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A YOUNG MEASURES APPROACH TO QUASISTATIC EVOLUTION
FOR A CLASS OF MATERIAL MODELS WITH NONCONVEX

ELASTIC ENERGIES ∗

Alice Fiaschi 1

Abstract. Rate-independent evolution for material models with nonconvex elastic energies is studied
without any spatial regularization of the inner variable; due to lack of convexity, the model is developed
in the framework of Young measures. An existence result for the quasistatic evolution is obtained in
terms of compatible systems of Young measures. We also show as this result can be equivalently
reformulated with probabilistic language and leads to the description of the quasistatic evolution in
terms of stochastic processes on a suitable probability space.
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1. Introduction

The energetic formulation of many rate-independent evolution processes for elastic materials involve an energy
functional depending on the elastic deformation of the body and on an internal variable; an important role is
played by the dissipation distance, which depends just on the internal variable (see e.g. [9,14,15]).

The standard method to solve this kind of problems is via time-discretization and resolution of incremental
minimum problems (see [11–13,16] and references therein); to apply this method, lower semicontinuity and
coerciveness of the energy functional are needed in the space where the problem is formulated.

As in [8], we consider the case in which the energy functional W and the dissipation distance H take the
form

W(z, v) =
∫

D

W (z(x),∇v(x)) dx, (1.1)

H(z1 − z0) =
∫

D

H(z1(x) − z0(x)) dx, (1.2)

where D ⊂ R
d is the reference configuration.
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Since for the mechanical applications considered in [8] it is not natural to assume W convex with respect
to the internal variable z , there is no function space where the energy functional can be simultaneously lower
semicontinuous and coercive. The way proposed in [8] to overcome this difficulty is to assume quasiconvexity
of W with respect to its second argument and to add a spatial regularizing term of the form

η‖∇z‖2
2, (1.3)

with η > 0: thanks to the hypotheses made on W and H , the regularized functional is coercive in suitable
Sobolev spaces, and classical results (see [1]) guarantees its lower semicontinuity in the same spaces; however
the regularizing term (1.3) is not always physically justified.

In this paper we propose an approach to this problem which does not require any assumption on the con-
vexity/quasiconvexity of the energy functional and does not need any regularizing term: lower semicontinuity
and coerciveness are obtained by formulating the problem in a suitable space of Young measures, as proposed
in [6] for a different problem.

Without entering in the details of the hypotheses, we just mention that we will assume that the body
is subjected to an external load l(t) depending on time and to a time-dependent prescribed boundary de-
formation ϕ(t); moreover we will ask that W : R

m × R
N×d → [0, +∞) has quadratic growth and that

H : R
m → [0, +∞) is convex and has linear growth.

Given an initial value of the variables (z0, v0) and a partition of the time interval [0, T ] in which we study
the evolution

0 = t0 < t1 < . . . < tk = T,

the approximate solution should be defined inductively by solving the following incremental minimum problem:

inf {W(z, v)− 〈l(ti), v〉 + H(z − z(ti−1))} (1.4)

among all (z, v) which make the energy finite and satisfy the boundary condition at time ti . As anticipated,
these problems are not well-posed in Sobolev spaces and we will present an explicit example in which (1.4) has
actually no solution (see Rem. 7.3).

To obtain lower semicontinuity and coerciveness of the energy functional we place the problem in a suitable
space of Young measures and solve the incremental minimum problems in this extended setting. Differently
from [6], the quadratic growth hypothesis on W allows us to use Young measures with finite second moments
instead of generalized Young measures; to this aim we specialize to the more regular setting the definition and
properties of the space of compatible systems introduced in [5] .

The next step is the study of the convergence of the approximate solutions as the time step ti−ti−1 tends to 0.
Up to careful choices of subsequences, we can obtain the convergence of the approximations to a pair (ν, μ),
with ν a time-dependent family of Young measures with finite second moments and values in R

m ×R
N×d , and

μ a compatible system of Young measures with finite second moments and values in R
m , connected to ν by a

suitable projection property.
The main result is Theorem 6.15, which shows that this pair satisfies a global stability condition and an energy

inequality, suitably reformulated in Young measures language (see Def. 6.14); therefore it can be considered as
a solution of the quasistatic evolution problem in the framework of Young measures.

Since we do not need to use generalized Young measures, we can rephrase the definition of compatible
systems introduced in [6] using a probabilistic language: in Theorem 3.3, with a modified version of Kolmogorov
Theorem, we prove that we can associate to any compatible system of Young measures with finite second
moments a suitable stochastic process on a probability space of the form (D × Ω, P ).

The advantage of the probabilistic formulation is that it motivates, in some sense, and clarifies the notions
related to compatible systems of Young measures: in particular the notion of variation of a compatible system in
a time interval [a, b] agrees with the usual variation on [a, b] of the corresponding stochastic process (Zt)t∈[0,T ]
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considered as function from [0, T ] into L1(D × Ω; Rm). Moreover, thanks to Theorem 3.5, the pair (ν, μ)
representing the solution can be described by a unique stochastic process with values in R

m × R
N×d .

In the last section we give an alternative proof of the main theorem under the special assumption that the
stored energy density is quasiconvex with respect to its second argument; we use the result in [8], Section 4, to
obtain solutions of spatially regularized problems, and prove that we can pass to the limit as the regularization
parameter vanishes, to obtain a globally stable quasistatic evolution in terms of Young measures in the sense
of Definition 6.14.

2. Mathematical preliminaries

Functions and measures. We denote by Ld the Lebesgue measure on R
d , d ≥ 1, and by Hk the k -

dimensional Hausdorff measure. ‖ · ‖p is the usual norm on Lp . H1(D; RN ) denotes the usual Sobolev space of
all functions from an open domain D ⊆ R

d into R
N lying in L2 with their first derivatives. The symbol 〈·, ·〉

will denote a duality pairing depending on the context.
Given a finite dimensional Hilbert space Ξ, f : D × Ξ → R is said to be a Carathéodory function if f(x, ·)

is continuous for a.e. x ∈ D and f(·, ξ) is measurable for every ξ ∈ Ξ.
Given D an open bounded domain in R

d and Ξ a finite dimensional Hilbert space, we denote by Mb(D×Ξ)
the space of all bounded Radon measures on D × Ξ; this space can be identified with the dual of the Banach
space C0(D × Ξ) of all continuous functions φ : D × Ξ → R such that |φ| ≥ ε is compact for every ε > 0. We
will consider on Mb(D × Ξ) the weak* topology deriving from this duality.

Let ν and μ be nonnegative measures in Mb(D) and Mb(D × Ξ), respectively, such that πD(μ) = ν . The
Disintegration Theorem (see, e.g., [18], Appendix A2) guarantees the existence of a measurable family (μx)x∈D

of probability measures on Ξ, such that∫
D×Ξ

f(x, ξ) dμ(x, ξ) =
∫

D

( ∫
Ξ

f(x, ξ) dμx(ξ)
)

dν(x),

for every bounded Borel function f : D × Ξ → R . The measures μx are uniquely determined for a.e. x ∈ D
and we will write

μ =
∫

D

μx dν(x).

In the whole paper we will use the following notation: πD and πΞ will denote the usual projections of the
product space D × Ξ on D and Ξ respectively; in the case Ξ = Ξ1 × Ξ2 , π̃Ξi will denote the projection of
D × Ξ1 × Ξ2 on D × Ξi and πΞi the projection of Ξ1 × Ξ2 on Ξi , for i = 1, 2.

Young measures. Now we will recall the definition and the main properties of Young measures.
In the whole paper D will denote a bounded open domain in R

d and Ξ, Ξ1 , Ξ2 will denote finite dimensional
Hilbert spaces; we will assume, without loss of generality, that

Ld(D) = 1. (2.1)

The space Y (D; Ξ) of the Young measures on D with values in Ξ is the space of all nonnegative measures
μ ∈ Mb(D × Ξ) such that

πD(μ) = Ld. (2.2)

Applying the Disintegration Theorem to μ ∈ Y (D; Ξ), we deduce the existence of a measurable family of
probability measures on Ξ, (μx)x∈D , with

μ =
∫

D

μx dx.
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Y 2(D; Ξ) denotes the space of all μ ∈ Y (D; Ξ), whose second moment
∫

D×Ξ

|ξ|2 dμ(x, ξ) =
∫

D

(∫
Ξ

|ξ|2 dμx(ξ)
)

dx

is finite.
To every u ∈ L2(D; Ξ) we can associate a Young measure with finite second moment denoted by δu and

defined by ∫
D×Ξ

f(x, ξ) dδu(x, ξ) :=
∫

D

f(x, u(x)) dx, (2.3)

for every bounded Borel function f : D × Ξ → R . In particular for every ξ̄ ∈ Ξ, we will denote the Young
measure associated to the function x �→ ξ̄ simply by δξ̄ .

3. Young measures with probabilistic language

In this section we want to point out that Young measures can be presented using a probabilistic language,
and precisely the notion of random variable. While for a single Young measure this probabilistic presentation
does not introduce relevant simplifications, it will be very useful in the case of families of time-dependent Young
measures.

Probability spaces of the form (D×Ω,B(D)⊗F , P ), where (Ω,F) is a measurable space, B(D) denotes the
Borel σ -algebra on D , and P a probability measure with the property πD(P ) = Ld , will be called (D,Ld)-
probability spaces.

We can associate to every Young measure μ on D with values in Ξ a random variable Y defined on a
(D,Ld)-probability space with values in Ξ, in such a way that∫

D×Ξ

f(x, ξ) dμ(x, ξ) =
∫

D×Ω

f(x, Y (x, ω)) dP (x, ω), (3.1)

for every bounded Borel function f : D × Ξ → R . Indeed it is enough to take as Ω the space Ξ itself, as Y
the projection on Ξ, and as P the measure μ itself, which is a probability measure thanks to (2.1) and (2.2).
Conversely, given any Ξ-valued random variable Y on a (D,Ld)-probability space, formula (3.1) defines a
Young measure μ , which will be denoted by (πD, Y )(P ), since it coincides with the image of the measure P
under the map (πD, Y ) : D × Ω → D × Ξ.

We say that a random variable Y on a (D,Ld)-probability space (D × Ω, P ) has finite second moment if∫
D×Ω

|Y (x, ω)|2 dP (x, ω) < ∞.

Hence a Young measure has finite second moment if and only if the associated random variable does.
In the particular case of μ = δu ∈ Y 2(D; Ξ) with u ∈ L2(D; Ξ), for every (D,Ld)-probability space we can

associate to δu the random variable Y : D × Ω → Ξ, defined by Y (x, ω) := u(x) for Ld -a.e. x ∈ D and for
every ω ∈ Ω; we will denote this random variable simply by u .

3.1. Stochastic processes and compatible systems of Young measures

As we have seen, if we deal with a single random variable the association to a Young measure is immediate;
more complicated is the case of a stochastic process (Y t)t∈T on a (D,Ld)-probability space in a time set T :
indeed the family of measures ((πD, Y t)(P ))t∈T gives an insufficient information on the stochastic process, since
in general we cannot go back to (πD, Y t1 , . . . , Y tn)(P ), for an increasing sequence of time instants t1 < . . . < tn ,
just using (πD, Y ti)(P ), i = 1, . . . , n .



A YOUNG MEASURES APPROACH TO QUASISTATIC EVOLUTION 249

In this section, using a modification of Kolmogorov Theorem (see [10], p. 29), we want to show that the
correct correspondence is between stochastic processes and compatible systems of Young measures, which have
been introduced in [5] in the more general context of generalized Young measures.

Given a stochastic process (Y t)t∈T on a (D,Ld)-probability space, with

Y t ∈ L2(D × Ω; Ξt),

we can define a family of Young measures on D , indexed by the nonempty finite subsets F of T , as

μF := (πD, (Y t)t∈F )(P ). (3.2)

It is immediate to see that every μF has finite second moment and that this family satisfies the following
compatibility condition

π̃F
G(μF ) = μG, (3.3)

for every nonempty finite subsets G ⊂ F of T , where π̃F
G : D ×

∏
t∈F Ξt → D ×

∏
s∈G Ξs maps (x, (ξt)t∈F ) in

(x, (ξs)s∈G).
According to [5], we define a compatible system of Young measures with finite second moments on D with

time set T and values in
∏

t∈T Ξt as a family μ = (μF ) of Young measures μF ∈ Y 2(D;
∏

t∈F Ξt), with F
varying among all nonempty finite subsets of T , such that the compatibility condition (3.3) is satisfied.

The space of all such systems is denoted by SY 2(D;
∏

t∈T Ξt); in the special case of Ξt ≡ Ξ, for every t ∈ T

we will use the notation SY 2(T, D; Ξ).
The two following remarks are technical and will be used to prove the correspondence between compatible

systems and stochastic processes.

Remark 3.1. If μ satisfies the compatibility condition, for every nonempty finite subsets G ⊂ F of T there
exists a set NF

G of D with Ld(NF
G ) = 0, such that

πF
G(μx

F ) = μx
G for every x ∈ D \ NF

G . (3.4)

Conversely, if (3.4) holds for a.e. x ∈ D , then μ satisfies the compatibility condition (3.3).
Hence, up to subsets of D with zero measure, the compatibility condition commutes in some sense with the

disintegration.

Remark 3.2. Let Y 2(D; Ξ)T denote the set of all families of Young measures with finite second moments on D
with values in Ξ, indexed on the set T . Given (μt)t∈T ∈ Y 2(D; Ξ)T , we can always construct a compatible
system μ ∈ SY 2(T, D; Ξ) satisfying μt = μt for every t ∈ T . Indeed it is enough to define

μF :=
∫

D

( ⊗
t∈F

μx
t ) dx,

for every nonempty finite subset F of T .

In the next theorem we will show that to every compatible system of Young measures with finite second
moments we can associate a stochastic process on a suitable (D,Ld)-probability space.

Theorem 3.3. Given a set of indices T and a compatible system μ ∈ SY 2(D;
∏

t∈T Ξt) , there exist a (D,Ld)-
probability space and a stochastic process (Xt)t∈T with

Xt ∈ L2(D × Ω; Ξt), (3.5)
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for every t ∈ T , such that

(πD, (Xt)t∈F )(P ) = μF , (3.6)

for every nonempty finite subset F of T .

Proof. Let t∞ be an index such that t∞ /∈ T . Set T̂ := {t∞} ∪ T and let Ξt∞ := D .
We want to construct a system of finite dimensional distributions indexed on T̂ , satisfying the hypotheses

of Kolmogorov Theorem.
Let F be a nonempty finite subset of T̂ ; we distinguish three cases. If t∞ ∈ F and F \ {t∞} �= Ø we set

νF = μF\{t∞}. (3.7)

If t∞ /∈ F , we set

νF := π ∏
τ∈F

Ξτ
(μF ), (3.8)

where π∏
τ∈F Ξτ

: D ×
∏

τ∈F Ξτ →
∏

τ∈F Ξτ denotes the usual projection. Finally, if F = {t∞} , we set

νF := Ld. (3.9)

The system of finite dimensional distributions ν satisfies the following compatibility condition: for every
nonempty finite subsets G ⊂ F of T̂ , we have

πF
G(νF ) = νG. (3.10)

Indeed, in the case t∞ ∈ F and F \ {t∞} �= Ø, it follows from compatibility condition for μ if t∞ ∈ G and
G \ {t∞} �= Ø, it comes from (2.2) if G = {t∞} , and it easily follows from (3.8) if t∞ /∈ G . In case t∞ /∈ F ,
(3.10) can be proved using the construction in (3.8) and the analysis of the previous case.

By (3.10), ν satisfies the hypotheses of Kolmogorov Theorem; therefore it is enough to choose Ω :=
∏

t∈T Ξt ,
F the product of the Borel σ -algebras of Ξt , for t ∈ T , Xt : Ω → Ξt , for t ∈ T , the usual projections,
and Kolmogorov Theorem guarantees the existence of a probability measure P on (D × Ω,B(D) × F) with
πD(P ) = Ld which satisfies (3.6). �

Using the previous result we will prove that we can associate to a pair of two compatible systems, connected
by a further compatibility condition, a pair of stochastic processes on the same probability space.

Lemma 3.4. Let V and W finite dimensional Hilbert spaces, μ ∈ Y 2(D; V ) and ν ∈ Y 2(D; V × W ) be such
that

π̃V (ν) = μ. (3.11)

Then for Ld -a.e. x ∈ D we have

(νx)v = ν(x,v),

for μx -a.e. v ∈ V , where (νx)v is the disintegration of νx with respect to μx and ν(x,v) the disintegration of ν
with respect to μ .

Proof. It is easy to see, as for Remark 3.1, that there exists a set N ⊆ D , with Ld(N) = 0, such that for every
x ∈ D \ N

πV (νx) = μx. (3.12)
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Hence for every bounded Borel function f : D × V × W → R ,∫
D×V ×W

f(x, v, w) dν(x, v, w) =
∫

D

(∫
V ×W

f(x, v, w) dνx(v, w)
)

dx

=
∫

D

(∫
V

(∫
W

f(x, v, w) d(νx)v(w)
)

dμx(v)
)

dx.

On the other hand, thanks to (3.11),

∫
D×V ×W

f(x, v, w) dν(x, v, w) =
∫

D×V

(∫
W

f(x, v, w) dν(x,v)(w)
)

dμ(x, v)

=
∫

D

(∫
V

(∫
W

f(x, v, w) dν(x,v)(w)
)

dμx(v)
)

dx.

This concludes the proof. �

Theorem 3.5. Let T a set of indices, Vt and Wt finite dimensional Hilbert spaces, for every t ∈ T . Let
μ ∈ SY 2(D; (Vt)t∈T ) and ν ∈ SY 2(D; (Vt × Wt)t∈T ) . Assume that

π̃Vt(νt) = μt,

for every t ∈ T . Then there exist a (D,Ld)-probability space (D × Ω,B(D) ⊗ F , P ) and a stochastic process
(Zt, Y t)t∈T with

Zt ∈ L2(D × Ω; Vt),
Y t ∈ L2(D × Ω; Wt),

for every t ∈ T , such that
(πD, (Zt)t∈F )(P ) = μF , (3.13)

for every nonempty finite subset F of T , and

(πD, Zt, Y t)(P ) = νt, (3.14)

for every t ∈ T .

Proof. We want to construct from μ and ν a unique compatible system and to apply to it Theorem 3.3.
Fix a nonempty finite subset F of T . Denote by (μx

F )x∈D , (νx
t )x∈D the disintegrations with respect to Ld

of μF , and νt , t ∈ F , respectively. As observed in (3.12), πVt(νx
t ) = μx

t , for a.e. x ∈ D , for every t ∈ F .
Hence, for a.e. x ∈ D , we can write

νx
t =

∫
Vt

(νx
t )vt dμx

t (vt).

Using the fact that the disintegration is a measurable family, a Dynkin class argument, and Lemma 3.4, we can
deduce that

(x, (vt)t∈F ) �→
(

⊗
t∈F

(νx
t )vt

)
(B) (3.15)

is a Borel measurable function, for every Borel subset B of
∏

t∈F Wt . In particular for a.e. x ∈ D the function
(vt)t∈F �→ (⊗t∈F (νx

t )vt)(B) is Borel measurable; hence, for every Borel sets A ⊆
∏

t∈F Vt and B ⊆
∏

t∈F Wt ,
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we can define a measure ν̃x
F on

∏
t∈F (Vt × Wt) by

ν̃x
F (A × B) :=

∫
A

( ⊗
t∈F

(νx
t )vt)(B) dμx

F ((vt)t∈F ), (3.16)

for a.e. x ∈ D .
By construction, for a.e. x ∈ D , ν̃x

F is a probability measure with the properties

π ∏
t∈F

Vt
(ν̃x

F ) = μx
F , (3.17)

πVt×Wt(ν̃
x
F ) = νx

t , (3.18)

for every t ∈ F .
The Borel measurability of the function in (3.15) guarantees that (ν̃x

F )x∈D is a measurable family of proba-
bility measures on

∏
t∈F (Vt × Wt) and we can define

ν̃F :=
∫

D

ν̃x
F dx.

It is easy to check that, for F running over all nonempty finite subsets of T , ν̃F ∈ Y 2(D;
∏

t∈F (Vt ×Wt)) and
satisfies the compatibility condition; hence we have ν̃ ∈ SY 2(D; (Vt × Wt)t∈T ). Moreover, thanks to (3.17)
and (3.18),

π̃∏
t∈F Vt

(ν̃F ) = μF , (3.19)

for every nonempty finite subset F of T and

π̃Vt×Wt(ν̃t) = νt, (3.20)

for every t ∈ T .
Applying Theorem 3.3 to ν̃ , we obtain a (D,Ld)-probability space (D × Ω,B(D) ⊗ F , P ) and a stochastic

process (Zt, Y t)t∈T , with (Zt, Y t) : D × Ω → Vt × Wt , such that

(πD, (Y t, Zt)t∈F )(P ) = ν̃F , (3.21)

for every nonempty finite subset F of T . Using the construction of (Zt, Y t) and (3.19), (3.20), we can obtain
the thesis. �

If the time set is an interval [0, T ] ⊂ R and Ξt ≡ Ξ for every t ∈ [0, T ] , the notion of variation of a stochastic
process (Y t)t∈[0,T ] on a (D,Ld)-probability space, with Y t ∈ L1(D × Ω; Ξ), is defined in the usual way: for
every time interval [a, b] ⊆ [0, T ] we set

Var(Y , P ; a, b) := sup
k∑

i=1

∫
D×Ω

|Y ti(x, ω) − Y ti−1(x, ω)| dP (x, ω)

= sup
k∑

i=1

‖Y ti − Y ti−1‖1,

where the supremum is taken over all finite partitions a = t0 < . . . < tk = b of the interval [a, b] (with the
convention Var(Y , P ; a, b) = 0, if a = b).
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Using the correspondence between stochastic processes and compatible systems we define the variation of
μ ∈ SY 2([0, T ], D; Ξ) on [a, b] ⊆ [0, T ] by

Var(μ; a, b) := sup
k∑

i=1

∫
D×Ξk+1

|ξi − ξi−1| dμt0...tk
(x, ξ0, . . . , ξk)

where the supremum is taken over all finite partitions a = t0 < . . . < tk = b of the interval [a, b] (with the
convention Var(μ; a, b) = 0, if a = b).

From these definitions, if μ is the compatible system associated to the stochastic process Y we have
Var(Y , P ; a, b) = Var(μ; a, b).

4. Some technical tools

For technical reasons it is more convenient to deal with Young measures and compatible systems than with
random variables and stochastic processes; therefore we want to point out some results about measures which
will be needed in the sequel.

We say that a sequence μk in Y (D; Ξ) weakly* converges if it converges in the weak* topology of Mb(D×Ξ).

Remark 4.1. Since the total variation of a Young measure μ is |μ|(D×Ξ) = Ld(D) = 1, Y (D; Ξ) is contained
in a bounded subset of the dual of a separable Banach space, therefore it is metrizable with respect to the weak*
topology.

We will say that μk ⇀ μ 2-weakly* if the second moments of μk are equibounded and μk ⇀ μ weakly*.
We recall that Y (D; Ξ) is not closed with respect to the weak* convergence, differently from Y 2(D; Ξ), which

is closed under 2-weakly* convergence, as can be deduced from the following remarks.

Remark 4.2. If μk is a sequence in Y (D; Ξ) and μk weakly* converges to some μ ∈ Mb(D × Ξ), then for
every positive Carathéodory function f on D × Ξ we have∫

D×Ξ

f(x, ξ) dμ(x, ξ) ≤ lim inf
k→∞

∫
D×Ξ

f(x, ξ) dμk(x, ξ), (4.1)

(see [18], Th. 4). Moreover, for every bounded Carathéodory function f with compact support on D × Ξ, we
have ∫

D×Ξ

f(x, ξ) dμk(x, ξ) →
∫

D×Ξ

f(x, ξ) dμ(x, ξ).

Therefore, if a sequence (μk)k ⊂ Y 2(D; Ξ) 2-weakly* converges to a measure μ ∈ Mb(D × Ξ), then μ ∈
Y 2(D; Ξ); moreover from the previous remark we can deduce that a sequence in Y 2(D; Ξ) with equibounded
second moments has always a subsequence which converges 2-weakly*.

The following remark is a slight modification of [17], Proposition 6.5.

Remark 4.3. If μk ⇀ μ 2-weakly*, for every Carathéodory function f : D × Ξ → R , with |f(x, ξ)| ≤
a(x) + b(x)|ξ| , for every x ∈ D , ξ ∈ Ξ, for suitable b ∈ L2(D) and a ∈ L1(D), it holds∫

D×Ξ

f(x, ξ) dμk(x, ξ) −→
∫

D×Ξ

f(x, ξ) dμ(x, ξ).

This allows to prove that if μk ⇀ μ 2-weakly*, μk, μ ∈ Y 2(D; Ξ1 ×Ξ2), then π̃i(μk) ⇀ π̃i(μ) in Y 2(D; Ξi),
as k → ∞ , for i = 1, 2.

Moreover we have the following result, where for every g ∈ L2(X ; Ξ) the translation map Tg from D × Ξ
into itself is defined by Tg(x, ξ) := (x, ξ + g(x)).
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Lemma 4.4. Let (μk)k be a sequence in Y 2(D; Ξ) , such that μk ⇀ μ 2-weakly*. Then Tg(μk) ⇀ Tg(μ)
2-weakly*, for every g ∈ L2(X ; Ξ) .

More in general:

Lemma 4.5. Let μk ⇀ μ 2-weakly* and gk be a bounded sequence in L2(D; Ξ) such that gk → g strongly
in L1(D; Ξ) . Then Tgk

(μk) ⇀ Tg(μ) 2-weakly*.

Proof. Since (gk)k is bounded in L2(D; Ξ), the second moments of Tgk
(μk) are equibounded. We now prove

that Tgk
(μk) ⇀ Tg(μ) weakly*. Since C0(D×Ξ) is the closure of C∞

0 (D×Ξ) with respect to the norm ‖ · ‖∞ ,
thanks to (2.2), to prove that Tgk

(μk) ⇀ Tg(μ) weakly* it is enough to show that

∫
D×Ξ

f(x, ξ + gk(x)) dμk(x, ξ) →
∫

D×Ξ

f(x, ξ + g(x)) dμ(x, ξ),

for every f ∈ C∞
0 (D × Ξ).

Let f ∈ C∞
0 (D × Ξ), we have

∣∣∣ ∫
D×Ξ

f(x, ξ + g(x)) dμ(x, ξ) −
∫

D×Ξ

f(x, ξ + gk(x)) dμk(x, ξ)
∣∣∣ ≤

∣∣∣ ∫
D×Ξ

f(x, ξ + g(x)) dμ(x, ξ) −
∫

D×Ξ

f(x, ξ + g(x)) dμk(x, ξ)
∣∣∣

+
∫

D×Ξ

|f(x, ξ + g(x)) − f(x, ξ + gk(x))| dμk(x, ξ).

By the Lipschitz continuity of f and (2.2), the last line can be estimated by c‖g−gk‖1 for a positive constant c ;
Lemma 4.4 implies now the thesis. �

If we deal with Young measures generated by gradients, the following lemma, in the version of
Fonseca et al. [7], Lemma 1.2, can be very useful.

Lemma 4.6 (decomposition lemma). Let (vj)j be a bounded sequence in H1(D; Ξ) . Then there exists a
subsequence (vjk

)k of (vj)j , and another sequence (wk)k bounded in H1(D; Ξ) , such that

Ld({vjk
�= wk or ∇vjk

�= ∇wk}) → 0, (4.2)

as k → ∞ , and (|∇wk|2)k is equiintegrable.

Note that condition (4.2) implies that both sequences (∇vjk
)k and (∇wk)k generate the same Young measure,

i.e., δ∇vjk
and δ∇wk

converge to the same Young measure.
Using part of the arguments of [7] and a more careful diagonalization argument, it can be proved the following

lemma.

Lemma 4.7. Let (vj)j be a bounded sequence in L2(D; Ξ) such that there exists a Young measure μ ∈ Y 2(D; Ξ)
with δvj ⇀ μ weakly*. Then there exists another sequence (wj)j , bounded in L2(D; Ξ) , such that

Ld({vj �= wj}) → 0, (4.3)

as j → ∞ , and (|wj |2)j is equiintegrable.

The following theorem (see [2]) gives an important convergence result in case we deal with equiintegrable
sequences.
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Theorem 4.8 (fundamental theorem for Young measures). Given a Young measure μ , generated by a sequence
of functions (uj)j , and a function f ∈ C(Ξ; R) such that the sequence (f(uj))j is weakly sequentially relatively
compact in L1(D) , then

f(uj) ⇀ fμ weakly in L1(D),

where the function fμ ∈ L1(D) is defined by fμ(x) :=
∫
Ξ

f(ξ) dμx(ξ) for a.e. x ∈ D . In particular∫
D

f(uj(x)) dx →
∫

D×Ξ

f(ξ) dμ(x, ξ).

The barycentre of a Young measure μ ∈ Y 2(D; Ξ) is the function bar(μ) ∈ L2(D; Ξ) defined as

bar(μ)(x) :=
∫

Ξ

ξ dμx(ξ),

for a.e. x ∈ D .

Lemma 4.9. Let μk be a sequence in Y 2(D; Ξ) , such that μk ⇀ μ 2-weakly*. Assume that there exists
a sequence of functions vk ∈ H1

0(D; Ξ) such that ∇vk = bar(μk) for every k . Then there exists a function
v ∈ H1

0(D; Ξ) such that vk ⇀ v weakly in H1 and ∇v = bar(μ) .

Proof. Since ‖∇vk‖2
2 ≤

∫
D×Ξ |ξ|2 dμk(x, ξ) which is bounded uniformly with respect to k by hypothesis, using

Poincaré inequality we can deduce that there exists a subsequence vkh
and a function v ∈ H1

0(D; Ξ), such that
vkh

⇀ v weakly in H1 . Using the definition of barycentre and (4.3), we deduce that ∇v = bar(μ) and hence
∇vkh

⇀ bar(μ) weakly in L2(D; Ξ); together with Poincaré inequality, this implies that the whole sequence vk

converges to v weakly in H1 . �
The space SY 2(D;

∏
t∈T Ξt) will be equipped with the weakest topology for which the maps μ �→ μF

from SY 2(D;
∏

t∈T Ξt) into Y 2(D;
∏

t∈F Ξt), endowed with the weak* topology of Mb(D ×
∏

t∈F Ξt), are
continuous for every nonempty finite subset F of T . We will refer to this topology as the weak* topology of
SY 2(D;

∏
t∈T Ξt).

From now on we consider the case in which the time set is an interval [0, T ] . A compatible system of Young
measures with finite second moments μ is said to be left continuous if for every finite sequence t1, . . . , tm
in [0, T ] , with t1 < . . . < tm , the following property holds:

μs1...sm
⇀ μt1...tm

weakly* in Y 2(D; Ξm),

as si → ti , with si ∈ [0, T ] and si ≤ ti . We will denote the space of all left continuous compatible systems
by SY 2

−([0, T ], D; Ξ).
The following theorem can be considered as a version of Helly’s Theorem.

Theorem 4.10. Let μk be a sequence in SY 2([0, T ], D; Ξ) such that

sup
k

Var(μk; 0, T ) ≤ C, (4.4)

sup
t∈[0,T ]

sup
k

∫
D×Ξ

|ξ|2 dμk
t (x, ξ) ≤ C∗, (4.5)

for finite constants C and C∗ . Then there exist a subsequence, still denoted by μk , a set Θ ⊂ [0, T ] , contain-
ing 0 and such that [0, T ]\Θ is at most countable, and μ ∈ SY 2−([0, T ], D; Ξ) with

Var(μ; 0, T ) ≤ C, (4.6)∫
D×Ξ

|ξ|2 dμt(x, ξ) ≤ C∗ for every t ∈ [0, T ], (4.7)
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such that, for every nonempty finite subset F of Θ , we have

μk
F ⇀ μF 2-weakly*. (4.8)

The proof of this theorem follows easily from Theorem 8.10 of [5], since every Young measure can be
seen as a generalized Young measure and our more restrictive hypotheses force the limit to be an element
of SY 2([0, T ], D; Ξ).

If H : Ξ → [0, +∞) is positively homogeneous of degree one and satisfies the triangle inequality, we can
define the H -variation of μ ∈ SY 2([0, T ], D; Ξ) on the time interval [a, b] ⊆ [0, T ] as

VarH(μ; a, b) := sup
k∑

i=1

∫
D×Ξk+1

H(ξi − ξi−1) dμt0...tk
(x, ξ0, . . . , ξk), (4.9)

where the supremum is taken over all finite partitions a = t0 < . . . < tk = b of the interval [a, b] (with the
convention VarH(μ; a, b) = 0, if a = b).

Adapting the argument in [5] (Th. 8.11), it can be proved the following lemma.

Lemma 4.11. Let μk be a sequence in SY 2([0, T ], D; Ξ) . Suppose that there exist a dense set Θ ⊂ [0, T ]
containing 0 and μ ∈ SY 2

−([0, T ], D; Ξ) , such that

μk
F ⇀ μF 2-weakly∗

for every nonempty finite subset F in Θ ; then

VarH(μ; 0, T ) ≤ lim inf
k→∞

VarH(μk; 0, T )

for every positively one homogeneous function H : Ξ → [0, +∞) satisfying the triangle inequality.

Definition 4.12. Fix a finite sequence 0 = t1 < . . . < tm = T in [0, T ] . For every μ ∈ Y 2(D; Ξm), it is
possible to define the piecewise constant interpolation μpwc ∈ SY 2([0, T ], D; Ξ) in the following way. For every
finite sequence τ1 < . . . < τn of elements of [0, T ] let ρτ1...τn : D × Ξm × R → D × Ξn × R be defined by

ρτ1...τn(x, ξt1 , . . . , ξtm) := (x, ξτ1 , . . . , ξτn),

with ξτi = ξtj , where j is the largest index such that tj ≤ τi . The compatible system of Young measures with
finite second moments μpwc is then defined by

μpwc
τ1...τn

:= ρτ1...τn(μ).

Lemma 4.13. Let (μn)n and (νn)n be sequences in SY 2([0, T ], D; Ξ1) and SY 2([0, T ], D; Ξ1 × Ξ2) , respec-
tively, satisfying π̃Ξ1(νn

t ) = μn
t , for every t ∈ [0, T ] . Assume that

sup
t∈[0,T ]

sup
n

∫
D×Ξ1×Ξ2

|(ξ1, ξ2)|2 dνn
t (x, ξ1, ξ2) ≤ C, (4.10)

for a positive constant C , and that there exist a subset Θ of [0, T ] , containing 0 , with L1([0, T ] \ Θ) = 0 , and
μ ∈ SY 2−([0, T ], D; Ξ1) such that

μn
t1...tm

⇀ μt1...tm
, 2-weakly*,

for every t1 < . . . < tm in Θ . For every t ∈ Θ let (nt
k)k be an increasing sequence of integers; then there exists

ν ∈ SY 2([0, T ], D; Ξ1×Ξ2) , such that π̃Ξ1(νt) = μt , for every t ∈ [0, T ] and satisfying the following properties:
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(1) for every t ∈ Θ , there exists a subsequence ν
nt

k,i

t of ν
nt

k
t such that

ν
nt

k,i

t ⇀ νt 2-weakly*; (4.11)

(2) for every t ∈ [0, T ] \ Θ , there exists a sequence sj in Θ , converging to t , with sj ≤ t , such that

νsj ⇀ νt 2-weakly*. (4.12)

The proof of this lemma was contained in a preliminary version of [6].

Proof. Fix t ∈ Θ; thanks to (4.10), we can deduce that there exist ν0
t ∈ Y 2(D; Ξ1 × Ξ2) and a subsequence

(ν
nt

k,i

t )i of (νnt
k

t )k , satisfying (4.11). Thanks to Remarks 4.2 and 4.3, for every t ∈ Θ we have∫
D×Ξ1×Ξ2

|(ξ1, ξ2)|2 dν0
t (x, ξ1, ξ2) ≤ C (4.13)

and π̃Ξ1(ν0
t ) = μt .

Consider now the sets Bt defined in the following way:
• if t ∈ Θ, Bt denotes the collection of all ν ∈ SY 2([0, T ], D; Ξ1 × Ξ2) such that the second moments

of νs are bounded by the constant C appearing in (4.10), for every s ∈ [0, T ] , and satisfying νt = ν0
t ;

• if t /∈ Θ, Bt is the collection of all ν ∈ SY 2([0, T ], D; Ξ1 × Ξ2), such that the second moments of νs

are bounded by the constant C appearing in (4.10), for every s ∈ [0, T ] , and for which there exists a
sequence sj in Θ, converging to t with sj ≤ t , such that ν0

sj ⇀ νt , weakly*.
For every t ∈ [0, T ] , Bt �= Ø: indeed, if t ∈ Θ it comes immediately from Remark 3.2 applied to (νs)s∈[0,T ] ∈

Y 2(D; Ξ)[0,T ] defined by νs := ν0
t for every s ∈ [0, T ] ; if t /∈ Θ, thanks to (4.13), there exist sj , with sj ∈ Θ,

sj → t and sj ≤ t , and μ ∈ Y 2(D; Ξ1 × Ξ2), such that ν0
sj ⇀ μ 2-weakly*, hence the second moment of μ

is bounded by C and we can apply Remark 3.2 to (νs)s∈[0,T ] ∈ Y 2(D; Ξ)[0,T ] defined by νs := μ , for every
s ∈ [0, T ] , and find an element of Bt . Using Remark 4.1 we can see that the set of all Young measures μ for
which there exists a sequence sj → t with sj ≤ t and ν0

sj ⇀ μ weakly* is sequentially closed with respect to the
weak* topology (thanks to (4.13)); moreover we observe that the set of all ν ∈ SY 2([0, T ], D; Ξ) with the second
moments equibounded by the constant C is closed in the weak* topology of SY 2([0, T ], D; Ξ), therefore, using
again Remark 4.1, we can conclude that, for every t ∈ [0, T ] , Bt are closed subsets of SY 2([0, T ], D; Ξ1 × Ξ2),
endowed with the weak* topology. Moreover the family has the finite intersection property (for every finite
sequence t1 < . . . < tm in [0, T ] , using Definition 4.12, we can find an element belonging to Bt1 ∩ . . . ∩ Btm )
and is contained in the set of all ν ∈ SY 2([0, T ], D; Ξ1×Ξ2) for which the second moments of νt are uniformly
bounded by the constant C appearing in (4.10); since, thanks to Tychonoff’s Theorem, this is a compact subset
of SY 2([0, T ], D; Ξ1 × Ξ2), endowed with the weak* topology, we can conclude that there exists ν belonging
to Bt , for every t ∈ [0, T ] . By construction ν satisfies (1) and (2) and from the left continuity of μ we can
deduce that π̃Ξ1(νt) = μt , for every t ∈ [0, T ] , as required. �

5. Mechanical model

The reference configuration D is a bounded connected open subset of R
d with Lipschitz boundary ∂D =

Γ0 ∪ Γ1 , where Γ0 is assumed to be a nonempty closed subset of ∂D with Hd−1(Γ0) �= 0, and Γ1 = ∂D \ Γ0 .
Without loss of generality, we also assume for simplicity that Ld(D) = 1.

We will indicate the deformation by v and the internal variable by z . We will denote the stored energy density
by W : R

m × R
N×d → [0, +∞) and the dissipation rate density by H : R

m → [0, +∞). For every θ, θ̃ ∈ R
m

and F ∈ R
N×d , we will make the following assumptions:



258 A. FIASCHI

(W.1) there exist positive constants c, C such that

c(|θ|2 + |F |2) − C ≤ W (θ, F ) ≤ C(1 + |θ|2 + |F |2);

(W.2) W (θ, ·) is of class C1 ,

∣∣∣∂W

∂F
(θ, F )

∣∣∣ ≤ C(1 + |θ| + |F |),

and

|W (θ + θ̃, F ) − W (θ, F )| ≤ C|θ̃|(1 + |θ| + |θ̃| + |F |);

(H.1) H is positively homogeneous of degree one and convex;

(H.2) there exists a positive constant λ , such that 1
λ |θ| ≤ H(θ) ≤ λ|θ| .

Let W be the functional W(z, v) :=
∫

D W (z(x),∇v(x)) dx , for every z ∈ L2(D; Rm) and every v ∈
H1(D; RN ), and H the functional H(z) :=

∫
D H(z(x)) dx , for every z ∈ L1(D; Rm).

Given two distinct times s < t , the global dissipation of a possibly discontinuous function z : [0, T ] →
L2(D; Rm) in the interval [s, t] will be

VarH(z; s, t) := sup
k∑

i=1

H(z(τi) − z(τi−1)),

where the supremum will be taken among all finite partitions s = τ0 < τ1 < . . . < τk = t .
The external load at time t and the prescribed boundary datum on Γ0 at time t are denoted by l(t) and

ϕ(t), respectively; we assume l ∈ AC([0, T ]; H1(D; RN )∗) and ϕ ∈ AC([0, T ]; H1(D; RN )).
The kinematically admissible values at time t for z and v are those which make the total energy finite and

satisfy the boundary condition, i.e., v = ϕ(t) on Γ0 Hd−1 -a.e. (in the sense of traces). From the previous
assumption it follows that the kinematically admissible values at time t are contained in L2(D; Rm) × A(t),
where A(t) = H1

Γ0
(ϕ(t)) := {v ∈ H1(D; RN ) : v = ϕ(t) Hd−1-a.e. on Γ0} .

6. Globally stable quasistatic evolution for Young measures

6.1. Admissible set in terms of stochastic processes

Now we describe the set of admissible stochastic processes in which we look for a solution of our quasistatic
evolution problem: the definition takes into account approximation properties with functions which satisfy the
boundary condition.

Definition 6.1. Given A ⊂ R and w : A → H1(D; RN ), we define AYsp(A, w) as the set of all stochastic
processes (Zt, Y t)t∈A on a (D,Ld)-probability space (D × Ω,B(D) ⊗F , P ) with

Zt ∈ L2(D × Ω; Rm),

Y t ∈ L2(D × Ω; RN×d),

satisfying the following property: for every finite sequence t1 < . . . < tn in A there exist sequences (zk
i )k ⊂

L2(D; Rm), (vk
i )k ⊂ H1

Γ0
(w(ti)), for i = 1, . . . , n such that
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(apsp1) we have

(πD, zk
1 , . . . , zk

n)(P ) ⇀ (πD, Zt1 , . . . , Ztn)(P )

2-weakly* as k → ∞ ;

(apsp2) for every i = 1, . . . , n , there exists a subsequence, possibly depending on i , (z
ki

j

i , v
ki

j

i )j , such
that

(
πD, zki

j ,∇vki
j
)
(P ) ⇀ (πD, Zti , Y ti)(P )

2-weakly* as j → ∞ .

6.2. Admissible set in terms of Young measures

The notion of admissible set is now presented in terms of Young measures.

Definition 6.2. Given A ⊂ R and w : A → H1(D; RN ), we define AY (A, w) as the set of all pairs (ν, μ) ∈
Y 2(D; Rm ×R

N×d)A ×SY 2(A, D; Rm) satisfying the following property: for every finite sequence t1 < . . . < tn
in A there exist sequences (zk

i )k ⊂ L2(D; Rm), (vk
i )k ⊂ H1

Γ0
(w(ti)), for i = 1, . . . , n such that

(ap1) we have

δ(zk
1 ,...,zk

n) ⇀ μt1...tn
, (6.1)

2-weakly* as k → ∞ ;

(ap2) for every i = 1, . . . , n , there exists a subsequence, possibly depending on i , (z
ki

j

i , v
ki

j

i )j , such that

δ(
z

ki
j

i ,∇v
ki

j
i

) ⇀ νti (6.2)

2-weakly* as j → ∞ .

Remark 6.3. If (ν, μ) ∈ AY (A, w), then π̃Rm(νt) = μt , for every t ∈ A . Indeed, fixed t ∈ A , by definition
there exist (zk)k ⊂ L2(D; Rm), (vk)k ⊂ H1

Γ0
(w(t)) such that δ(zk,∇vk) ⇀ νt 2-weakly* and δzk ⇀ μt

2-weakly*; in particular π̃Rm(δ(zk,∇vk)) ⇀ π̃Rm(νt) 2-weakly* and this prove the claim.

Remark 6.4. If (Zt, Y t)t∈A ∈ AYsp(A, w), we can define (ν, μ) ∈ AY (A, w) as

νt := (πD, Zt, Y t)(P ) for every t ∈ A

μt1...tn
:= (πD, Zt1 , . . . , Ztn)(P ) for every finite sequence t1 < . . . < tn in A.

On the other side, thanks to Remark 6.3 and Theorem 3.5, for every (ν, μ) ∈ AY (A, w) there exists a
stochastic process (Zt, Y t)t∈A ∈ AYsp(A, w) such that, for every finite sequence t1 < . . . < tn in A ,

(πD, Zt1 , . . . , Ztn)(P ) = μt1...tn

(πD, Zti , Y ti)(P ) = νti for every i = 1, . . . , n.

Remark 6.5. Thanks to decomposition Lemmas 4.6 and 4.7, given (ν, μ) ∈ AY (A, w) and a finite sequence
t1 < . . . < tm in A , we can always choose zk

i ∈ L2(D; Rm) and vk
i ∈ H1

Γ0
(w(ti)), for i = 1, . . . , m , in such a way

that |zk
i |2 are equiintegrable, satisfy (6.1), and for every i there exists a subsequence (z

ki
j

i , v
ki

j

i )j satisfying (6.2),
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such that |∇v
ki

j

i |2 are equiintegrable with respect to j . Hence, by Theorem 4.8, we can always assume that

‖(zk
1 , . . . , zk

n)‖2
2 →

∫
D×(Rm)n

|(θ1, . . . , θn)|2 dμt1...tn
(x, θ1, . . . , θn), (6.3)

‖(zki
j

i ,∇v
ki

j

i )‖2
2 →

∫
D×Rm×RN×d

|(θ, F )|2 dνti(x, θ, ξ), (6.4)

as j → ∞ , for i = 1, . . . , m . This allows us to assume, without loss of generality, that

sup
k

‖zk
i ‖2

2 ≤ C1 + 1, (6.5)

sup
j

‖
(
z

ki
j

i ,∇v
ki

j

i

)
‖2
2 ≤ C2 + 1, (6.6)

with

C1 := sup
i=1,...,n

∫
D×Rm

|θ|2 dμti
(x, θ),

C2 := sup
i=1,...,n

∫
D×Rm×RN×d

|(θ, F )|2 dνti(x, θ, F ).

In the following two lemmas we want to point out some closure properties of AY (A, w).

Lemma 6.6. Let (ν, μ) ∈ Y 2(D; Rm × R
N×d)A × SY 2(A, D; Rm) , and assume that for every finite sequence

t1 < . . . < tn in A there exists a sequence (νj , μj)j in AY ({t1, . . . , tn}, w) , such that

μj
t1...tn

⇀ μt1...tn
2-weakly*, (6.7)

as j → ∞ , and such that for every i there exists a subsequence, possibly depending on i , (νji
h)h , satisfying

(νji
h)ti ⇀ νti , 2-weakly*, (6.8)

as h → ∞ . Then (ν, μ) ∈ AY (A, w) .

Proof. Fix a finite sequence t1 < . . . < tn in A . By definition of AY ({t1, . . . , tn}, w), for every j and every
i = 1, . . . , n , there exist (zj,k

i )k ∈ L2(D; Rm) and (vj,k
i )k ∈ H1

Γ0
(w(ti)) satisfying (6.1) for μj and such that

for every i and j there exists an increasing sequence of integers (ki,j
l )l for which (zj,ki,j

l
i , v

j,ki,j
l

i )l satisfies (6.2)
for νj ; thanks to Remark 6.5 we can assume, without loss of generality, that

‖zj,k
i ‖2

2 ≤
∫

D×Rm

|θ|2 dμj
ti
(x, θ) + 1, for every k,

and

‖∇v
j,ki,j

l

i ‖2
2 ≤

∫
D×Rm×RN×d

|(θ, F )|2 dνj
ti
(x, θ, F ) + 1, for every l;

hence thanks to (6.7) and (6.8) there exists a positive constant C such that

‖zj,k
i ‖2

2 ≤ C + 1, (6.9)
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for every i, j, k , and

sup
h

sup
l

‖∇v
ji
h,k

i,ji
h

l

i ‖2
2 ≤ C + 1, (6.10)

for every i, h, l . Thanks to Remark 4.1, we can find a metric d1 on Y (D; (Rm)n) and a metric d2 on Y (D; Rm×
R

N×d) which induce the weak* topologies of Y (D; (Rm)n) and Y (D; Rm × R
N×d), respectively; therefore, for

every j we can find an integer κ(j) such that, for every k ≥ κ(j) it holds

d1(δ(zj,k
1 ,...,zj,k

n ), μ
j
t1...tn

) <
1
j
; (6.11)

analogously, for every i = 1, . . . , n , there exists an integer κi(j) such that,

d2(δ
(z

j,k
i,j
l

i ,∇v
j,k

i,j
l

i )
, νj

ti
) <

1
j

(6.12)

whenever ki,j
l ≥ κi(j).

By taking, if needed, a larger value of κ(j), we may assume that (6.11) and (6.12) are satisfied whenever
k ≥ κ(j) and ki,j

l ≥ κ(j), respectively. Another slight modification allows us to assume that, for every
i = 1, . . . , n and for every j , there exists ki,j

li,j
with

κ(j) < ki,j
li,j

≤ κ(j + 1). (6.13)

Let (α(k))k>κ(1) be the unique sequence such that κ(α(k)) < k ≤ κ(α(k) + 1), for every k > κ(1). This
implies

d1

(
δ(

z
α(k),k
1 ,...,z

α(k),k
n

), μ
α(k)
t1...tn

)
≤ 1

α(k)
, (6.14)

which, together with (6.7) and (6.9), implies that

δ(
z

α(k),k
1 ,...,z

α(k),k
n

) ⇀ μt1...tn
, (6.15)

2-weakly* as k → ∞ .
Now, for every i = 1, . . . , n we can choose an integer βi(j) in such a way that

βi(j) = ki,j
li,j

, (6.16)

for every j , so that we have κ(j) < βi(j) ≤ κ(j + 1), for every j , by (6.13). This implies that α(βi(j)) = j
and βi(j) > κ(j) so that, by (6.12)

d2

(
δ(

z
j,βi(j)
i ,∇v

j,βi(j)
i

), νj
ti

)
<

1
j
·

Therefore, thanks to (6.8) and (6.10) we can conclude that

δ(
z

α(βi(j
i
h
)),βi(j

i
h

)
i ,∇v

α(βi(j
i
h

)),βi(j
i
h
)

i

) ⇀ νti , (6.17)

as h → ∞ , for every i = 1, . . . , n . Since for every i the sequence (βi(ji
h))h is increasing, (6.15) and (6.17) show

that conditions (ap1) and (ap2) in Definition 6.2 are satisfied. �
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The following lemma consider the case of varying boundary conditions.

Lemma 6.7. Let wj be a sequence of functions from A into H1(D, Rm) , such that wj(t) → w(t) strongly
in H1 , for every t ∈ A and let (ν, μ) ∈ Y 2(D; Rm × R

N×d)A × SY 2(A, D; Rm) . Assume that for every finite
sequence t1 < . . . < tn in A there exists a sequence (νj , μj) ∈ AY ({t1, . . . , tn}, wj) such that

μj
t1...tn

⇀ μt1...tn
2-weakly*, (6.18)

as j → ∞ , and such that for every i there exists a subsequence, possibly depending on i , (νji
h)h , satisfying

(νji
h)ti ⇀ νti , 2-weakly*, (6.19)

as h → ∞ . Then (ν, μ) ∈ AY (A, w) .

Proof. Fixed t1 < . . . < tn in [0, T ] , thanks to Lemma 4.5 from (6.19) we can deduce that for every i = 1, . . . , n

T̃ 2

∇w(ti)−∇wji
h (ti)

(
νji

h
)
ti

⇀ νti 2-weakly*

as h → ∞ , where T̃ 2

∇w(ti)−∇wji
h (ti)

is the map defined by T̃ 2

∇w(ti)−∇wji
h (ti)

(x, θ, F ) := (x, θ, F + ∇w(ti) −

∇wji
h(ti)). Thanks to Lemma 4.4 it is easy to see that the hypotheses of Lemma 6.6 are satisfied with (νji

h)ti

replaced by T̃ 2

∇w(ti)−∇wji
h (ti)

((νji
h)ti).

�

Remark 6.8. If (ν, μ) ∈ AY (A, w), for every t ∈ A there exists a function v(t) ∈ H1
Γ0

(w(t)) such that ∇v(t) =
bar(π̃RN×d(νt)). Indeed, by definition of AY (A, w), for every t ∈ A there exists a sequence vk ∈ H1

Γ0
(w(t))

such that δ∇vk ⇀ π̃RN×d(νt), 2-weakly*; thanks to a variant of Lemma 4.9 with H1
0 replaced by H1

Γ0
(w(t)),

there exists a function v(t) ∈ H1(D; R), such that vk ⇀ v(t) weakly in H1 and ∇v(t) = bar(π̃RN×d(νt)); since
H1

Γ0
(w(t)) is closed with respect to the weak convergence, we can conclude that v(t) ∈ H1

Γ0
(w(t)).

Translating the previous remark in terms of stochastic processes we obtain the following:

Remark 6.9. If (Zt, Y t)t∈[0,T ] ∈ AYsp([0, T ], ϕ), for every t ∈ A there exists a function v(t) ∈ H1
Γ0

(w(t))
such that ∇v(t) = bar((πD, Y t)(P )).

Remark 6.10. If (ν, μ) ∈ AY (A, w), for every t ∈ A we define

σ(t, x) :=
∫

Rm×RN×d

∂W

∂F
(θ, F ) dνx

t (θ, F ), (6.20)

for a.e. x ∈ D . For every t ∈ A we have that σ(t) ∈ L2(D; RN×d): this comes immediately from (W.2),
(2.2), and from the fact that νt ∈ Y 2(D; Rm × R

N×d). In the language of stochastic processes σ(t) can be
characterized as the unique element of L2(D; RN×d) such that∫

D

σ(t, x)g(x) dx =
∫

D×Ω

∂W

∂F

(
Zt(x, ω), Y t(x, ω)

)
g(x) dP (x, ω), (6.21)

for every g ∈ L2(D; RN×d), where (Zt, Y t)t∈[0,T ] is the stochastic process corresponding to (ν, μ).

Remark 6.11. Since ϕ ∈ AC([0, T ]; H1(D; RN )) and l ∈ AC([0, T ]; H1(D; RN )∗), the time derivative ϕ̇ and l̇
are well defined for a.e. t ∈ [0, T ] and belong to the space L1([0, T ]; H1(D; RN )) and L1([0, T ]; H1(D; RN )∗),
respectively. Moreover the fundamental Theorem of Calculus holds (see, e.g., [3], Appendice).
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6.3. Main result

We are now in the position to define the notion of globally stable quasistatic evolution of stochastic processes.

Definition 6.12. Given ϕ ∈ AC([0, T ]; H1(D; RN )), l ∈ AC([0, T ]; H1(D; RN )∗), z0 ∈ L2(D; Rm), v0 ∈ A(0),
and T > 0, a globally stable quasistatic evolution of stochastic processes with boundary datum ϕ , external
load l , and initial condition (z0, v0), in the time interval [0, T ] , is a stochastic process (Zt, Y t)t∈[0,T ] ∈
AYsp([0, T ], ϕ), such that for every finite sequence t1 < . . . < tn in [0, T ] we have

(πD, Zsj
1
, . . . , Zsj

n
)(P ) ⇀ (πD, Zt1 , . . . , Ztn)(P )

2-weakly*, as sj
i → ti with sj

i ≤ ti , and satisfying the following conditions:

(ev0) initial condition: (Z0, Y 0) = (z0,∇v0);
(ev1) global stability: for every t ∈ [0, T ] , we have

∫
D×Ω

W (Zt(x, ω), Y t(x, ω)) dP (x, ω) ≤∫
D×Ω

W (Zt(x, ω) + z̃(x), Y t(x, ω) + ∇ũ(x)) dP (x, ω) − 〈l(t), ũ〉 + H(z̃),

for every z̃ ∈ L2(D; Rm) and every ũ ∈ H1
Γ0

(0);
(ev2) energy inequality: for every t ∈ [0, T ] we have

VarH(Z, P ; 0, t) := sup
k∑

i=1

∫
D×Ω

H(Zti(x, ω) − Zti−1(x, ω)) dP (x, ω) < ∞,

where the supremum is taken over all finite partitions 0 = t0 < . . . < tk = t , and the map

t �→ [〈σ(t),∇ϕ̇(t)〉 − 〈l̇(t), v(t)〉]

is measurable on [0, T ] , where σ(t) is the function defined in (6.21) and v(t) that one defined in
Remark 6.9; moreover∫

D×Ω

W (Zt(x, ω), Y t(x, ω)) dP (x, ω) − 〈l(t), v(t)〉 + VarH(Z, P ; 0, t) ≤

W(z0, v0) − 〈l(0), v0〉 +
∫ t

0

〈σ(s),∇ϕ̇(s)〉ds

−
∫ t

0

[〈l(s), ϕ̇(s)〉 + 〈l̇(s), v(s)〉] ds.

We now state the main existence theorem in terms of stochastic processes.

Theorem 6.13. Let ϕ ∈ AC([0, T ]; H1(D; RN )) , l ∈ AC([0, T ]; H1(D; RN )∗) , T > 0 , z0 ∈ L2(D; Rm) and
v0 ∈ A(0) be such that

W(z0, v0) ≤ W(z0 + z̃, v0 + ũ) − 〈l(0), ũ〉 + H(z̃), (6.22)

for every z̃ ∈ L2(D; Rm) and every ũ ∈ H1
Γ0

(0) . Then there exists a globally stable quasistatic evolution
for stochastic processes with boundary datum ϕ , external load l , and initial condition (z0, v0) , in the time
interval [0, T ] .
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Thanks to Remark 6.4, we can translate the definition of globally stable quasistatic evolution of stochastic
processes in terms of globally stable quasistatic evolution of Young measures.

Definition 6.14. Given ϕ ∈ AC([0, T ]; H1(D; RN )), l ∈ AC([0, T ]; H1(D; RN )∗), z0 ∈ L2(D; Rm), v0 ∈
A(0), and T > 0, a globally stable quasistatic evolution of Young measures with boundary datum ϕ , external
load l and initial condition (z0, v0), in the time interval [0, T ] , is a pair (ν, μ) ∈ AY ([0, T ], ϕ), with μ ∈
SY 2−([0, T ], D; Rm), satisfying the following conditions:

(ev0) initial condition: ν0 = δ(z0,∇v0) ;
(ev1) global stability: for every t ∈ [0, T ] , we have

∫
D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) ≤ ∫
D×Rm×RN×d

W (θ + z̃(x), F + ∇ũ(x)) dνt(x, θ, F ) − 〈l(t), ũ〉 + H(z̃),

for every z̃ ∈ L2(D; Rm) and every ũ ∈ H1
Γ0

(0);
(ev2) energy inequality: for every t ∈ [0, T ] we have that VarH(μ; 0, t) < ∞ , (see (4.9)), and the map

t �→ [〈σ(t),∇ϕ̇(t)〉 − 〈l̇(t), v(t)〉] (6.23)

is measurable on [0, T ] , where σ(t) is the function defined in (6.20) and v(t) that one defined in
Remark 6.8; moreover

∫
D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) − 〈l(t), v(t)〉 + VarH(μ; 0, t) ≤

W(z0, v0) − 〈l(0), v0〉 +
∫ t

0

〈σ(s),∇ϕ̇(s)〉ds −
∫ t

0

[〈l(s), ϕ̇(s)〉 + 〈l̇(s), v(s)〉] ds.

Thanks to Theorem 3.5, to obtain the main theorem it is enough to prove the following version for Young
measures.

Theorem 6.15. Let ϕ ∈ AC([0, T ]; H1(D; RN )) , l ∈ AC([0, T ]; H1(D; RN )∗) , T > 0 , z0 ∈ L2(D; Rm) , and
v0 ∈ A(0) be such that

W(z0, v0) ≤ W(z0 + z̃, v0 + ũ) − 〈l(0), ũ〉 + H(z̃), (6.24)

for every z̃ ∈ L2(D; Rm) and every ũ ∈ H1
Γ0

(0) . Then there exists a globally stable quasistatic evolution for
Young measures with boundary datum ϕ , external load l , and initial condition (z0, v0) , in the time interval
[0, T ] .

Remark 6.16. In the proof of Theorem 6.15 we will obtain, in particular, a globally stable quasistatic evolu-
tion (ν, μ) and a subset Θ of [0, T ] which satisfy the following property:

(appr) for every t ∈ [0, T ] there exists a sequence sj in Θ with sj ≤ t and sj → t , such that

νsj ⇀ νt 2-weakly*.

7. Proof of the main theorem

The proof is obtained via time discretization, resolution of incremental minimum problems, and passing to
the limit as the discretization step tends to 0.
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7.1. The incremental minimum problem

Let us fix a sequence of subdivisions of [0, T ] , 0 = t0n < t1n < . . . < t
k(n)
n = T , such that supi=1,...,k(n) τ i

n → 0,
as n → ∞ , where τ i

n := tin − ti−1
n , for every i = 1, . . . , k(n).

For every i = 0, 1, . . . , k(n) we set lin := l(tin) and ϕi
n := ϕ(tin).

We will define (νi
n, μi

n) ∈ AY ({t0n, . . . , tin}, ϕ) by induction on i : set (ν0
n, μ0

n) := δ(z0,∇v0) , and for i > 0 we
define (νi

n, μi
n) as a minimizer (see Lem. 7.2 below) of the functional

∫
D×Rm×RN×d

W (θ, F ) dνti
n
(x, θ, F ) − 〈lin, v(tin)〉 +

∫
D×(Rm)2

H(θi − θi−1) dμti−1
n ti

n
(x, θi−1, θi), (7.1)

in the set Ai
n of all (ν, μ) ∈ AY ({t0n, . . . , tin}, ϕ), satisfying

μt0n...ti−1
n

= (μi−1
n )t0n...ti−1

n
(7.2)

νtj
n

= (νi−1
n )tj

n
, for every j < i, (7.3)

where the function v(tin) appearing in (7.1) is that one defined in Remark 6.8.

Lemma 7.1. The set Ai
n is nonempty, for every i > 1 .

Proof. Fixed (νi−1
n , μi−1

n ), we consider the map T̃ 2
∇ϕi

n−∇ϕi−1
n

: (x, θ, F ) �→ (x, θ, F + ∇ϕi
n(x) − ∇ϕi−1

n (x)),

and the map π(i) : D × (Rm)i → D × (Rm)i+1 defined by π(i)(x, θ1, . . . , θi−1) := (x, θ1, . . . , θi−1, θi−1); let
ν ∈ Y 2(D; Rm){t0n,...,ti

n} be defined by νtj
n

:= (νi−1
n )tj

n
, for j < i and νti

n
:= T̃ 2

∇ϕi
n−∇ϕi−1

n
((ν i−1

n )ti−1
n

) and μ

the unique element of SY 2({t0n, . . . , tin}, D; Rm) satisfying μt0n...ti
n

= π(i)((μi−1
n )t0n...ti−1

n
). It is evident that ν

and μ so defined satisfy the projection properties (7.2) and (7.3). Moreover it is easy to prove that (ν, μ) ∈
AY ({t0n, . . . , tin}, ϕ): since π(i)(δ(z0,...,zi−1)) = δ(z0,...,zi−1,zi−1) and T̃ 2

∇ϕi
n−∇ϕi−1

n
(δ(z,∇v)) = δ(z,∇v+∇ϕi

n−∇ϕi−1
n ) ,

with v + ϕi
n − ϕi−1

n ∈ A(tin) whenever v ∈ A(ti−1
n ), applying Lemma 4.4 we can obtain the approximation

properties (6.1) and (6.2). �

Lemma 7.2. For every i the functional (7.1) has a minimizer over Ai
n .

Proof. Let (νh, μh)h ⊂ Ai
n be a minimizing sequence. By the bounds on W and the assumption on l , using

Poincaré inequality we have

c

∫
D××RN×d

[|θ|2 + |F |2] dνh
ti
n
(x, θ, F ) − C′(1 + ‖∇vh(tin)‖2) ≤∫

D×Rm×RN×d

W (θ, F ) dνh
ti
n
(x, θ, F ) − 〈lin, vh(tin)〉 ≤ C′,

for every h , for positive constants c, C′ . Since by Remark 6.8

‖∇vh(tin)‖2 ≤
( ∫

D×Rm×RN×d

|F |2 dνh
ti
n
(x, θ, F )

)1/2

, (7.4)

we can deduce that

sup
h

∫
D×Rm×RN×d

|(θ, F )|2 dνh
ti
n
(x, θ, F ) ≤ C′. (7.5)
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Since, thanks to Remark 6.3

∫
D×(Rm)i+1

|(θ0, . . . , θi)|2 dμh
t0n...ti

n
(x, θ0, . . . , θi) =

i+1∑
j=0

∫
D×Rm

|θj |2 dμh
tj
n
(x, θj)

=
i+1∑
j=0

∫
D×Rm×RN×d

|θj |2 dνh
tj
n
(x, F, θj),

the projection property (7.3) and (7.5) imply that the second moments of μh
t0n...ti

n
are bounded uniformly with

respect to h . From this and from (7.5) we can deduce that, up to a subsequence, there exist μ̄ ∈ Y 2(D; (Rm)i+1)
and ν̄ ∈ Y 2(D; Rm × R

N×d) such that

μh
t0n...ti

n
⇀ μ̄ 2-weakly*, (7.6)

νh
ti
n

⇀ ν̄ 2-weakly*. (7.7)

Hence defining

ν̄tj
n

:= (νi−1
n )tj

n
, for every j < i,

ν̄ti
n

:= ν̄,

and μ̄ as the unique element of SY 2({t0n, . . . , tin}, D; Rm) such that μ̄t0n...ti
n

= μ̄ , we obtain

(ν̄, μ̄) ∈ Y 2(D; Rm × R
N×d){t0n,...,ti

n} × SY 2({t0n, . . . , tin}, D; Rm).

Since the hypotheses of Lemma 6.6 are satisfied, we deduce that (ν̄, μ̄) ∈ AY ({t0n, . . . , tin}, ϕ). Moreover, by
construction, (ν̄, μ̄) satisfies also the projection properties (7.2) and (7.3), so we can conclude that (ν̄, μ̄) ∈ Ai

n .
By (4.1) the terms of (7.1) containing W and H are lower semicontinuous with respect to the 2-weak*

convergence; on the other hand a variant of Lemma 4.9, with H1
0 replaced by A(tin), shows that the term

of (7.1) containing lin is continuous with respect to the 2-weak* convergence, therefore the functional (7.1) is
2-weakly* lower semicontinuous and this implies that (ν̄, μ̄) is a minimizer for it in Ai

n . �

Remark 7.3. Even if W (θ, ·) : R
N×d → [0, +∞) is convex for every θ ∈ R

m , it may happen that the incre-
mental minimum problems have no solutions representable by functions.

We give an example in which this happens even for the first time step. By definition of A1
n , there exists

a solution of the first incremental minimum problem representable by function if and only if there exist z1 ∈
L2(D; Rm) and v1 ∈ A(t1n) such that ((δ(z0,∇v0), δ(z1,∇v1)), δ(z0,z1)) realizes the minimum of the functional (7.1)
on A1

n . Consider the following case: D = (0, 1)2 and N = m = 1, T = 1, l ≡ 0 and ϕ(t, (x1, x2)) := (1− t)x1 ,
for every t ∈ [0, 1] and every (x1, x2) ∈ (0, 1)2 . We consider

W (θ, (F1, F2)) := |F1 − a(θ)|2 + |F2|2 + b(θ) + c, (7.8)

where a is a C1 function satisfying a(0) = a(1) = 1 and a(−1) = −1, while b a C1 function such that
b̃(θ) := b(θ) + |θ| is positive and vanishes only at 0, 1, and −1, and c := − inf b . It can be easily verified that
(W.1) and (W.2) are satisfied by suitable choices of a and b compatible with the requirements above. Now
choose H(θ) := |θ| , z0 ≡ 0 and v0(x1, x2) := x1 . It is immediate to check that (z0, v0) satisfy the boundary
conditions and (6.24). Moreover, by standard arguments, it can be easily shown that the infimum of functional
in (7.1), for i = 1, is c and cannot be attained by functions which satisfy the boundary conditions. A minimizer
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of (7.1) on A1
n is defined by

(ν1
n)t1n

:=
t1n
2

δ(−1,(−1,0)) +
(
1 − t1n

2
)
δ(1,(1,0)),

(μ1
n)t0n,t1n

:=
t1n
2

δ(0,−1) +
(
1 − t1n

2
)
δ(0,1).

Set τn(s) := tin , whenever tin ≤ s < ti+1
n , where we set t

k(n)+1
n := T + 1

n .
For every i and n we set

σi
n(x) :=

∫
D×Rm×RN×d

∂W

∂F
(θ, F ) d(νi

n)x
ti
n
,

and define

σn(t, x) := σi
n(x), (7.9)

for a.e. x ∈ D , whenever tin ≤ t < ti+1
n .

We define νn ∈ Y 2(D; Rm × R
N×d)[0,T ] by

(νn)s := (νi
n)ti

n
, (7.10)

whenever tin = τn(s), for every s ∈ [0, T ] ; we define also μn ∈ SY 2([0, T ], D; Rm) as the piecewise constant
interpolation of μ

k(n)
n , as in Definition 4.12.

Note that (νn, μn) ∈ AY ([0, T ], ϕ(τn(·))) by construction.

7.2. A priori estimates

First of all we want to deduce a discrete version of the energy inequality for (νn, μn).
Using the competitor defined in the proof of Lemma 7.1 and the fact that

bar(π̃RN×d(T̃ 2
∇ϕi

n−∇ϕi−1
n

((νi
n)ti

n
))) = bar(π̃RN×d((ν i

n)ti
n
)) + ∇ϕi

n −∇ϕi−1
n ,

for every i and n , we have∫
D×Rm×RN×d

W (θ, F ) d(νi
n)ti

n
(x, θ, F ) − 〈lin, vi

n(tin)〉 +
∫

D×(Rm)2
H(θi − θi−1) d(μi

n)ti−1
n ti

n
(x, θi−1, θi) ≤∫

D×Rm×RN×d

W (θ, F + ∇ϕi
n(x) −∇ϕi−1

n (x)) d(νi−1
n )ti−1

n
(x, θ, F ) − 〈lin, vi

n(ti−1
n ) + ϕi

n − ϕi−1
n 〉

+
∫

D×(Rm)i+1
H(θi − θi−1) d(π(i)((μi−1

n )t0n...ti−1
n

))(x, θ0, . . . , θi−1, θi).

We deduce that∫
D×Rm×RN×d

W (θ, F ) d(νi
n)ti

n
(x, θ, F ) − 〈lin, vi

n(tin)〉 +
∫

D×(Rm)2
H(θi − θi−1) d(μi

n)ti−1
n ti

n
(x, θi−1, θi) ≤∫

D×Rm×RN×d

W (θ, F ) d(νi−1
n )ti−1

n
(x, θ, F ) − 〈li−1

n , vi−1
n (ti−1

n )〉

+
∫

D×Rm×RN×d

[W (θ, F + ∇ϕi
n(x) −∇ϕi−1

n (x)) − W (θ, F )] d(νi−1
n )ti−1

n
(x, θ, F )

− 〈lin, vi−1
n (ti−1

n ) + ϕi
n − ϕi−1

n 〉 + 〈li−1
n , vi−1

n (ti−1
n )〉.
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Let us fix t ∈ [0, T ] such that tjn ≤ t < tj+1
n ; using

∫
D×Rm×RN×d

[W (θ, F + ∇ϕi
n(x) −∇ϕi−1

n (x)) − W (θ, F )] d(νi−1
n )ti−1

n
(x, θ, F ) =

∫ ti
n

ti−1
n

(∫
D×Rm×RN×d

∂W

∂F
(θ, F + εn(s, x))∇ϕ̇(s, x) d(νn)s(x, θ, F )

)
ds,

where εn(s, x) := ∇ϕ(s, x) −∇ϕ(τn(s), x), for every s ∈ [0, T ] and every x ∈ D , and

〈lin, vi−1
n (ti−1

n ) + ϕi
n − ϕi−1

n 〉 − 〈li−1
n , vi−1

n (ti−1
n )〉 =

∫ ti
n

ti−1
n

[〈l(s), ϕ̇(s)〉 + 〈l̇(s), vi−1
n (ti−1

n ) − ϕ(τn(s)) + ϕ(s)〉] ds,

and iterating from 0 to j , we obtain

∫
D×Rm×RN×d

W (θ, F ) d(νn)t(x, θ, F ) − 〈l(τn(t)), vn(t)〉 + VarH(μn; 0, t) ≤

W(z0, v0) − 〈l(0), v0〉 +
∫ τn(t)

0

〈σn(s),∇ϕ̇(s)〉ds −
∫ τn(t)

0

[〈l̇(s), vn(s)〉 + 〈l(s), ϕ̇(s)〉] ds

+
∫ τn(t)

0

( ∫
D×Rm×RN×d

[∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]
∇ϕ̇(s) d(νn)s(x, θ, F )

)
ds

+
∫ τn(t)

0

〈l̇(s), ϕ(τn(s)) − ϕ(s)〉ds. (7.11)

From (7.11), we can deduce the following a priori estimates on (νn, μn).

Lemma 7.4. There exists a positive constant C , such that

sup
n

sup
t∈[0,T ]

∫
D×Rm×RN×d

|(θ, F )|2 d(νn)t(x, θ, F ) ≤ C, (7.12)

sup
n

VarH(μn; 0, T ) ≤ C. (7.13)

Proof. Using the fact that supt∈[0,T ] ‖l(t)‖(H1)∗ ,
∫ T

0
‖l̇(t)‖(H1)∗ dt , and

∫ T

0
‖ϕ̇(t)‖H1 dt are finite, the hypotheses

on W and the inequality

sup
s∈[0,T ]

∫
D×Rm×RN×d

|(θ, F )|2 d(νn)s(x, θ, F ) < ∞,

(since νn are piecewise constant interpolations of Young measures with finite second moments) we can deduce
from (7.11) that, for n sufficiently large,∫

D×Rm×RN×d

|(θ, F )|2 d(νn)t(x, θ, F ) ≤ C̃ + C̃ sup
s∈[0,T ]

(
1 + c̃

∫
D×Rm×RN×d

|(θ, F )|2 d(νn)s(x, θ, F )
)1/2

, (7.14)

for suitable positive constants C̃ and c̃ independent of t and n (to estimate the terms in the third line in (7.11)
we use (7.4), while the term in the fourth line of (7.11) can be treated using πD((νn)s) = Ld and Hölder
inequality).

Since this can be repeated for every t ∈ [0, T ] , we deduce (7.12). Inequality (7.13) comes now from (7.12)
and (7.11). �
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We can also deduce the following energy inequality for (νn, μn).

Lemma 7.5. For every t ∈ [0, T ] we have

∫
D×Rm×RN×d

W (θ, F ) d(νn)t(x, θ, F ) − 〈l(τn(t)), vn(t)〉 + VarH(μn; 0, t) ≤

W(z0, v0) − 〈l(0), v0〉 +
∫ τn(t)

0

〈σn(s),∇ϕ̇(s)〉ds −
∫ τn(t)

0

[〈l̇(s), vn(s)〉 + 〈l(s), ϕ̇(s)〉] ds + ρn, (7.15)

where ρn → 0 as n → ∞ .

Proof. Thanks to (7.11) it is enough to prove that

ρ1
n :=

∫ τn(t)

0

⎛
⎜⎝ ∫

D×Rm×RN×d

[
∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]
∇ϕ̇(s, x) d(νn)s(x, θ, F )

⎞
⎟⎠ ds

and

ρ2
n :=

∫ τn(t)

0

〈l̇(s), ϕ(τn(s)) − ϕ(s)〉ds

tend to 0 as n → ∞ . Since ϕ is uniformly continuous on [0, T ] with values in H1(D; RN ), it is immediate to
see that ρ2

n → 0 as n → ∞ . It remains to prove that, fixed δ > 0, ρ1
n < δ for n sufficiently large.

We recall that, since ∇ϕ̇ ∈ L1([0, T ]; L2(D; RN×d)), we can find a sequence vj ∈ C0([0, T ]; C0(D̄; RN )) such
that

∫ T

0
‖vj(t) −∇ϕ̇(t)‖2 dt → 0, as j → ∞ .

Since πD((νn)s) = Ld , using (W.2), we can deduce for every M > 1 and every s ∈ [0, T ]

∫
{(x,θ,F ):|θ|+|F |>M}

[
∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]
∇ϕ̇(s) d(νn)s(x, θ, F ) ≤

C

∫
{(x,θ,F ):|θ|+|F |>M}

2(1 + |θ| + |F |)|∇ϕ̇(s, x) − vj(s, x)| d(νn)s(x, θ, F )

+ C

∫
{(x,θ,F ):|θ|+|F |>M}

2(1 + |θ| + |F |)|vj(s, x)| d(νn)s(x, θ, F ) + C‖εn(s)‖2‖∇ϕ̇(s)‖2;

therefore, thanks to Lemma 7.4, for every j we have

∫ τn(t)

0

⎛
⎜⎝ ∫
{(x,θ,F ):|θ|+|F |>M}

[
∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]
∇ϕ̇(s) d(νn)s(x, θ, F )

⎞
⎟⎠ ds ≤

8C

[
sup

s∈[0,T ]

sup
n

∫
D×Rm×RN×d

|(θ, F )|2 d(νn)s(x, θ, F )

]1/2 ∫ t

0

‖∇ϕ̇(s) − vj(s)‖2 ds

+ 4T sup
s∈[0,T ]

sup
n

∫
D×Rm×RN×d

|(θ, F )|2 d(νn)s(x, θ, F )
‖vj‖∞

M
+ C sup

s∈[0,T ]

‖εn(s)‖2

∫ T

0

‖∇ϕ̇(s)‖2 ds.
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Since s �→ ϕ(s) is continuous from [0, T ] into H1(D; RN ), the term in the last line tends to 0 as n → ∞ .
Therefore there exist j̄ and M̄ such that

∫ τn(t)

0

⎛
⎜⎝ ∫
{(x,θ,F ):|θ|+|F |>M̄}

[
∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]
∇ϕ̇(s) d(νn)s(x, θ, F )

⎞
⎟⎠ ds ≤ δ

2
, (7.16)

for n sufficiently large.
We now consider the contribution of the integral on {(x, θ, F ) : |θ| + |F | ≤ M̄} .
For every M > 0 and r > 0, define

ωM (r) := sup
|(θ,F )|≤M,|(θ′,F ′)|≤r

∣∣∣∣∂W

∂F
(θ + θ′, F + F ′) − ∂W

∂F
(θ, F )

∣∣∣∣ .

Thanks to the continuity properties of ∂W
∂F , for every M we have ωM (r) → 0 as r tends to 0; moreover it is

ωM (r) ≤ 2C(M + 1) + Cr .
In particular, for M̄ chosen before, it is immediate that

∫ τn(t)

0

⎛
⎜⎝ ∫
{(x,θ,F ):|θ|+|F |≤M̄}

[
∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]
∇ϕ̇(s) d(νn)s(x, θ, F )

⎞
⎟⎠ ds ≤

∫ t

0

(∫
D

ωM̄ (|εn(s, x)|)|∇ϕ̇(s, x)| dx

)
ds;

by the Dominated Convergence Theorem, we have

‖ωM̄ (|εn(s)|)‖2 → 0,

for a.e. s ∈ [0, T ] , as n tends to ∞ ; since we have the estimate

‖ωM̄(|εn(s)|)‖2‖∇ϕ̇(s)‖2 ≤ C‖∇ϕ̇(s)‖2(2M̄ + 2 + ‖εn(s)‖2),

for every s ∈ [0, T ] and sups∈[0,T ] ‖εn(s)‖2 → 0 as n → ∞ , we can apply again the Dominated Convergence
Theorem and obtain

∫ τn(t)

0

⎛
⎜⎝ ∫
{(x,θ,F ):|θ|+|F |≤M̄}

[
∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]
∇ϕ̇(s) d(νn)s(x, θ, F )

⎞
⎟⎠ ds ≤ δ

2
, (7.17)

for n sufficiently large. Therefore (7.16) and (7.17) give the thesis. �

7.3. Passage to the limit

Thanks to (7.12), (7.13), and hypothesis (H.2), we can apply our version of Helly Theorem (Th. 4.10) to
the sequence μn and obtain a subsequence, still indicated by μn , a subset Θ of [0, T ] , containing 0, with
L1([0, T ] \Θ) = 0, and μ ∈ SY 2

−([0, T ], D; Rm), such that, for every finite sequence t1 < . . . < tl in Θ, we have

(μn)t1...tl
⇀ μt1...tl

, 2-weakly*. (7.18)
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For every t ∈ Θ we choose an increasing sequence of integers nt
k , possibly depending on t , such that

lim sup
n

[〈σn(t),∇ϕ̇(t)〉 + 〈l̇(t), vn(t)〉] = lim
k

[〈σnt
k
(t),∇ϕ̇(t)〉 + 〈l̇(t), vnt

k
(t)〉], (7.19)

where vn(t) is defined as in Remark 6.8 (this choice is crucial in order to apply the argument in [4], Sect. 7).
Thanks to (7.12) and Lemma 4.13, there exists ν ∈ Y 2(D; Rm ×R

N×d)[0,T ] , such that π̃Rm(νt) = μt for every
t ∈ [0, T ] , and satisfying the following properties:

(conv) For every t ∈ Θ, there exists a subsequence of (νnt
k
)k , still denoted by (νnt

k
)k , such that

(νnt
k
)t ⇀ νt, 2-weakly*. (7.20)

(appr) For every t ∈ [0, T ] \Θ, there exists a sequence sj ∈ Θ, converging to t , with sj ≤ t , such that

νsj ⇀ νt, 2-weakly*. (7.21)

Note that the map (6.23) is measurable on [0, T ] since

〈σ(t),∇ϕ̇(t)〉 − 〈l̇(t), v(t)〉 = lim sup
n

[〈σn(t),∇ϕ̇(t)〉 − 〈l̇(t), vn(t)〉], (7.22)

for every t ∈ Θ, thanks to (7.19), (W.2), Remarks 4.3 and 6.8.
It can be shown that (ν, μ) ∈ AY ([0, T ], ϕ). Indeed, thanks to (7.18) and (7.20), we can apply Lemma 6.7

to get

(ν, μ) ∈ AY (Θ, ϕ). (7.23)

Let now t1 < . . . < tl be a finite sequence in [0, T ] . Thanks to left continuity of μ and to (appr), for every
i = 1, . . . , l , there exists a sequence sj

i → ti as j → ∞ , with sj
i ≤ ti , such that

μsj
1...sj

n
⇀ μt1...tn

, 2-weakly*, (7.24)

νsj
i

⇀ νti , 2-weakly*, for every i = 1, . . . , n (7.25)

as j → ∞ . If we define ϕj : {t1, . . . , tl} → H1(D; RN ) by ϕj(ti) := ϕ(sj
i ), for every i = 1, . . . , n , we have

that ϕj(ti) → ϕ(ti) strongly in H1(D; RN ), for every i = 1, . . . , n ; if we define (ν̃j , μ̃j) ∈ Y 2(D; Rm ×
R

N×d){t1,...,tl} × SY 2({t1, . . . , tl}, D; Rm) by

ν̃j
ti

:= νsj
i
, for every i = 1, . . . , n,

μ̃j
t1...tl

:= μsj
1...sj

l
,

thanks to (7.23), we have that (ν̃j , μ̃j) ∈ AY ({t1, . . . , tn}, ϕj) and

(μ̃j)t1...tl
⇀ μt1...tl

, 2-weakly*

(ν̃j)ti ⇀ νti , 2-weakly* for every i = 1, . . . , l,

as j → ∞ . Hence we are again in the hypotheses of Lemma 6.7 and we can conclude that (ν, μ) ∈ AY ([0, T ], ϕ).
By construction, (ν, μ) satisfies (ev0).
Now we want to prove that (ν, μ) satisfies (ev1).
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Let z̃ ∈ L2(D; Rm), ũ ∈ H1
Γ0

(0); for every n and for every i = 1, . . . , k(n), let consider the pair (ν̂, μ̂), where
ν̂ := ((νi

n)t0n
, . . . , (νi

n)ti−1
n

, T(z̃,∇ũ)((νi
n)ti

n
)) and μ̂ is the unique compatible system in SY 2({t0n, . . . , tin}, D; Rm)

satisfying μ̂t0n...ti
n

= T̃ i+1
z̃ ((μi

n)t0n...ti
n
), with

T(z̃,∇ũ)(x, θ, F ) = (x, θ + z̃(x), F + ∇ũ(x))

and
T̃ i+1

z̃ (x, θ0, . . . , θi) = (x, θ0, . . . , θi−1, θi + z̃(x)).

This is an element of AY ({t0n, . . . , tin}, ϕ) and satisfies (7.2) and (7.3), hence we can use it as a competitor to
obtain

∫
D×Rm×RN×d

W (θ, F ) d(νi
n)ti

n
(x, θ, F ) − 〈lin, vi

n(tin)〉 +
∫

D×(Rm)i+1
H(θi − θi−1) d(μi

n)t0n...ti
n

≤
∫

D×Rm×RN×d

W (θ + z̃(x), F + ∇ũ(x)) d(νi
n)ti

n
(x, θ, F ) − 〈lin, vi

n(tin) + ũ〉

+
∫

D×(Rm)i+1
H(θi + z̃(x) − θi−1) d(μi

n)t0n...ti
n
.

Thanks to the triangular inequality for H (which follows from (H.1)), this implies that∫
D×Rm×RN×d

[W (θ, F ) − W (θ + z̃(x), F + ∇ũ(x))] d(νi
n)ti

n
(x, θ, F ) ≤ H(z̃) − 〈lin, ũ〉.

By definition of νn , for every t ∈ Θ we obtain∫
D×Rm×RN×d

[W (θ, F ) − W (θ + z̃(x), F + ∇ũ(x))] d(νn)t(x, θ, F ) ≤ H(z̃) − 〈l(τn(t)), ũ〉.

Since

|W (θ, F ) − W (θ + z̃(x), F + ∇ũ(x))| ≤ C̃[(|z̃(x)| + |∇ũ(x)|)2 + 1] + C̃(|z̃(x)| + |∇ũ(x)|)(|θ| + |F |),

for a suitable positive constant C̃ , and (νnt
k
)t ⇀ νt 2-weakly*, for a suitable subsequence ((νnt

k
)t)k , we can

deduce from Remark 4.3 that

∫
D×Rm×RN×d

[W (θ, F ) − W (θ + z̃(x), F + ∇ũ(x))] d(νnt
k
)t(x, θ, F ) →∫

D×Rm×RN×d

[W (θ, F ) − W (θ + z̃(x), F + ∇ũ(x))] dνt(x, θ, F ),

as n → ∞ . Since l(τn(t)) → l(t), strongly in H1(D; RN )∗ , for every t ∈ [0, T ] , we obtain (ev1) for t ∈ Θ.
Let now t ∈ [0, T ] \ Θ. Thanks to (appr), we can find a sequence sj → t , with sj ≤ t and sj ∈ Θ, such

that νsj ⇀ νt 2-weakly*; as before we have that

∫
D×Rm×RN×d

[W (θ, F ) − W (θ + z̃(x), F + ∇ũ(x))] dνsj (x, θ, F ) →∫
D×Rm×RN×d

[W (θ, F ) − W (θ + z̃(x), F + ∇ũ(x))] dνt(x, θ, F ),
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as j → ∞ . Again, since l(sj) → l(t) strongly in H1(D; RN )∗ , using (ev1) for sj , we obtain (ev1) for every
t ∈ [0, T ] .

Now we want to prove (ev2). Fix t ∈ Θ and let (νnt
k
)t be a subsequence satisfying (7.19) and such that

(νnt
k
)t ⇀ νt 2-weakly* as k → ∞ ; then, thanks to (7.18),

μnt
k

⇀ μ, (7.26)

weakly* in SY 2([0, T ], D; Rm); since the term containing l is continuous with respect to 2-weak* convergence,
the term containing W is weakly lower semicontinuous and the variation is weakly lower semicontinuous thanks
to (7.26) and Lemma 4.11, we have

∫
D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) − 〈l(t), v(t)〉 + VarH(μ; 0, t) ≤

lim inf
k

[∫
D×Rm×RN×d

W (θ, F ) d(νnk
t
)t(x, θ, F ) − 〈l(τnt

k (t)), vnt
k
(t)〉 + VarH(μnt

k
; 0, t)

]
.

Using (7.15) of Lemma 7.5, we can deduce that∫
D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) − 〈l(t), v(t)〉 + VarH(μ; 0, t) ≤

W(z0, v0) − 〈l(0), v(0)〉 −
∫ t

0

〈l(s), ϕ̇(s)〉ds

+ lim inf
k

∫ τnt
k(t)

0

[〈σnt
k
(s),∇ϕ̇(s)〉 − 〈l̇(s), vnt

k
(s)〉] ds.

Since sups∈[0,T ] supn ‖σn(s)‖2 and sups∈[0,T ] supn ‖vn(s)‖2 are finite, we can deduce, using Fatou Lemma, that

lim inf
k

∫ τnt
k(t)

0

[〈σnt
k
(s),∇ϕ̇(s)〉 − 〈l̇(s), vnt

k
(s)〉] ds ≤ lim sup

n

∫ τn(t)

0

[〈σn(s),∇ϕ̇(s)〉 − 〈l̇(s), vn(s)〉] ds

≤
∫ t

0

lim sup
n

[〈σn(s),∇ϕ̇(s)〉 − 〈l̇(s), vn(s)〉] ds.

Thanks to (7.22) this implies that

lim inf
k

∫ τnt
k(t)

0

[〈σnt
k
(s),∇ϕ̇(s)〉 − 〈l̇(s), vnt

k
(s)〉] ds ≤

∫ t

0

[〈σ(s),∇ϕ̇(s)〉 − 〈l̇(s), v(s)〉] ds.

This implies (ev2) for t ∈ Θ.
Let now t ∈ [0, T ] \Θ and let sj → t , satisfy sj ≤ t , and (7.21); it is easy to verify, using Lemma 4.11, that

VarH(μ; 0, t) ≤ lim inf
j

VarH(μ; 0, sj),

hence (ev2) for t can be deduced from (ev2) for sj .

8. An alternative proof of the existence result in the quasiconvex case

In this section we focus on the particular case of W (θ, ·) quasiconvex, which can be treated using a spatial
regularization depending on the gradient of the internal variable, as proposed in [8].
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Definition 8.1. Let η > 0, ϕ ∈ AC([0, T ]; H1(D; RN )), l ∈ AC([0, T ]; H1(D; RN )∗), z0 ∈ H1(D; Rm),
v0 ∈ A(0), and T > 0. A solution of the η -regularized problem with external load l , boundary datum ϕ ,
and initial condition (z0, v0), in the time interval (0, T ] , is a pair (zη, vη), with zη : [0, T ] → H1(D; Rm) and
vη : [0, T ] → H1(D; RN ), satisfying the following properties:

(ev0)reg initial condition: (zη(0), vη(0)) = (z0, v0);
(ev1)reg kinematic admissibility: vη(t) ∈ A(t) for every t ∈ [0, T ] ;
(ev2)reg global stability: for every t ∈ (0, T ] and (ẑ, v̂) ∈ H1(D; Rm) ×A(t)

W(zη(t), vη(t)) − 〈l(t), vη(t)〉 + η
2‖∇zη(t)‖2

2 ≤ W(ẑ, v̂) − 〈l(t), v̂〉 + η
2‖∇ẑ‖2

2 + H(ẑ − zη(t));

(ev3)reg energy inequality: VarH(zη; 0, T ) < ∞ , the map t �→ [〈ση(t),∇ϕ̇(t)〉 − 〈l̇(t), vη(t)〉] is measur-
able on [0, T ] , and for every t ∈ [0, T ]

W(zη(t), vη(t)) − 〈l(t), vη(t)〉 + η
2‖∇zη(t)‖2

2 + VarH(zη; 0, t) ≤

W(z0, v0) − 〈l(0), v0〉 + η
2‖∇z0‖2

2 −
∫ t

0

〈l(s), ϕ̇(s)〉ds +
∫ t

0

[〈ση(s),∇ϕ̇(s)〉 − 〈l̇(s), vη(s)〉] ds,

where ση(s) := ∂W
∂F (zη(s),∇vη(s)) for every s ∈ [0, T ] .

The proof of Theorem 4.1 in [8] can be repeated in our case to obtain the following result.

Theorem 8.2. Let η , ϕ , l , (z0, v0) , and T be as in Definition 8.1. Then there exists a solution of the
η -regularized problem with external load l , boundary datum ϕ , and initial condition (z0, v0) , in the time
interval (0, T ] . Moreover there exists a positive constant Kη such that

sup
t∈[0,T ]

‖zη(t)‖2 ≤ Kη, (8.1)

sup
t∈[0,T ]

‖vη(t)‖H1 ≤ Kη. (8.2)

Lemma 8.3. Let ϕ , l , v0 , and T be as in Definition 8.1, and let (zη
0 )η>0 be a family of functions in

H1(D; Rm) , such that

sup
η

‖zη
0‖2 ≤ M, (8.3)

sup
η

η‖∇zη
0‖2

2 ≤ M, (8.4)

for a suitable positive constant M . Then there exists a positive constant K such that the solutions (zη, vη) of
the η -regularized problems with initial condition (zη

0 , v0) satisfy the following conditions

sup
t∈[0,T ]

sup
η

‖zη(t)‖2 ≤ K, sup
t∈[0,T ]

sup
η

‖∇vη(t)‖2 ≤ K, (8.5)

sup
η

VarH(zη; 0, T ) ≤ K, sup
t∈[0,T ]

η
2‖∇zη(t)‖2

2 ≤ K. (8.6)

Proof. Using the fact that supt∈[0,T ] ‖l(t)‖(H1)∗ ,
∫ T

0
‖l̇(t)‖(H1)∗ dt , and

∫ T

0
‖ϕ̇(t)‖H1 dt are finite, the hypotheses

on W , the hypotheses (8.3) and (8.4), and the inequalities (8.1) and (8.2), we can deduce from (ev3)reg that,
for every η > 0,

c(‖zη(t)‖2
2 + ‖∇vη(t)‖2

2) − C ≤ C̃ + c̃ sup
s∈[0,T ]

(‖zη(s)‖2 + ‖vη(s)‖H1),
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for suitable positive constants c̃, C̃ independent of t and η . Since this can be repeated for every t ∈ [0, T ] ,
Poincaré inequality implies (8.5). Inequalities (8.6) come now from (ev3)reg and (8.5). �
Remark 8.4. From (8.6) we can deduce that

ηn∇zηn(t) → 0

strongly in L2(D; Rm×d), for every positive sequence ηn → 0 and every t ∈ [0, T ] .

Definition 8.5. Given an external load l ∈ AC([0, T ]; H1(D; RN )∗), an initial condition (z0, v0) ∈ L2(D; Rm)×
A(0), a boundary datum ϕ ∈ AC([0, T ]; H1(D; RN )), and T > 0, a quasistatic evolution obtained by spatial
regularizations in the time interval [0, T ] is a pair (ν, μ) ∈ Y 2(D; Rm × R

N×d)[0,T ] × SY 2
−([0, T ], D; Rm) with

π̃Rm(νt) = μt, for every t ∈ [0, T ], (8.7)

for which there exist:
• a sequence (zn

0 )n ⊂ H1(D; Rm), with

zn
0 → z0 strongly in L2(D; Rm), (8.8)

• a positive sequence ηn converging to 0, with

ηn‖∇zn
0 ‖2

2 → 0, (8.9)

• a subset Θ of [0, T ] , with 0 ∈ Θ and L1([0, T ] \ Θ) = 0,

such that ν and Θ satisfy property (appr) of Remark 6.16, and the solutions (zηn , vηn) of the ηn -regularized
problems with initial conditions (zn

0 , v0) in the time interval (0, T ] satisfy the following conditions:
(conv1)reg for every finite sequence t1 < . . . < tl in Θ

δ(zηn (t1),...,zηn (tl)) ⇀ μt1...tl
2-weakly*, (8.10)

as n → ∞ ;
(conv2)reg for every t ∈ Θ there exists a subsequence (zηnt

k

, vηnt
k

)k of (zηn , vηn)n , possibly depending
on t , with

lim sup
n

[〈σηn(t),∇ϕ̇(t)〉 − 〈l̇(t), vηn(t)〉] = lim
k

[〈ση
nt

k

(t),∇ϕ̇(t)〉 − 〈l̇(t), vη
nt

k

(t)〉], (8.11)

and

δ(zη
nt

k

(t),∇vη
nt

k

(t)) ⇀ νt 2-weakly*, (8.12)

as k → ∞ .

In the next theorem we will show that the quasistatic evolution obtained by spatial regularizations fulfills
the requirements of Definition 6.14.

Theorem 8.6. Let l ∈ AC([0, T ]; H1(D; RN )∗) , ϕ ∈ AC([0, T ]; H1(D; RN )) , (z0, v0) , and T > 0 be as in
Definition 8.5, and assume that

W(z0, v0) ≤ W(ẑ, v̂) − 〈l(0), v̂ − v0〉 + H(ẑ − z0), (8.13)

for every ẑ ∈ L2(D; Rm) and every v̂ ∈ A(0) . Then a quasistatic evolution obtained by spatial regularizations
in the time interval [0, T ] is a globally stable quasistatic evolution of Young measures with the same data in the
time interval [0, T ] .
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Proof. Let (ν, μ) ∈ Y 2(D; Rm ×R
N×d)[0,T ] ×SY 2−([0, T ], D; Rm) be a quasistatic evolution obtained by spatial

regularizations.
First of all we show that (ν, μ) ∈ AY ([0, T ], ϕ): thanks to (8.10) and (8.12), it is immediate to see that

(ν, μ) ∈ AY (Θ, ϕ); as in the proof of the main theorem, (appr) allows now to prove that (ν, μ) ∈ AY ([0, T ], ϕ).
In particular, for every t ∈ [0, T ] there exists a function v(t) ∈ A(t) such that ∇v(t) = bar(π̃RN×d(νt)), thanks
to Remark 6.8.

Let ηn and zn
0 be the sequences appearing in Definition 8.5, and let (zηn , vηn) be the solutions of the

ηn -regularized problems in the time interval (0, T ] ; (ev0) comes immediately from (ev0)reg , (8.8), and (8.12).
Now we prove that (ν, μ) satisfies (ev1).
For t = 0 it comes immediately from (8.13).
For t �= 0, we first show that (ev1) holds for test functions z̃ ∈ H1(D; Rm). Let t ∈ Θ \ 0, (ηnt

k
)k be the

sequence appearing in (conv2)reg , and (z̃, ũ) ∈ H1(D; Rm) × H1
Γ0

(0). By (ev1)reg , we have

W(zη
nt

k

(t), vη
nt

k

(t))+
ηnt

k

2 ‖∇zη
nt

k

(t)‖2
2 ≤ W(zη

nt
k

(t)+ z̃, vη
nt

k

(t)+ ũ)−〈l(t), ũ〉+
ηnt

k

2
‖∇zη

nt
k

(t)+∇z̃‖2
2 +H(z̃).

Thanks to Remark 8.4,

ηnt
k

2
‖∇zηnt

k

(t) + ∇z̃‖2
2 −

ηnt
k

2 ‖∇zηnt
k

(t)‖2
2 =

ηnt
k

2
‖∇z̃‖2

2 + 〈ηnt
k
∇zηnt

k

(t),∇z̃〉,→ 0,

as k → ∞ . On the other hand we have

W(zηnt
k

(t) + z̃, vηnt
k

(t) + ũ) −W(zηnt
k

(t), vηnt
k

(t)) =∫
D×Rm×RN×d

[W (θ + z̃(x), F + ∇ũ(x)) − W (θ, F )] dδ(zη
nt

k

(t),∇vη
nt

k

(t))(x, θ, F );

since

|W (θ + z̃(x), F + ∇ũ(x)) − W (θ, F )| ≤ C̃[(|z̃(x)| + |∇ũ(x)|)2 + 1] + C̃(|z̃(x)| + |∇ũ(x)|)(|θ| + |F |), (8.14)

thanks to Remarks 4.3 and (8.12) we can deduce that

∫
D×Rm×RN×d

[W (θ + z̃(x), F + ∇ũ(x)) − W (θ, F )] dδ(zη
nt

k

(t),∇vη
nt

k

(t))(x, θ, F ) →∫
D×Rm×RN×d

[W (θ + z̃(x), F + ∇ũ(x)) − W (θ, F )] dνt(x, θ, F ),

and hence we can conclude that∫
D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) ≤
∫

D×Rm×RN×d

W (θ + z̃(x), F + ∇ũ(x)) dνt(x, θ, F ) − 〈l(t), ũ〉 + H(z̃).

(8.15)
Using (appr) it is easy to extend the previous inequality to t ∈ [0, T ] \ Θ reasoning as in the proof of the

main theorem.
Now we prove that (8.15) holds also for test functions z̃ ∈ L2(D; Rm). Let t ∈ (0, T ] , z̃ ∈ L2(D; Rm),

ũ ∈ H1
Γ0

(0), and assume that (z̃h)h is a sequence in H1(D; Rm) with z̃h → z̃ strongly in L2(D; Rm); then we
have

H(z̃h) → H(z̃),
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and ∫
D×Rm×RN×d

[W (θ + z̃(x), F + ∇ũ(x)) − W (θ + z̃h(x), F + ∇ũ(x))] dνt(x, θ, F ) → 0,

thanks to the hypotheses on H , and to (W.2) and (2.2), respectively; hence (ev1) for test functions z̃ and ũ
can be deduce from (8.15) applied to z̃h and ũ .

Finally we prove (ev2).
Thanks to (8.8) and (8.9), we have

W(zn
0 , v0) + ηn

2 ‖∇zn
0 ‖2

2 → W(z0, v0),

as n → ∞ ; therefore we can argue as in the proof of the main theorem using (ev2)reg and the approximation
properties of (ν, μ). �
Theorem 8.7. Let l ∈ AC([0, T ]; H1(D; RN )∗) , ϕ ∈ AC([0, T ]; H1(D; RN )) , T > 0 , and (z0, v0) ∈ L2(D; Rm)×
A(0) . Then there exists a quasistatic evolution obtained by spatial regularizations with external load l , boundary
datum ϕ , and initial condition (z0, v0) , in the time interval [0, T ] .

Proof. Fix a sequence (zn
0 )n in H1(D; Rm) satisfying (8.8) and a positive sequence ηn → 0 satisfying (8.9);

let (zηn , vηn) be the solutions of the ηn -regularized problems with external load l , boundary datum ϕ , and
initial condition (zn

0 , v0). Thanks to (8.5), (8.6), and (H.2), we can apply Theorem 4.10 to obtain a subset Θ
of [0, T ] with 0 ∈ Θ and L1([0, T ] \ Θ) = 0, a compatible system μ ∈ SY 2

−([0, T ], D; Rm), and a subsequence
still indicated by (ηn)n satisfying (conv1)reg . For every t ∈ Θ we select a subsequence (ηnt

k
)k of (ηn)n , possibly

depending on t , satisfying (8.11). Thanks to (8.5), we can apply Lemma 4.13 to obtain another subsequence still
denoted by (ηnt

k
)k and ν ∈ Y 2(D; Rm × R

N×d)[0,T ] which verify conditions (conv2)reg , (appr), and (8.7). �
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[14] A. Mielke and T. Roub́ıček, Rate-independent damage processes in nonlinear elasticity. Math. Models Methods Appl. Sci. 16
(2006) 177–209.

[15] A. Mielke, F. Theil and V.I. Levitas, A variational formulation of rate-independent phase transformations using an extremum
principle. Arch. Rational Mech. Anal. 162 (2002) 137–177.

[16] M. Ortiz and E. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Physics
Solids 47 (1999) 397–462.

[17] P. Pedregal, Parametrized measures and variational principles. Progress in Nonlinear Differential Equations and their Appli-
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