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Abstract. A general framework for computing robust controllable sets of constrained nonlinear un-
certain discrete-time systems as well as controlling such complex systems based on the computed robust
controllable sets is introduced in this paper. The addressed one-step control approach turns out to
be a robust model predictive control scheme with feasible unit control horizon and contractive con-
straint. The solver of 1-dimensional quantified set inversion in modal interval analysis is extended to
2-dimensional cases for computing robust controllable sets off-line with a clear semantic interpreta-
tion, where both universal and existential quantifiers are concerned simultaneously. An interval-based
solver of constrained minimax optimization is also proposed to compute one-step control inputs online
in a reliable way, which guarantee to drive the system state contractively along the computed robust
controllable sets to a selected terminal robust control invariant set.
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1. Introduction

A fundamental control problem is to determine the subset of the state space that can be steered via an
admissible control sequence to a given terminal set while guaranteeing that the state constraint be satisfied for
all uncertain cases. Such a subset is referred to as a robust controllable set and it is a more general interpretation
of the classical controllability problem of unconstrained deterministic linear systems [10]. The given terminal
set is usually selected to be a robust control invariant set for the system, i.e., there always exists an admissible
control input according to the related local stabilizing feedback control law that guarantees to keep the system
state inside the robust control invariant set for all uncertain cases [14]. The properties of robust control invariant
sets are involved in various control problems such as constrained control, robustness synthesis and constrained
optimization [1].

The analytical determination of controllable sets as well as the controllability of constrained discrete-time
systems is generally difficult. In [18], zero-controllability of linear discrete-time systems under control ac-
tions bounded in magnitude and norm was discussed analytically. The controllability of constrained nonlinear
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discrete-time systems was also discussed analytically in [11], where primary results on local constrained control-
lability problems were obtained by using some mapping theorems taken from nonlinear functional analysis and
linear approximation methods. These analytical approaches for the controllability of constrained discrete-time
systems were narrowed with specific assumptions because systematic and explicit controllability analysis for
general constrained discrete-time systems is extremely hard.

A numerical approach for determining the controllability of constrained discrete-time systems is to compute
controllable sets geometrically and any initial state within the computed maximal controllable set is controllable
to the selected terminal set in finite steps [10]. In [16], robust controllable sets were computed geometrically via
a set of set differences and projections for constrained discrete-time systems with additive uncertainty. Such an
approach is quite effective for discrete-time linear or piecewise-affine systems with polytopes as their terminal
sets, where the set computations can be performed efficiently through polyhedral algebra, linear program-
ming and computational geometry software. However, the computation of robust controllable sets for general
constrained nonlinear discrete-time systems is not straightforward and efficient. In [2], a branch-and-bound
algorithm based on interval arithmetic was introduced to compute the inner approximations of control invariant
sets for constrained nonlinear systems. This algorithm was extended to compute robust controllable sets for
constrained nonlinear systems with additive uncertainty in [13], where the computed robust controllable sets
were utilized as a contractive sequence of sets to formulate a contractive model predictive control scheme for
simplifying overwhelming minimax optimizations underlying robust model predictive control. However, bisec-
tions and selections of the state space and the admissible control space were mixed in their approaches, where
extra treatments of the subboxes of the overall domain were needed after each bisection and selection of the
state space.

This paper deals with the computation of robust controllable sets for constrained nonlinear discrete-time
systems with parametric or additive uncertainty, where the interval vector for the state space, the interval
vector for the admissible control space and the interval vector for the uncertainty are all considered as modal
interval vectors with corresponding modalities [5,7]. Thus bisections and selections of the state space and the
admissible control space are to be separated by two nested loops during the computation of robust controllable
sets via the generalized solver of 2-dimensional quantified set inversion, where a clear semantic interpretation
for bisections and selections of the state space exists and extra treatments of the subboxes of the overall domain
are avoided after each bisection and selection of the state space. The computed robust controllable sets are
also utilized as a contractive sequence of sets to formulate a one-step control scheme for simplifying traditional
multi-step minimax optimizations underlying robust model predictive control. The simplified one-step minimax
optimizations are fulfilled by a proposed solver of constrained minimax optimization in a reliable way.

The paper is organized as follows: the problem considered is stated in Section 2; modal interval analysis
and its solvers are introduced in a comparative way relative to classical interval analysis in Section 3; the
robust controllable set approximation algorithm based on the generalized solver of 2-dimensional quantified
set inversion, the one-step control algorithm based on the computed robust controllable sets and the interval-
based solver of constrained minimax optimization, and feasibility and stability analysis of the addressed control
approach are described in Section 4; an illustrative example is provided in Section 5; and finally, some conclusions
are drawn in Section 6.

2. Problem statement

The system to be considered is described by the following constrained nonlinear discrete-time state-space
model with parametric or additive uncertainty:

x(k + 1) = f(x(k),w(k),u(k)), k = 0, . . . , (2.1)

where x(k) ∈ X ⊂ Rn is a vector of n state variables and X is a compact set containing the origin; w(k) ∈ W ⊂
Rl is a vector of l uncertain parameters or additive disturbances; u(k) ∈ U ⊂ Rm is a vector of m control inputs
and U is a compact set containing the origin. The domains of X,W and U are assumed to be described by boxes,



CONTROL OF CONSTRAINED NONLINEAR SYSTEMS VIA ROBUST CONTROLLABLE SETS 191

i.e., every component of the vectors is an interval. Such a model represents a general class of practical systems
with constrained state and control as well as uncertain parameters or additive disturbances. The control target
is to drive the system from the initial state x(0) to a sufficiently small region around the origin asymptotically.
The dual-mode approach of model predictive control is adopted here: at first, the one-step control derived from
model predictive control with a contractive sequence of robust controllable sets drives the system state into a
selected terminal robust control invariant set T; and then the related local stabilizing feedback control law is
applied instead to drive the system state to a sufficiently small region around the origin asymptotically. The
selected terminal robust control invariant set as well as the related local stabilizing feedback control law can be
designed in advance using the methods proposed in [3,4].

The one-step robust controllable set K̃(X, T) is the set of states in X within which an admissible control
input u(k) ∈ U exists that guarantees to drive the system state to the selected terminal set T in one step for
every allowable uncertainty w(k) ∈ W, i.e.,

K̃(X, T) = {x(k) ∈ X|∀w(k) ∈ W, ∃u(k) ∈ U : x(k + 1) ∈ T}. (2.2)

It can be seen that both universal and existential quantifiers are concerned simultaneously for various kinds of
interval vectors in the definition of one-step robust controllable sets, which motivates the application of modal
intervals to deal with the computation of robust controllable sets in an intrinsic way. The selected terminal
set T is a robust control invariant set if and only if T ⊆ K̃(X, T) [10,14]. If the terminal set T is selected to be
a robust control invariant set, then the one-step robust controllable set K̃(X, T) can also be referred to as the
one-step robust stabilisable set [10,16]. The ith-step robust controllable set K̃i(X, T) can be obtained further
by computing one-step robust controllable sets recursively, i.e.,

K̃i(X, T) = K̃(X, K̃i−1(X, T)), (2.3)

where K̃0(X, T) = T and the maximal robust controllable set K̃∞(X, T) within the constrained state space X
is reached when K̃N+1(X, T) = K̃N (X, T) for certain N .

Once the maximal robust controllable set K̃N (X, T) is obtained, the controllability of the constrained nonlin-
ear uncertain discrete-time system (2.1) is obvious: the system is robustly controllable to the selected terminal
set T in finite steps if the initial state is within the maximal robust controllable set K̃N (X, T). The control
inputs can be obtained through the strategy of robust model predictive control with feasible unit control horizon
and contractive constraint when the system state is outside the selected terminal set T, i.e., the one-step control
inputs are to be obtained by solving the following constrained minimax optimization iteratively:

uOptimal(k) = arg min
u(k)∈U

max
w(k)∈W

[xT (k + 1)Qx(k + 1) + uT (k)Ru(k)] (2.4)

subject to
x(k + 1) ∈ K̃i−1(X, T), (2.5)

where the initial sate x(k) ∈ K̃i(X, T), but x(k) does not belong to K̃i−1(X, T); Q and R are weighted positive
definite matrices for the cost function; and uOptimal(k) is the obtained optimal one-step control input.

3. Modal interval analysis

The initial idea of classical interval analysis is to enclose real numbers in intervals and real vectors in boxes
as a method of considering the imprecision of representing real numbers by finite numbers of digits in numerical
computers. Classical interval analysis has become a fundamental numerical tool for representing uncertainties
or errors, proving properties of sets, solving sets of nonlinear equations or inequalities and optimizing in a
global way [6,8]. Classical interval arithmetic is based on four elementary arithmetic operations (+,−,×,÷)
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on intervals rather than on real numbers. An essential property of the natural inclusion function F (X) of a
continuous function f : Rn → R over a box X ∈ I(Rn) is:

f(X) ⊆ F (X), (3.1)

where I(Rn) is denoted to the set of all n-dimensional classical interval vectors; f(X) = [minx∈X f(x), maxx∈X

f(x)] is the classical interval function; and the natural inclusion function F (X) of f(x) is obtained by replacing
each occurrence of every variable with the corresponding interval variable, by executing all elementary opera-
tions according to interval arithmetic, and by computing ranges of the standard functions [15]. The semantic
statement for (3.1) is:

∀x1 ∈ [a1, b1] . . . ∀xn ∈ [an, bn] ∃z ∈ F (X) z = f(x1, . . . , xn). (3.2)

The classical interval function f(X) can seldom be computed exactly via interval arithmetic. Its natural
inclusion function F (X), which can be computed directly via interval arithmetic, is utilized instead in various
classical interval solvers such as set inversion and global optimization, where the bisection of interval vectors
and the selection of appropriate interval vectors are performed according to the lower and upper bounds of F .
Taking the problem of set inversion as an example, for a possibly nonlinear function f(x) : Rn → Rm with the
initial domain X ⊂ Rn and the known range Y ⊂ Rm, set inversion is the characterization [8]:

X = {x ∈ X|f(x) ∈ Y} = f−1(Y) ∩X. (3.3)

The solver of set inversion via interval analysis is an algorithm of set computation aiming to find the feasible
solution X ⊆ X satisfying f(X) ⊆ Y. It is fulfilled in a numerical way by bisecting the initial domain X of f(x)
into subboxes, computing the inclusion function F of f(x) for each subbox via interval arithmetic, and finally
selecting all feasible subboxes through comparing the resulting image of the inclusion function F for each subbox
with the known range Y [8].

The computation of control invariant sets in [2] can be regarded as a direct application of the solver of set
inversion via interval analysis, where the selected terminal set was the known range Y in (3.3) and the initial
domain L = (X,U) was the combination of the state space X and the admissible control space U. However,
these two interval vectors have different modalities: for a subbox of the state space, it belongs to a controllable
set if and only if for all states within the subbox there always exists an admissible control input that can
drive them to the selected terminal set; for a subbox of the admissible control space, it is a feasible control
domain if and only if there exists one value within the subbox which can drive the concerned subbox of the
state space to the selected terminal set. The bisection and the selection of the state space and the admissible
control space were mixed in [2], where extra treatments of the subboxes of the overall domain were needed after
each bisection and selection of the state space. The extra treatments of the subboxes of the overall domain
were time-consuming because the members of the overall domain were numerous and the action of bisection
and selection was frequent. Furthermore, there was no semantic interpretation for discarding the subbox of the
state space: if the action for Lk = (Xk,Uk) was to discard, this did not mean that Xk could not be a part
of the one-step controllable set because Xk was likely to be controllable to the selected terminal set for other
parts of the admissible control space U.

Modal interval analysis is an extension of classical interval analysis obtained by distinguishing existential
and universal modalities of intervals encountered in practical problems such as the computation of controllable
sets. The following subsections give a comprehensive and tutorial introduction of modal interval analysis and
the solvers of quantified set inversion and constrained minimax optimization. Every concept of modal interval
analysis is derived by extending a counterpart concept of classical interval analysis and modal interval analysis
is treated as an extension of classical interval analysis in modality, inclusion, semantics and arithmetic.
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3.1. The initiative of modal intervals – modal extension

Intervals encountered in practical problems have two modalities: (1) there exists a value in [a, b], (with a ≤ b)
that possesses a property or some given properties; (2) all values in [a, b], (with a ≤ b) possess a property or
some given properties. Classical interval analysis cannot distinguish these two types of intervals and denotes
them as [a, b], (with a ≤ b) uniformly. Modal interval analysis does distinguish these two types of intervals and
denotes them differently: [a, b]∗, (with a ≤ b) for those proper intervals that only require the existence of a
value in the domain of a ≤ x ≤ b to possess a property or some given properties; and [b, a]∗, (with a ≤ b) for
those improper intervals that require all values in the domain of a ≤ x ≤ b to possess a property or some given
properties, where [a, b]∗ and [b, a]∗ are modal intervals1. A modal interval [a, b]∗ is therefore a pair of a classical
interval and a corresponding modality [5], i.e.,

[a, b]∗ := (Prop([a, b]∗), Q([a, b]∗)) =
{

([a, b], ∃) if a ≤ b
([b, a], ∀) if a ≥ b,

(3.4)

where Prop([a, b]∗) = [min{a, b}, max{a, b}] is the classical interval domain and Q([a, b]∗) ∈ {∀, ∃} is the modality
of [a, b]∗. The lower and upper bounds of [a, b]∗ are represented by Lb([a, b]∗) = a and Ub([a, b]∗) = b, respectively.
The operator Dual is to change the modality of a modal interval, i.e., Dual([a, b]∗) = [b, a]∗. It is interesting to
note that classical intervals are often treated implicitly as proper intervals with the modality of ∃ in classical
interval analysis before the concept of modal intervals was proposed.

Accordingly, the modal interval vector X∗ ∈ I∗(Rn) represents a vector whose components are all modal
intervals, where I∗(Rn) is denoted to the set of all n-dimensional modal interval vectors. The entries of X∗ are
usually partitioned into two sub-vectors according to the modality of every component:

X∗ = (X∗
p,X

∗
i ), (3.5)

where X∗
p is composed of proper intervals with the modality ∃ and X∗

i is composed of improper intervals with
the modality ∀. The basic operation of bisecting a classical interval vector can also be extended to modal
interval vectors. Taking the modal interval vector X∗ = [a1, b1]∗ × . . . × [an, bn]∗ as an example, its width is
denoted to be:

Width(X∗) = max
i=1,...,n

|ai − bi|, (3.6)

and the index j is denoted to be:

j = min
i=1,...,n

{i|(|ai − bi|) = Width(X∗)}, (3.7)

then the bisection Bisect(X∗) returns two sub-modal interval vectors LX∗ and RX∗:

{
LX∗ := [a1, b1]∗ × . . . × [aj ,

(aj+bj)
2 ]∗ × . . . × [an, bn]∗

RX∗ := [a1, b1]∗ × . . . × [ (aj+bj)
2 , bj]∗ × . . . × [an, bn]∗.

(3.8)

3.2. The quantifier of modal intervals – inclusion extension

The modality of a modal interval [a, b]∗ provides the quantifier for all properties possessed by the modal
interval: for a proper interval, the quantifier is ∃x ∈ Prop([a, b]∗); and for an improper interval, the quantifier is
∀x ∈ Prop([a, b]∗). The inclusion between classical intervals [a, b] ⊆ [c, d], (with a ≤ b, c ≤ d) can be interpreted
as: if there exists a value x ∈ [a, b] that possesses a property or some given properties, then there also exists

1 In the seminal paper on modal intervals [5], [a, b] represented a modal interval and [a, b]′ represented a classical interval; in
this paper, [a, b]∗ is a modal interval while the notation [a, b] is kept to represent a classical interval.
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a value y ∈ [c, d] that possesses the same property(properties). Accordingly, the inclusion between modal
intervals or sets [a, b]∗ ⊆ [c, d]∗ can be extended to be:

[a, b]∗ ⊆ [c, d]∗ ⇔ Pred([a, b]∗) ⊆ Pred([c, d]∗), (3.9)

where Pred(·) is denoted to the set of all properties possessed by a modal interval along with its quantifier. For
example, the property smaller than 3.5 belongs to both Pred([3, 2]∗) and Pred([1, 4]∗) because ∀x ∈ [2, 3] x < 3.5
and ∃x ∈ [1, 4] x < 3.5. The extended modal interval inclusion (3.9) can be further simplified as [5]:

[a, b]∗ ⊆ [c, d]∗ ⇔ (a ≥ c, b ≤ d). (3.10)

This can be demonstrated by considering the quantifiers of modal intervals and the definition of inclusion in (3.9).
For instance, for the case of a ≥ b, c ≤ d, i.e., Q([a, b]∗) = ∀ and Q([c, d]∗) = ∃, Pred([a, b]∗) ⊆ Pred([c, d]∗)
means that there always exists a value in the domain of c ≤ y ≤ d that possesses the same property(properties)
possessed by all values in the domain of b ≤ x ≤ a, then [b, a]∩ [c, d] �= ∅ must be satisfied and thus a ≥ c, b ≤ d
can be derived from Pred([a, b]∗) ⊆ Pred([c, d]∗) as well as [a, b]∗ ⊆ [c, d]∗, e.g., [3, 2]∗ ⊆ [1, 4]∗. The inclusion
conditions between modal interval vectors can also be deduced according to the definition of inclusion for each
component of modal interval vectors.

Similar to classical intervals, the inner and outer representations of [a, b]∗ ∈ I∗(R) by a fixed number of digits
are defined to be: {

Inn([a, b]∗) = [Right(a), Left(b)]∗

Out([a, b]∗) = [Left(a), Right(b)]∗, (3.11)

where Left(a) = supx x ≤ a, Right(a) = infx x ≥ a and x is represented by the fixed number of digits. It is
obvious that

Inn([a, b]∗) = Dual(Out(Dual([a, b]∗))). (3.12)
So the implementation of the inner representation can be realized by the outer representation. Furthermore,
[a, b]∗ ⊆ Out([a, b]∗), which is to be further applied in the computation of a modal interval inclusion function
via modal interval arithmetic.

3.3. The function of modal intervals – semantic extension

Comparative to the interval function f(X) = [minx∈X f(x), maxx∈X f(x)], X ∈ I(Rn) defined in classical
interval analysis, the modal interval function f∗(X∗) : I∗(Rn) → I∗(R) is defined to be [5]:

f∗(X∗) :=

[
min

xp∈Prop(X∗
p)

max
xi∈Prop(X∗

i )
f(xp,xi), max

xp∈Prop(X∗
p)

min
xi∈Prop(X∗

i )
f(xp,xi)

]∗
. (3.13)

Naturally, f∗(X∗) degenerates to [minxp∈Prop(X∗
p) f(xp), maxxp∈Prop(X∗

p) f(xp)]∗ when all components of X∗ are
proper intervals, which is the case of f(X) in classical interval analysis.

The semantic statement (3.2) for f(X) ⊆ F (X) in classical interval analysis can be extended accordingly for
f∗(X∗) ⊆ F ∗(X∗) in modal interval analysis, where F ∗(X∗) is a modal interval inclusion function of f∗(X∗)
and its computation via modal interval arithmetic is to be addressed in the following subsection. The extended
semantic statement for f∗(X∗) ⊆ F ∗(X∗) is [5]:

f∗(X∗) ⊆ F ∗(X∗) ⇔ ∀xp ∈ Prop(X∗
p)Q(F

∗(X∗)) z ∈ Prop(F ∗(X∗)) ∃xi ∈ Prop(X∗
i ) z = f(xp,xi). (3.14)

This is the fundamental semantic theorem in modal interval analysis because it provides a semantic interpre-
tation for the relationship between the modal interval function f∗(X∗) and its inclusion function F ∗(X∗). It
is worthy to note that the modality of F ∗(X∗) depends on its bounds and the order of quantifiers for func-
tion variables is fixed with respect to their modalities in the extended semantic statement. The semantic
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theorem can be derived as follows [5]: f∗(X∗) ⊆ F ∗(X∗) ⇔ ∀xp ∈ Prop(X∗
p)f∗(xp,X∗

i ) ⊆ F ∗(X∗) ⇔ ∀xp ∈
Prop(X∗

p)
{

if F ∗(X∗) is proper, then Prop(f∗(xp,X∗
i )) ∩ Prop(F ∗(X∗)) �= ∅

if F ∗(X∗) is improper, then Prop(F ∗(X∗)) ⊆ Prop(f∗(xp,X∗
i ))

⇔ ∀xp ∈ Prop(X∗
p)Q(F

∗(X∗)) z

∈ Prop(F ∗(X∗)) z ∈ Prop(f∗(xp,X∗
i )) ⇔ ∀xp ∈ Prop(X∗

p)Q(F
∗(X∗)) z ∈ Prop(F ∗(X∗)) ∃xi ∈ Prop(X∗

i ) z =
f(xp,xi).

It can be seen that the extended semantic statement (3.14) in modal interval analysis introduces both
the quantifier ∀xp ∈ Prop(X∗

p) and the quantifier ∃xi ∈ Prop(X∗
i ) for function variables while the semantic

statement (3.2) in classical interval analysis only contains the quantifier ∀x ∈ X for all function variables. Such
a semantic extension is essential and complete in theory because many physical problems include both ∀ and ∃
for function variables, just as the definition of one-step robust controllable sets in (2.2). Oppositely, the semantic
statement for f∗(X∗) � G∗(X∗) is as follows:

f∗(X∗) � G∗(X∗) ⇔ ∃xp ∈ Prop(X∗
p)Q(Dual(G

∗(X∗))) z ∈ Prop(G∗(X∗)) ∀xi ∈ Prop(X∗
i ) z �= f(xp,xi).

(3.15)

3.4. The computation of F ∗(X∗) – arithmetic extension

Similar to the interval function f(X) in classical interval analysis, the modal interval function f∗(X∗) can
seldom be computed arithmetically as its bounds concern complex minimax and maximin optimization problems.
The inclusion function F (X) computed directly through interval arithmetic is used instead in various solvers
of classical interval analysis to provide the lower and upper bounds of the original interval function f(X).
Such a strategy can be extended to the approximation of the modal interval function f∗(X∗) as well. Modal
interval arithmetic is defined to compute an outer approximation f∗(X∗) ⊆ Outer(f∗(X∗)) as well as an inner
approximation Inner(f∗(X∗)) ⊆ f∗(X∗) arithmetically and directly while the semantic theorem (3.14) is applied
to interpret such approximations [5,7]. The outer approximation Outer(f∗(X∗)) of f∗(X∗) can also be regarded
as a modal interval inclusion function F ∗(X∗) of f∗(X∗). In the following paragraphs, the arithmetic extension
for computing the modal interval inclusion function F ∗(X∗) of f∗(X∗) is to be explained in detail.

Four elementary arithmetic operations (+,−,×,÷) between two modal intervals [a, b]∗ and [c, d]∗ can be
computed according to the definition (3.13), i.e., f∗([a, b]∗, [c, d]∗) = [a, b]∗ � [c, d]∗(� = +,−,×,÷), where the
outer representation of a modal interval is used whenever necessary. For instance, [3, 1]∗ + [2, 3]∗ = [5, 4]∗

and [3, 1]∗ − [2, 3]∗ = [0,−1]∗. It turns out that the arithmetic extension coincides with Kaucher’s complete
arithmetic for classical intervals [9]. Such an arithmetic is adopted as modal interval arithmetic and the semantic
theorem (3.14) is maintained to interpret the computation results.

Similarly to four elementary arithmetic operations, other operators between modal intervals or one-variable
operators for a modal interval can be computed according to the definition (3.13) as well. A general modal
rational function can also be computed by decomposing it into basic operations according to the syntactic tree of
the expression defining the function once all basic operators have been defined according to the definition (3.13),
which is similar to the computation of natural inclusion functions in classical interval analysis. Concretely, the
modal rational *-extension function fR∗(X∗) is defined to be the function from I∗(Rn) to I∗(R) determined
by the syntactic tree of the expression defining the function when all the operators concerned are computed
according to the definition (3.13). The obtained fR∗(X∗) can also be referred to as the natural modal interval
inclusion function for f∗(X∗). Then the generally uncomputable f∗(X∗) can be approximated by the arith-
metically computable modal interval inclusion function F ∗(X∗). Taking f(x1, x2) = x1x2 + (x1 + x2)2 as an
example [5], fR∗([−1, 1]∗, [1,−1]∗) = [0, 0]∗ + [1, 0]∗ = [1, 0]∗ and thus f∗([−1, 1]∗, [1,−1]∗) ⊆ [1, 0]∗.

3.5. The solver of quantified set inversion

In contrast to the computation of f∗(X∗) with the known domain X∗, the opposite problem is finding the
feasible solution in X∗ with the known range [a, b]∗, i.e., to find all X ∗ = (X ∗

p ,X ∗
i ) within the initial domain X∗

that satisfies
∀xp ∈ Prop(X ∗

p )Q([a, b]∗) z ∈ Prop([a, b]∗) ∃xi ∈ Prop(X ∗
i ) z = f(xp,xi). (3.16)
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Table 1. 1-Dimensional Quantified Set Inversion (1-D QST).

1-D QSI (In: [a, b]∗,X∗
p,W∗

p, U∗
i , ε; Out: Σ−)

1. Initialize Stack = X∗
p and Σ− = ∅;

2. while Stack �= ∅
3. Pop out a X ∗

p from Stack;
4. Compute Inner(f∗(Dual(X ∗

p ), W∗
p, U∗

i )) ⊆ f∗(Dual(X ∗
p ), W∗

p,U∗
i );

5. if Inner(f∗(Dual(X ∗
p ), W∗

p, U∗
i )) � [a, b]∗, then discard X ∗

p and return to 2;

6. Compute Outer(f∗(X ∗
p ,W∗

p, U∗
i )) where f∗(X ∗

p ,W∗
p,U∗

i ) ⊆ Outer(f∗(X ∗
p ,W∗

p,U∗
i ));

7. if Outer(f∗(X ∗
p , W∗

p,U∗
i )) ⊆ [a, b]∗

8. Σ− := X ∗
p ∪ Σ−;

9. elseif Width(X ∗
p ) ≤ ε

10. Discard X ∗
p ;

11. else

12. Bisect X ∗
p to LX ∗

p , RX ∗
p and push them on Stack;

13. endif

14. endwhile

When the modality of all components of X∗ is ∃, this problem degenerates to be a traditional set inversion
problem discussed in classical interval analysis; when the modality of all components of X∗ is not uniformly ∃,
this problem generalizes to be a quantified set inversion problem discussed in modal interval analysis [7], where
only the solver of 1-dimensional quantified set inversion was proposed. Many physical problems can be formu-
lated mathematically as a quantified constraint satisfaction problem, which may be solved with the solver of
quantified set inversion [7,17]. For example, to find the one-step robust controllable set K̃(X, T) defined in (2.2)
is a typical quantified constraint satisfaction problem and then K̃(X, T) can be obtained numerically via the
solver of quantified set inversion. Concretely, the problem of finding the subset Σx ⊆ Prop(X∗) ⊆ I(Rn) within
which there exists a control input u ∈ Prop(U∗) ⊆ I(Rm) to render the scalar function f(x,w,u) ∈ Prop([a, b]∗)
for all uncertain cases w ∈ Prop(W∗) ⊆ I(Rl) can be solved using the solver of 1-dimensional quantified set
inversion with the function f∗(X∗

p,W
∗
p,U

∗
i ), where X∗

p is a proper interval vector with X∗
p = X∗, W∗

p is also a
proper interval vector with W∗

p = W∗, U∗
i is an improper interval vector with U∗

i = U∗ and the scalar function
f(x,w,u) is for describing the selected terminal set T. The solver of 1-dimensional quantified set inversion for
finding the inner approximation Σ− of Σx is illustrated in Table 1, where ε is the bound of tolerance for an
interval beyond which the interval is not to be bisected further.

As shown in Table 1, X∗
p is the proper modal interval vector for the initial state space; U∗

i is the improper
modal interval vector for the admissible control space; and Σ− is to store the inner approximation of the one-
step robust controllable set. The inner approximation of f∗(Dual(X ∗

p ),W∗
p,U∗

i ) and the outer approximation
of f∗(X ∗

p ,W∗
p,U∗

i ) are computed in Step 4 and Step 6, respectively; if Inner(f∗(Dual(X ∗
p ),W∗

p,U
∗
i )) � [a, b]∗,

then f∗(Dual(X ∗
p ),W∗

p,U
∗
i ) � [a, b]∗ as well, which signifies ∃w ∈ Prop(W∗

p)Q([b, a]∗) z ∈ Prop([a, b]∗) ∀x ∈
Prop(X ∗

p ) ∀u ∈ Prop(U∗
i ) z �= f(x,w,u) according to the semantic statement (3.15), thus X ∗

p cannot belong
to the one-step robust controllable set and it is to be discarded in Step 5; if Outer(f∗(X ∗

p ,W∗
p,U

∗
i )) ⊆ [a, b]∗,

then f∗(X ∗
p ,W∗

p,U
∗
i ) ⊆ [a, b]∗, which signifies ∀x ∈ Prop(X ∗

p ) ∀w ∈ Prop(W∗
p)Q([a, b]∗) z ∈ Prop([a, b]∗) ∃u ∈

Prop(U∗
i ) z = f(x,w,u) according to the semantic statement (3.14), thus X ∗

p belongs to the one-step robust
controllable set and it is to be added into the inner approximation Σ− in Step 8; if no judgment can be made
in either Step 5 or Step 7, and the width of the modal interval vector X ∗

p is not bigger than the bound of
tolerance ε, it is to be discarded as well in Step 10; and finally, if no judgment can be made in either Step 5 or
Step 7, and Width(X ∗

p ) is bigger than the bound of tolerance ε, it is to be bisected into two sub-modal interval
vectors LX ∗

p , RX ∗
p in Step 12 and both of them are to be pushed on Stack for further judgments. It should

be emphasized that the modality of X ∗
p has to be changed using the operator Dual so as to use the negative

semantic statement (3.15) to discard it contrary to use the affirmative semantic statement (3.14) to accept it
as a part of the one-step robust controllable set.
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Table 2. 2-Dimensional Quantified Set Inversion (2-D QST).

2-D QSI (In: [a, b]∗ × [c, d]∗,X∗
p,W∗

p,U∗
i , ε; Out: Σ−)

1. Initialize Stack 1 = X∗
p, Σ− = ∅;

2. while Stack 1 �= ∅
3. Pop out a X ∗

p from Stack 1;

4. Compute Inner(f∗
1 (Dual(X ∗

p ),W∗
p, U∗

i )) × Inner(f∗
2 (Dual(X ∗

p ), W∗
p,U∗

i ));

5. if Inner(f∗
1 (Dual(X ∗

p ), W∗
p,U∗

i )) × Inner(f∗
2 (Dual(X ∗

p ),W∗
p, U∗

i )) � [a, b]∗ × [c, d]∗
6. Discard X ∗

p and return to 2;

7. endif

8. Stack 2 = U∗
i ;

9. while Stack 2 �= ∅
10. Pop out a U∗

i from Stack 2;
11. Compute Inner(f∗

1 (Dual(X ∗
p ), W∗

p,U∗
i )) × Inner(f∗

2 (Dual(X ∗
p ), W∗

p,U∗
i ));

12. if Inner(f∗
1 (Dual(X ∗

p ), W∗
p,U∗

i )) × Inner(f∗
2 (Dual(X ∗

p ), W∗
p,U∗

i )) � [a, b]∗ × [c, d]∗

13. Discard U∗
i and return to 9;

14. endif
15. Compute Outer(f∗

1 (X ∗
p , W∗

p,U∗
i )) × Outer(f∗

2 (X ∗
p , W∗

p, Dual(U∗
i )));

16. if Outer(f∗
1 (X ∗

p , W∗
p,U∗

i )) × Outer(f∗
2 (X ∗

p , W∗
p, Dual(U∗

i ))) ⊆ [a, b]∗ × [c, d]∗

17. Σ− = Prop(X ∗
p ) ∪ Σ− and return to 2;

18. endif
19. Compute Outer(f∗

1 (X ∗
p , W∗

p, Dual(U∗
i ))) × Outer(f∗

2 (X ∗
p , W∗

p,U∗
i ));

20. if Outer(f∗
1 (X ∗

p , W∗
p, Dual(U∗

i ))) × Outer(f∗
2 (X ∗

p , W∗
p,U∗

i )) ⊆ [a, b]∗ × [c, d]∗

21. Σ− = Prop(X ∗
p ) ∪ Σ− and return to 2;

22. endif
23. if Width(U∗

i ) ≤ ε, then discard U∗
i and return to 9;

24. else
25. Bisect U∗

i to LU∗
i , RU∗

i , push them on Stack 2 and return to 9;
26. endif
27. endwhile
28. if Width(X ∗

p ) ≤ ε, then discard X ∗
p and return to 2;

29. else Bisect X ∗
p to LX ∗

p and RX ∗
p , push them on Stack 1 and return to 2;

30. endif

31. endwhile

The solver of 1-dimensional quantified set inversion in Table 1 can be extended to f∗(X∗) : I∗(Rn) → I∗(Rm),
where inclusion and exclusion judgments between modal interval vectors are encountered and corresponding
semantic statements are derived from the combination of several affirmative semantic statements or several
negative semantic statements. For instance, assume that f(x) = f1(x) × f2(x), where f1([1, 2]∗) ⊆ [3, 4]∗

and f2(Dual([1, 2]∗)) ⊆ [4, 5]∗, then the overall semantic statement is ∃z1 ∈ [3, 4] ∃z2 ∈ [4, 5] ∃x ∈ [1, 2]
z1 = f1(x), z2 = f2(x) according to the combination of two affirmative semantic statements ∀x ∈ [1, 2] ∃z1 ∈
[3, 4] z1 = f1(x) and ∃z2 ∈ [4, 5] ∃x ∈ [1, 2] z2 = f2(x). Taking the 2-dimensional quantified set inversion as an
example, the known range of the 2-dimensional function vector f(x,w,u) = f1(x,w,u)×f2(x,w,u) is assumed
to be [a, b]∗ × [c, d]∗. The problem is still to find the subset Σx ⊆ Prop(X∗) ⊆ I(Rn) within which there exists
a control input u ∈ Prop(U∗) ⊆ I(Rm) to render the 2-dimensional function vector f(x,w,u) ∈ Prop([a, b]∗) ×
Prop([c, d]∗) for all uncertain cases w ∈ Prop(W∗) ⊆ I(Rl). The extended solver of 2-dimensional quantified set
inversion for finding the inner approximation Σ− of Σx is illustrated in Table 2, where X∗

p is for the initial state
space and U∗

i is for the admissible control space. Since the combined affirmative semantic statement for accepting
X ∗

p as a part of Σx is a combination of the semantic statement for f∗
1 ⊆ [a, b]∗ and the semantic statement

for f∗
2 ⊆ [c, d]∗, thus Dual(U∗

i ) should occur in one of f∗
1 and f∗

2 to change the semantic statement (3.14)
for ensuring that there exists the same u ∈ Prop(U∗

i ) to render f∗
1 × f∗

2 ⊆ [a, b]∗ × [c, d]∗ in Step 16 and
Step 20, i.e., ∃u ∈ Prop(U∗

i )f∗
1 ⊆ [a, b]∗, ∀u ∈ Prop(Dual(U∗

i ))f∗
2 ⊆ [c, d]∗ or ∀u ∈ Prop(Dual(U∗

i ))f∗
1 ⊆ [a, b]∗,

∃u ∈ Prop(U∗
i )f∗

2 ⊆ [c, d]∗ leads to ∃u ∈ Prop(U∗
i )f∗

1 × f∗
2 ⊆ [a, b]∗ × [c, d]∗ while ∃u ∈ Prop(U∗

i )f∗
1 ⊆ [a, b]∗,

∃u ∈ Prop(U∗
i )f∗

2 ⊆ [c, d]∗ cannot lead to ∃u ∈ Prop(U∗
i )f∗

1 × f∗
2 ⊆ [a, b]∗ × [c, d]∗ because there might not exist
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the same u ∈ Prop(U∗
i ) to satisfy f∗

1 ⊆ [a, b]∗ and f∗
2 ⊆ [c, d]∗ simultaneously. To require all u ∈ Prop(U∗

i )
to satisfy f∗

1 (X ∗
p ,W∗

p, Dual(U∗
i )) ⊆ [a, b]∗ or f∗

2 (X ∗
p ,W∗

p, Dual(U∗
i )) ⊆ [c, d]∗ is strict and thus U∗

i needs to be
bisected in Step 25. Since f∗

1 × f∗
2 � [a, b]∗ × [c, d]∗ is equal to f∗

1 � [a, b]∗ or f∗
2 � [c, d]∗, then the combined

negative semantic statement for discarding modal interval vectors is a direct combination of the semantic
statement for f∗

1 � [a, b]∗ and the semantic statement for f∗
2 � [c, d]∗. However, the entire domain of U∗

i is
tested in Step 5 and thus the corresponding X ∗

p is to be discarded in Step 6 while only a part of U∗
i is tested

in Step 12 and thus only that part of U∗
i is to be discarded in Step 13. It is worthy to note that the principle

and the structure of multi-dimensional quantified set inversion is similar to the 2-dimensional case while only
inclusion and exclusion judgments are performed between higher-dimensional modal interval vectors.

3.6. The solver of constrained minimax optimization

A general constrained minimax optimization problem can be formulated as:

min
u∈U0

max
w∈W0

f(w,u), ∀w ∈ W0 ∃u ∈ U0 : g(w,u) ∈ C, (3.17)

where w ∈ W0 is usually referred to as uncertain parameters or additive disturbances and u ∈ U0 is usually
referred to as decision variables; and then ∀w ∈ W0 ∃u ∈ U0 : g(w,u) ∈ C is actually a constraint imposed only
on u. Various application problems concerning control and decision can be cast in the framework of constrained
minimax optimizations, just as the computation of one-step control inputs in (2.4). According to the definition
of f∗ in (3.13), the minimax value of minu∈U0 maxw∈W0 f(w,u) is equal to Lb(f∗(X∗

p,X
∗
i )), where X∗

p = U∗,
X∗

i = W∗ and Prop(U∗) = U0, Prop(W∗) = W0. The constrained minimax optimization problem (3.17) can
thus be transformed to the approximation of the lower bound of f∗(X∗

p,X
∗
i ). Furthermore, it is necessary to

find the exact feasible solution Σu of the imposed constraint, i.e., Σu = {u|∀w ∈ W0 ∀u ∈ ΣU : g(w,u) ∈ C},
rather than only to determine the existence of u satisfying ∀w ∈ W0 ∃u ∈ U0 : g(w,u) ∈ C for the purpose of
further practical utilization such as obtaining the concrete control input except for only knowing its existence. So
the solver of traditional set inversion via interval analysis should be applied to obtain this feasible solution Σu

in advance and then to search the optimal one among all candidates in the feasible solution. The detail of
the proposed solver of constrained minimax optimization is illustrated in Table 3, where Ω stores all feasible
subboxes of U0 for the constrained minimax optimization (3.17) and the bound of tolerance ε for intervals is
selected to be small enough so as to obtain a non-empty inner approximation Σ− of the feasible solution Σu.

As shown in Table 3, an inner approximation Σ− of the feasible solution Σu for the imposed constraint
∀w ∈ W0 ∀u ∈ Σu : g(w,u) ∈ C is obtained using the solver of traditional set inversion via interval
analysis from Step 1 to Step 10; then an inclusion domain [a, b] for the constrained minimax function, i.e.,
minu∈Σu maxw∈W0 f(w,u) ∈ [a, b], can be approximated through the process from Step 11 to Step 16, where
local points u ∈ U and w ∈ W0 are applied to obtain better lower and upper bounds of this constrained minimax
function in Step 14 and Step 15 based on the fact that minu∈Σu maxw∈W0 f(w,u) ≥ minu∈Σu f(w0,u),w0 ∈
W0 and minu∈Σu maxw∈W0 f(w,u) ≤ maxw∈W0 f(w,u0),u0 ∈ Σu, respectively. This is equal to obtain better
lower and upper bounds of Lb(f∗(X∗

p,X
∗
i )), where X∗

p = U∗,X∗
i = W∗. However, local searches for better

points u ∈ U,w ∈ W0 and bisections of those subboxes with Width(U) > ε can be performed further to obtain
a more precise inclusion domain for the constrained minimax function. The obtained inclusion domain is used
in Step 17 to find any potential Um to be stored in Ω that may result in the overall minimax optimization
value. It can be seen that the main feature of the proposed constrained minimax optimization algorithm is to
perform the search of the feasible solution and the search of the optimal solution sequentially, which is different
from the constrained minimax algorithm addressed in [8] where the test of feasibility and the test of optimality
are performed simultaneously. The sequential search of the feasible solution and the optimal solution facilitates
the addressed one-step control approach where feasibility implies stability and the amount of efforts allocated
for searching the optimal control input can be adjusted according to the practical requirements.
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Table 3. Constrained Minimax Optimization Algorithm (CMOA).

CMOA (In: C,W0,U0, ε; Out: Ω)
1. Initialize Stack 1 = U0 and Σ− = ∅;
2. while Stack 1 �= ∅
3. Pop out a U from Stack 1;
4. Compute the natural inclusion function G(W0,U) of g(w,u);
5. if G(W0,U) ∩ C = ∅, then U is discarded;
6. elseif G(W0,U) ⊆ C, then Σ− = U ∪ Σ−;
7. elseif Width(U) ≤ ε, then U is discarded;
8. else Bisect U to LU, RU and push them on Stack 1;
9. endif
10. endwhile
11. Initialize Stack 2 = Σ− and a = −∞, b = +∞;
12. while Stack 2 �= ∅
13. Pop out a U from Stack 2;
14. if Lb(Out(fR∗(w,U∗

p))) > a where w ∈ W0, Q(U∗
p) = ∃, Prop(U∗

p) = U, then a = Lb(Out(fR∗(w,U∗
p)));

15. if Lb(Inn(fR∗(W∗
i ,u))) < b where Prop(W∗

i ) = W0,u ∈ U, Q(W∗
i ) = ∀, then b = Lb(Inn(fR∗(W∗

i ,u)));
16. endwhile
17. Ω = {Um|F (W0,Um) ∩ [a, b] �= ∅,Um ⊆ Σ−}.

4. One-step control VIA robust controllable sets

In this section, the solvers of quantified set inversion and constrained minimax optimization illustrated in
Section 3 are applied to solve the problems stated in Section 2, i.e., to compute one-step robust controllable sets
and one-step control inputs. The corresponding robust controllable set approximation algorithm, the one-step
control algorithm, and feasibility and stability analysis of the addressed one-step control approach are discussed
in Sections 4.1, 4.2 and 4.3, respectively.

4.1. Robust controllable set approximation algorithm

Assume that the terminal set T is selected to be a robust control invariant set as well as a polytope, the solver
of 1-dimensional quantified set inversion cannot be applied to compute the one-step robust controllable set with
a polytope as the terminal set because the inclusion and exclusion judgments between a modal interval vector
and a polytope or a union of polytopes are concerned instead. The inclusion and exclusion relationships between
a modal interval vector and a polytope or a union of polytopes can be deduced as well according to the principle
of inclusion in modal interval analysis. Thus the ith-step robust controllable set K̃i(X, T)(i = 1, . . . ,∞) of a
multi-dimensional system with a polytope as the terminal set can also be computed recursively via the solver
of multi-dimensional quantified set inversion. The inner approximation of the maximal robust controllable set
K̃−

∞(X, T) within the constrained state space is reached when K̃−
N+1(X, T) = K̃−

N (X, T) for certain N and thus
K̃−

∞(X, T) = K̃−
N (X, T).

4.2. One-step control algorithm

Once the inner approximations K̃−
i (X, T)(i = 1, . . . , N) of all the ith-step robust controllable sets within the

constrained state space have been obtained via the solver of quantified set inversion, the robust controllability
of an initial state can be judged accordingly. Assume that x(0) ∈ K̃−

N (X, T), i.e., the initial state is robustly
controllable to the selected terminal set T in finite steps, then the one-step control algorithm via a contractive
sequence of robust controllable sets is illustrated in Table 4.

According to Table 4, the one-step control algorithm measures the current state in Step 1 and then judges
whether the system state has entered into the selected terminal set T in Step 2. The related local stabilizing
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Table 4. One-step Control Algorithm (OCA).

OCA (In: x(0), K̃−
i (X, T), T; Out: x)

1. Get the current state x(k);
2. if x(k) ∈ T
3. Switch to the related local stabilizing feedback control law;
4. else
5. Find the i: i = mini=1,...,∞{x(k) ∈ K̃−

i (X, T)};
6. Compute uOptimal(k) according to (2.4) with x(k + 1) ∈ K̃−

i−1(X, T) using CMOA in Table 3;
7. Apply uOptimal(k) to the system to obtain the new state x(k + 1);
8. end
9. Return to 1 and repeat.

feedback control law is applied if the state has entered into the selected terminal set; otherwise, the algorithm
finds the smallest robust controllable set to which the current state belongs in Step 5; the one-step control
scheme is formulated according to the strategy of robust model predictive control with unit control horizon in
Step 6 and the optimal one-step control input uOptimal(k) is computed via the solver of constrained minimax
optimization in Table 3. It can be seen from the following feasibility and stability analysis that any feasible
solution that satisfies the imposed contractive constraint is an effective control input for the system because
such a control input is sufficient to guarantee the stability of the closed-loop system. Thus any feasible control
input that satisfies the imposed contractive constraint can be applied as well in the control algorithm to avoid
extra efforts for obtaining the exact optimal control input uOptimal(k) in Step 6, which can be easily realized
by the proposed constrained minimax optimization algorithm in Table 3.

4.3. Feasibility and stability analysis

The feasibility of the addressed one-step control approach means that there always exists a control input u
that can drive the system state belonging to the current robust controllable set K̃−

i (X, T) to the next robust
controllable set K̃−

i−1(X, T). The feasibility of the addressed one-step control approach for a 2-dimensional
system is demonstrated in Theorem 4.1.

Theorem 4.1. For any x(k) ∈ K̃−
i (X, T), there always exists an admissible control input u(k) ∈ U ⊆ I(Rm)

that renders x(k + 1) ∈ K̃−
i−1(X, T), i = 1, . . . , N for all uncertain cases w(k) ∈ W ⊆ I(Rl).

Proof. For all robust controllable sets K̃−
i (X, T)(i = 1, . . . , N) computed by the solver of 2-dimensional quan-

tified set inversion, if Prop(X∗
p) ⊆ K̃−

i (X, T), then Outer(f∗
1 (X∗

p,W
∗
p,U

∗
i )) × Outer(f∗

2 (X∗
p,W

∗
p, Dual(U∗

i ))) ⊆
K̃−

i−1(X, T) or Outer(f∗
1 (X∗

p,W
∗
p, Dual(U

∗
i ))) × Outer(f∗

2 (X∗
p,W

∗
p,U

∗
i )) ⊆ K̃−

i−1(X, T) is satisfied, and accord-
ing to the combination of the underlying two affirmative semantic statements, ∀x(k) ∈ Prop(X∗

p) ∀w(k) ∈
Prop(W∗

p) ∃x ∈ K̃−
i−1(X, T) ∃u(k) ∈ Prop(U∗

i ) x(k + 1) = x, i.e., the addressed one-step control approach is
always feasible. �

The initial control invariant set T is selected to be a robust control invariant set, then K̃i−1(X, T) ⊆ K̃i(X, T)
for all i = 1, . . . , N according to the property of robust control invariant sets [10], i.e., the computed robust
controllable sets are inner approximations of a sequence of contractive sets. Thus the feasibility of the addressed
one-step control approach leads to stability as the control inputs are to drive the system state contractively
along the computed robust controllable sets to the selected terminal robust control invariant set. Once the
system state enters the selected terminal control invariant set, the related local stabilizing feedback control law
is applied instead to drive the system state to a sufficiently small region around the origin asymptotically.
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Figure 1. The geometrical demonstration of robust control invariance.

5. An illustrative example

As an illustrative example for demonstrating the addressed one-step control of constrained nonlinear uncertain
discrete-time systems via a sequence of robust controllable sets, the system considered is described by the
following discrete-time state-space model [3]:{

x1(k + 1) = x1(k) + 0.1x2(k) + 0.1[μ(k) + (1 − μ(k))x1(k)]u(k)
x2(k + 1) = 0.1x1(k) + x2(k) + 0.1[μ(k) − 4(1 − μ(k))x2(k)]u(k), (5.1)

where the control input constraint is |u| ≤ 2 and the states are constrained to |x|∞ ≤ 2. The system parameter μ
is assumed to be uncertain here: μ ∈ [0.85, 0.95]. The terminal set T is selected to be a robust control invariant
polytope along with a local stabilizing feedback control law u = kx, where k = [−1.2131 − 1.2128] [3]:⎡

⎢⎢⎣
0.8190 −1.9655
−0.8199 1.9655
3.0330 3.0330
−3.0330 −3.0330

⎤
⎥⎥⎦x ≤

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ . (5.2)

The selected terminal polytope T along with the local stabilizing feedback control law u = kx can be demon-
strated geometrically to be a robust control invariant set by using zonotopes [12], where the selected terminal
polytope is bisected into sub-zonotopes and the dynamic evolution of every sub-zonotope under the related local
stabilizing feedback control law u = kx is within the selected terminal polytope T, just as shown in Figure 1.

The inner approximation of the first-step robust controllable set K̃1(X, T) can be computed using the solver
of 2-dimensional quantified set inversion, where the initial terminal set T is only a polytope. The computed
inner approximation of K̃1(X, T) with ε = 0.05 is shown in Figure 2, where the computation time on a Pentium
Centrino 1.4 GHz Notebook is 4673 s using MATLAB.

The following-step robust controllable sets can be computed recursively starting from the computed inner
approximation of the first-step robust controllable set, where the renewed terminal set for computing the
following-step robust controllable set is a union of interval vectors as well as a union of polytopes. The inner
approximation of the maximal robust controllable set with ε = 0.05 is reached when K̃−

48(X, T) = K̃−
49(X, T),

which is shown in Figure 3. It is worthy to note that all robust controllable sets can be computed offline and
the obtained robust controllable sets are to be stored in the computer for the following control simulation.
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Figure 2. The inner approximation of the first-step robust controllable set with ε = 0.05.

Figure 3. The inner approximation of the maximal robust controllable set with ε = 0.05.

The dual-mode approach of model predictive control is adopted to control the system (5.1), i.e., the addressed
one-step control is to drive the system state contractively along the computed robust controllable sets to the
selected terminal set T, and then the local stabilizing feedback control law is applied instead to drive the
state to the origin asymptotically. Assume that the initial state is at x(0) = (1.75,−1.6), the resulting robust
control process of the dual-mode approach of model predictive control is shown in Figure 4, where the uncertain
parameter μ is a random number series between 0.85 and 0.95 during the control process and Q = R = 1.
The overall simulation time for the control process is 2248 s, which includes the time of solving the constrained
minimax optimization problem (2.4) fourteen times for obtaining one-step control inputs sequentially. It can
be seen that the addressed one-step control with a sequence of robust controllable sets is guaranteed to be
feasible and stable, i.e., the system can be driven contractively along the computed robust controllable sets to
the selected robust control invariant set despite of an uncertain parameter during the control process.
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Figure 4. The robust control process with x(0) = (1.75,−1.6).

6. Conclusions

This paper has discussed the application of modal interval analysis to compute robust controllable sets and
one-step control inputs for constrained nonlinear uncertain discrete-time systems. The solver of 1-dimensional
quantified set inversion via modal interval analysis is generalized to 2-dimensional cases for computing robust
controllable sets with a clear semantic interpretation. An interval-based solver of constrained minimax opti-
mization has also been proposed to compute control inputs for the addressed one-step control approach in a
reliable way. However, the burden of offline computations for robust controllable sets grows exponentially with
the total dimension of the state space and the control space and extra efforts are required to judge the inclusion
of the measured state to a union of interval vectors. More measures such as using polytopes to approximate the
computed robust controllable sets and exploring the structure of specific nonlinear discrete-time systems are to
be studied further to improve the efficiency.
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