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UNIQUE CONTINUATION PROPERTY NEAR A CORNER
AND ITS FLUID-STRUCTURE

CONTROLLABILITY CONSEQUENCES ∗

Axel Osses1 and Jean-Pierre Puel2

Abstract. We study a non standard unique continuation property for the biharmonic spectral prob-
lem Δ2w = −λΔw in a 2D corner with homogeneous Dirichlet boundary conditions and a supplemen-
tary third order boundary condition on one side of the corner. We prove that if the corner has an angle
0 < θ0 < 2π, θ0 �= π and θ0 �= 3π/2, a unique continuation property holds. Approximate controllability
of a 2-D linear fluid-structure problem follows from this property, with a control acting on the elastic
side of a corner in a domain containing a Stokes fluid. The proof of the main result is based in a power
series expansion of the eigenfunctions near the corner, the resolution of a coupled infinite set of finite
dimensional linear systems, and a result of Kozlov, Kondratiev and Mazya, concerning the absence of
strong zeros for the biharmonic operator [Math. USSR Izvestiya 34 (1990) 337–353]. We also show
how the same methodology used here can be adapted to exclude domains with corners to have a local
version of the Schiffer property for the Laplace operator.

Mathematics Subject Classification. 35B60, 35B37.

Received September 19, 2005. Revised January 27, 2006 and September 27, 2007.
Published online March 28, 2008.

1. Introduction and main results

Let us consider a circular sector of R
2 described in polar coordinates

G = {(r, θ), 0 < r < r0, 0 < θ < θ0} (1.1)

and centered at the origin. Let Ω be a Lipschitz bounded subset of R2 with a straight corner of angle θ0 at the
origin, that is by definition: if Br0 is the open ball of radius r0 centered at the origin, then

Ω ∩Br0 = G. (1.2)
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Let n be the outward normal vector to Ω and let us take the notations

Γ0 = {(r, 0), 0 < r < r0}, Γ1 = {(r, θ0), 0 < r < r0}. (1.3)

We are interested in the following local unique continuation property: prove (or disprove) that every weak
solution w ∈ H2(Ω) of the overdetermined spectral problem

Δ2w = −λΔw in Ω (1.4)

w =
∂w

∂n
= 0 on Γ0 ∪ Γ1 (1.5)

∂Δw
∂n

= 0 on Γ0 (1.6)

necessarily vanishes in Ω. Our main result is the following:

Theorem 1.1. Let Ω ⊂ R2 be a Lipschitz bounded subset with a straight corner of angle 0 < θ0 < 2π at the
origin and assume that

θ0 �= π, θ0 �= 3π
2
, (1.7)

then any weak solution w ∈ H2(Ω) of the problem (1.4)–(1.6) vanishes in Ω.

We have become interested in this kind of problems because they are related to the approximate controlla-
bility of some simplified fluid-structure models (see for instance [5] or [8]). Indeed, a non vanishing solution
of (1.4)–(1.6) is the stream function of an eigenfunction of the Stokes operator with Dirichlet boundary condi-
tions on Γ0 ∪ Γ1 and having constant pressure on Γ0. Theorem 1.1 says that such eigenfunction does not exist
under condition (1.7). From this fact, a fluid-structure approximate controllability result can be obtained in
the presence of a corner. In order to state the result, we consider the boundary of our domain Ω splitted into
an elastic and a rigid part, that is

∂Ω = ΓE ∪ ΓR, ΓE ∩ ΓR = ∅ (1.8)

and we introduce the Sobolev spaces

H = {z ∈ L2(Ω)2 | div z = 0 in Ω, z · n = 0 on ΓR}
L2

0(ΓE) = {ξ ∈ L2(ΓE) |
∫

ΓE

ξ dσ = 0}.

With these definitions the result reads as follows:

Theorem 1.2. Let Ω be as in Theorem 1.1. We suppose that ΓE and ΓR are such that Γ0 = ΓE ∩ Br0 ,
Γ1 = ΓR ∩ Br0 . Given T > 0, u0 ∈ L2(Ω), η0 ∈ H2

0 (ΓE) ∩ L2
0(ΓE) and η1 ∈ H1

0 (ΓE) ∩ L2
0(ΓE), let u, η be
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solutions of the fluid-structure system

∂u

∂t
− Δu+ ∇p = 0 in Ω × (0, T ) (1.9)

divu = 0 in Ω × (0, T ) (1.10)
u = 0 on ΓR × (0, T ) (1.11)

u =
∂η

∂t
n on ΓE × (0, T ) (1.12)

u(0) = u0 in Ω (1.13)
∂2η

∂t2
+ Bη = −σ(u, p)n · n+ h on ΓE × (0, T ) (1.14)

η(t) ∈ H2
0 (ΓE) ∩ L2

0(ΓE) a.e. in (0, T ) (1.15)

η(0) = η0,
∂η

∂t
(0) = η1 on ΓE , (1.16)

where B is a selfadjoint differential operator which is uniformly elliptic in H2
0 (ΓE). Then, for any uT ∈ L2(Ω),

ηT
0 ∈ H2

0 (ΓE) ∩ L2
0(ΓE) and ηT

1 ∈ H1
0 (ΓE) ∩ L2

0(ΓE) and ε > 0, there exists a function h ∈ L2(ΓE) such that

‖u(T ) − uT‖0,Ω + ‖η(T )− ηT
0 ‖2,Ω + ‖ηt(T ) − ηT

1 ‖1,Ω < ε.

Remark 1.1. In [8] we have shown the well posedness of problem (1.9)–(1.16) by a transposition method.

The presence of the corner is important to obtain the results above. In fact, the local unique continuation
property given in Theorem 1.1 is not true in a ball (see [5]).

The result of Theorem 1.1 was already known for right corners (θ0 = π/2), firstly for rectangular domains
where a direct spectral solution of (1.4)–(1.6) can be obtained (see [7]) and secondly for general domains using
the fact that for θ0 = π/2 the solution of (1.4)–(1.5) is analytic in G (see [8]). In this paper, we consider general
corners except for θ0 = 3π/2 (and θ0 = π which does not correspond to a corner of course) by considering that
w is not necessarily analytic but regular enough. We first prove in Section 2 that w is C∞ in G for r0 small
enough using regularity results for the biharmonic operator near boundary corners. Then, in Sections 3 and 4,
by using a non trivial generalization of the technique used in [8], we show that all the derivatives of w vanish at
the origin, i.e., w has a zero of infinite order. In Section 5 using a result of Kozlov, Kondratiev and Mazya [3],
we deduce that this is only possible if w vanishes.

The same method developed in the proof of Theorem 1.1 can be used to obtain some local unique continuation
properties for the Laplace operator in domains with corners, which correspond in fact to a kind of local Schiffer’s
conjecture (see for instance [1]).

More precisely, let Ω be an open subset of RN with unit exterior normal n and suppose that there exists an
eigenvalue λ and an eigenfunction w ∈ H1(Ω) satisfying

−Δw = λw in Ω (1.17)
∂w

∂n
= 0 on ∂Ω (1.18)

w = constant �= 0 on Γ0 ⊂ ∂Ω, (1.19)

for some Γ0 strictly included in ∂Ω. In this case we say that the domain Ω satisfies a local Schiffer property of
Neumann type. The conjecture can be stated as:
Conjecture. The only simply connected domain satisfying a local Schiffer property of Neumann type is a ball.
The analogous local Schiffer conjecture of Dirichlet type is obtained by interchanging the role of Neumann and
Dirichlet boundary conditions in (1.18)–(1.19).
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If Γ0 = ∂Ω or ∂Ω is analytic, then condition (1.19) holds on the whole boundary and we are in the case of
classical Schiffer conjectures. In this context, it is well known that the classical Schiffer conjecture of Neumann
type is equivalent to say that the ball is the only simply connected domain having the Pompeiu property [9].

The general case Γ0 �= ∂Ω is different and, to our knowledge, a relationship between the local Schiffer
property of Neumann type and some kind of restricted Pompeiu property is not known. But, there is another
characterization that admits a local version. Indeed, in the case of simple eigenvalues, we can rewrite the local
Schiffer property of Neumann type as an extremal Neumann eigenvalue problem under volume constraint as
in [1]. That is, if λn is a simple Neumann eigenvalue of (1.17)–(1.18) associated to a normalized eigenvector wn

in L2(Ω), then

dλ(Ω; v) =
∫

Γ0

(v · n)

(
λn w

2
n −

∣∣∣∣∂wn

∂n

∣∣∣∣2
)

dσ

gives its derivative with respect to the domain for a regular deformation field v which vanishes in ∂Ω \Γ0. The
characterization is that (λn, wn) is a solution of (1.17)–(1.19) iff there exists a constant c such that

dλn(Ω; v) = c

∫
Γ0

(v · n) dσ, for all deformation v with v|∂Ω\Γ0 = 0.

The proof of this equivalence is exactly the same as in [1], Proposition 2.2, after replacing ∂Ω by Γ0.
Here we prove a partial answer to the previous local Schiffer conjecture of Neumann type in the case N = 2:

Theorem 1.3. Let Ω be as in Theorem 1.1. If there exists a pair (λ,w) ∈ R ×H1(Ω) satisfying (1.17), (1.18)
and (1.19), then w necessarily vanishes in Ω.

The proof of this result is given in Section 6.
In the case Γ0 = ∂Ω or ∂Ω analytic, Theorem 1.3 becomes a particular case of a more general result due to

Williams [10], saying that a Lipschitz domain with a boundary which is not analytic everywhere does not have
the Pompeiu property.

2. Local regularity at the origin

We recall the following Hm+3-regularity result for the biharmonic operator near a corner (see Grisvard [2],
Th. 7.2.2.3 and Rem. 7.2.2.4):

Theorem 2.1 (Grisvard [2]). Given a corner G∞ = {(r, θ), r > 0, 0 < θ < θ0}, f ∈ Hm(G∞), m ≥ 0, if w is
a bounded support solution of

Δ2w = f in G∞, w ∈ H2
0 (G∞) (2.1)

then
w = wr + wsη (2.2)

where wr ∈ Hm+3(G∞), η is a C∞(G∞) cut-off function equal to 1 near the origin and independent of m and

ws =
∑

−(m+1)≤�pk<0

r1+ipk ak upk
(θ) +

∑
−(m+1)≤�q�<0

r1+iq�

(
b� uq�

(θ) + c�

(
vq�

(θ) + i(ln r)uq�
(θ)
))

, (2.3)

where ak, b�, c� are complex constants and pk, q� are respectively the simple and double roots τ of

sinh2(τθ0) = τ2 sin2(θ0) (2.4)
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with imaginary part in [−(m+ 1), 0) and excluding the root −i if tan θ0 �= θ0. The functions upk
, uq�

, vq�
can

be chosen uniquely prescribed as solutions of the linear fourth order ordinary differential equations

u
(iv)
τ + 2(1 − τ2)u′′τ + (1 + τ2)2 uτ = 0 in (0, θ0) (2.5)

uτ (0) = uτ (θ0) = u′τ (0) = u′τ (θ0) = 0, ‖uτ‖L2(0,θ0) = 1, (2.6)

corresponding both to τ = pk and τ = q� and

v
(iv)
τ + 2(1 − τ2) v′′τ + (1 + τ2)2 vτ = 4τu′′τ − 4τ(1 + τ2)uτ in (0, θ0) (2.7)

vτ (0) = vτ (θ0) = v′τ (0) = v′τ (θ0) = 0, (uτ , vτ )L2(0,θ0) = 0, (2.8)

corresponding only to τ = q�.

Remark 2.1. A classical Hm+4 regularity result holds for a more restrictive set of angles θ0. More precisely,
if in the previous theorem, all pk and ql have imaginary part different from −(m + 2) then wr ∈ Hm+4(G∞)
and an analogous decomposition as (2.3) holds with sums over imaginary part in the range [−(m+ 2), 0). It is
important to use here the Hm+3 regularity result to avoid unnecessary restrictions on θ0.

First we will prove the following regularity result:

Theorem 2.2. Let Ω ⊂ R2 be a Lipschitz bounded domain with a straight corner of angle 0 < θ0 < 2π at the
origin, then any weak solution w ∈ H2(Ω) of the problem (1.4)–(1.6) is C∞ at the origin.

In order to prove Theorem 2.2 we will need some extra auxiliary lemmas. The first one is obtained by
localization in an standard way as in [2].

Lemma 2.1. If w ∈ H2(Ω) is solution of (1.4)–(1.5) then w ∈ C∞(G∞ \Bδ), ∀δ > 0.

The second one concerns some particular properties of the singular part of the solution:

Lemma 2.2. (i) The functions r1+ipk , r1+iq� , r1+iq� ln r appearing in (2.3) are linearly independent.
(ii) The singular component ws given by the expansion (2.3) is a biharmonic function.

Proof. (i) It is clear, by definition, that the roots pk, q� of the characteristic equations are all different so
the above functions are clearly independent. (ii) The fact that Δ2ws = 0 is implicitly given by construction
in [2], Section 7.2. Nevertheless, we give here an explicit proof in order to be self-contained. Let r = et and
zs(t, θ) = e−tws(et, θ). We have

Δ2ws = e−3tP (Dt, Dθ)zs

where Dt, Dθ stand for the derivatives with respect to t and θ respectively and the differential operator P is
given by

P (Dt, Dθ) = (D2
t − 1)2 + 2(D2

t + 1)D2
θ +D4

θ .

From (2.3), it follows that zs is a linear combination of the functions

eiτtuτ and eiτt(vτ + ituτ),

where τ is a simple or double root of (2.4) with imaginary part in [−(m + 1), 0), excluding the root −i if
tan θ0 �= θ0. The functions uτ , vτ are the unique solutions of (2.5), (2.6) and (2.7), (2.8) respectively. If

p(τ,Dθ) = P (iτ,Dθ) = (τ2 + 1)2 + 2(1 − τ2)D2
θ +D4

θ
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it is easy to verify that

P (Dt, Dθ)eiτtuτ = eiτtp(τ,Dθ)uτ = 0

P (Dt, Dθ)eiτt(vτ + ituτ ) = eiτt
(
it p(τ,Dθ)uτ + p(τ,Dθ)vτ + ∂

∂τ p(τ,Dθ)uτ

)
= 0,

where we have used (2.5) and (2.7). We conclude that Δ2ws = 0. �

Lemma 2.3. Let τ be a simple or double root of (2.4) with imaginary part in [−(m+1), 0), excluding the root −i
if tan θ0 �= θ0. Let uτ be the corresponding solution of (2.5) with boundary conditions (2.6). If u′′′τ (0) = 0 then
uτ is zero.

Proof. The cases τ = 0, τ = +i are not allowed since the imaginary part of τ is strictly negative. So, the only
cases to consider are: (i) τ �= ±i, τ �= 0 if tan θ0 �= θ0 or (ii) τ = −i if tan θ0 = θ0.

In case (i), the characteristic values of (2.5) are τ + i, τ − i, −τ − i, −τ + i, so the solution is of the form
uτ = A exp((τ + i)θ) + B exp((τ − i)θ) + C exp((−τ − i)θ) +D exp((−τ + i)θ). In case (ii), the characteristic
values of (2.5) are 0 (double) and 2i, −2i, so the solution is of the form uτ = A+Bθ+C exp(2iθ)+D exp(−2iθ).

In both cases, and for the boundary conditions (2.6), the corresponding linear homogeneous system associated
to the coefficients A,B,C and D has vanishing determinant, since of course τ verifies (2.4) to have subspaces of
nontrivial solutions. Indeed, in case (i) the determinant is Δ1 = 4(sinh(τθ0) − τ2 sin2(θ0)) which vanishes due
to (2.4) and in case (ii), it is Δ2 = 16i sin(θ0)(θ0 cos θ0 − sin θ0) which vanishes since tan θ0 = θ0.

Now, if we add the overdetermined condition u′′′τ (0) = 0 and we replace the first row of the corresponding
matrices associated to the previous linear homogeneous system with this condition, we obtain the non vanishing
determinants Δ̃1 = 16τ(1 + τ2)(sinh(2τθ0) + τ sin(2θ0)) or using (2.4) Δ̃1 = 32τ(1 + τ2) sinh(τθ0)(cosh(τθ0) ±
cos θ0) in the first case and Δ̃2 = −4 sin(θ0) in the second case.

In both cases we obtain the trivial solution, i.e. A = B = C = D = 0. �

The other two lemmas are related to regularity properties.

Lemma 2.4. Let s be a non-negative real number, α ∈ C, β ∈ {0, 1} and ϕ ∈ C∞([0, θ0]), and let η be a C∞

cut-off function equal to one near the origin. Let D = G∞ (in this case we set N = 2) or D = ∂G∞ ∩ {θ = 0}
(in this case we set N = 1). Then

rα (ln r)β ϕ(θ)η|D ∈ Hs(D) ⇔
((

α > s− N

2

)
or (α ∈ N and β = 0) or ϕ|D = 0

)
.

Proof. Let V be a neighborhood of the origin where η = 1 in such a way to consider the Hs regularity in D∩V
in which case we can drop off the function η. If s = k is a non-negative integer, then Dγ(rα(ln r)βϕ(θ)|D∩V )
for |γ| ≤ k, is a linear combination of functions of the form rα−m(ln r)β and rα−m for 0 ≤ m ≤ k when N = 1
or rα−m(ln r)βψ(θ) and rα−mφ(θ), where 0 ≤ m ≤ k and ψ and φ are C∞([0, θ0]) when N = 2. This occurs
except for the case α ∈ N and β = 0 when rα is a polynomial in r or in the trivial case where ϕ|D∩V = 0.
Assuming we are not in these cases, the function is in Hs(D ∩ V ) if and only if 2(α− k) +N > 0, which gives
the characterization of the lemma.

For non-integer s this follows as in [2], Theorem 1.4.5.3, by an embedding method due to Babuška. Take a
non-negative integer k ≤ s and p ≥ 2 such that k − N

p = s − N
2 . Since α ≤ k − N

p then the functions are
not in W k

p (D ∩ V ), except if α ∈ N and β = 0 or ϕ|D∩V = 0, and the Sobolev imbedding of Hs(D ∩ V ) into
W k

p (D ∩ V ) gives the result. �

Lemma 2.5 (see [4]). Let Ω be a Lipschitz domain. If u ∈ H1(Ω) and Δu ∈ L2(Ω) then ∂u
∂n ∈ H−1/2(∂Ω).

Let us now proceed with the proof of Theorem 2.2. Let Ω, r0, G, Γ0, Γ1 be given by (1.1), (1.2) and (1.3).
First of all, we will localize problem (1.4)–(1.5)–(1.6) near the origin. Let ξ = ξ(r) be a C∞ cut-off function
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such that ξ = 1 for 0 < r < 1
3r0 and ξ = 0 for r > 2

3r0. By defining w̃ = ξ w if (r, θ) ∈ G and w̃ = 0 if
(r, θ) ∈ G∞ \G, it is easy to see that it satisfies

w̃ ∈ H2
0 (G∞) and Δ2w̃ = −λΔw̃ + h,

where

h = λΔξw + 2λ∇ξ · ∇w + 2∇ξ · ∇Δw + 2ΔξΔw + 2Δ(∇ξ · ∇w) + 2∇Δξ · ∇w + Δ2ξ w.

Notice that h ∈ C∞(G∞) and vanishes for r < r0/3 since ∇ξ vanishes in this domain and w is C∞ out of this
region (Lem. 2.1). Therefore, we can apply Theorem 2.1 with m = 0 to the function w̃ since it is a compactly
supported H2

0 (G∞) solution of

Δ2w̃ = −λΔw̃ + h = f ∈ L2(G∞).

Therefore, we have the decomposition w̃ = wr + wsη, where wr ∈ H3(G∞), η is a C∞(G∞) cut-off function
equal to 1 near the origin (say, for r < r1 < r0/3) and

ws =
∑

−1≤�pk<0

r1+ipkakupk
(θ) +

∑
−1≤�q�<0

r1+iq� (bl uq�
(θ) + cl (vq�

(θ) + i(ln r)uq�
(θ))) . (2.9)

The idea is to prove that all the complex coefficients in the previous expansion vanish, except possibly for those
ak, b� associated to roots pk, q� such that 1+ ipk or 1+ iq� is a non-negative integer. In fact, we will exclude the
H3(G∞) terms associated to these roots from ws by supposing they are already included in the regular part wr .

Notice that Δ2ws = 0 (see Lem. 2.2) and therefore Δ2(ws η) = 0 for r < r1. Then Δ2wr = Δ2w̃−Δ2(wsη) =
f ∈ L2(G∞ ∩Br1). Also Δwr ∈ H1(G∞ ∩Br1) since wr ∈ H3(G∞ ∩Br1), so by Lemma 2.5 we have

∂Δwr

∂n
∈ H−1/2((Γ0 ∪ Γ1) ∩Br1).

The space H−1/2((Γ0 ∪ Γ1) ∩ Br1) can not be restricted to H−1/2(Γ0 ∩ Br1). We are only interested in the
regularity of ∂Δwr

∂n near the origin. In order to avoid the other part of the boundary of Γ0 ∩Br1 we use another
C∞ cut-off function η1 equal to one for r < r1/3 and vanishing for r > 2r1/3. We claim that

η1
∂Δwr

∂n
∈
(
H

1/2
00 (Γ0 ∩Br1)

)′
. (2.10)

Indeed, the functions of H1/2
00 (Γ0 ∩ Br1) can be extended by zero continuously to H1/2((Γ0 ∪ Γ1) ∩ Br1). For

the definition of the trace space H1/2
00 see [4]. One characterization of this space is

f ∈ H
1/2
00 (Γ0 ∩Br1) ⇔ f ∈ H1/2(Γ0 ∩Br1) and r−1/2(r − r1)−1/2f ∈ L2(Γ0 ∩Br1).

Using functions with behavior like 1
ln r near r = 0, which belong to H1/2

00 , we can show that

rα �∈
(
H

1/2
00 (Γ0 ∩Br1)

)′
⇔ α ≤ −1. (2.11)

Since w̃ = w for r < r1, the overdetermined boundary condition (1.6) also holds for w̃ if r < r1 and therefore

η1
∂Δws

∂n
= η1

∂Δw̃
∂n

− η1
∂Δwr

∂n
= −η1 ∂Δwr

∂n
∈
(
H

1/2
00 (Γ0 ∩Br1)

)′
.
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Using the formula for the Laplacian in polar coordinates we compute

∂Δ(f(r)g(θ))
∂n

=
1
r

∂

∂θ

((
1
r
f ′ + f ′′

)
g +

1
r2
fg′′

)
=

1
r

(
1
r
f ′ + f ′′

)
g′ +

1
r3
fg′′′

and if g′(0) = 0 we obtain
∂Δ(f(r)g(θ))

∂n

∣∣∣∣
θ=0

=
1
r3
fg′′′(0).

Using this in (2.9) and recalling the boundary conditions (2.6) and (2.8) we obtain on Γ0 for r < r1/3

∂Δws

∂n
(r) =

∑
−1≤�pk<0

r−2+ipkaku
′′′
pk

(0) +
∑

−1≤�q�<0

r−2+iq�
(
bl u

′′′
q�

(0) + cl
(
v′′′q�

(0) + i(ln r)u′′′q�
(0)
))
.

From the previous expansion and the characterization (2.11) we verify that

η1
∂Δws

∂n
�∈
(
H

1/2
00 (Γ0 ∩Br1)

)′
,

since the real part α of the powers of r satisfies

α ≤ −2 + 1 = −1.

From (2.10) the only possibility is

η1
∂Δws

∂n

∣∣∣∣
Γ0

= 0.

We recall that the functions
r−2+ipk , r−2+iq� , r−2+iq� ln r

are linearly independent, therefore we get

ak u
′′′
pk

(0) = 0 ∀pk

clu
′′′
q�

(0) = 0 ∀q�
blu

′′′
q�

(0) + clv
′′′
q�

(0) = 0 ∀q�.

From the first equation, if ak �= 0 for some k then u′′′pk
(0) = 0. This is an overdetermined condition for (2.5)–

(2.6), which would imply upk
= 0. But this is a contradiction due to the normalized condition appearing in (2.6).

Then ak = 0 for all k. Now, from the second equation, if cl �= 0 for some l then u′′′q�
(0) = 0. This is also an

overdetermined condition for (2.5)–(2.6) and would imply u′′′q�
= 0, which gives a contradiction. Therefore cl = 0

for all l. Finally, from the third equation, if bl �= 0 then u′′′q�
(0) = 0 and this gives again a contradiction. Notice

that the function vq�
, which is solution of a non homogeneous equation (2.7)–(2.8), does not intervene in this

analysis.
Consequently

ws = 0

and therefore
w̃ = wr ∈ H3(G ∩Br1).
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The next steps are easier. Let us suppose now that w̃ ∈ Hm+2(G∞) for somem ≥ 1. Then we apply Theorem 2.1
to obtain that w̃ = wr + wsη with wr ∈ Hm+3(G∞) and ws of the form (2.3). With the same argument as
before, it is easy to verify that

∂Δws

∂n
=
∂Δw̃
∂n

− ∂Δwr

∂n
= −∂Δwr

∂n
∈ Hm−1/2(Γ0 ∩Br1).

But

rα(ln r)βη �∈ Hm−1/2(Γ0 ∩Br1) if α ≤ m− 1, β = 0 or 1,

by Lemma 2.4, except if α is a non-negative integer and β = 0 in which case the functions are Hm+3 and
they are already included in wr. In the present case, the real part of the powers of r in ∂Δws

∂n are given by
α = (1 + iτ − 3) = −2 −�τ , τ = pk or τ = q� and they satisfy

1 < α ≤ m− 1

since �τ ∈ [−(m+ 1), 0). Therefore

∂Δws

∂n
= 0 on Γ0 ∩Br1

and the same argument of linear independence as before shows that this is possible only if ws vanishes. Then

w̃ = wr ∈ Hm+3(G∞).

So we obtain that w is in Hm+3(G∞) for all m ≥ 0 and this gives the C∞ regularity at the origin. This finishes
the proof of Theorem 2.2.

3. Power series expansion

We choose Cartesian axes (x, y) centered in r = 0, θ = 0 where the edge Γ0 of G coincides with the horizontal
axis. Since w ∈ C∞(G ∩Bρ) for some ρ > 0, for (x, y) in a neighborhood of (0, 0), we can write for each k ≥ 0

w(x, y) =
∑

i,j≥0
i+j≤k+4

aij x
iyj + o(xk+4 + yk+4). (3.1)

First derivatives give:

∂w

∂x
=

∑
i≥1,j≥0
i+j≤k+4

i aij x
i−1 yj + o(xk+3 + yk+3)

∂w

∂y
=

∑
i≥0,j≥1
i+j≤k+4

j aij x
i yj−1 + o(xk+3 + yk+3)

Δw =
∑

i≥2,j≥0
i+j≤k+4

i(i− 1) aij x
i−2 yj +

∑
i≥0,j≥2
i+j≤k+4

j(j − 1) aij x
i yj−2 + o(xk+2 + yk+2),
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from where

∂w

∂x
=

∑
i,j≥0

i+j≤k+3

(i+ 1) ai+1,j x
i yj + o(xk+3 + yk+3) (3.2)

∂w

∂y
=

∑
i,j≥1

i+j≤k+3

(j + 1) ai,j+1 x
i yj + o(xk+3 + yk+3) (3.3)

Δw =
∑

i,j≥0
i+j≤k+2

(
(i+ 2)(i+ 1) ai+2, j + (j + 2)(j + 1)ai,j+2

)
xi yj + o(xk+2 + yk+2) (3.4)

Δ2w =
∑

i,j≥0
i+j≤k

(
(i+ 4)(i+ 3)(i+ 2)(i+ 1) ai+4,j + 2(i+ 2)(i+ 1)(j + 2)(j + 1)ai+2,j+2

+ (j + 4)(j + 3)(j + 2)(j + 1)ai,j+4

)
xi yj + o(xk + yk). (3.5)

Note that the expansions (3.1) to (3.5) are valid for all k ≥ 0. We can then rewrite equation (1.4) by identifying
coefficients in (3.4)–(3.5) as

(i+ 4)!j! ai+4,j + 2(i+ 2)!(j + 2)! ai+2,j+2 + i!(j + 4)! ai,j+4 =

− λ
(
(i+ 2)!j! ai+2,j + i!(j + 2)! ai,j+2

)
, ∀i, j ≥ 0. (3.6)

Boundary conditions (1.5)–(1.6) on Γ0 are also equivalent to

ai,0 = 0, ai,1 = 0, ai,3 = 0, ∀i ≥ 0. (3.7)

Now we introduce a parameter α = tan θ0 such that

(x, y) ∈ Γ1 implies α = tan θ0. (3.8)

Note that, from hypothesis (1.7) and since the case θ0 = π/2 was specially treated in [8], we can assume that

α �= 0, α �= ±∞.

The first boundary condition (1.5) on Γ1 becomes

w(x, αx) =
∑

i,j≥0
i+j≤k+4

aij α
j xi+j + o(xk+4)

=
k+4∑
�=0

( ∑
i,j≥0
i+j=�

aij α
j

)
x� + o(xk+4)

= 0

and then ∑
i,j≥0
i+j=k

aij α
j = 0 ∀k ≥ 0. (3.9)
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Since on Γ1 the normal is n = (α,−1)/
√

1 + α2 and the tangent τ = (1, α)/
√

1 + α2 then

∂w

∂n
=

1√
1 + α2

(
α
∂w

∂x
− ∂w

∂y

)
(3.10)

∂w

∂τ
=

1√
1 + α2

(
∂w

∂x
+ α

∂w

∂y

)
= 0, (3.11)

and the other boundary condition (1.5) on Γ1 can be replaced by

∂w

∂x
(x, αx) =

∑
i,j≥0

i+j≤k+3

(i+ 1) ai+1,j α
j xi+j + o(xk+3)

=
k+3∑
�=0

( ∑
i,j≥0
i+j=�

(i+ 1) ai+1,j α
j

)
x� + o(xk+3)

= 0

that is ∑
i,j≥0
i+j=k

(i+ 1) ai+1,j α
j = 0 ∀k ≥ 0. (3.12)

Now we have replaced equations (1.4)–(1.6) by (3.6)–(3.12).
The idea is first to show that

ai,2k+1 = 0 ∀k ≥ 0, ∀i ≥ 0. (3.13)

This is easily shown by induction since from (3.7) ai,1 = ai,3 = 0, ∀i ≥ 0 and if we suppose that ai,2k−3 =
ai,2k−1 = 0 equation (3.6) for j = 2k − 3 gives

i!(2k + 1)! ai,2k+1 = 0

from which we deduce (3.13).
The hardest technical part is to show that

ai,2k = 0 ∀k ≥ 0, ∀i ≥ 0, (3.14)

and this is given in the next section.

4. An infinite set of finite dimensional systems

Let us show (3.14) by induction. From (3.7) we know that ai,0 = 0, ∀i ≥ 0 and from (3.13) we know that
ai,2k+1 = 0, ∀k ≥ 0. Using (3.6) with both i+ j = k = 2, 3 we obtain

a0,2α
2 + a1,1α+ a2,0 = 0 ⇒ a0,2 = 0 (4.1)

a0,3α
3 + a1,2α

2 + a2,1α+ a3,0 = 0 ⇒ a1,2 = 0. (4.2)

Now, suppose that

a2k+2,0 = a2k,2 = . . . = a2,2k = a0,2k+2 = 0 (index sum 2k + 2) (4.3)
a2k+1,0 = a2k−1,2 = . . . = a3,2k−2 = a1,2k = 0 (index sum 2k + 1) (4.4)
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let us prove that

a2k+4,0 = a2k+2,2 = . . . = a2,2k+2 = a0,2k+4 = 0 (index sum 2k + 4) (4.5)
a2k+3,0 = a2k+1,2 = . . . = a3,2k = a1,2k+2 = 0 (index sum 2k + 3). (4.6)

Taking i = 2k, j = 0, i = 2k − 2, j = 2, . . ., i = 2, j = 2k − 2, i = 0, j = 2k in order to have a zero right
hand side in (3.6) (index sum 2k+ 2), if we also take into account (3.7) we obtain the following system of k+ 1
equations which do not depend on λ explicitly:

2(2k + 2)!2!a2k+2,2 + (2k)!4!a2k,4 = 0 (4.7)
(2k + 2)!2!a2k+2,2 + 2(2k)!4!a2k,4 + (2k − 2)!6!a2k−2,6 = 0 (4.8)

...
4!2k!a4,2k + 2 · 2!(2k + 2)!a2,2k+2 + 0!(2k + 4)!a0,2k+4 = 0. (4.9)

This system has k + 2 unknowns, i.e. the vector:

Ak+2 = (a2k+2,2, a2k,4, . . . , a2,2k+2, a0,2k+4).

In fact the system is overdetermined by the additional two conditions (3.9) and (3.12). More precisely, if we
take i+ j = 2k + 4 in (3.9) and i+ j = 2k + 3 in (3.12) we respectively obtain

α2a2k+2,2 + α4a2k,4 + . . .+ α2k+2a2,2k+2 + α2k+4a0,2k+4 = 0 (4.10)

(2k + 2)α2a2k+2,2 + (2k)α4a2k,4 + . . .+ 2α2k+2a2,2k+2 = 0. (4.11)

If we introduce the variable

β =
1
α

−∞ < β < +∞
it is clear that Ak+2 satisfies simultaneously the systems

Mk+2Ak+2 = 0, Nk+2Ak+2 = 0, (4.12)

where Mk+2 and Nk+2 are both square k+2×k+2 matrices, Mk+2 including the coefficients of (4.7) and (4.10)
and Nk+2 including the coefficients of (4.7) and (4.11), i.e.

Mk+2 =

⎛⎜⎜⎜⎜⎜⎝
2(2k + 2)!2! (2k)!4! 0 . . . . . . 0 0
(2k + 2)!2! 2(2k)!4! (2k − 2)! 0 . . . 0 0

...
. . .

...
. . .

...
. . .

...
0 . . . . . . 0 4!(2k)! 2 · 2!(2k + 2)! (2k + 4)!

β2k+2 β2k . . . . . . β4 β2 1

⎞⎟⎟⎟⎟⎟⎠
and

Nk+2 =

⎛⎜⎜⎜⎜⎜⎝
2(2k + 2)!2! (2k)!4! 0 . . . . . . 0 0
(2k + 2)!2! 2(2k)!4! (2k − 2)! 0 . . . 0 0

...
. . .

...
. . .

...
. . .

...
0 . . . . . . 0 4!(2k)! 2 · 2!(2k + 2)! (2k + 4)!

(2k + 2)β2k+2 (2k)β2k . . . . . . 4β4 2β2 1

⎞⎟⎟⎟⎟⎟⎠ .
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We have to prove that

Dk+2(β) =
detMk+2

(2k + 2)!2!(2k)!4! . . .2!(2k + 2)!0!(2k + 4)!
, (4.13)

Ek+2(β) =
detNk+2

(2k + 2)!2!(2k)!4! . . .2!(2k + 2)!0!(2k + 4)!
(4.14)

can not vanish simultaneously. It is clear that

Dk+2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1
1 2 1

1 2 1
. . . . . . . . .

1 2 1
1 2 1

β2k+2

(2k+2)!2!
β2k

(2k)!4! . . . . . . . . . β2

2!(2k+2)!
1

0!(2k+4)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

Ek+2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1
1 2 1

1 2 1
. . . . . . . . .

1 2 1
1 2 1

(2k+2)β2k+2

(2k+2)!2!
(2k)β2k

(2k)!4! . . . . . . . . . 2β2

2!(2k+2)!
0

0!(2k+4)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

From the formula for the derivative of a determinant it is clear that

Ek+2 = β
∂

∂β
Dk+2,

so assuming that for some parameter β0 we have

Dk+2(β0) = 0, Ek+2(β0) = 0

this implies that

Dk+2(β0) = 0,
∂

∂β
Dk+2(β0) = 0,

that is to say, β0 is a double root of Dk+2.
In fact Dk+2 can be calculated explicitly by developing the determinant (4) with respect to the last column,

giving the following recursive formula

Dk+2 =
1

0!(2k + 4)!
Δk+1 − β2Dk+1,

where

Δk+1 =

∣∣∣∣∣∣∣∣∣∣∣

2 1
1 2 1

. . . . . . . . .
1 2 1

1 2

∣∣∣∣∣∣∣∣∣∣∣
= k + 2.
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From the above recurrence, it is possible to deduce that

Dk+2 =
k+1∑
j=0

(−1)jβ2j(k + 2 − j)
(2j)!(2(k − j) + 4)!

=
1

2(2k + 3)!
Re(1 + iβ)2k+3. (4.15)

Notice that Dk+2(β) is a polynomial of degree 2k + 2 in β. If

ω = arg(1 + iβ), ω ∈
(
−π

2
,
π

2

)
,

then the number of different roots ofDk+2 corresponds to the number of different arguments in
(−π

2 ,
π
2

)
solutions

of the equation
(2k + 3)ω =

π

2
+ �π, � ∈ Z.

These different solutions are {
w� =

π

2(2k + 3)
(1 + 2�), −(k + 1) ≤ � ≤ k

}
, (4.16)

that is, exactly 2k + 2 different values in
(−π

2 ,
π
2

)
. Therefore, all the roots of Dk+2 are distinct and they are

not double roots.
From the above analysis, the only solution of systems (4.12) is the trivial one:

Ak+2 = (a2k+2,2, a2k,4, . . . , a2,2k+2, a0,2k+4) = (0, 0, . . . , 0, 0).

With an analogous technique, it is possible to show that

Bk+2 = (a2k+1,2, a2k−1,4, . . . , a3,2k+2, a1,2k+4) = (0, 0, . . . , 0, 0).

This shows that all the coefficients of the Taylor expansion of w solution of (1.4)–(1.6) near the origin are zero,
so that the origin is a zero of infinite order of w.

5. A zero of infinite order

We use the following result of Kozlov, Kondratiev and Mazya about the zeros of infinite order for the
biharmonic operator. First we introduce the space V k

n (G) as the space of functions defined in G for which

r(−k+|α|+n)Dαw ∈ L2(G), |α| ≤ k.

Theorem 5.1 ([3]). Suppose θ0 �= π and θ0 �= 2π and w ∈ V 4
0 (G) is solution of the differential inequality

|Δ2w| ≤ C

r2

(
|Δw| + 1

r
|w|
)

for r < r0, 0 < θ < θ0 (5.1)

w(r, 0) = w(r, θ0) = ∂w
∂θ (r, 0) = ∂w

∂θ (r, θ0) = 0 for r < r0 (5.2)

and suppose also that
w ∈ V 4

n (G), ∀n ≤ −1 (5.3)
then w = 0 in G ∩Br0 .
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It is clear that if (λ,w) is solution of (1.4)–(1.5) and λ is fixed, then w satisfies (5.1)–(5.2) for r0 small enough.
From the previous sections we know that w ∈ C∞(G ∩ Bρ) for some ρ > 0 and that all the derivatives of w
vanish at the origin, which implies that (5.3) holds. We then necessarily have

w = 0 in G ∩Bρ,

for some ρ > 0 sufficiently small. Finally, by standard unique continuation we deduce that w vanishes in G.
This ends the proof of Theorem 1.1.

6. Non standard unique continuation for the Laplace operator in a corner

This section gives the proof of Theorem 1.3 which essentially says that domains with corners do not have
the local Schiffer property of Neumann type defined in the Introduction. For this aim, we prove a non standard
local unique continuation for solutions of (1.17)–(1.19) in a corner G of the form (1.1) forming an angle θ0 and
verifying (1.7).

The proof follows the same steps of the proof of Theorem 1.1, but it is simpler. First, from classical results
of elliptic regularity near corners (see [2,6]), it is possible to prove that the solution w of (1.17)–(1.19) is in fact
C∞ at the origin. This is done as in Section 2 after proving that the eventually singular part of the Neumann
eigenfunctions vanishes thanks to the overdetermined condition (1.19). We have to use a Hm+2−εm , regularity
result with εm > 0 chosen in order to avoid corner’s angle restrictions and after a bootstrap argument to obtain
the C∞ regularity at the origin. Then we expand w in finite series near the origin of the corner for each k ≥ 0

w(x, y) =
∑

i,j≥0
i+j≤k+2

aij x
iyj + o(xk+2 + yk+2). (6.1)

As done in Section 3, and introducing the slope α = tan θ0 of

Γ1 = (∂Ω \ Γ0) ∩Br0 ,

(Br0 from Th. 1.3) equations (1.17)–(1.19) can be rewritten as

(i+ 2)(i+ 1) ai+2,j + (j + 2)(j + 1) ai,j+2 = −λaij ∀i, j ≥ 0 (6.2)∑
i,j≥0
i+j=k

αj
(
α(i+ 1) ai+1,j − (j + 1) ai,j+1

)
= 0 ∀k ≥ 0, (6.3)

ai,1 = 0 ∀i ≥ 0 (6.4)
a0,0 = c, ai,0 = 0 ∀i ≥ 1 (6.5)

where c �= 0 is the constant appearing in condition (1.19). Condition (6.2) comes from formula (3.4) and
condition (6.3) is deduced from the expression for the normal derivative on Γ1 given by (3.10) and partial
derivatives (3.2)–(3.3). It is easy to see that from the above conditions we necessarily have c = 0. Indeed,
from (6.2), (6.4) and (6.5) it is easy to see that all coefficients aij vanishes, except eventually for

a0,0 = c and a0,2k ∀k ≥ 1.

But from (6.2) with i = j = 0 and from (6.2) with k = 2 we respectively have

2a0,2 = −λ c and 2αa0,2 = 0.

Since λ �= 0 and α �= 0, we would have c = 0 and this would be possible only if w = 0.
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Remark 6.1. The case of a local Dirichlet-Schiffer property is completely similar.
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