in that plant) we also suppose that fj ∈ C2[mj , m̄j ] is strictly
convex in this interval. Secondly, if the purification in the j-th plant is not sufficient and the CF concentration
in its zones is greater than the corresponding threshold (σi in the zone Ai), a penalty is imposed on that plant.
We assume that penalty amount is an increasing function of CF extra concentration.

According to this, if we define n0 = 0 and we number the protected areas in such a way that for j =
1, 2, . . . , NE , the j-th plant takes care of ∪nj

i=n(j−1)+1Ai, the objective function to minimize corresponding to the
j-th plant is given by

Jj(m1,m2, . . . ,mNE) =
∫ T

0

fj(mj(t))dt+
nj∑

i=n(j−1) +1

1
εi

∫
Ai×(0,T )

ψ(ρ(x, t) − σi)dxdt (2.2)
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Figure 2. Standard shape for function giving the purification cost of the j-th plant.

where fj is a known function giving the purification cost of the j-th plant, εl > 0, l = 1, 2, . . . , NZ is a penalty
parameter and, for a fixed δ > 0, ψ(y) is a C2 regularization of 1

2y
2
+, where y+ stands for the “positive part”

function, that is

ψ(y) =

⎧⎪⎨
⎪⎩

0 if y ≤ 0
y3

6δ if 0 ≤ y ≤ δ
1
2 (y2 − δy + δ2

3 ) if δ ≤ y.

(2.3)

Remark 2.1. The case of an area controlled by several plants can be handled by labelling this area as many
times as the number of plants controlling it. In this way, the number of areas would became

∑nNE

j=1 nj instead
of NZ .

Strategy spaces and multiobjective control problem. For j = 1, 2, . . . , NE we denote by Mj = {m ∈
L∞(0, T ); 0 < mj ≤ m(t) ≤ m̄j , a.e. in (0, T )} the strategy space for the j-th plant and we consider the
following multiobjective control problem:
Problem (P): For j = 1, . . . , NE, find the function mj(t) ∈Mj which minimize the functional Jj(m1, . . . ,mNE)
given by (2.2), where ρ(x, t) is the solution of system (2.1).

Goal. We look for a purification strategy for every plant accepted by all plant managers in the sense that none
could change its strategy without increase its objective functional, if the others do not change their strategies.
According to Definition 1.1 this is equivalent to find a Nash equilibrium for the problem (P), that is:

Find a set of controls (m∗
1, ...,m

∗
NE

) ∈∏NE

j=1Mj such that, for j = 1, 2, . . . , NE

Jj(m∗
1, ...,m

∗
j−1,m

∗
j ,m

∗
j+1, ...,m

∗
NE

) = min
mj∈Mj

Jj(m∗
1, ...,m

∗
j−1,mj ,m

∗
j+1, ...,m

∗
NE

). (2.4)

3. Mathematical analysis

3.1. The state system

The solution of system (2.1) can be defined by transposition techniques (see [7,11,12]) in the following way:

Definition 3.1. Given r, s ∈ [1, 2), 2
r + 2

s > 3, we say that ρ ∈ Lr(0, T ;W 1,s(Ω)) is a solution of the problem (2.1)
if for all Φ ∈ C1(Ω̄ × [0, T ]) such that Φ(., T ) = 0 it is satisfied that:

∫ T

0

∫
Ω

(
−∂Φ
∂t
ρ+ β∇Φ.∇ρ+ �uΦ.∇ρ+ κΦρ

)
dxdt =

NE∑
j=1

∫ T

0

1
h(Pj , t)

Φ(Pj , t)mj(t)dt +
∫

Ω

Φ(x, 0)ρ0(x)dx.

(3.1)
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Let A be the differential operator defined by

Aw = −βΔw + �u · ∇w + κw. (3.2)

We denote by A∗ its formal adjoint,

A∗Φ = −βΔΦ − div(Φ �u) + κΦ, (3.3)

and by ∂Φ
∂nA∗ the conormal derivative operator associated to A∗, that is,

∂Φ
∂nA∗

= β
∂Φ
∂n

+ Φ�u · �n. (3.4)

We also assume that Ω is a bounded domain with smooth enough boundary satisfying the condition (cf. [9],
p. 9):
C1. There are two constants α∗ ∈ (0, 1) and r0 > 0 such that for all x0 ∈ ∂Ω and for all r ∈ (0, r0],
meas(B(x0, r) ∩ Ω) ≤ (1 − α∗)πr2.

Then we have the following result:

Theorem 3.2. There exists a unique function ρ ∈ [Lr(0, T ;W 1,s(Ω)) ∩ L2(0, T ;L2(Ω))] with ∂ρ
∂t ∈

Lr(0, T ; (W 1,s′
(Ω))′) such that ρ is a solution of (2.1) and satisfies

∫ T

0

〈
−∂Φ
∂t

+ A∗Φ, ρ
〉

dt =
NE∑
j=1

∫ T

0

1
h(Pj , t)

Φ(Pj , t)mj(t)dt +
∫

Ω

Φ(x, 0)ρ0(x)dx (3.5)

for all Φ ∈ B = {Φ ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω));
∂Φ
∂nA∗

= 0 on ∂Ω × (0, T ), Φ(., T ) = 0}.

Besides:
(1) There exist positive constants C1, C2, C3, C4 only depending on data, such that:

||ρ||Lr(0,T ;W 1,s(Ω)) ≤ C1

NE∑
j=1

||mj ||L∞(0,T ) + C2||ρ0||C(Ω̄)

||ρ||L2(0,T ;L2(Ω)) ≤ C3

NE∑
j=1

||mj ||L∞(0,T ) + C4||ρ0||C(Ω̄).

(2) If there exists a closed set E ⊂ Ω such that Ω\E is a domain with boundary smooth enough,
{P1, P2, . . . , PNE} ⊂ E and ∪NZ

i=1Āi ⊂ (Ω\E), then:
(a) Function ρ|∪NZ

i=1Āi×[0,T ]
∈ C(∪NZ

i=1Āi × [0, T ]) and there exist constants C5, C6 > 0, such that

‖ρ‖
C(∪NZ

i=1Āi×[0,T ])
≤ C5

NE∑
i=1

‖mi‖L∞(0,T ) + C6‖ρ0‖C(Ω̄).

(b) If the initial condition ρ0 = 0 then ρ ∈ Cα(∪NZ

i=1Āi × [0, T ]) for some α ∈ (0, 1), and there exists a
constant C7 > 0 such that

‖ρ‖
Cα(∪NZ

i=1Āi×[0,T ])
≤ C7

NE∑
i=1

‖mi‖L∞(0,T ). (3.6)
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(c) The mapping

F : (L∞(0, T ))NE −→ C(∪NZ

i=1Āi × [0, T ])
m = (m1,m2, . . . ,mNE) −→ F (m) = ρ|∪NZ

i=1Āi×[0,T ]

is well defined and it is affine and continuous.

The proof of the existence and uniqueness of solution and item (1) can be seen in Theorem 3.2 of [12],
item (2)(a) is obtained from Lemmas 3.3 and 3.4 of [12], item (2)(b) arises from Theorem 10.1 of Chapter III
of [9] and, finally, item (2)(c) is an easy consequence of item (2)(a).

3.2. The objective functionals

From Theorem 3.2, the objective functional formally introduced by (2.2) is well defined on
∏NE

j=1Mj and can
be written as

Jj(m1,m2, ...,mNE) = Θj(mj) +Hj(F (m1,m2, ...,mNE )) (3.7)

where

• Θj : Mj −→ R is given by Θj(mj) =
∫ T

0

fj(mj(t))dt

• Hj : C(∪NZ

i=1Āi × [0, T ]) −→ R is defined by

Hj(ρ) =
nj∑

i=n(j−1) +1

1
εi

∫
Ai×(0,T )

ψ(ρ(x, t) − σi)dxdt.

Lemma 3.3. If fj ∈ C1[mj , m̄j ] then Θj is Gateaux differentiable at every point mj ∈Mj and

〈Θ′
j(mj), δmj〉 =

∫ T

0

f ′
j(mj(t))(δmj)(t)dt (3.8)

for all δmj ∈ L∞(0, T ) satisfying mj + ε0δmj ∈Mj for some ε0 > 0.

Proof. Let mj ∈Mj and let δmj ∈ L∞(0, T ) such that mj + ε0δmj ∈Mj for some ε0 > 0. For each λ ∈ (0, ε0],
we have mj + λδmj ∈Mj and

Θj(mj + λδmj) − Θj(mj)
λ

=
∫ T

0

fj(mj(t) + λ(δmj)(t)) − fj(mj(t))
λ

dt. (3.9)

For a.e. t ∈ (0, T ), we have

lim
λ→0+

fj(mj(t) + λ(δmj)(t)) − fj(mj(t))
λ

= f ′
j(mj(t))(δmj)(t), (3.10)

and for λ ∈ (0, ε0]

fj(mj(t) + λ(δmj)(t)) − fj(mj(t))
λ

= f ′
j(mj(t) + θ(t, λ)λ(δmj)(t))(δmj)(t), (3.11)



NASH EQUILIBRIUM IN WASTEWATER MANAGEMENT 123

with θ(t, λ) ∈ (0, 1). Hence∣∣∣∣fj(mj(t) + λ(δmj)(t)) − fj(mj(t))
λ

∣∣∣∣ ≤ C = ‖δmj‖L∞(0,T ) max
mj∈[mj,m̄j ]

|f ′
j(mj)|. (3.12)

Using Lebesgue’s dominated convergence theorem, we deduce that Θj is Gateaux differentiable at mj and that
equation (3.8) holds. �

If the function fj is continuous and strictly convex, the functional Θj also it is. Moreover, since ψ is convex
and differentiable, Hj is convex, continuous and Gateaux differentiable. Finally, since the mapping F is affine
and continuous (see Th. 3.2), we have the following result:

Theorem 3.4. If fj ∈ C1[mj , m̄j ] is strictly convex, then the functional

mj ∈Mj −→ Jj(m1, ...,mj−1,mj ,mj+1, ...,mNE ) ∈ R, (3.13)

given by (3.7), is continuous, Gateaux differentiable and strictly convex.

4. Existence of a Nash equilibrium

Results in this section only require fj ∈ C[mj , m̄j ] and strictly convex for all j = 1, . . . , NE.

Given m = (m1, . . . ,mNE ) ∈ ∏NE

j=1Mj and ρ0 ∈ C(Ω̄) we denote by �(m, ρ0) = ρ, the solution of the
problem (2.1) given by Theorem 3.2 (with this notation F (m) = �(m, ρ0)|∪NZ

i=1Āi×[0,T ]
).

Lemma 4.1. Let {mn} ⊂∏NE

j=1Mj be such that {mn}⇀m ∗weakly in (L∞(0, T ))NE . Then, ∀r, s ∈ [1, 2) such
that 2

r + 2
s > 3,

�(mn, ρ0) ⇀ �(m, ρ0) weakly in Lr(0, T ;W 1,s(Ω)) (4.1)
�(mn, ρ0) ⇀ �(m, ρ0) weakly in L2(0, T ;L2(Ω)) (4.2)

�(mn, ρ0)|∪NZ
i=1Āi×[0,T ]

→ �(m, ρ0)|∪NZ
i=1Āi×[0,T ]

in C(∪NZ

i=1Āi × [0, T ]). (4.3)

Proof. Since �(m, ρ0) = �(m, 0) + �(0, ρ0), it suffices to consider the case ρ0 = 0.

Given r, s ∈ [1, 2) such that 2
r + 2

s > 3, as the sequence {mn} is bounded in (L∞(0, T ))NE , we deduce from
Theorem 3.2 that �(mn, 0) is bounded in L2(0, T ;L2(Ω)) and in Lr(0, T ;W 1,s(Ω)). This ensures the existence
of a subsequence, still denoted {mn}, and a function ρ̄ ∈ Lr(0, T ;W 1,s(Ω)) ∩ L2(0, T ;L2(Ω)) such that

�(mn, 0) ⇀ ρ̄ weakly in Lr(0, T ;W 1,s(Ω)) (4.4)

�(mn, 0) ⇀ ρ̄ weakly in L2(0, T ;L2(Ω)). (4.5)

Passing to the limit in equations (3.1) and (3.5), we deduce that ρ̄ = �(m, 0). The uniqueness of the limit
implies that these convergences hold for the whole sequence (and not just a subsequence). Thus we obtain (4.1)
and (4.2).

In the same way, since �(mn, 0)|∪NZ
i=1Āi×[0,T ]

is bounded in Cα(∪NZ

i=1Āi × [0, T ]) and the injection of this space

into C(∪NZ

i=1Āi × [0, T ]) is compact, there exists a subsequence, still denoted {mn}, such that

�(mn, 0)|∪NZ
i=1Āi×[0,T ]

→ �(m, 0)|∪NZ
i=1Āi×[0,T ]

in C(∪NZ

i=1Āi × [0, T ]).

Using again the uniqueness of the limit, we obtain (4.3). �
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Remark 4.2. Since Mj is a bounded subset of L∞(0, T ), the weak∗ L∞(0, T ) topology and the weak L2(0, T )
topology coincide over Mj .

Since the functional (3.13) is strictly convex and weakly lower semicontinuous and the set Mj is nonempty,
convex and closed in L2(0, T ), a classical result of control theory (see for instance [10]) guarantees that, for any
fixed (m1, . . . ,mj−1,mj+1, . . . ,mNE) ∈∏NE

i=1
i�=j

Mi there exists a unique m∗
j ∈Mj such that

Jj(m1, ...,mj−1,m
∗
j ,mj+1, ...,mNE ) = min

mj∈Mj

Jj(m1, ...,mj−1,mj ,mj+1, ...,mNE). (4.6)

This enables us to define the mapping

Sj :
∏NE

i=1
i�=j

Mi −→ Mj

(m1, . . . ,mj−1,mj+1, . . . ,mNE) −→ S(m1, . . . ,mj−1,mj+1, . . . ,mNE ) = m∗
j .

Lemma 4.3. The mapping Sj is continuous if the weak∗ (L∞(0, T ))NE−1 topology is taken in
∏NE

i=1
i�=j

Mi and the

weak∗ L∞(0, T ) topology is taken in Mj.

Proof. In order to alleviate notation and without loss of generality, we write the proof for the case j = 1.

Let {(mn
2 , . . . ,m

n
NE

)} ⊂∏NE

i=2Mi and (m2, . . . ,mNE) ∈ ∏NE

i=2Mi be such that

{(mn
2 , . . . ,m

n
NE

)}⇀ (m2, . . . ,mNE ) ∗weakly in (L∞(0, T ))NE−1.

Let mn
1 = S1(mn

2 , . . . ,m
n
NE

). Since {mn
1} ⊂ M1 is bounded in L∞(0, T ), there exists a subsequence {mn′

1 }
converging ∗weakly in L∞(0, T ) to some element m1 ∈M1 (because M1 is closed for this topology).

The proof will be finished if we show that m1 = S1(m2, . . . ,mNE). To do this, it suffices to prove that

J1(m1,m2, . . . ,mNE) ≤ J1(m̂1,m2, . . . ,mNE) ∀m̂1 ∈M1. (4.7)

Clearly {(mn′
1 ,m

n′
2 . . . ,mn′

NE
)} ⇀ (m1,m2, . . . ,mNE ) ∗weakly in (L∞(0, T ))NE . Using Lemma 4.1, the con-

tinuity of the functional H1, the weak lower semicontinuity of the functional Θ1 and the decomposition (3.7),
we deduce that

J1(m1,m2, . . . ,mNE ) = Θ1(m1) +H1(�(m1,m2, . . . ,mNE , ρ0))

≤ liminf
n′→∞

Θ1(mn′
1 ) + lim

n′→∞
H1(�(mn′

1 ,m
n′
2 , . . . ,m

n′
NE
, ρ0))

= liminf
n′→∞

J1(mn′
1 ,m

n′
2 , . . . ,m

n′
NE

).

Since mn′
1 = S1(mn′

2 , . . . ,m
n′
NE

), it follows from the definition of the mapping S1 that

J1(mn′
1 ,m

n′
2 , . . . ,m

n′
NE

) ≤ J1(m̂1,m
n′
2 , . . . ,m

n′
NE

) ∀m̂1 ∈M1. (4.8)
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Taking the inferior limit and using again the decomposition (3.7), Lemma 4.1, and the continuity of H1, we
obtain that for all m̂1 ∈M1

liminf
n′→∞

J1(mn′
1 ,m

n′
2 , . . . ,m

n′
NE

) ≤ liminf
n′→∞

J1(m̂1,m
n′
2 , . . . ,m

n′
NE

)

= Θ1(m̂1) + lim
n′→∞

H1(�(m̂1,m
n′
2 , . . . ,m

n′
NE
, ρ0))

= Θ1(m̂1) +H1(�(m̂1,m2, . . . ,mNE , ρ0))
= J1(m̂1,m2, . . . ,mNE ).

Therefore equation (4.7) holds. �

Theorem 4.4. If fj ∈ C[mj , m̄j ] and fj is strictly convex in [mj , m̄j] for all j = 1, . . . , NE, then the problem (P)
has at least a Nash equilibrium.

Proof. Let S :
∏NE

j=1Mj −→∏NE

j=1Mj be the mapping defined by

S(m1,m2, . . . ,mNE ) = (S1(m2,m3, . . . ,mNE), S2(m1,m3, . . . ,mNE), . . . , SNE (m1,m2, . . . ,mNE−1)).

Due to the definition of the mappings Si, every fixed point of S is a Nash equilibrium. The existence of a fixed
point of S is ensured by second Schauder fixed point theorem [16], since the set

∏NE

j=1Mj is convex and compact
for the weak∗ (L∞(0, T ))NE topology, and the mapping S is continuous for this topology. �

5. Optimality conditions

Since Mj is convex, from Theorem 3.4, a necessary and sufficient condition to achieve (2.4) is

∂Ji

∂mi
(m∗

1, ...,m
∗
i−1,m

∗
i ,m

∗
i+1, ...,m

∗
NE

)(mi −m∗
i ) ≥ 0, ∀mi ∈Mi.

Then, our goal consists of finding (m∗
1, ...,m

∗
NE

) ∈∏NE

j=1Mj satisfying the following optimality system:

∂J1

∂m1
(m∗

1, ...,m
∗
i−1,m

∗
i ,m

∗
i+1, ...,m

∗
NE

)(m1 −m∗
1) ≥ 0, ∀m1 ∈M1 (5.1)

∂J2

∂m2
(m∗

1, ...,m
∗
i−1,m

∗
i ,m

∗
i+1, ...,m

∗
NE

)(m2 −m∗
2) ≥ 0, ∀m2 ∈M2

...
∂JNE

∂mNE

(m∗
1, ...,m

∗
i−1,m

∗
i ,m

∗
i+1, ...,m

∗
NE

)(mNE −m∗
NE

) ≥ 0, ∀mNE ∈MNE .

In order to simplify this system, we are going to obtain ∂Jj

∂mj
(m), for all m = (m1,m2, . . . ,mNE ) ∈ ∏NE

j=1Mj .
For the purpose of illustrating the process, in a similar way as described in [15], we begin to make calculations
in a “formal” way. Denoting by δjmj a small perturbation of mj , we have

δjJj(m) =
∫ T

0

∂Jj

∂mj
(m)δjmj dt

=
∫ T

0

f ′(mj)δjmj dt+
nj∑

i=n(j−1)+1

1
εi

∫
Ai×(0,T )

ψ′(ρ(x, t) − σi)δjρ dxdt, (5.2)
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where δjρ(x, t) is the solution of

∂δjρ

∂t
+ �u · ∇δjρ− βΔδjρ+ κδjρ =

1
h
δjmjδ(x− Pj) in Ω × (0, T ) (5.3)

δjρ(x, 0) = 0 in Ω (5.4)
∂δjρ

∂n
= 0 on ∂Ω × (0, T ). (5.5)

Let us introduce a reasonably smooth function qj(x, t) defined over Ω × [0, T ]. Multiplying equation (5.3)
by qj(x, t) and integrating over Ω × (0, T ), we obtain

∫
Ω×(0,T )

qj

[∂δjρ
∂t

+ �u · ∇δjρ− βΔδjρ+ κδjρ
]
dxdt =

∫ T

0

1
h(Pj , t)

qj(Pj , t)(δjmj)(t)dt. (5.6)

Taking into account boundary and initial conditions (5.4) and (5.5), using Green’s formula and integration by
parts, we have

∫
Ω×(0,T )

(
−∂qj
∂t

− div(qj�u) − βΔqj + κqj

)
δjρ dxdt

+
∫

Ω

qj(x, T )δjρ(x, T )dx+
∫

∂Ω×(0,T )

(
β
∂qj
∂n

+ qj�u · �n
)

(δjρ)dΓ dt =
∫ T

0

1
h(Pj , t)

qj(Pj , t)(δjmj)(t)dt. (5.7)

Now, in order to simplify the expression of ∂Jj

∂mj
(m), we choose qj as the solution, in the sense of Definition 5.1,

of the following adjoint problem:

− ∂qj
∂t

− βΔqj − div(qj�u) + κqj =
nj∑

i=n(j−1)+1

1
εi
χAi

ψ′(ρ− σi) in Ω × (0, T ) (5.8)

β
∂qj
∂n

+ qj(�u · �n) = 0 on ∂Ω × (0, T ) (5.9)

qj(x, T ) = 0 in Ω, (5.10)

where χAi
denotes the characteristic function of the set Ai.

Definition 5.1. We say that qj ∈ L2(0, T ;H1(Ω))∩C([0, T ];L2(Ω)) is a solution of (5.8)–(5.10) if qj(x, T ) = 0
a.e. in Ω and verifies

− d
dt

∫
Ω

qj(x, t)v(x) dx+ β

∫
Ω

∇qj(x, t) · ∇v(x) dx+
∫

Ω

qj(x, t)�u · ∇v(x) dx

+
∫

Ω

κqj(x, t)v(x) dx =
nj∑

i=n(j−1)+1

1
εi

∫
Ω

χAi
(x)ψ′(ρ(x, t) − σi)v(x) dx ∀v ∈ H1(Ω) (5.11)

in the sense of D′
((0, T )).
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The following result arises from Section 9 of Chapter IV of [9] (Th. 9.1 concerns the regularity of solution
for a Dirichlet boundary value problem, but it is also valid in our case – with a Robin boundary condition – as
it has stated in the last paragraph of that section).

Theorem 5.2. The problem (5.8)–(5.10) has only one solution qj. Moreover qj ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;
L2(Ω)).

Taking qj as the solution of (5.8)–(5.10), equation (5.7) becomes

nj∑
i=n(j−1)+1

1
εi

∫
Ai×(0,T )

ψ′(ρ(x, t) − σi)δjρ dxdt =
∫ T

0

1
h(Pj , t)

(δ1mj)(t)qj(Pj , t)dt. (5.12)

Now, if (5.12) is substituted in the initial expression (5.2) we obtain

∫ T

0

∂Jj

∂mj
(m)δjmj dt =

∫ T

0

f ′
j(mj)δjmj dt+

∫ T

0

1
h(Pj , t)

(δjmj)(t)qj(Pj , t)dt,

consequently

∂Jj

∂mj
(m) = f ′

j(mj) +
1

h(Pj , t)
qj(Pj , t). (5.13)

Remark 5.3. Although the previous calculations have been made in a “formal” way, the regularity given by
Theorems 3.2 and 5.2 for functions δjρ (solution of (5.3)–(5.5)) and qj (solution of (5.8)–(5.10)), is sufficient to
prove that (5.13) is strictly correct.

Taking the expression (5.13) in the system (5.1), we can state the following result:

Theorem 5.4. The element (m∗
1,m

∗
2, . . . ,m

∗
NE

) ∈ ∏NE

j=1Mj is a Nash equilibrium of the problem (P) if and
only if there exists one function ρ ∈ Lr(0, T ;W 1,s(Ω)) ∩ L2(0, T ;L2(Ω)) for all r, s ∈ [1, 2) with 2

r + 2
s > 3 and

NE functions q1, q2, . . . , qNE ∈ C([0, T ];L2(Ω)) ∩ L2([0, T ];H1(Ω)), such that: for k = 1, 2, . . . , NE,

∂ρ

∂t
+ �u · ∇ρ− βΔρ+ κρ =

NE∑
j=1

1
h

[m∗
jδ(x− Pj)] in Ω × (0, T ) (5.14)

ρ(x, 0) = ρ0(x) in Ω (5.15)

∂ρ

∂n
= 0 on ∂Ω × (0, T ) (5.16)

−∂qk
∂t

− βΔqk − div(qk�u) + κqk =
nk∑

i=n(k−1)+1

1
εi
χAi

ψ′(ρ− σi) in Ω × (0, T ) (5.17)

β
∂qk
∂n

+ qk(�u · �n) = 0 on ∂Ω × (0, T ) (5.18)

qk(x, T ) = 0 in Ω (5.19)∫ T

0

[f ′
k(m∗

k) +
1

h(Pk, t)
qk(Pk, t)](mk −m∗

k)dt ≥ 0 ∀mk ∈Mk. (5.20)
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6. Numerical solution

In order to simplify notations and without loss of generality, we shall assume in the sequel NE = 2 and
NZ = 2, with n1 = 1 and n2 = 2. Moreover, if we suppose that penalization on CF concentration is nontrivial
(some purification is necessary to avoid CF concentration greater than threshold levels in protected areas) and
mj is sufficiently close to zero, we can assume that the minimum in (2.4) is attained at an interior point of Mj

because of the particular form of the function fj (see Fig. 2). In this case, the optimality system (5.14)–(5.20)
reads: for k = 1, 2,

∂ρ

∂t
+ �u · ∇ρ− βΔρ+ κρ =

1
h

[m∗
1δ(x− P1) +m∗

2δ(x − P2)] in Ω × (0, T ) (6.1)

ρ(x, 0) = ρ0(x) in Ω (6.2)

∂ρ

∂n
= 0 on ∂Ω × (0, T ) (6.3)

−∂qk
∂t

− βΔqk − div(qk�u) + κqk =
1
εk
χAk

ψ′(ρ− σk) in Ω × (0, T ) (6.4)

β
∂qk
∂n

+ qk(�u · �n) = 0 on ∂Ω × (0, T ) (6.5)

qk(x, T ) = 0 in Ω (6.6)

f ′
k(m∗

k) +
1

h(Pk, t)
qk(Pk, t) = 0 in (0, T ). (6.7)

In this section, we shall deal with the numerical solution of this system.

6.1. Discretization of the system

Solving the preceding system needs, as previous steps, to be able to solve the state system (6.1)–(6.3) and
the adjoint state system (6.4)–(6.6). To do this, we shall use a method which combines a time discretization by
characteristics with an space discretization by Lagrange P1 finite elements. This method is convergent for the
adjoint system (see [14]) and also for the state system (see [1]).

We begin by making a time discretization in which the convective terms in (6.1) and (6.4) are treated with
the characteristics method (cf. [14]). This method is based upon the equality

Dy

Dt
(x, t) =

∂y

∂t
(x, t) + �u · ∇y (6.8)

where
Dy

Dt
stands for the material derivative of y with respect to �u and t, that is

Dy

Dt
(x, t) =

∂

∂τ

[
y(X(x, t; τ), τ)

]∣∣∣
τ=t

. (6.9)

Here τ → X(x, t; τ) is the trajectory which follows the particle of fluid being at point x at time t. This function,
named characteristic, can be obtained as the solution of the following initial value problem

dX
dτ

= �u
(
X(x, t; τ), τ

)
X(x, t; t) = x. (6.10)
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We take N ∈ N, Δt = T
N and we define tn = nΔt. We denote by Xn(x) = X(x, tn+1; tn) the position at

instant tn of the particle that will be at point x in the instant tn+1 and by Y n+1(x) = X(x, tn; tn+1) the position
at instant tn+1 of the particle that is at point x in the instant tn. Then we make the approximations

∂ρ

∂t
+ �u · ∇ρ =

Dρ

Dt
� ρn+1(x) − ρn(Xn(x))

Δt
, (6.11)

−∂qk
∂t

− �u · ∇qk = −Dqk
Dt

� qn
k (x) − qn+1

k (Y n+1(x))
Δt

, k = 1, 2. (6.12)

This leads us to approximate the system (6.1)–(6.7) by the following semidiscrete problem: for k = 1, 2,
n = 0, 1, . . . , N − 1,

ρn+1 − ρn ◦Xn

Δt
− βΔρn+1 + κρn+1 =

1
hn+1

[mn+1
1 δ(x− P1) +mn+1

2 δ(x− P2)] in Ω (6.13)

∂ρn+1

∂n
= 0 on ∂Ω (6.14)

qn
k (x) − qn+1

k ◦ Y n+1

Δt
− qn

k div�un − βΔqn
k + κqn

k =
1
εk
χAk

ψ′(ρn − σk) in Ω (6.15)

β
∂qn

k

∂n
+ qn

k (�un · �n) = 0 on ∂Ω (6.16)

f ′
k(mn+1

k ) +
1

hn+1(Pk)
qn+1
k (Pk) = 0, (6.17)

where ρ0 = ρ0, qN
1 = qN

2 = 0, �un = �u(., tn), hn = �h(., tn) and mn
k = m∗

k(tn).

Now we approximate Ω by the polygonal set Ωh and choose an admissible triangulation τh of it with triangles
of diameter equal or less than h, such that the vertices on the boundary of Ωh also lie on the boundary of Ω.
Let {xj , j = 1, . . . , Nv} be the set of the vertices of τh. For each n = 0, 1, . . . , N − 1 we consider the variational
formulation of the problems (6.13)–(6.14) and (6.15)–(6.16). In spite of ρ could be not continuous near the
points P1, P2, . . . , PNE , we know that ρ ∈ Lr(0, T ;W 1,s(Ω)). Then, it seems reasonable to look for the fully
discrete solution ρn

h in a space Vh that would be an internal approximation ofW 1,s(Ωh). Taking into account that
any piecewise polynomial function in W 1,s(Ωh) is continuous, we take Vh = {vh ∈ C(Ω̄h), vh|T ∈ P1, T ∈ τh}
(note that Vh = {vh ∈ W 1,s(Ωh), vh|T ∈ P1, T ∈ τh}). Moreover, this choice provides good convergence
properties (cf. [1] and [14]).

Let ρ0
h ∈ Vh be an approximation of ρ0. We set qN

1h = qN
2h = 0 and we denote by Xn

h and Y n+1
h the

approximations of Xn and Y n+1 obtained by solving the system (6.10) with the backward Euler scheme. Thus,
system (6.13)–(6.14) is discretized by the following problem: find ρn+1

h ∈ Vh satisfying

∫
Ω

ρn+1
h − ρn

h ◦Xn
h

Δt
vh + β

∫
Ω

∇ρn+1
h · ∇vh + κ

∫
Ω

ρn+1
h vh =

mn+1
1

hn+1(P1)
vh(P1)

+
mn+1

2

hn+1(P2)
vh(P2), ∀vh ∈ Vh. (6.18)
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In the same way, (6.15)–(6.16) is discretized by the following problem: find qn
h ∈ Vh satisfying

∫
Ω

qn
kh − qn+1

kh ◦ Y n+1
h

Δt
vh +

∫
Ω

qn
kh�u

n · ∇vh +
∫

Ω

�un · (∇qn
kh)vh + β

∫
Ω

∇qn
kh · ∇vh + κ

∫
Ω

qn
khvh =

1
εk

∫
Ω

χAk
ψ′(ρn

h − σk)vh, ∀vh ∈ Vh. (6.19)

Let BVh
= {ṽ1, ṽ2, . . . , ṽNv} be the nodal basis of Vh, that is, ṽi(xj) = δij for all i, j = 1, 2, . . . , Nv. As it is

well known, equations (6.18) and (6.19) can be written in a matrix form by using the nodal basis. In this way,
the system (6.13)–(6.17) is approximated by the following fully discrete system:

Given ρ̂0
h = (ρh0(x1), ρh0(x2), . . . , ρh0(xNv ))t and q̂N

1h = q̂N
2h = (0, 0, . . . , 0)t, for k = 1, 2 and n = 0, 1, . . . ,

N − 1, find mn+1
k ∈ R, ρ̂n+1

h ∈ R
Nv , q̂n

kh ∈ R
Nv satisfying:

A1hρ̂
n+1
h −Bn

1hρ̂
n
h =

mn+1
1

hn+1(P1)
b1h +

mn+1
2

hn+1(P2)
b2h, (6.20)

An
2hq̂

n
kh −Bn+1

2h q̂n+1
kh = βn

kh, (6.21)

f
′
k(mn+1

k ) = − 1
hn+1(Pk)

Ckhq̂
n+1
kh , (6.22)

where, for i, j = 1, 2, . . . , Nv:

• ρ̂n+1
h = (ρn+1

h (x1), . . . , ρn+1
h (xNv ))t, q̂n+1

kh = (qn+1
kh (x1), . . . , qn+1

kh (xNv ))t

• (A1h)ij =
(

1
Δt

+ κ

)∫
Ω

ṽj ṽi + β

∫
Ω

∇ṽj · ∇ṽi

• (Bn
1h)ij =

1
Δt

∫
Ω

ṽj(Xn
h (x))ṽi

• (An
2h)ij =

( 1
Δt

+ κ
)∫

Ω

ṽj ṽi + β

∫
Ω

∇ṽj · ∇ṽi +
∫

Ω

ṽj(�un · ∇ṽi) +
∫

Ω

(�un · ∇ṽj)ṽi

• (Bn+1
2h )ij =

1
Δt

∫
Ω

ṽj(Y n+1
h (x))ṽi

• (bkh)i = ṽi(Pk)

• (βn
kh)i =

1
εk

∫
Ω

χAk
ψ′
(

Nv∑
l=1

(ρ̂n
h)lṽl − σk

)
ṽi

• Ckh is the matrix of order 1 × Nv of the linear mapping which gives the value qn+1
kh (Pk) from the

vector q̂n+1
kh .

These integrals are computed by quadrature formulae. In particular, to obtain Bn
1h and Bn+1

2h , we compute
previously the values of Xn

h and Y n+1
h at quadrature points. In general, they are not mesh points but the value

of ṽj at them can also be easily calculated.
System (6.20)–(6.22) is equivalent to a discretization of optimality system (6.1)–(6.7), but it is not the

optimality system of the discrete problem. In effect, with the previous discretization we could write the discrete
problem and then we could derive the corresponding optimality system. This alternative is also valid (with
advantages and disadvantages) and will be studied in a forthcoming paper.
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6.2. Solving the discrete system

Since βn
kh depends on ρ̂n

h in a nonlinear way, the discrete system (6.20)–(6.22) is fully coupled, square and
nonlinear. At first glance, its dimension is 3NNv + 2N .

Our goal is to compute the vector m̃ = (m̃1, m̃2)t ∈ R
2N , where m̃k = (m1

k, ...,m
N
k )t, k = 1, 2. This

vector gives us the values of the Nash equilibrium at the points of the time grid. We shall introduce a
function F : R

2N → R
2N in such a way that (6.20)–(6.22) be equivalent to F (m̃) = 0. This allows us to

reduce the dimension of the system. In order to define this function, we assume that each of the protected
zones Ā1 and Ā2 is formed by the union of some triangles of τh. So we can define the triangulation τz ⊂ τh
as τz = {T ∈ τz; ∪T∈τz = Ā1 ∪ Ā2}. Let {yi, i = 1, ..., Nz1} be the set of the vertices of τz lying in Ā1

and {yi, i = Nz1 + 1, ..., Nz} that of the vertices in Ā2. Since any vertex of τz is a vertex of τh, we have
yi = xl(i), i = 1, ..., Nz, where l is an injective mapping from {1, ..., Nz} into {1, ..., Nv}.

We now consider the following functions:

(1) Function G1

G1 : m̃ ∈ R
2N → c̃h ∈ R

Nz(N+1),

where c̃h = (ĉ0h, ĉ
1
h, ..., ĉ

N
h )t is defined by

(ĉnh)i = (ρ̂n
h)l(i), i = 1, ..., Nz. (6.23)

From the numerical point of view, mapping G1 consists of solving (6.20) and extracting from the
solution the components corresponding to the vertices of the triangulation lying on the protected zones.
Since (6.20) is a linear problem, the mapping G1 is affine. So the matrix DG1 ∈ MNz(N+1)×2N and
the vector G1(0) ∈ R

Nz(N+1) can be computed and stored once for all. Each time the vector G1(m̃) is
needed, it can be computed as

G1(m̃) = DG1m̃+G1(0).

(2) Function G2

G2 : c̃h ∈ R
Nz(N+1) → d̃h ∈ R

Nz(N+1),

with d̃h = (d̂0
h, d̂

1
h, ..., d̂

N
h )t defined by

(d̂n
h)i =

⎧⎪⎪⎨
⎪⎪⎩

1
3ε1

Uiψ
′((ĉnh)i − σ1) if 1 ≤ i ≤ Nz1

1
3ε2

Viψ
′((ĉnh)i − σ2) if Nz1 + 1 ≤ i ≤ Nz

(6.24)

where:
• Ui is the sum of the areas of the triangles contained in A1 having yi as a vertex for i = 1, 2, . . . , Nz1 ;
• Vi is the sum of the areas of the triangles contained in A2 having yi as a vertex for i = Nz1 +

1, . . . , Nz.
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Function G2 furnishes an approximation to the components of βn
kh, for k = 1, 2 and n = 0, 1, . . . , N ,

corresponding to the vertices lying on Ā1∪ Ā2. (More precisely, this approximation is obtained by using
the quadrature formula

∫
T

Ψ(x)dx � 1
3
area(T )(Ψ(aT,1) + Ψ(aT,2) + Ψ(aT,3))

for a generic triangle T whose vertices are denoted aT,1, aT,2 and aT,3.) From the numerical point
of view, once the vectors (U1, . . . , UNz1

) and (VNZ1+1, . . . , VNz) are known, the computation of G2(c̃h)
and the Jacobian matrix DG2(c̃h) can be carried out independently of the grid τh. Moreover, for
each c̃h ∈ R

Nz(N+1), the matrix DG2(c̃h) ∈MNz(N+1)×Nz(N+1) is diagonal and is given by

(DG2(c̃h))(n−1)NZ+i,(n−1)NZ+i =

⎧⎪⎪⎨
⎪⎪⎩

1
3ε1

Uiψ
′′((ĉnh)i − σ1) if 1 ≤ i ≤ Nz1

1
3ε2

Viψ
′′((ĉnh)i − σ2) if Nz1 + 1 ≤ i ≤ Nz

for n = 1, 2, . . . , N + 1.

(3) Function G3

G3 : d̃h ∈ R
Nz(N+1) → G3(d̃h) ∈ R

2N

defined by

G3(d̃h) =
[[ 1
hn+1(Pk)

Ckhq̂
n+1
kh

]N−1

n=0

]2
k=1

(6.25)

where q̂n+1
kh is the solution of (6.21) with right hand side

(βn
1h)i =

{
(d̂n

h)j if i = l(j), j = 1, . . . , Nz1

0 otherwise

(βn
2h)i =

{
(d̂n

h)j if i = l(j), j = Nz1 + 1, . . . , Nz

0 otherwise.

From the numerical point of view, it is worthwhile to remark that G3 is a linear mapping. So the
matrix DG3 ∈M2N×Nz(N+1) can be computed and stored once for all. Each time the vector G3(d̃h) is
needed, it can be computed as

G3(d̃h) = DG3d̃h.

Now we can define F : m̃ ∈ R
2N → F (m̃) ∈ R

2N by

F (m̃) = G3(G2(G1(m̃))) +
[[
f

′
k(mn+1

k )
]N−1

n=0

]2
k=1

. (6.26)

In this way, the optimality system (6.20)–(6.22) is equivalent to F (m̃) = 0. As we have quoted above, once the
matrices DG1 and DG3 and the vector G1(0) have been computed, the computation of F (m̃) and DF (m̃) can
be carried out independently of the grid and it is easy to perform. So we have solved numerically the system
F (m̃) = 0 by using a Newton-like method.
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Figure 3. Grid of Vigo’s estuary (Spain) used in the simulation.

7. Numerical results

In this section we present the numerical results obtained by solving the previous problem in a realistic
situation posed in the estuary of Vigo (Spain). The chosen grid and the location of discharged points and
protected areas can be seen in Figure 3. For the simulation we consider a complete tidal cycle (T = 12.4 h
in this latitude) and take the height and the velocity field obtained by solving the shallow water equations on
the same grid (a detailed description of these equations can be seen, for instance, in [6]). Moreover, we have
supposed null initial concentration of CF (ρ0 = 0) and we have considered different thresholds for CF in each
protected area (σ1 = 0.0003484, σ2 = 0.0005). Finally, the same purification cost function has been taken for
both plants:

f1(x) = f2(x) =

⎧⎪⎨
⎪⎩

100(150)3

x3−3(150)x2+3(150)2x , x ≤ 150

100, x > 150.

In order to observe the effect of penalization, we have carried out different experiments for different values of ε1
and ε2:

(1) First, we take ε1 = ε2 and we decrease its value to observe how the plants change their strategy of
purification. In Figures 4 to 9 we can see, for different penalizations, the optimal discharges at each point
(Figs. 4, 6 and 8) and the CF concentrations, corresponding to these discharges, in the neighborhood of
protected areas at final time of simulation (Figs. 5, 7 and 9). As it is expected, we observe that bigger
penalization (low values of ε1 = ε2) corresponds with less discharges and, consequently, with less CF
concentration.

(2) In the second experiment we have taken different penalizations for each plant. In contrast to the
previous case, we observe that, when the penalization is smaller in one plant (see Figs. 10 and 11),
the plant with more penalization (plant 2) must follow stronger strategy of purification (the discharges
must be smaller). The stronger penalization of plant 2 provokes that the other plant can carry out
slightly higher discharges than in the previous experiment (see Fig. 6 – same penalization – and 10 –
penalization stronger in plant 2).
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Figure 4. Optimal discharges m∗
1(t) (∗∗) and m∗

2(t) (oo) for ε1 = ε2 = 1.

Figure 5. CF concentration in the neighborhood of protected areas at final time for ε1 = ε2 = 1.
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Figure 6. Optimal discharges m∗
1(t) (∗∗) and m∗

2(t) (oo) for ε1 = ε2 = 10−3.

Figure 7. CF concentration in the neighborhood of protected areas at final time for ε1 = ε2 = 10−3.
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Figure 8. Optimal discharges m∗
1(t) (∗∗) and m∗

2(t) (oo) for ε1 = ε2 = 10−5.

Figure 9. CF concentration in the neighborhood of protected areas at final time for ε1 = ε2 = 10−5.
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Figure 10. Optimal discharges m∗
1(t) (∗∗) and m∗

2(t) (oo) for ε1 = 10−3, ε2 = 10−5.

Figure 11. CF concentration in the neighborhood of protected areas at final time for ε1 =
10−3, ε2 = 10−5.
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