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DIRICHLET PROBLEMS WITH SINGULAR AND GRADIENT QUADRATIC
LOWER ORDER TERMS

Lucio Boccardo
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Abstract. We present a revisited form of a result proved in [Boccardo, Murat and Puel, Portugaliae
Math. 41 (1982) 507–534] and then we adapt the new proof in order to show the existence for solutions
of quasilinear elliptic problems also if the lower order term has quadratic dependence on the gradient
and singular dependence on the solution.
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1. Introduction

Quasilinear Dirichlet problems having lower order terms with superlinear growth with respect to the gradient
play a fundamental role in the study of Nonlinear Differential Equations.

We recall the paper [30], by Jean-Pierre Puel, for its influence on later developments.
Moreover, quasilinear Dirichlet problems having lower order terms with quadratic growth with respect to the

gradient arise naturally in Calculus of Variations and in Stochastic Control.
For example, if we consider the functional (in all the paper Ω is a bounded open set in R

N )

J(v) =
1
2

∫
Ω

(1 + |v|r)|Dv|2 −
∫
Ω

f(x)v(x), r > 1, (1.1)

the Euler-Lagrange equation is

u ∈ W 1,2
0 (Ω) : −div((1 + |u|r)Du) +

r

2
|u|r−2u|Du|2 = f. (1.2)

The direct study of Dirichlet problems similar to the previous ones gives some difficulties. The first difficulty
is due to the fact that the principal part of the differential operator −div((1 + |v|r)Dv) is not well defined on
the whole W 1,2

0 (Ω). The second and main one is that the lower order term |v|r−2v|Dv|2 not only is not well

Keywords and phrases. Quadratic gradient, singular lower order term.
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defined on the whole W 1,2
0 (Ω), but, even if v ∈ L∞(Ω) ∩ W 1,2

0 (Ω), |v|r−2v|Dv|2 does not belong to W−1,2(Ω).
However, the lower order term has the useful property that v · (|v|r−2v|Dv|2) ≥ 0.

In a more general setting, in Section 2, we present a revisited form of the techniques of [13] (and of [9]) in
order to study the Dirichlet problem

u ∈ W 1,2
0 (Ω) : −div(M(x, u)Du) + g(x, u, Du) = f (1.3)

where on the right hand side f we assume that

f ∈ Lm(Ω), 1 ≤ m ≤ N/2 (1.4)

and whose simplest example is

u ∈ W 1,2
0 (Ω) : −Δu + u|Du|2 = f.

Our assumptions follow from the model problem (1.2). We assume that M(x, s) : Ω × R → R
N2

, g(x, s, ξ) :
Ω×R×R

N → R are functions which are measurable with respect to x and continuous with respect to s and ξ,
such that, for x ∈ Ω, s ∈ R, ξ ∈ R

N , we have

α|ξ|2 ≤ M(x, s)ξξ, |M(x, s)| ≤ β(s), (1.5)

|g(x, s, ξ)| ≤ γ(s)|ξ|2, (1.6)

g(x, s, ξ) s ≥ ν(|s|)|s||ξ|2, (1.7)

where α > 0, β(s), γ(s) are continuous, increasing (possibly unbounded) functions of a real variable and ν(s) :
R

+ → R
+ is continuous, increasing and ν(0) = 0.

Recall that in order to study (1.3), if the right hand side belongs to L2(Ω), it is enough the slightly weaker
assumption g(x, s, ξ) s ≥ 0, introduced in [13].

Thanks to the presence of the lower order term with quadratic dependence with respect to the gradient and
to the assumption (1.7), introduced in [9], the Dirichlet problem (1.3) is allowed to have finite energy weak
solutions (see [9]), even if f belongs only to L1(Ω). This result (regularizing effect of g) is somewhat surprising
because it is not true in the linear case (for example if g(x, s, ξ) ≡ 0).

Contributions to the existence of solutions of nonlinear elliptic problems with lower order terms having
quadratic growth with respect to the gradient, like (1.3), can be found in some papers in collaboration with
F. Murat and J.-P. Puel [14–16] (see also [7,19,20]), where we proved existence of bounded solutions (without
the assumption g(x, s, ξ) s ≥ 0 and with the assumption f ∈ Lm(Ω), m > N/2).

If we look for unbounded solutions, we refer to the paper [13], in collaboration with F. Murat and J.-P. Puel
and to

• [4,21]: unbounded solutions and data in the dual space (with the assumption g(x, s, ξ) s ≥ 0);
• [9,10,17,27,29]: unbounded solutions and f ∈ L1(Ω) (with the assumption (1.7));
• [6], where a different notion of solution is used (with the assumption (1.7)).

Remark 1.1. Thanks to the assumption g(x, s, ξ) s ≥ 0 and to Stampacchia type L∞-estimates [31], the
existence results for the case m > N/2 are contained in [16].

In the last two sections, we adapt the techniques of the second section in order to prove the existence of
strictly positive (in Ω) solutions of two Dirichlet problems with lower order term having quadratic dependence
on the gradient and singular dependence on u.
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Simple examples of the existence results of the last two sections are

u ∈ W 1,2
0 (Ω), u > 0 in Ω : −αΔu +

|Du|2
uθ

= f, α > 0, 0 < θ < 1.

u ∈ W 1,2
0 (Ω), u > 0 in Ω : −αΔu +

|Du|2
u

= f, α > 1.

Our results are closely related to those of [1–3,22].
For the sake of simplicity, we confine our study to the framework: positive data, right hand side functions

(instead of measures absolutely continuous with respect to the capacity, as in [10]), W 1,2
0 (Ω)-solutions instead

of W 1,p
0 (Ω)-solutions and linear dependence with respect to the gradient in the principal part of the differential

operator.

2. The BMP-PORTUGALIAE M ATHEMATICA method revisited

In this section, we shall follow the approach of the paper [13] (in collaboration with F. Murat and J.-P. Puel
and published in Portugaliae Mathematica), proving a more general result, thanks to some new techniques
(mainly due to [9]).

Theorem 2.1. Assume (1.4), (1.5), (1.6), (1.7) and β(s) ≤ β0|s|p, where p < m∗∗. Then there exists u ∈
W 1,2

0 (Ω) with |M(x, u)Du| ∈ Lr(Ω), r = 2m∗∗
p+m∗∗ , and g(x, u, Du) ∈ L1(Ω), such that

∫
Ω

M(x, u)DuDφ +
∫
Ω

g(x, u, Du)φ =
∫
Ω

fφ, ∀φ ∈ D(Ω). (2.1)

Before the proof of the theorem, we shall prove some preliminary results.
Let the truncation Tk : R 	→ R be defined by

Tk(t) =
{

t, if |t| ≤ k,
k t
|t| , if |t| > k,

and let fn(x) = Tn[f(x)], so that fn ∈ L∞(Ω), |fn| ≤ |f | and ‖fn − f‖
L1(Ω)

→ 0. Consider the boundary value
problems {

−div(M(x, un)Dun) + g(x, un, Dun) +
1
n

un = fn, in Ω;
un = 0, on ∂Ω.

(2.2)

Since fn is a bounded function, by a result of [16], there exists un ∈ W 1,2
0 (Ω) ∩ L∞(Ω) weak solution of (2.2):

∫
Ω

M(x, un)DunDφ +
∫
Ω

g(x, un, Dun)φ +
1
n

∫
Ω

unφ =
∫
Ω

fnφ,

∀φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Lemma 2.1. If f ∈ L1(Ω), then there exists R > 0 (see [9]) such that

‖un‖
W 1,2

0 (Ω)
≤ R.
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Proof. The use of Tj(un) as test function in (2.2) implies

∫
Ω

M(x, un)DunDTj(un) +
∫
Ω

g(x, un, Dun)Tj(un) ≤
∫
Ω

fnTj(un)

α

∫
Ω

|DTj(un)|2 + j

∫
{j<|un|}

ν(|un|)|Dun|2 ≤ j

∫
Ω

|f |

α

∫
{|un|≤j}

|Dun|2 + jν(j)
∫
{j<|un|}

|Dun|2 ≤ j

∫
Ω

|f |.

Then it follows ∫
Ω

|Dun|2 =
∫
{|un|≤j}

|Dun|2 +
∫
{j<|un|}

|Dun|2 ≤
[

j

α
+

1
ν(j)

] ∫
Ω

|f |. �

Thus the sequence {un} is bounded in W 1,2
0 (Ω): we can say that (up to a subsequence still denoted by {un})

the sequence converges weakly in W 1,2
0 (Ω) and a.e. to u, for some u ∈ W 1,2

0 (Ω).

Lemma 2.2. The following inequality holds (see [9])

∫
{k≤|un|}

|g(x, un, Dun)| ≤
∫
{k≤|un|}

|f |, ∀k ≥ 0. (2.3)

Proof. Let ε > 0 and k ≥ 0. The use of T1

{
1
ε [un − Tk(un)]} as test function in (2.2) gives

∫
Ω

g(x, un, Dun)T1

{1
ε
[un − Tk(un)]

}
≤

∫
Ω

|f |.

Then letting ε → 0 (k ≥ 0) the previous estimate implies (2.3). �

Lemma 2.3. The sequence {Dun(x)} converges a.e. to Du(x).

Proof. The test function used in this proof is the same used in [5] (for similar results see also [8,12]). Thanks
to (2.3), we have from (2.2) with test function Th[un − Tk(u)],

∫
Ω

M(x, un)DunDTh[un − Tk(u)] +
1
n

∫
Ω

unTh[un − Tk(u)]≤2
∫
Ω

|f ||Th[un − Tk(u)]|

which gives ∣∣∣∣∣∣∣∣∣∣

∫
Ω

[M(x, un)Dun − M(x, un)DTk(u)]DTh[un − Tk(u)] +
1
n

∫
Ω

unTh[un − Tk(u)]

≤ 2h

∫
Ω

|f | −
∫
Ω

M(x, un)DTk(u)DTh[un − Tk(u)].

Thus it follows

α lim sup
n→∞

∫
Ω

|DTh[un − Tk(u)]|2 ≤ 2h

∫
Ω

|f |.
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Let now q be such that 1 < q < 2. Then we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω

|D(un − u)|q =
∫

{|un−u|≤h, |u|≤k}

|D(un − u)|q

+
∫

{|un−u|≤h, |u|>k}

|D(un − u)|q +
∫

{|un−u|>h}

|D(un − u)|q

≤
∫
Ω

|DTh[un − Tk(u)]|q

+ 2q−1Rqmeas{|u| > k}1− q
2 + 2q−1Rqmeas{|un − u| > h}1− q

2 .

Thus, for every h > 0,

lim sup
n→∞

∫
Ω

|D(un − u)|q ≤
[
h

2
α

∫
Ω

|f |
] q

2 |Ω|1− q
2 + 2q−1Rqmeas{|u| > k}1− q

2 .

That is, letting h → 0 and then k → +∞,

∫
Ω

|Dun − Du|q → 0, ∀q < 2.

Then (up to subsequences) Dun(x) converges a.e. to Du(x). �

Fatou Lemma and (2.3), written for k = 0, imply the following inequality.

Corollary 2.1. ∫
Ω

|g(x, u, Du)| ≤
∫
Ω

|f |.

In the following lemma, a summability result is proved, in the spirit of [11,31]; but, thanks to the presence
of the lower order term, it is possible to prove extra summability, as in [25].

Lemma 2.4. If f ∈ Lm(Ω), 1 < m < N
2 , the sequence {un} is bounded in L2m∗∗

(Ω), where m∗∗ = (m∗)∗ =
mN

N−2m .

Proof. Let γ = N(m−1)
N−2m , so that (γ + 1)2∗ = 2γm′ = 2m∗∗. The use of |un|2γ−1un as test function in (2.2)

yields, for fixed j, ∫
{j<|un|}

g(x, un, Dun)|un|2γ−1un ≤
∫
Ω

|f ||un|2γ ,

which implies

ν(j)
∫
{j<|un|}

|un|2γ |Dun|2 ≤ ‖f‖
Lm(Ω)

⎡
⎣∫

Ω

|un|(2γ−2)m′

⎤
⎦

1
m′

.
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Then

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S2

(γ + 1)2

⎡
⎣∫

Ω

|un|(γ+1)2∗

⎤
⎦

2
2∗

≤
∫
Ω

|un|2γ |Dun|2

≤ j2γ

∫
{|un|≤j}

|Dun|2 +
1

ν(j)
‖f‖

Lm(Ω)

⎡
⎣∫

Ω

|un|2γm′

⎤
⎦

1
m′

≤ j2γR2 +
1

ν(j)
‖f‖

Lm(Ω)

⎡
⎣∫

Ω

|un|(γ+1)2∗

⎤
⎦

1
m′

,

which implies that the sequence {un} is bounded in L2m∗∗
(Ω). �

Remark 2.1. Note that Lemmas 2.1 and 2.4 cover all the interval 1 ≤ m < N/2.

Lemma 2.5. Under the assumptions of Theorem 2.1, the sequence {M(x, un)Dun} converges to M(x, u)Du

weakly in Lr(Ω), r = 2m∗∗
p+m∗∗ .

Proof. Fix r > 1 such that 2pr
2−r < 2m∗∗. The inequality

∫
Ω

|M(x, un)Dun|r ≤ βr
0

∫
Ω

|un|pr|Dun|r ≤ βr
0

[ ∫
Ω

|un|
2pr
2−r

] 2−r
2

[ ∫
Ω

|Dun|2
] r

2

implies that the sequence {M(x, un)Dun} is bounded in Lr(Ω), since 2pr
2−r = 2m∗∗. Then the sequence

{M(x, un)Dun} converges strongly in Ls(Ω), s > 1, to M(x, u)Du, for every 1 < s < r and weakly in Lr(Ω). �

Proof of Theorem 2.1. For the sake of simplicity, we present the proof in the easy case f(x) ≥ 0, which implies
un(x) ≥ 0 and, thanks to the assumption (1.7), g(x, un, Dun) ≥ 0.

We point out that the test functions used in this proof are similar to those used in [13]. The proof proceeds
by steps.

First step. By (2.2) we have

∫
Ω

M(x, un)DunDφ +
∫
Ω

g(x, un, Dun)φ ≤
∫
Ω

fnφ,

for every 0 ≤ φ ∈ D(Ω). Since M(x, un)Dun converges weakly in Lr to M(x, u)Du and g(x, un, Dun) ≥ 0
converges a.e. to g(x, u, Du) ≥ 0, Fatou Lemma yields

∫
Ω

M(x, u)DuDφ +
∫
Ω

g(x, u, Du)φ ≤
∫
Ω

fφ. (2.4)



SINGULAR AND QUADRATIC DIRICHLET PROBLEMS 417

Second step. As before 0 ≤ φ ∈ D(Ω). Define H(t) =
∫ t

0 γ(s) ds and use e−
1
α H(un)e

1
α H(Tk(u))φ as test function.

We obtain ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω

M(x, un)DunDφ e−
1
α H(un)e

1
α H(Tk(u))

+
1
α

∫
Ω

M(x, un)DunDTk(u)γ(Tk(u))e−
1
α H(un)e

1
α H(Tk(u))φ

+
1
n

∫
Ω

unφ =
∫
Ω

fne−
1
α H(un)e

1
α H(Tk(u))φ

+
1
α

∫
Ω

M(x, un)DunDunγ(un)e−
1
α H(un)e

1
α H(Tk(u))φ

−
∫
Ω

g(x, un, Dun)e−
1
α H(un)e

1
α H(Tk(u))φ ≥ 0.

The limit n → ∞, Fatou Lemma and Lemma 2.5 yield

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω

M(x, u)DuDφ e−
1
α H(u)e

1
α H(Tk(u))

+
1
α

∫
Ω

M(x, u)DuDTk(u)γ(Tk(u))e−
1
α H(u)e

1
α H(Tk(u))φ

≥
∫
Ω

fe−
1
α H(u)e

1
α H(Tk(u))φ

1
α

∫
Ω

M(x, u)DuDu γ(u)e−
1
α H(u)e

1
α H(Tk(u))φ −

∫
Ω

g(x, u, Du)e−
1
α H(u)e

1
α H(Tk(u))φ,

which implies ∣∣∣∣∣∣∣∣∣∣

∫
Ω

M(x, u)DuDφ e−
1
α H(u)e

1
α H(Tk(u)) ≥

∫
Ω

fe−
1
α H(u)e

1
α H(Tk(u))φ

−
∫
Ω

g(x, u, Du)e−
1
α H(u)e

1
α H(Tk(u))φ.

In order to use Lebesgue Theorem (as k → +∞) in the previous inequality, note that e
1
α

H(Tk(u))

e
1
α

H(u)
≤ 1. Then

∫
Ω

M(x, u)DuDφ ≥
∫
Ω

fφ −
∫
Ω

g(x, u, Du)φ. (2.5)

The inequalities (2.4) and (2.5) implies

∫
Ω

M(x, u)DuDφ +
∫
Ω

g(x, u, Du)φ =
∫
Ω

fφ, ∀ 0 ≤ φ ∈ W 1,∞
0 (Ω).

Since we can write ϕ = ϕ+ +ϕ− for every ϕ ∈ W 1,∞
0 (Ω), we proved the existence of a solution u of the Dirichlet

problem (1.3). �
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3. A lower order term singular with respect to u
(sublinear growth singularity)

Now we study the existence of weak solution for some elliptic problems with lower order terms having
quadratic growth with respect to the gradient and singular dependence with respect to the solution.

A model problem is the Euler-Lagrange equation (1.2) if (at least formally) in (1.1) we assume 0 < r < 1.
Other motivations can be found in [1,2,22].

Here we assume more summability on the right hand side:

0 ≤ f ∈ Lm(Ω), m ≥
(2∗

θ

)′
, f �≡ 0, (3.1)

0 < θ < 1. (3.2)

Moreover, let Q(x, s) : Ω×R → R
N2

symmetric, measurable with respect to x and continuous with respect to s
such that, for x ∈ Ω, s ∈ R we have

a|ξ|2 ≤ Q(x, s)ξξ ≤ b|ξ|2, 0 < a ≤ b. (3.3)

Theorem 3.1. Under the assumptions (1.5), with β(s) ≤ β0 ∈ R
+, (3.1), (3.2) and (3.3), there exists u ∈

W 1,2
0 (Ω) ∩ L∞(Ω), verifying u > 0 in Ω, and

Q(x, u)DuDu

uθ
∈ L1(Ω), such that

∫
Ω

M(x, u)DuDφ +
∫
Ω

Q(x, u)DuDu

uθ
φ =

∫
Ω

fφ, ∀φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Proof. Let 0 < ε < 1 and consider uε ∈ W 1,2
0 (Ω) ∩ L∞(Ω):⎧⎨

⎩ −div(M(x, uε)Duε) +
Q(x, uε)DuεDuε

(ε + uε)θ
= fε, in Ω;

uε = 0, on ∂Ω
(3.4)

where {fε} is a sequence of bounded functions converging to f in Lm(Ω), 0 ≤ fε ≤ f ; e.g. fε = T 1
ε
(f). Note

that uε exists by Theorem 2.1 and that uε ≥ 0 by (3.1). Let δ > 0. We use [(uε + δ)θ − δθ] as test function and
we have (once more, thanks to the use of the lower order term as leader term, as in [25])∫

Ω

Q(x, uε)DuεDuε

(ε + uε)θ
[(uε + δ)θ − δθ] ≤

∫
Ω

fε[(uε + δ)θ − δθ].

The limit δ → 0 implies
a

(ε + 1)θ

∫
{1<uε}

|Duε|2 ≤ a

∫
{1<uε}

|Duε|2uθ
ε

(ε + uε)θ
≤

∫
Ω

fεu
θ
ε.

Furthermore the use of T1(uε) as test function produces

α

∫
Ω

|DT1(uε)|2 ≤ ‖fε‖
1

,

so that ∫
Ω

|Duε|2 ≤
‖fε‖

1

α
+

2θ

a

∫
Ω

fεu
θ
ε. (3.5)
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Then assumption (3.1) and Sobolev inequality imply that the sequence {uε} is bounded in W 1,2
0 (Ω) (thus

uε ⇀ u, for some u ∈ W 1,2
0 (Ω)). As in the previous section, it is possible to prove that the sequence of lower

order terms is bounded in L1(Ω), i.e.

∫
Ω

Q(x, uε)DuεDuε

(ε + uε)θ
≤

∫
Ω

|fε|,

and that Duε(x) converges a.e. to Du (x).
Define, for t ≥ 0,

Hε(t) =
(ε + t)1−θ

(1 − θ)
, H ′

ε(t) =
1

(ε + t)θ
; H0(t) =

t1−θ

(1 − θ)
· (3.6)

Now we shall prove that u > 0 in Ω. Indeed, take ϕ = e−b Hε(uε)
α φ, with φ ∈ D(Ω), φ ≥ 0, as test function

in (3.4), using assumptions (1.5) and (3.3), we get

∣∣∣∣∣∣∣∣∣∣

∫
Ω

M(x, uε)DuεDφ e−b Hε(uε)
α −

∫
Ω

fε e−b Hε(uε)
α φ

=
b

α

∫
Ω

M(x, uε)DuεDuε

(ε + uε)θ
e−b Hε(uε)

α φ −
∫
Ω

Q(x, uε)DuεDuε

(ε + uε)θ
e−b Hε(uε)

α φ ≥ 0.

Then it follows

∫
Ω

M(x, uε)DuεDφ e−b Hε(uε)
α ≥

∫
Ω

fε e−b Hε(uε)
α φ.

We can pass to the limit, since M(x, uε)Duε converges weakly in L2 to M(x, u)Du (recall that the matrix M
is bounded). Therefore

∫
Ω

M(x, u)DuDφ e−b
H0(u)

α ≥
∫
Ω

T1[f ]

e
bH0(u)

α

φ, ∀φ ∈ D(Ω), φ ≥ 0.

Define P (s) =
∫ s

0
e−b

H0(t)
α dt and w(x) = P (u(x)) =

∫ u(x)

0
e−b

H0(t)
α dt. The comparison principle in W 1,2

0 (Ω)
says that w(x) ≥ z(x), where z is the bounded weak solution of

z ∈ W 1,2
0 (Ω) : −div(M(x, u(x))Dz) =

T1[f ]

eb
H0(u)

α

·

The strong maximum principle for weak solutions implies z > 0 in Ω (see [31,32]) and so P (u) > 0 and also
u > 0 in Ω, since the real function P (s) is strictly increasing. Thus we have no problems to pass to the limit.
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Now use e
−bHε(uε)

α e
bHε(Tj(u))

α φ, φ ≥ 0, φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω), as test function. Then

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b

α

∫
Ω

M(x, uε)DuεDTj(u)H ′
ε(u)e−bHε(uε)e

bHε(Tj(u))
α φ

+
∫
Ω

M(x, uε)DuεDφ e−bHε(uε)e
bHε(Tj(u))

α

=
∫
Ω

fε e−bHε(uε)e
bHε(Tj(u))

α φ

+
∫
Ω

{ b

α
M(x, uε)DuεDuεH

′
ε(uε)e−bHε(uε)e

bHε(Tj(u))
α φ

−Q(x, uε)DuεDuε

(ε + uε)θ
e−bHε(uε)e

bHε(Tj(u))
α φ

}
.

(3.7)

Note that the last integrand is positive: we can use Fatou Lemma in the right hand side (thanks to the fact
that u > 0 in Ω); we can handle the left hand side as in the previous section, as ε → 0 and then as j → ∞.

Since lim
ε→0

e
−bHε(uε)

α e
bHε(Tj(u))

α = e
−bH0(u)

α e
bH0(Tj(u))

α ≤ 1, and lim
j→∞

e−bH0(u)ebH0(Tj(u)) = 1 we have

∣∣∣∣∣∣∣∣∣∣

∫
Ω

M(x, u)DuDu
b

αuθ
φ +

∫
Ω

M(x, u)DuDφ

≥
∫
Ω

fφ +
∫
Ω

{ b

αuθ
M(x, u)DuDuφ − Q(x, u)DuDu

uθ
φ
}

.

Then we get ∫
Ω

M(x, u)DuDφ ≥
∫
Ω

fφ − Q(x, u)DuDu

uθ
φ.

On the other hand the opposite inequality follows from

∫
Ω

M(x, uε)DuεDφ +
∫
Ω

Q(x, uε)DuεDuε

(ε + uε)θ
φ =

∫
Ω

fεφ

(0 ≤ φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω)) thanks to Fatou Lemma and the weak L2 convergence of M(x, uε)Duε. �

4. Linear growth singularity

Theorem 4.1. Let

0 ≤ f ∈ Lm(Ω), m ≥ 2N

N + 2
, f �≡ 0. (4.1)

Under the assumption (1.5), with β(s) ≤ β0 ∈ R
+, (3.3), α > 2b and (4.1), there exists u ∈ W 1,2

0 (Ω), u > 0

in Ω, with
Q(x, u)DuDu

u
∈ L1(Ω), weak solution of the singular-quadratic Dirichlet problem

∫
Ω

M(x, u)DuDφ +
∫
Ω

Q(x, u)DuDu

u
φ =

∫
Ω

fφ, ∀φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω). (4.2)
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Proof. Define uε:

uε ∈ W 1,2
0 (Ω) : −div(M(x, uε)Duε) +

Q(x, uε)DuεDuε

(ε + uε)
= fε. (4.3)

Again {fε} is a sequence of bounded functions converging to f in Lm(Ω), 0 ≤ fε ≤ f ; e.g. fε = T 1
ε
(f). As in

the previous sections, uε ∈ L∞(Ω) and it is possible to prove that the sequence {uε} is bounded in W 1,2
0 (Ω)

(thus uε ⇀ u, for some u ∈ W 1,2
0 (Ω)), that the sequence of the lower order terms is bounded in L1(Ω),

∫
Ω

Q(x, uε)DuεDuε

(ε + uε)
≤

∫
Ω

fε ≤
∫
Ω

f, (4.4)

and that Duε(x) converges a.e. to Du (x). Moreover (4.4) implies

a

∫
Ω

|Duε|2
(ε + uε)

≤
∫
Ω

f. (4.5)

Now we shall prove that u > 0 in Ω. Let φ ∈ D(Ω), φ ≥ 0, and use
φ

(ε + uε)
b
α

as test function to obtain

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω

[M(x, uε)DuεDφ]
1

(ε + uε)
b
α

−
∫
Ω

fε
1

(ε + uε)
b
α

φ

=
∫
Ω

b

α
M(x, uε)DuεDuε

1

(ε + uε)
b
α +1

φ

−
∫
Ω

Q(x, uε)DuεDuε

(ε + uε)
b
α +1

φ ≥ 0.

(4.6)

Let L > 0 be such that the measure of the set {x ∈ Ω : u(x) = L} is zero; all except countably many L are such
that this holds, since u ∈ L1(Ω). Since uε(x) → u(x) a.e., thanks to the choice of L, χ{uε≤L}(x) → χ{u≤L}(x)
a.e. in Ω and so ∫

Ω

[M(x, uε)DuεDφ]
1

(ε + uε)
b
α

≥
∫
Ω

χ{uε≤L}f1(x)
1

(1 + L)
b
α

φ.

Here we use the the fact that the assumption α > 2b implies that 1 − b
α > 0 and we obtain

∫
Ω

M(x, uε)D[(ε + uε)1−
b
α − ε1− b

α ]Dφ ≥
∫
Ω

χ{uε≤L}f1(x)
1 − b

α

(1 + L)
b
α

φ. (4.7)

The comparison principle in W 1,2
0 (Ω) says that [(ε + uε)1−

b
α − ε1− b

α ] ≥ zε, where zε is the weak solution of

zε ∈ W 1,2
0 (Ω) : −div(M(x, uε)Dzε) = χ{uε≤L}f1(x)

1 − b
α

(1 + L)
b
α

·

It is easy to see that zε converges strongly in W 1,2
0 (Ω) to z0, the solution of

z0 ∈ W 1,2
0 (Ω) : −div(M(x, u)Dz0) = χ{u≤L}f1(x)

1 − b
α

(1 + L)
b
α

·
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The strong maximum principle for weak solutions implies z0 > 0 in Ω (see [31,32]). If we pass to the limit in
the inequality

0 < zε(x) ≤ [(ε + uε(x))1−
b
α − ε1− b

α ],

the almost everywhere convergence of uε(x) to u(x) then guarantees that 0 < z0(x) ≤ u(x)1−
b
α . Thus also

u > 0 in Ω (4.8)

since 1 − b
α > 0, and we have no problems to pass to the limit. From (4.4) and (4.5) we have

a

∫
Ω

|Du|2
u

∫
Ω

Q(x, u)DuDu

u
≤

∫
Ω

f (4.9)

and that
Duε√
ε + uε

⇀
Du√

u
converges weakly in L2. (4.10)

As in the previous section, we now pass to the limit in (4.3). We begin with the first half of the result. Use as
test function 0 ≤ φ ∈ W 1,2

0 (Ω) ∩ L∞(Ω) to obtain∫
Ω

M(x, uε)DuεDφ +
∫
Ω

Q(x, uε)DuεDuε

(ε + uε)
φ =

∫
Ω

fφ

and Fatou Lemma as ε → 0. Then we deduce∫
Ω

M(x, u)DuDφ +
∫
Ω

Q(x, u)DuDu

u
φ ≤

∫
Ω

fφ.

Now we use vε =
(ε + u)

1
2

(ε + uε)
1
2
φ as test function in (4.3).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

∫
Ω

M(x, uε)
Duε

(ε + uε)
1
2

Du

(ε + u)
1
2
φ

+
∫
Ω

M(x, uε)
Duε

(ε + uε)
1
2
Dφ(ε + u)

1
2 =

∫
Ω

fε
(ε + u)

1
2

(ε + uε)
1
2
φ

+
∫
Ω

[1
2
M(x, uε)DuεDuε − Q(x, uε)DuεDuε

] (ε + u)
1
2

(ε + uε)
1
2+1

φ.

Note that the last integrand is positive thanks to the assumption α ≥ 2b. Fatou Lemma once again, as well as
(4.10) imply, as ε → 0, ∣∣∣∣∣∣∣∣∣∣

b

α

∫
Ω

M(x, u)Du
Du

u
φ +

∫
Ω

M(x, u)DuDφ

≥
∫
Ω

fφ +
∫
Ω

[1
2
M(x, u)DuDu − Q(x, u)DuDu

]1
u

φ,

that is the second half of the result:∫
Ω

M(x, u)DuDφ ≥
∫
Ω

fφ −
∫
Ω

Q(x, u)DuDu

u
φ. �
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Remark 4.1. Note that the assumption f(x) ≥ 0 allows to have a right hand side zero on a set of positive
measure.

Remark 4.2. In this section, we assume θ = 1. Note that assumption (4.1) is exactly assumption (3.1) with
θ = 1.

Remark 4.3. Note that in order to prove (4.8) only inequality α ≥ b is needed, instead of α ≥ 2b, which is the
assumption of the previous theorem.

5. Remarks on two related problems

5.1. Remarks on a related semilinear problem

Consider here the boundary value problem (4.2) in the simple case

u > 0 in Ω :

⎧⎨
⎩ −α Δu +

|Du|2
u

= f(x) in Ω,

u = 0 on ∂Ω,

where b = 1 and α ≥ 2 and 0 ≤ f ∈ L
2N

N+2 (Ω), as in Theorem 4.1.
We look for the equation satisfied by z(x) = q(u(x)), where q(s) is a real smooth function. We have

−αΔz

q′(u)
= −α

q′′(u)|Du|2
q′(u)

− αΔu. Choose q(t) such that −α
q′′(t)
q′(t)

=
1
t
, so that −αΔz = f(x) q′(q−1(z)) and

log q′(t) = log[ 1
t1/α ]: q′(t) = 1

t1/α . Then the new problem, which depends on α, at least formally is

−Δz = f(x)
1

(q−1(z))
1
α

,

since, for α > 1, q(t) = α
α−1 t1−1/α, q−1(t) =

[
(α−1

α )t
] α

α−1
and z = α

α−1u1−1/α is such that

⎧⎨
⎩ z > 0 in Ω : −Δz =

Cαf(x)

z
1

α−1
, in Ω,

z = 0, on ∂Ω.
(5.1)

The previous boundary value problem can be seen as the Euler-Lagrange equation of the coercive functional

1
2

∫
Ω

|Dv|2 − C̃α

∫
Ω

f(x)v
α−2
α−1 , C̃α > 0, f(x) ≥ 0, α ≥ 2. (5.2)

Note that the problem (5.1) has been extensively studied at least with f bounded (see e.g. the pioneering
paper [18] and also [24]). Moreover, in the spirit of this section, it is important to recall [28].

Moreover, if α ≥ 2, we are able to say that z = α
α−1u1−1/α, solution of (5.1), belongs to W 1,2

0 (Ω), as
consequence of (4.9).

On the other hand with the choice of z as test function in (5.1), we have

∫
Ω

|Dz|2 = Cα

∫
Ω

f(x)z
α−2
α−1
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and, always if α ≥ 2,

C1

[ ∫
Ω

z2∗] N−2
N ≤

[ ∫
Ω

z2∗] (N−2)(α−2)
2N(α−1)

[ ∫
Ω

f(x)
2N(α−1)

Nα+2α−4

] Nα+2α−4
2N(α−1)

.

Note that 2N(α−1)
Nα+2α−4 ≤ 2N

N+2 and (N−2)(α−2)
2N(α−1) < N−2

N .
So that

‖z‖
2∗ ≤ C0‖f‖

m
.

Thus we have an a priori estimate on z, solution of (5.1), in the Sobolev space W 1,2
0 (Ω), if α ≥ 2 and m ≥ 2N

N+2 .
If α = 1, the new problem is {

−Δz =
f(x)
ez

, in Ω,

z = −∞, on ∂Ω,
(5.3)

while if 0 < α < 1 {
z < 0 in Ω : −Δz = f(x) C̃α |z| 1

1−α , in Ω,
z = −∞, on ∂Ω,

where C̃α > 0.
In both above problems we point out the explosive boundary condition on z. Setting w = −z both enter the

framework { −Δw + h(x)g(w) = 0, in Ω,
w → +∞, on ∂Ω,

where g(s) satisfies the so-called Keller-Osserman condition.
Such problems have a huge literature since the first basic study in [23,26] to the recent results of [28].

5.2. Remarks on a related porous media problem

Consider here the boundary value problem (4.2) in the simple case

u > 0 in Ω :

⎧⎨
⎩ −div(M(x)Du) +

|Du|2
u

= 2f(x) in Ω,

u = 0 on ∂Ω,
(5.4)

where b = 1 and α ≥ 2 and 0 ≤ f ∈ L
2N

N+2 (Ω). Thanks to Theorem 4.1, we can prove the existence of a solution
u ∈ W 1,2

0 (Ω), such that |Du|2
u ∈ L1(Ω). Define now z =

√
u. Then the function z is solution of

0 < z ∈ W 1,2
0 (Ω) :

{ −div(M(x)zDz) + 2 |Dz|2 = f(x) in Ω,
z = 0 on ∂Ω, (5.5)

with α ≥ 2 and 0 ≤ f ∈ L
2N

N+2 (Ω). Such kind of problems has been studied in [33].
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