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HOMOGENIZATION OF CONSTRAINED OPTIMAL CONTROL PROBLEMS
FOR ONE-DIMENSIONAL ELLIPTIC EQUATIONS ON PERIODIC GRAPHS ∗

Peter I. Kogut1 and Günter Leugering2

Abstract. We are concerned with the asymptotic analysis of optimal control problems for 1-D partial
differential equations defined on a periodic planar graph, as the period of the graph tends to zero.
We focus on optimal control problems for elliptic equations with distributed and boundary controls.
Using approaches of the theory of homogenization we show that the original problem on the periodic
graph tends to a standard linear quadratic optimal control problem for a two-dimensional homogenized
system, and its solution can be used as suboptimal controls for the original problem.
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1. Introduction

In this paper we consider a linear-quadratic control-constrained optimal control problem for 1-D partial
differential elliptic equations defined on a periodic planar graph (3.3), (3.4), (3.5), (3.6). We study the asymptotic
behavior of this problem when the ε-period of the graph tends to zero, and look for the limiting homogenized
optimal control problem. In particular, we require that an optimal solution and the minimum of the cost
functional for the homogenized problem are the limit values (in a certain sense) of the corresponding quantities
of the original problem. The solution to the homogenized constrained optimal control problem is shown to serve
as a suboptimal control for ε-level problem when restricted to the graph.

Even though partial differential equations on networked domains and their homogenized substitutes are very
important in various mechanical, medical and industrial applications and constitute a growing field of interest,
only few papers [7,22–24,26,33] deal with the homogenization problem on periodic networks. Typically, not
only the process on the graph itself but rather the optimization and control of processes on such networks are
of great importance. On the one side, as one goes down the scales of the periodic structures, the numerical
computation of the solution of these problems is very costly due to the singular behavior for small scales and
the complexity of large networks, while on the other side local computations on a regular locally 1-d grid are
much easier than 2-d or 3-d calculations. It may thus happen, as in sparse-grid computations, that an originally
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2-d or 3-d problem is approximated by a semi-discretization on a suitable grid, whereas on the other side, as in
carbon-nanotube technology, photonic lattice devices and also in infrastructural problems involving water and
gas-networks, the vascular system, to mention just a few applications, a problem on a planar (or 3-d) graph may
be substituted by a homogenized one on a simple but higher dimensional domain. Thus, asymptotic analysis for
optimal control problems on graphs appears to be a major tool in order investigate these questions. Moreover,
in such an asymptotic analysis we may require both the optimal solution and the minimal value of the cost
functional for the original problem to converge to the corresponding characteristics of a limit optimal control
problem, as ε tends to zero.

It should be stressed that the original problem (on the graph) and the homogenized one (in a 2-d domain)
live in the different function spaces. Moreover, if the small parameter ε is changed, then all components of
the original control problem, including the ε-periodic graph Ωε, the control constraint sets, the cost functional,
and the set, where we seek its infimum, are changed as well. Let us observe also that the Lebesgue measure
of the “material” included in the periodic graph Ωε is equal to zero for every ε > 0, whereas there exists a
set Ω which is filled up by this planar graph in the limit, as ε → 0. In view of this, our approach is based on
the description of boundary value problems for planar networks in terms of singular measures as proposed by
Zhikov, Bouchitte, and Fragala in their recent works [3,8,34,35]. Our emphasis is not on the homogenization
of the underlying system of partial differential equations on graphs as such, but rather on the homogenization
of the optimal control problem with distributed controls and Neumann boundary controls on planar ε-periodic
graphs as ε→ 0.

For the asymptotic analysis of optimal control problems in general we refer to e.g. [1,6,10,13,14,27,30].
The most typical procedure of homogenization consists of the following steps: at first, we write down the
necessary optimality conditions for the initial problem; next we find the corresponding limiting relations
as ε → 0 and interpret them as necessary optimality conditions for some control problem; then, using the
limiting necessary optimality conditions, we recover an optimal control problem which is called the homogenized
control problem (see e.g. [2,11,15,16,32]). Thus, if we denote by OCP ε, NOC ε, HOCP, HNOC the original
optimal control problem on the ε-level, the corresponding necessary optimality conditions on the ε-level, the
homogenized optimal control problem and the homogenized necessary optimality system, respectively, then the
above mentioned procedure can be represented in the following diagram:

OCP ε
? ? ?=⇒ HOCP

↓ �
NOC ε

ε→0−→ HNOC

However, this diagram may not commute. Moreover, it should be stressed that the approach above is suitable
only for simple enough (from the point of view of control theory) optimal control problems for which there are
no restrictions on admissible pairs and their optimality conditions satisfy some regularity property [25]. An
attempt to extend this approach to wider class of optimal control problems was realized in [11], where it was
shown that the recovery of the homogenized optimal control problem is possible only under some additional
assumptions on the structure of the state equation and the dependence on the small parameter.

We propose another approach to the homogenization of optimal boundary control problems, which is based
on ideas in Γ-convergence and the concept of variational convergence of constrained minimization problems [4–
6,30]. To investigate the asymptotic behavior of the considered optimal boundary control problem we apply the
scheme of direct homogenization, which was developed in [17–21]. Such approach allows to reduce the procedure
of the homogenization to the consecutive identification of the set of admissible solutions for the homogenized
optimal control problem and then its cost functional.

The plan of our paper is as follows. In Section 2 the main notion concerning ε-periodic graph-like structures
in R

2, the description of the geometry of periodic graph-structures and their boundary in terms of singular
measures are given. It is important to note that we introduce two types of singular measures. One of them
we use for the representation of ε-periodic bounded graph, and the second one is a ‘boundary’-measure for



HOMOGENIZATION OF PERIODIC NETWORKS 473

Figure 1. The cell of periodicity.

the description of boundary conditions on graph-like domain. In particular, we prove that sequences of the
corresponding scaling measures weakly converge to some Lebesgue measures.

In Section 3 we briefly describe the main results originally due to Zhikov concerning to the construction of
Sobolev spaces on graphs. The statement of optimal boundary control problem for one-dimensional elliptic
equations on periodic graphs we give in Section 4. The results concerning to the extension of two-scale con-
vergence with respect to singular measure, and the notion of the weak convergence (or shortly, w-convergence)
of sequences of triplets: ‘state-distributed control-boundary control’ we cite in Section 5. Here we also prove a
w-compactness result for the sequences of admissible solutions.

Section 6 contains the main homogenization results, where it is shown that the control constrained optimal
control problem on the periodic graph converges to a control-constrained optimal control problem in a planar
domain. In Section 7 we show that an optimal solution to the limit problem can be used as basis for the
construction of suboptimal controls for the original control problem. In a δ-neighborhood of the solution of the
homogenized optimal control problem we find smooth controls, the traces of which along the ε-graph Ωε are
approximations to the optimal controls on Ωε. In the last section we consider, as an example, the homogenization
procedure for an optimal control problem on ε-periodic ‘cross-like’ graphs.

2. ε-periodic graph-like structures in R
2 and their description

We begin with some notation. We say that the set � = [0, 1)2 is the cell of periodicity for some planar
graph F on R

2 if � contains a “star”-structure such that (see Fig. 1): (i) all edges of this structure have
a common point M ∈ int�; (ii) each edge is a line-segment and all end-points of these edges belong to the
boundary of �; (iii) in the set of end-points (vertices) there exist pairs (Mi;Mk) such that xMi

1 = xMk
1 or

xMi
2 = xMk

2 (so, we admit the existence of isolated vertices). Let ε ∈ E = (0, ε0] be a small parameter, such that
ε varies in a strictly decreasing sequence of positive numbers which converges to 0. We define the periodic graph
Fε := εF = {εx : x ∈ F}. Moreover, let �S = {(x1, x2) : x1 ∈ [0, 1), x2 = 0}, Ied = {Ij , j = 1, 2, . . . ,K} be
the set of all edges on �, and let M = {Mi , i = 1, 2, . . . , L} be the set of all vertices on � which belong to �S .
Let Ω be an open bounded domain in R

2 such that

Ω = {(x1, x2) : x1 ∈ Γ1, 0 < x2 < γ(x1)} , (2.1)

where Γ1 = (0, a), γ ∈ C1([0, a]), and 0 < γ0 = infx1∈[0,a] γ(x1). It is clear that in this case ∂Ω = Γ1∪Γ2, where
Γ2 = ∂Ω \ Γ1. We then define Ωε = Ω ∩ Fε.

Following Zhikov’s approach (see [34,35]) we describe the geometry of the set Ωε in terms of so-called singular
measures in R

2. To this end, for every segment Ii ∈ Ied, i = 1, 2, . . . ,K, we denote by μi its corresponding
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Lebesgue measure. Now we define the �-periodic Borel measure μ in R
2 as follows

μ =
K∑

i=1

gi · μi, (2.2)

where g1, g2, . . . , gK are non-negative weights such that
∫
�

dμ = 1. Thus the support of the measure μ is the

union of all edges Ii ∈ Ied. Since the homothetic contraction of the plane at ε−1 takes the grid F to Fε = εF ,
we introduce a “scaling” ε�-periodic measure με as follows

με(B) = ε2μ(ε−1B) for every Borel set B ⊂ R
2. (2.3)

As a result
∫
ε�

dμε = ε2
∫
�

dμ = ε2. Then the measure με weakly converges to the Lebesgue measure on R
2,

that is (see Zhikov [35])

lim
ε→0

∫
R2

ϕdμε =
∫
R2

ϕdx ∀ϕ ∈ C∞
0 (R2). (2.4)

Let μS be the �S-periodic measure in R
1 defined as

μS =
L∑

j=1

ρjδMj , (2.5)

where the nonnegative weights ρj satisfy
L∑

j=1

ρj = 1, and δMj are the Dirac measures located at the vertices Mj .

It is the easy to see that μS is the Radon measure,
∫

�S dμS = 1. So, we may then define the corresponding
scaling measure by

μS
ε (B) = εμS(ε−1B) for any Borel set B ⊂ R

1. (2.6)

Since
∫

ε�S

dμS
ε = ε, it follows that dμS

ε converges weakly to d	 as ε → 0, where by d	 is denoted the linear

Lebesgue measure in R
1.

3. Optimal control problems on ε-periodic graphs

In order to formulate an optimal control problem on Ωε = Ω ∩ εF , we introduce the Sobolev space
V (Ω,Γ2, dμ), where μ is the non-negative �-periodic Borel measure on R

2 (2.2). Let us denote by C∞(Ω,Γ2)
the class of smooth functions ϕ ∈ C∞(Ω) such that ϕ

∣∣
Γ2

= 0. Here Γ2 is the second “part” of the boundary
∂Ω = Γ1 ∪ Γ2. L2(Ω, dμε) and L2(Γ1, dμS

ε ) are defined as usual.

Definition 3.1. A function y(x) belongs to V (Ω,Γ2, dμ) if there exists a vector z ∈ (L2(Ω, dμ))2 and a sequence
{ym ∈ C∞(Ω,Γ2)}m∈N such that

lim
m→∞

∫
Ω

(ym − y)2 dμ = 0, lim
m→∞

∫
Ω

∣∣∇ym − z
∣∣2 dμ = 0. (3.1)

In this case we say that z is a gradient of y and denote it as ∇y, i.e. z = ∇y.
Note that every function y ∈ V (Ω,Γ2, dμ) may have many gradients z = ∇y. Moreover if we denote

by Γ(y) the set of gradients for a fixed function y ∈ V (Ω,Γ2, dμ) then this set has the following structure
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Γ(y) = ∇y + Γ(0) (see [8]), where ∇y ∈ L2(Ω, dμ)2 is some fixed gradient and Γ(0) is the set of gradients of
zero. That is by definition, g ∈ Γ(0) if there exists a sequence {ϕm ∈ C∞(Ω)} such that∫

Ω

ϕ2
m dμ −→ 0 as m→ ∞,

∫
Ω

∣∣∇ϕm − g
∣∣2 dμ −→ 0 as m→ ∞.

From this it follows immediately that Γ(y) is a closed subspace of L2(Ω, dμ)2. Let us recall also that any
gradient ∇y can be represented as a sum of two orthogonal terms: ∇y = ∇ty+ g, g ∈ Γ(0), ∇ty ⊥ Γ(0). Hence
(see [36]) the first term is also a gradient of y, and this gradient is minimal in the following sense:∫

Ω

|∇ty|2 dμ = min
∇y∈Γ(y)

∫
Ω

|∇y|2 dμ.

It is important to note that the space Γ(0) admits a pointwise description. Namely, there is a μ-measurable sub-
space T (x) ⊂ R

2 such that Γ(0) =
{
g ∈ L2(Ω, dμ)2 : g(x) ∈ T⊥(x)

}
. So, the “minimal” gradient is determined

by the tangential condition ∇y(x) ∈ T (x) μ-a.e.
The following result can be viewed as the necessary and sufficient conditions for the inclusion y ∈ V (Ω,Γ2, dμ),

where the measure μ is defined in (2.3).

Proposition 3.2. Let F be a �-periodic unbounded graph on R
2, let μ be the �-periodic Borel measure in R

2

defined by (2.3) and let y be any function of V (Ω,Γ2, dμ). Then:
(i) y

∣∣
Ii

∈ H1(Ii) for any edge Ii ∈ Ω ∩ F , where H1(Ii) is the one-dimensional Sobolev space on the
segment Ii;

(ii) the values of y
∣∣
Ii

coincide at the vertices of the graph.

This follows immediately from Lemma 3 in [8].
Notice, for y ∈ V (Ω,Γ2, dμ) its restriction on the set Ω ∩ F is continuous.
Let {Aε(x) : Aε(·) ∈ L∞(Ω,R2×2; dμε)}ε∈N be a family of matrices such that

α0 ‖ ξ ‖2≤ (Aε(x)ξ, ξ) ≤ α−1
0 ‖ ξ ‖2 for με-a.e. x ∈ Ω, (3.2)

where α0 > 0 is some constant which is independent of ε.
We define the optimal control problem on the ε-periodic graph-like domain Ωε = Ω ∩ εF as follows: seek

a “boundary” control h0
ε ∈ L2(Γ1, dμS

ε ), a “distributed” control u0
ε ∈ L2(Ω, dμε), and a corresponding state

y0
ε ∈ V (Ω,Γ2, dμε) such that a cost functional

Iε(yε, uε, hε) = k1

∫
Ω

(yε − zd)2 dμε + k2

∫
Ω

u2
ε dμε + k3

∫
Γ1

h2
ε dμS

ε (3.3)

is minimized subject to the following constraints

yε ∈ V (Ω,Γ2, dμε), uε ∈ L2(Ω, dμε), hε ∈ L2(Γ1, dμS
ε ), (3.4)∫

Ω

(Aε(x)∇yε,∇ϕ) dμε +
∫
Ω

αyε ϕ dμε =
∫
Ω

uε ϕ dμε +
∫
Γ1

hε ϕ dμS
ε ∀ϕ ∈ C∞(Ω,Γ2), (α > 0), (3.5)

|uε| ≤ cu με-a.e. in Ω, |hε| ≤ ch μS
ε -a.e. on Γ1. (3.6)

Here cu and ch are some positive constants, zd ∈ C0(Ω) is a given function, με and μS
ε are the “scaling”

measures defined by (2.3) and (2.6), respectively, and Aε(x) ∈ L(R2,R2) is a με-measurable symmetric matrix
satisfying the inequality (3.2), k1, k2, k3 > 0 are given constants. Note that by the vector-function ∇yε in (3.5)
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we mean only that ∇yε ∈ Γ(yε) is some gradient of yε in the sense of Definition 3.1 and ∇yε satisfies with yε

the integral identity (3.5).
We emphasize also that the notion “boundary” and “distributed” controls should be understood with respect

to the corresponding measures and the integral identity (3.5). For example, the inclusion h ∈ L2(Γ1, dμS
ε ) implies

that this function is uniquely defined by the respective set of values at the points Kε = Γ1 ∩ (∪n∈Z(εM+ nε)).
Here M = {Mi, i = 1, 2, . . . , L} is the set of all vertices on � which belong to �S. Note that by definition of
the μS we have μS

ε (Γ1\Kε) = 0.
First of all we show that for every uε ∈ L2(Ω, dμε), hε ∈ L2(Γ1, dμS

ε ), and ε ∈ E there exists a unique pair
(yε,∇yε) that satisfies identity (3.5).

Lemma 3.3. Under the standing assumption on the measures μ and μS and the matrix Aε there exists a unique
yε ∈ V (Ω,Γ2, dμε) and a unique gradient ∇yε ∈ Γ(yε) satisfying (3.5).

Proof. Since the set C∞(Ω,Γ2) is dense in the class V (Ω,Γ2, dμε), the left-hand side of (3.5) induces a new
scalar product on L2(Ω, dμε)×L2(Ω, dμε)2, and the corresponding norm is equivalent to the usual norm in this
space. Thus the existence and uniqueness of the solution regarded as the pair (yε,∇yε) is an easy consequence
of the Lax-Milgram lemma. However, the uniqueness is twofold here: there exists a unique function yε of the
Sobolev space V (Ω,Γ2, dμε) such that only one of its gradients satisfies the identity (3.5). The uniqueness and
existence of such gradient was proved in [35]. It is interesting to note that the gradient ∇yε in this identity is
defined only by matrix Aε alone and it is not related to the equation itself (for details we refer to Zhikov [35]). �
Remark 3.4. It is easy to see that the solution of (3.5) satisfies the following estimate

‖ yε ‖L2(Ω, dμε) + ‖ ∇yε ‖(L2(Ω, dμε))2≤ α−1
(‖ uε ‖L2(Ω, dμε) + ‖ hε ‖L2(Γ1, dμS

ε )

)
(3.7)

for every ε ∈ E, uε ∈ L2(Ω, dμε) and hε ∈ L2(Γ1, dμS
ε ), where the constant α is independent of ε. Indeed, if

we take ϕ = yε as test function in (3.5) and use the Young’s inequality, we immediately obtain the required
relation (3.7).

Definition 3.5. The triplet (y, u, h) ∈ Zε(Ω,Γ1) is called admissible if (y, u, h) satisfies the restrictions (3.4)–
(3.6). We denote by Ξε the set of all admissible triplets for the optimal control problem (3.3)–(3.6).

Remark 3.6. In view of (3.6) and estimate (3.7) we see that the sequence of sets {Ξε}ε∈E is uniformly bounded
in the following sense: there is a constant C > 0 such that

sup
ε∈E

sup
(yε,uε,hε)∈Ξε

[‖ yε ‖L2(Ω, dμε) + ‖ uε ‖L2(Ω, dμε) + ‖ hε ‖L2(Γ1, dμS
ε ) + ‖ ∇yε ‖(L2(Ω, dμε))2

] ≤ C. (3.8)

Moreover, each of the sets Ξε is convex and closed with respect to the weak convergence in the space L2(Ω, dμε)×
L2(Ω, dμε) × L2(Γ1, dμS

ε ). Indeed, let {un}n∈N ⊂ L2(Ω, dμε) and {hn}n∈N ⊂ L2(Γ1, dμS
ε ) be any bounded

sequences such that

un → u weakly in L2(Ω, dμε), hn → h weakly in L2(Γ1, dμS
ε ). (3.9)

We define the sequence {yn ∈ H1(Ω, dμε)} as the corresponding solutions of the problem (3.5) under u = un

and h = hn. Then by inequality (3.7) there exists a constant C > 0 such that

‖ yn ‖L2(Ω, dμε)≤ C, ‖ ∇yn ‖(L2(Ω, dμε))2≤ C,

where for every n ∈ N ∇yn is a unique gradient of yn satisfying the integral identity (3.5) under suitable un

and hn.
Hence we may always assume that there is a function y ∈ L2(Ω, dμε) and a vector p ∈ L2(Ω, dμε)2 such that

yn → y weakly in L2(Ω, dμε), ∇yn → p weakly in L2(Ω, dμε)2. (3.10)



HOMOGENIZATION OF PERIODIC NETWORKS 477

Therefore, using (3.9)–(3.10) we can pass to the limit as n→ ∞ in∫
Ω

[(Aε∇yn,∇ϕ) + αynϕ] dμε =
∫
Ω

unϕ dμε +
∫
Ω

hnϕ dμS
ε

and obtain ∫
Ω

[(Aεp,∇ϕ) + αyϕ] dμε =
∫
Ω

uϕ dμε +
∫
Γ1

hϕ dμS
ε ∀ ϕ ∈ C∞(Ω,Γ2).

This proves that p ∈ Γε(y), i.e. p = ∇y is some gradient of the function y ∈ H1(Ω, dμε). As a result, we have
obtained that for every ε ∈ E the set Ξε is sequentially closed with respect to the weak convergence.

We thus obtain the following:

Lemma 3.7. For every ε ∈ E the optimal control problem (3.3)–(3.6) has a unique solution, i.e. there exists a
unique triplet (y0

ε , u
0
ε, h

0
ε) ∈ Ξε such that

Iε(y0
ε , u

0
ε, h

0
ε) = inf

(yε,uε,hε)∈Ξε

Iε(yε, uε, hε).

Note that the uniqueness of this solution is a consequence of the convexity property for Ξε and strictly
convexity of the cost functional Iε.

At was mentioned in Introduction, the main question of our paper is devoted to the study of the asymptotic
behavior of the optimal control problem (3.3)–(3.6) as ε → 0. To this end we represent this problem for ε ∈ E
in the form of a sequence of constrained minimization problems{〈

inf
(yε,uε,hε)∈Ξε

Iε(yε, uε, hε)
〉
; ε→ 0

}
(3.11)

where the cost functional Iε : Ξε → R and the sets of admissible triplets are defined in (3.3) and (3.4)–(3.6),
respectively. Then the definition of an appropriate homogenized optimal control problem to the family (3.3)–
(3.6) as ε→ 0 can be reduced to the analysis of the limit properties of the sequences (3.11). This will be done
through the concept of variational convergence of constrained minimization problems [17,19].

Definition 3.8. We say that the optimal control problem (3.3)–(3.6) has a homogenized limit problem as ε
tends to zero, if:

(i) for the sequence of the corresponding constrained minimization problems (3.11) there exists a variational
limit as ε→ 0, i.e.〈

inf
(yε,uε,hε)∈Ξε

Iε(yε, uε, hε)
〉 −→ 〈

inf
(y,u,h)∈Ξ0

I0(y, u, h)
〉

as ε→ 0; (3.12)

(ii) the minimization problem (3.12) can be recovered in the form of some optimal control problem.

The sense in which this convergence holds is going to be developed in Definition 5.5. Before we embark on
the development of the necessary formalism for such convergence, we note that it will have to preserve the main
variational property: both the optimal triplet and minimal value of the cost functional for the problem (3.11)
converge to the corresponding characteristics of a limit minimization problem as ε tends to zero.

4. Convergence in spaces on ε-periodic graphs

We begin this section with brief description of the main results concerning the convergence in the variable
L2-spaces following the papers [34,35]. We also introduce some additional spaces associated with boundary
optimal control problems on ε-periodic graphs.
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Assuming the boundedness of the sequence {hε ∈ L2(Γ1, dμS
ε )}, i.e., lim sup

ε→0

∫
Γ1

h2
ε dμS

ε <∞, we say that:

(1) hε ⇀ h ∈ L2(Γ1) weakly in L2(Γ1, dμS
ε ), if lim

ε→0

∫
Γ1

ϕhε dμS
ε =

∫
Γ1

ϕh dl for every ϕ ∈ C∞
0 (Γ1);

(2) hε → h ∈ L2(Γ1) strongly in L2(Γ1, dμS
ε ), if lim

ε→0

∫
Γ1

hεpε dμS
ε =

∫
Γ1

hp dl for any {pε ∈ L2(Γ1, dμS
ε )} such

that pε ⇀ p in L2(Γ1, dμS
ε ).

We now give the main properties of convergence in variable space following Zhikov [35].

Proposition 4.1. (a) Compactness criterium: Every bounded sequence {hε ∈ L2(Γ1, dμS
ε )} is relatively compact

with respect to the weak convergence in L2(Γ1, dμS
ε ).

(b) Property of lower semicontinuity: If hε ⇀ h, then lim inf
ε→0

∫
Γ1

h2
ε dμS

ε ≥
∫
Γ1

h2 dl.

(c) Criterium of strong convergence: The weak convergence of hε ⇀ h and the relation

lim
ε→0

∫
Γ1

h2
ε dμS

ε =
∫
Γ1

h2 dl (4.1)

imply the strong convergence of hε → h in L2(Γ1, dμS
ε ).

Now we define two-scale convergence in L2(Γ1, dμS
ε ). Note that the main results concerning the extension

of the well known method of two-scale convergence was independently obtained in [35] and [3]. We give the
definition and main properties of two-scale limits with respect to the ‘scaling’ measure μS

ε . This measure, as
follows from Section 2, is singular with respect to the με and associated with a “boundary condition” on the set
∂(Ω ∩ Fε). Let {hε ∈ L2(Γ1, dμS

ε )} be a bounded sequence in L2(Γ1, dμS
ε ). We say that this sequence weakly

two-scale converges to a function h ∈ L2(Γ1,�S), where h = h(l, ξ), L2(Γ1,�S) = L2(Γ1 × �S , dl × dμS) if

lim
ε→0

∫
Γ1

Ψ(l, ε−1l)hε(l) dμS
ε =

∫
Γ1

∫
�S

Ψ(l, ξ)h(l, ξ) dl dμS(ξ)

for every Ψ(l, ξ) = a(l)η(ξ) such that a ∈ C0(Γ1) and η ∈ L2
per(�S) (in this case, we write hε

2
⇀ h). Note that

at the heart of this concept there is the following mean value property of periodic functions.

Proposition 4.2. Assume that η is any μS-measurable �S-periodic function on R
1. Then for any a ∈ C∞

0 (R1)
the following equality holds true:

lim
ε→0

∫
Γ1

a(l)η(ε−1l) dμS
ε =

〈
η
〉S ·

∫
Γ1

a(l) dl,

where 〈η〉S =
∫

�S

η(ξ) dμS(ξ) is the mean value of η on the cell �S.

We say that a sequence {hε ∈ L2(Γ1, dμS
ε )} strongly two-scale converges to a function h = h(l, ξ) ∈

L2(Γ1,�S) if

lim
ε→0

∫
Γ1

hε(x)vε(x) dμS
ε =

∫
Γ1

∫
�S

h(l, ξ)v(l, ξ) dx dμS(ξ)

for any vε
2
⇀ v(l, ξ). In this case, we write hε

2→ h(l, ξ).



HOMOGENIZATION OF PERIODIC NETWORKS 479

Let us list some general properties of two-scale-convergence which we apply below.
(i) If a sequence is bounded in L2(Γ1, dμS

ε ), then it contains a weakly two-scale convergent subsequence.

(ii) If hε
2
⇀ h ∈ L2(Γ1,�S), then lim inf

ε→0

∫
Γ1

h2
ε dμS

ε ≥
∫
Γ1

∫
�S

h2(l, ξ) dl dμS(ξ).

(iii) If hε
2
⇀ h(l, ξ), then hε ⇀

∫
�S

h(l, ξ) dμS(ξ).

(iv) hε
2→ h(l, ξ) ⇔ hε

2
⇀ h and lim

ε→0

∫
Γ1

h2
ε dμS

ε =
∫
Γ1

∫
�S

h2(l, ξ) dl dμS(ξ).

(v) If hε → h(l) strongly in L2(Γ1,�S), and lim
ε→0

∫
Γ1

h2
ε dμS

ε =
∫
Γ1

h2(l) dl, then hε
2→ h(l), that is, the

two-scale limit is independent of the second variable ξ. Note that the similar notions and results can
be applied to the space L2(Ω, dμε).

Now we define the sets of so-called potential and solenoidal vectors on the cell of periodicity � (or the torus).
Let C∞

per = C∞
per(�) be the space of infinitely differentiable periodic functions, let L2

per(�, dμ)2 be the space of
μ-measurable periodic functions f = [f1, f2] such that

∫
Ω

(f2
1 (x)+ f2

2 (x)) dμ <∞. We say that a vector-function

g belongs to the space Vpot of potential vectors if there exists a sequence {ϕm ∈ C∞
per} such that

∇ϕm → g in L2
per(�, dμ)2, i.e.

∫
�

∣∣∇ϕm − g
∣∣2 dμ→ 0 as m→ ∞.

We also say that a vector-function b belongs to the space Vsol of solenoidal vectors if b is orthogonal to all
potential vectors, i.e.

∫
�

(b, g)R2 dμ = 0 for every g ∈ Vpot. In view of this we always have the decomposition

L2(�, dμ)2 = Vpot ⊕ Vsol. (4.2)

Let us denote by L2(Ω,�) the following space L2(Ω × �, dx × dμ), i.e. y(x, z) ∈ L2(Ω; �) if y is dx × dμ-
measurable on Ω × � and

∫
Ω

∫
�
y2(x, z) dx dμ(z) <∞. Then from (4.2) we immediately have that

L2(Ω,�)2 ≡ L2
(
Ω,L2(�)2

)
= L2(Ω, Vpot) ⊕ L2(Ω, Vsol). (4.3)

Here by L2(Ω, Vpot) and L2(Ω, Vsol) we may understand the following spaces:
(i) L2(Ω, Vpot) is the closure in L2(Ω,�) of the linear span of the vectors f(x)∇zϕ(z), where f ∈ C∞

0 (Ω)
and ϕ ∈ C∞

per;
(ii) L2(Ω, Vsol) is the closure in L2(Ω,�) of the linear span of the vectors f(x)b(z), where f ∈ C∞

0 (Ω) and
b ∈ Vsol.

Let us recall some properties of the �-periodic Borel measure μ introduced above (see [35]).

Theorem 4.3. Let μ be the non-negative periodic Borel measure in R
2 which is defined in (2.3). Then μ is

non-degenerate and ergodic, i.e.
(i) Non-degenerateness property: For every vector η ∈ R

2 there exists a vector b ∈ Vpot such that∫
�
b(z) dμ = η.

(ii) Ergodicity property: Every function y ∈ H1(�, dμ) with gradient zero is constant μ-everywhere.

Remark 4.4. The validity of this theorem can be illustrated by the following observation. In view of (2.3) we
have μ(Ω\F) = 0. Therefore any functions taking the same values on the graph Ω ∩ F coincide as elements
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of L2(Ω, dμ). Thus every element of the space H1(Ω, dμ) is uniquely defined by the respective element of the
space ∪H1(Ij), where {Ij} is the set of all edges on the graph Ω ∩ F .

Let {(yε, uε, hε) ∈ Ξε}ε∈E be any sequence of admissible triplets. For every fixed ε each of these triplets
(yε, uε, hε) belongs to the corresponding functional space Zε(Ω,Γ1) ≡ V (Ω,Γ2, dμε)×L2(Ω, dμε)×L2(Γ1, dμS

ε )
depending on the small parameter ε. So, we focus our attention further on the convergence formalism in this
variable space.

Definition 4.5. We say that the sequence of triplets {(yε, uε, hε)}ε∈E is weakly convergent in the variable
space Zε(Ω,Γ1), or shortly, is w-convergent, if there are functions

y ∈ H1(Ω), u ∈ L2(Ω), h ∈ L2(Γ1), p ∈ L2(Ω,�)2,

and there exists a sequence of gradients {∇yε ∈ L2(Ω, dμε)2}ε∈E such that

uε ⇀ u in L2(Ω, dμε), hε ⇀ h in L2(Γ1, dμS
ε ), (4.4)

yε
2
⇀ y(x) in L2(Ω, dμε), ∇yε

2
⇀ p(x, z) in L2(Ω, dμε)2, p(x, y) −∇y(x) ∈ L2(Ω, Vpot). (4.5)

Remark 4.6. Note that in Definition 4.5 a two-scale limit y has to be independent of the second variable z.
Moreover, as follows from (4.5) we do not conjecture that for the family of H1-functions {yε ∈ V (Ω,Γ2, dμε)}
there exists a sequence of gradients {∇yε}ε∈E such that ∇yε → ∇y μ-weakly or two-scale weakly.

As we will see later the conditions (4.4), (4.5) will be sufficient in order to identify the limit optimal control
problem on the graph. In the following theorem we establish sufficient conditions of the relative w-compactness
of uniformly bounded sequences.

Theorem 4.7. Let {(yε, uε, hε) ∈ Zε(Ω,Γ1)}ε∈E be a sequence for which the following conditions hold:
(i) there exists a constant C > 0 such that

sup
ε

{‖ yε ‖L2(Ω, dμε), ‖ uε ‖L2(Ω, dμε), ‖ hε ‖L2(Ω, dμS
ε )

} ≤ C; (4.6)

(ii) there exists a bounded sequence of gradients {∇yε ∈ L2(Ω, dμε)2}, i.e. lim sup
ε→0

∫
Ω

|∇yε|2 dμε < +∞.

Then the sequence {(yε, uε, hε)}ε∈E is relatively compact with respect to the w-convergence.

Proof. First of all we note that in view of the properties of the weak (two-scale) convergence in the variable
spaces, it may be supposed without loss of generality that

yε
2
⇀ y(x, z) ∈ L2(Ω,�), hε ⇀ h(l) =

∫
�S

h(l, ξ) dμS(ξ) in L2(Γ1, dμS
ε ),

∇yε
2
⇀ p (x, z) ∈ L2(Ω,�), uε ⇀ u(x) =

∫
�
u(x, z) dμ(z) in L2(Ω, dμε).

⎫⎪⎬⎪⎭ (4.7)

Let b ∈ L2(�, dμ)2 be a vector-valued function for which there is an element a ∈ L2(�, dμ) such that

−
∫
�

a(z) ϕ(z) dμ =
∫
�

(b(z),∇ϕ(z)) dμ ∀ ϕ ∈ C∞
per(�). (4.8)

Then taking ϕ ∈ C∞
0 (Ω) as a test function and using the equality ∇(ϕyε) = ϕ∇yε + yε∇ϕ, we have

ε

∫
Ω

(∇yε(x)ϕ(x), b(ε−1x)
)

dμε = ε

∫
Ω

(∇(ϕyε), b(ε−1x)
)

dμε − ε

∫
Ω

yε(x)
(∇ϕ(x), b(ε−1x)

)
dμε, (4.9)
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and

−
∫
Ω

a(ε−1x)ϕ(x) dμε = ε

∫
Ω

(b(ε−1x),∇ϕ) dμε. (4.10)

Therefore, applying (4.10) to (4.9) we obtain

ε

∫
Ω

ϕ(x)
(∇yε(x), b(ε−1x)

)
dμε = −

∫
Ω

a(ε−1x)yε(x)ϕ(x) dμε − ε

∫
Ω

yε(x)
(∇ϕ(x), b(ε−1x)

)
dμε. (4.11)

Taking (4.7) and supposition (ii) into account one gets

lim
ε→0

ε· ‖ ∇yε ‖(L2(Ω, dμε))2= 0, lim
ε→0

ε

∫
Ω

ϕ(x)
(∇yε(x), b(ε−1x)

)
dμε = 0,

and by definition of the weak two-scale convergence we have lim
ε→0

ε

∫
Ω

yε(x)
(∇ϕ(x), b(ε−1x)

)
dμε = 0. Therefore,

passing to the limit in (4.11), we conclude

lim
ε→0

∫
Ω

a(ε−1x)yε(x)ϕ dμε =
∫
Ω

∫
�

a(z)y(x, z) dμ(z)ϕ(x) dx = 0. (4.12)

Due to the approximation Lemma [36] and the ergodicity property of the measure μ (see Thm. 4.3) the set
of all functions a ∈ L2(�, dμ) satisfying condition (4.8), where b are vectors from (L2(�, dμ))2, is dense in
the subspace of functions in L2(�, dμ) with mean value zero. Thus, from (4.12) we immediately conclude that
y(x, z) = y(x), i.e. the weak two-scale limit y(x, z) in (4.7) is independent of z.

Let us show now that condition (4.5) is satisfied. For this we consider the equality (4.9) with any vector
b ∈ Vsol, i.e. b ⊥ Vpot. This yields∫

Ω

ϕ(x)
(∇yε(x), b(ε−1x)

)
dμε = −

∫
Ω

yε(x)
(∇ϕ, b(ε−1x)

)
dμε ∀ϕ ∈ C∞

0 (Ω). (4.13)

Then passing in (4.13) to the limit (in the sense of two-scale convergence) and using (4.7), we obtain∫
Ω

[∫
�

(
p(x, y), b(z)

)
dμ(z)

]
ϕ(x) dx = −

∫
Ω

(
y(x)

∫
�
b(z) dμ(z),∇ϕ(x)

)
dx. (4.14)

Note that since p ∈ L2(Ω,�), it follows that the function v(x) =
∫
�

(p(x, z), b(z)) dμ(x) belongs to L2(Ω).

Let us set Θ(x) = y(x)
∫
�

b(z) dμ(z). Then rewriting (4.14) in the form
∫
Ω

v · ϕ dx = −
∫
Ω

(Θ,∇ϕ) dx and

integrating by parts the expression on the right-hand side, we conclude that v(x) =

⎛⎝∇y(x),
∫
�

b(z) dμ(z)

⎞⎠.

Now we may use the non-degeneracy property of measure μ (Thm. 4.3). As a result, for η =
∫
�

b(z) dμ(z) can be
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fined a vector q ∈ Vpot (Vpot ⊂ L2(�)) such that η =
∫
�

q(z) dμ(z). Therefore v(x) =

⎛⎝∇y(x),
∫
�

q(z) dμ(z)

⎞⎠
and we can give the following conclusion: since (∇y,

∫
�

q dμ) ∈ L2(Ω) in the sense of distributions and q ∈ Vpot,

it follows that ∇y ∈ L2(Ω)2 in the sense of distribution as well. Hence

y ∈ L2(Ω),∇y ∈ L2(Ω)2 ⇒ y ∈ H1(Ω).

In view of this, equation (4.14) can be rewritten in the form

∫
Ω

⎛⎝∫
�

(p(x, z), b(z)) dμ(z)

⎞⎠ϕ(x) dx =
∫
Ω

⎛⎝∇y,
∫
�

b(z) dμ(z)

⎞⎠ϕ(x) dx,

i.e. ∫
Ω

∫
�

(p(x, z) −∇y(x), b(z)) dμ(z)ϕ(x) dx = 0 for every ϕ ∈ C∞
0 (Ω), b ∈ Vsol.

Since the linear span of the vector-valued functions ϕ(x)b(z) is dense in L2(Ω, Vsol) and the orthogonal
decomposition (4.3) holds, it leads that to the inclusion p(x, z) − ∇y(x) ∈ L2(Ω, Vpot). This concludes the
proof. �

5. Variational convergence of constrained minimization problems
on varying graphs

The main object in this section is the following sequence of constrained minimization problems{〈
inf

(y,u,h)∈Ξε

Iε(y, u, h)
〉
, ε→ 0

}
, where Iε : Ξε → R, Ξε ⊂ Zε(Ω,Γ1) ∀ ε ∈ E. (5.1)

Definition 5.1. We say that the space L2(Ω) possesses the weak approximation property with respect to the
family of Borel measures {με}ε∈E , if for every δ > 0 and every u ∈ L2(Ω) there exist an element u∗ ∈ L2(Ω)
and a sequence

{
uε ∈ L2(Ω, dμε)

}
ε∈E

such that

‖u− u∗‖L2(Ω) ≤ δ and uε ⇀ u∗ in L2(Ω, dμε). (5.2)

In this case the sequence
{
uε ∈ L2(Ω, dμε)

}
ε∈E

is called δ-realizing.

Obviously, we have the analogous notion of the weak approximation property for the space L2(Γ1) with
respect to the family of Borel measures

{
μS

ε

}
.

Lemma 5.2. The weak approximation property for the L2(Ω) with respect to the family of Borel measures
{με}ε∈E holds true.

Proof. Let u be any element of L2(Ω). Since the inclusion C∞
0 (R2) ⊂ L2(Ω) is dense with respect to the

strong topology for L2(Ω), it follows that for a given value δ > 0 there is an element u∗ ∈ C∞
0 (R2) such that

‖u− u∗‖L2(Ω) ≤ δ. Let us construct the δ-realizing sequence as follows: uε = u∗ for every ε > 0. Then due to
the weak convergence of the measures dμε ⇀ dx we have

lim
ε→0

∫
Ω

uε ϕψ dμε =
∫

Ω

u∗ ϕψ dx ∀ϕ ∈ C0
0(Ω), lim

ε→0

∫
Ω

(uε)2 dμε =
∫

Ω

(u∗)2 dx. (5.3)
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Hence, by the criterium of strong convergence in L2(Ω, dμε), we obtain uε → u∗ in L2(Γ1, dμS
ε ). �

An analogous result holds for the space L2(Γ1).

Definition 5.3. We say that a set Ξ0 ⊂ Y0 = H1(Ω) × L2(Ω) × L2(Γ1) is the sequential two-scale limit, or
K-limit, of the sequence

{Ξε ⊂ Zε(Ω,Γ1) ≡ V (Ω,Γ2, dμε) × L2(Ω, dμε) × L2(Γ1, dμS
ε )}ε∈E (5.4)

if the following conditions are satisfied:
(i) for every triplet (y, u, h) ∈ Ξ0 and any value δ > 0 there exist a constant ε0 ∈ E and a δ-realizing

sequence {(yε, uε, hε)}ε∈E such that

(yε, uε, hε) ∈ Ξε ∀ ε ≤ ε0, (yε, uε, hε)
w−→ (ŷ, û, ĥ), ‖(y, u, h)− (ŷ, û, ĥ)‖Y0 ≤ δ;

(ii) if {Ξεk
} is a subsequence of {Ξε}ε∈E and {(yk, uk, hk)} is a sequence w-converging to (y, u, h) such that

(yk, uk, hk) ∈ Ξεk
for every k ∈ N, then (y, u, h) ∈ Ξ0.

Remark 5.4. Note also that if dμε = dx, δ = 0, and dμS
ε = dl in (5.4) then the notion of the K-limit set

coincides with the well-known notion of the sequential topological limit in the sense of Kuratowski with respect
to the product of weak topologies in H1(Ω), L2(Ω), and L2(Γ1), respectively (see [12]).

Definition 5.5. We say that a minimization problem〈
inf

(y,u,h)∈Ξ0

I0(y, u, h)
〉

(5.5)

is the variational limit of the sequence (5.1) with respect to the w-convergence if the following conditions are
satisfied:

(i) Ξ0 ⊂ Y0 is a non-empty K-limit of the sets {Ξε}ε∈E ;
(ii) for every triplet (y, u, h) ∈ Ξ0 and for every sequence {(yk, uk, hk)}k∈N w-converging to (y, u, h) such

that (yk, uk, hk) ∈ Ξεk
, where εk → 0 as k → ∞, it is

I0(y, u, h) ≤ lim inf
k→∞

Iεk
(yk, uk, hk); (5.6)

(iii) for every triplet (y, u, h) ∈ Ξ0 and any δ > 0 there are a constant ε0 ∈ E and a δ-realizing sequence
{(yε, uε, hε)}ε∈E such that

(yε, uε, hε) ∈ Ξε ∀ ε ≤ ε0, (yε, uε, hε)
w−→ (ŷ, û, ĥ), ‖(y, u, h)− (ŷ, û, ĥ)‖Y0 ≤ δ,

I 0(y, u, h) ≥ lim sup
ε→0

Iε(yε, uε, hε) − Ĉδ (5.7)

with some constant Ĉ > 0 independent of δ.

Remark 5.6. Note that this definition can be interpreted as the natural extension of the well-known notion
of sequential Γ-convergence. We do not want to dwell on details of Γ-convergence theory, but we do want to
emphasize that the weak variational limit in the sense of Definition 5.5 possesses the fine variational properties
that are similar to that of Γ-limit.

Theorem 5.7. Assume that the constrained minimization problem (5.5) is the variational limit of the se-
quence (5.1) in the sense of Definition 5.3 and this problem has a unique solution (y0, u0, h0). For every



484 P.I. KOGUT AND G. LEUGERING

ε ∈ E, let (y0
ε , u

0
ε, h

0
ε) ∈ Ξε be an optimal solution of the corresponding problem (3.3)–(3.6). If the sequence

{(y0
ε , u

0
ε, h

0
ε)}ε∈E is relatively w-compact then

(y0
ε , u

0
ε, h

0
ε)

w−→ (y0, u0, h0), (5.8)

inf
(y,u,h)∈Ξ0

I0(y, u, h) = I0
(
y0, u0, h0

)
= lim

ε→0
Iε(y0

ε , u
0
ε, h

0
ε) = lim

ε→0
inf

(yε,uε,hε)∈Ξε

Iε(yε, uε, hε). (5.9)

Proof. Let {(y0
εk
, u0

εk
, h0

εk
)}k∈N be a subsequence of the sequence of minimizers w-converging to some triplet

(y∗, u∗, h∗). Then by Definition 5.3, we have (y∗, u∗, h∗) ∈ Ξ0. Moreover, due to the properties (ii) of Defini-
tion 5.5, one gets

lim inf
k→∞

min
(y,u,h)∈Ξεk

Iεk
(y, u, h) = lim inf

k→∞
Iεk

(y0
εk
, u0

εk
, h0

εk
) ≥ I0(y∗, u∗, h∗) ≥ min

(y,u,h)∈Ξ0

I0(y, u, h). (5.10)

Let (y0, u0, h0) ∈ Ξ0 be an optimal solution of the limit problem (5.5). Let us fix a value δ > 0. Then, by
property (ii) of Definition 5.5 there exist a δ-realizing sequence

{
(ŷε, ûε, ĥε) ∈ Ξε

}
ε→0

such that

(ŷε, ûε, ĥε)
w→ (ŷ, û, ĥ), ‖(y0, u0, h0) − (ŷ, û, ĥ)‖Y0 ≤ δ, and I0(y0, u0, h0) ≥ lim sup

ε→0
Iε(ŷε, ûε, ĥε) − Ĉδ.

Using this fact we have

min
(y,u,h)∈Ξ0

I0(y, u, h) + Ĉδ = I0(y0, u0, h0) + Ĉδ ≥ lim sup
ε→0

Iε(ŷε, ûε, ĥε) ≥ lim sup
ε→0

min
(y,u,h)∈Ξε

Iε(y, u, h)

≥ lim sup
k→∞

min
(y,u,h)∈Ξεk

Iεk
(y, u, h) = lim sup

k→∞
Iεk

(y0
εk
, u0

εk
, h0

εk
). (5.11)

From this and (5.10) we deduce that

lim inf
k→∞

Iεk
(y0

εk
, u0

εk
, h0

εk
) ≥ lim sup

k→∞
Iεk

(y0
εk
, u0

εk
, h0

εk
) − Ĉδ.

Since this inequality holds true for any sufficiently small δ > 0 it follows that combining the above obtained
relations (5.10) and (5.11) we get

I0(y∗, u∗, h∗) = I0(y0, u0, h0) = min
(y,u,h)∈Ξ0

I0(y, u, h), I0(y0, u0, h0) = lim
k →∞

min
(y,u,h)∈Ξεk

Iεk
(y, u, h).

Using these relations and the fact that an optimal triplet for the problem (5.5) is unique, we obtain

(y∗, u∗, h∗) = (y0, u0, h0).

Since this equality holds for the w-limits of all subsequences of
{
(y0

ε , u
0
ε, h

0
ε)
}

ε∈E
, it follows that these limits are

coincident and therefore (y0, u0, h0) is the w-limit of the whole sequence
{
(y0

ε , u
0
ε, h

0
ε)
}

ε∈E
. Hence, making for

the sequence of minimizers what we did before with a subsequence
{
(y0

εk
, u0

εk
, h0

εk
)
}

k∈ N
, we have

lim inf
ε→0

min
(y,u,h)∈Ξε

Iε(y, u, h) = lim inf
ε→0

Iε(y0
ε , u

0
ε, h

0
ε) ≥ I0(y0, u0, h0) = min

(y,u,h)∈Ξ0

I0(y, u, h)

≥ lim sup
ε→0

Iε(ŷε, ûε, ĥε) − δ ≥ lim sup
ε→0

min
(y,u,h)∈Ξε

Iε(y, u, h)− Ĉδ = lim sup
ε→0

Iε(y0
ε , u

0
ε, h

0
ε) − Ĉδ ∀ δ > 0.

Thus we have obtained the required conclusion. This proof is complete. �
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6. Homogenization of the optimal control problems on ε periodic graphs

We begin with the so-called “convergence property of gradients of arbitrary solutions”. This property can be
viewed as a natural requirement on the homogenized matrix to the family of matrix Aε in (3.5). Let {Aε(x) ∈
L(R2,R2)}ε∈N be a family of square με-measurable matrices satisfying the inequality (3.2) for every ε ∈ E.

Definition 6.1. (convergence of gradients of arbitrary solutions). We say that a matrix Ahom(x) ∈ L(R2,R2)
is the homogenized matrix with respect to the family {Aε(x)} as ε tends to zero, if:

(a) Ahom ∈ [L∞(Ω)]2×2, Ahom(x) is coercive;
(b) Aε∇yε ⇀ Ahom∇y0 in L2(Ω, dμε)2 for every sequence {(yε, uε, hε) ∈ Zε(Ω,Γ1)}ε∈E such that (yε,∇yε)

satisfy the relation (3.5), and (yε, uε, hε)
w→ (y0, u0, h0).

In order to find a homogenized problem to the family (3.3)–(3.6) we introduce two auxiliary sets

Graph(Pε) =

{
(y, u, h) ∈ Zε(Ω,Γ1) :

∫
Ω

[(Aε(x)∇y,∇ϕ) + αyϕ] dμε =
∫
Ω

uϕ dμε +
∫
Γ1

hϕ dμS
ε , ∀ ϕ ∈ C∞(Ω,Γ2)

}
, (6.1)

Graph(Phom) =

{
(y, u, h) ∈ Z0(Ω,Γ1) ≡ H1(Ω,Γ2) × L2(Ω) × L2(Γ1) :

∫
Ω

[
(Ahom∇y,∇ϕ) + αyϕ

]
dx =

∫
Ω

uϕ dx+
∫
Γ1

hϕ dl, ∀ C∞(Ω,Γ2)

}

and make use the following lemmas.

Lemma 6.2. Assume that for the family {Aε ∈ L(R2,R2)} there exists a homogenized matrix in the sense of
Definition 6.1. Then the sequence of sets {Ξε}ε∈E is K-convergent to the set Ξ0, where

Ξ0 =

{
(y, u, h) ∈ Z0(Ω,Γ1) : |u| ≤ cu a.e. in Ω, |h| ≤ ch a.e. on Γ1,

∫
Ω

[
(Ahom∇y,∇ϕ) + αyϕ

]
dx =

∫
Ω

uϕ dx+
∫
Γ1

hϕ dl, ∀ C∞(Ω,Γ2)

}
. (6.2)

Proof. Let (y0, u0, h0) be any triplet of Ξ0, and let us fix a value δ > 0. Since the space of smooth functions
C∞(Ω) is dense in L2(Ω), it follows that for a given value δ > 0 there is an element u∗ ∈ C∞

0 (R2) such that:
‖u0 − u∗‖L2(Ω) ≤ δ and |u∗| ≤ cu in Ω. Let us construct a δ-realizing sequence as follows: uε = u∗ for every
ε > 0. Then due to the weak convergence of the measures dμε ⇀ dx, we have∫

Ω

ϕuε dμε →
∫
Ω

ϕu∗ dx for every ϕ ∈ C∞
0 (R2),

i.e. {uε} is a δ-realizing sequence of admissible controls for u0. By analogy, we may choose the sequence
{hε ∈ C∞(Γ1)} such that

hε = h∗ ∀ ε, |hε| ≤ ch μ
S-a.e. on Γ1, hε ∈ L2(Γ1, dμε), hε ⇀ h∗ in L2(Γ1, dμS

ε ),



486 P.I. KOGUT AND G. LEUGERING

where ‖h0 − h∗‖L2(Γ1) ≤ δ and |h∗| ≤ ch on Γ1.
Let {yε ∈ V (Ω,Γ2, dμε)} be the sequence of solution of the boundary value problem (3.4)–(3.5) under the

corresponding control functions u = uε and h = hε. Using the estimate (3.7) we find that

‖ yε ‖L2(Ω, dμε)≤ 2α−1C , ‖ ∇yε ‖(L2(Ω, dμε))2≤ 2α−1C.

Then, thanks to Remark 3.4 and Theorem 4.7 we may always suppose that the sequence of the triplets
{(yε, uε, hε) ∈ Ξε}ε∈E is w-convergent. Let (y∗, u∗, h∗) be its w-limit. Our aim is to prove that (y∗, u∗, h∗) ∈
Graph(Phom). In view of our assumptions and Definition 6.1, we have

uε ⇀ u∗ in L2(Ω, dμε), hε ⇀ h∗ in L2(Γ1, dμS
ε ),

yε
2
⇀ y∗(x), yε ⇀ y∗ in L2(Ω, dμε), Aε(·)∇yε ⇀ Ahom∇y∗ in L2(Ω, dμε)2.

Therefore, passing to the limit as ε→ 0 in the integral identity∫
Ω

[(Aε(x)∇yε,∇ϕ) + αyεϕ] dμε =
∫
Ω

uεϕ dμε +
∫
Γ1

hεϕ dμS
ε , ∀ ϕ ∈ C∞(Ω,Γ2)

we obtain ∫
Ω

[(
Ahom∇y∗,∇ϕ)+ αy∗ϕ

]
dx =

∫
Ω

u∗ϕ dx+
∫
Γ1

h∗ϕ dl, ∀ϕ ∈ C∞(Ω,Γ2). (6.3)

Hence, we have (y∗, u∗, h∗) ∈ Graph(Phom). In view of the coerciveness property of the homogenized ma-
trix Ahom we have the standard a priori estimate

‖y0 − y∗‖H1(Ω) ≤ C
[‖u0 − u∗‖L2(Ω) + ‖h0 − h∗‖L2(Γ1)

] ≤ 2δC.

Thus, ‖(y0, u0, h0)−(y∗, u∗, h∗)‖Y0 ≤ 2 max{C, 1}δ, that is, {(yε, uε, hε) ∈ Ξε}ε∈E is a δ-realizing sequence with
the required properties. Thereby the following inclusion K − lim(Ξε) ⊇ Ξ0 is established.

In order to obtain the inverse inclusion we consider a w-convergent sequence {(yk, uk, hk)}k∈N with the
following properties:

(a) (yk, uk, hk) ∈ Ξεk
for every k ∈ N, where {εk} is some subsequence of indices converging to zero as k

tends to ∞;
(b) (yk, uk, hk) → (y∗, u∗, h∗) in the w-sense.

Then proceeding as in the previous part of this lemma we can show that

∇yk
2
⇀ ∇y∗ + v(x, z), v ∈ L2(Ω, Vpot), Aεk

(·)∇yk → Ahom∇y∗ in L2(Ω, dμε)2.

Therefore, passing to the limit in the integral identity∫
Ω

[(Aεk
(x)∇yk,∇ϕ) + αykϕ] dμεk

=
∫
Ω

ukϕ dμεk
+
∫
Γ1

hkϕ dμS
εk

∀ϕ ∈ C∞(Ω,Γ2),

it leads us to the relation (6.3). Hence

(y∗, u∗, h∗) ∈ Graph(Phom). (6.4)

Hence it remains to show that the limit control functions u∗ ∈ L2(Ω) and h∗ ∈ L2(Γ1) satisfy the corresponding
constraints

|u∗| ≤ cu a.e. in Ω, |h∗| ≤ ch a.e. on Γ1. (6.5)
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Indeed, for every k ∈ N and every positive function ϕ ∈ C∞(Ω,Γ2) we have⎧⎨⎩
∫
Ω

ϕ(cu − uk) dμεk
≥ 0 and

∫
Ω

ϕ(uk + cu) dμεk
≥ 0,∫

Γ1

ϕ(ch − hk) dμS
εk

≥ 0 and
∫
Γ1

ϕ(hk + ch) dμS
εk

≥ 0. (6.6)

Using the facts that dμε ⇀ dx and dμS
ε ⇀ dl, and passing the limit in (6.6) as k → ∞ one gets∫

Ω

ϕ(cu − u∗) dx ≥ 0 and
∫
Ω

ϕ(u∗ + cu) dx ≥ 0,∫
Γ1

ϕ(ch − h∗) dl ≥ 0 and
∫
Γ1

ϕ(h∗ + ch) dl ≥ 0.

⎫⎬⎭ (6.7)

Since ϕ in (6.7) is an arbitrary positive function if follows that the inequalities (6.5) hold true. In a result,
combining (6.4) and (6.5) we deduce: (y∗, u∗, h∗) ∈ Ξ0. Thus we have obtained the required inclusion K −
lim Ξε ⊆ Ξ0, that concludes the proof. �
Corollary 6.3. Suppose that the matrix Aε(x) is defined as Aε(x) = A(ε−1x), where A(z) is a �-periodic
μ-measurable matrix satisfying condition (3.2). Then the limiting matrix Ahom can be defined as

Ahomξ =
∫
�

A(z)
(
ξ + v0

)
dμ(z), (6.8)

where v0 ∈ Vpot is the solution of the following problem

min
v∈Vpot

∫
�

(ξ + v,A(ξ + v)) dμ =
∫
�

(ξ + v0, A(ξ + v0)) dμ. (6.9)

Proof. Let {(yε, uε, hε) ∈ Ξε}ε∈E be a w-convergent sequence, and let (y∗, u∗, h∗) be its w-limit. Then

∇yε
2
⇀ ∇y∗ + v(x, z), (6.10)

where v ∈ L2(Ω, Vpot). Emphasize that the gradients in (6.10) are uniquely defined (Lem. 3.3). For this we
consider the integral identity (3.5) with the test function ϕ(x) = εΨ(x)ω(ε−1x), where Ψ ∈ C∞(Ω,Γ2), and
ω ∈ C∞

per(�). This yields∫
Ω

(A(ε−1x)∇yε,∇zω)Ψ dμε + ε

∫
Ω

(A(ε−1x)∇yε,∇Ψ)ω dμε + ε

∫
Ω

αyεΨω dμε =

ε

∫
Ω

uεΨω dμε + ε

∫
Γ1

hεΨω dμS
ε .

It is easy to see that after passing to the limit as ε→ 0 we obtain

lim
ε→0

∫
Ω

(
A(ε−1x)∇yε,∇zω(ε−1)

)
Ψ(x) dμε = 0. (6.11)

In view of (6.10) and the definition of the weak two-scale limit we have

lim
ε→0

∫
Ω

Ψ(x)
[
ω(ε−1x)A(ε−1x)

]∇yε(x) dμε =
∫
Ω

∫
�

Ψ(x)ω(z)A(z) [∇y∗(x) + v(x, z)] dμ(z) dx.
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Therefore
A(ε−1x)∇yε(x)

2
⇀ A(z) [∇y∗(x) + v(x, z)]

A(ε−1x)∇yε(x) ⇀
∫
�
A(z) [∇y∗(x) + v(x, z)] dμ(z) in L2(Ω, dμε)2. (6.12)

As a result, we can rewrite (6.11) in the explicit form

lim
ε→0

∫
Ω

(
A(ε−1x)∇yε,∇zω

)
Ψ dμε =

∫
Ω

∫
�

(A(z) [∇y∗ + v(x, z)] ,∇zω) dμ(z)Ψ(x) dx = 0.

Since this equality holds true for every Ψ ∈ C∞(Ω,Γ2) this means that∫
�

(A(∇y∗ + v), p) dμ = 0 ∀ p ∈ C∞
per(�)2. (6.13)

However, as follows from (6.9), the equality (6.13) can be viewed as Euler’s equation for the minimum
problem (6.9). Since this problem has a unique solution v0 it follows that v0 is the unique solution of (6.13) as
well. Thus, putting v = v0 in (6.12) and using formula (6.8) we immediately deduce that

A
(
ε−1x

)∇yε ⇀ Ahom∇y∗ in L2(Ω, dμε)2. �

Lemma 6.4. Under the assumptions of Lemma 6.2 the limit functional I0 : Ξ0 → R in (3.12) has the following
representation

I0(y, u, h) = k1

∫
Ω

(y − zd)2 dx+ k2

∫
Ω

u2 dx+ k3

∫
Γ1

h2 dl. (6.14)

Proof. To prove the representation (6.14) we have to verify the conditions (ii)-(iii) of Definition 5.3. Let (y, u, h)
be any triplet of Ξ0, and let {(yk, uk, hk)}k∈N be a w-convergent sequence such that

(yk, uk, hk) w→ (y, u, h), (yk, uk, hk) ∈ Ξεk
for every k ∈ N, (6.15)

where {εk} is a subsequence of E converging to zero. Then the following inequalities hold (see [35])

lim inf
k→∞

∫
Ω

u2
k dμεk

≥
∫
Ω

u2 dx, lim inf
k→∞

∫
Γ1

h2
k dμS

εk
≥
∫
Ω

h2 dl, lim inf
k→∞

∫
Ω

y2
k dμεk

≥
∫
Ω

y2 dx. (6.16)

First of all we note that the property of the weak compactness (2.4) for the sequence of measures {με} holds
automatically in a wider class of test functions, namely when ϕ ∈ C0

0(R
2). Thus,

lim
k→∞

∫
Ω

(zd)2 dμε =
∫
Ω

(zd)2 dx,

where zd ∈ C0(Ω) by the standing assumptions.
Therefore, using this, (6.16) and the definition of the weak two-scale convergence, it follows that

lim inf
k→∞

∫
Ω

(yk − zd)2 dμεk
= lim inf

k→∞

∫
Ω

y2
k dμεk

− 2
∫
Ω

yzd dx+
∫
Ω

(zd)2 dx ≥
∫
Ω

(y − zd)2 dx. (6.17)

Thus, summing up (6.16) and (6.17), we get lim inf
k→∞

Iεk
(yk, uk, hk) ≥ I0(y, u, h), i.e. the property (ii) of

Definition 5.3 is valid.
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We now verify the correctness of the reverse inequality (5.7). Let(y, u, h) be any triplet of the limit set Ξ0,
and let δ > 0 be a fixed small value. We construct the δ-realizing sequence {(yε, uε, hε) ∈ Ξε}ε∈E such that
uε = ũ, hε = h̃, and yε = yε(ũ, h̃) is the corresponding solution of the boundary value problem (3.4)–(3.5) under
u = ũ and h = h̃. Here ũ and h̃ are the functions with the following properties:

(1) ũ ∈ C∞(Ω), |ũ| ≤ cu in Ω, and ‖ũ− u‖L2(Ω) ≤ δ;
(2) h̃ ∈ C∞(Γ1), |h̃| ≤ ch on Γ1, and ‖h̃− h‖L2(Γ1) ≤ δ.

It is clear that in this case we have (see (5.3))

uε → ũ in L2(Ω, dμε), hε → h̃ in L2(Γ1, dμS
ε ).

Moreover, as follows from the previous lemma, yε
2
⇀ ỹ, where ỹ is a unique solution of the problem (3.4)–

(3.6) under u = ũ and h = h̃. Hence (yε, uε, hε)
w−→ (ỹ, ũ, h̃). In view of the coerciveness property of the

homogenized matrix Ahom we have the standard a priori estimate

‖y − ỹ‖H1(Ω) ≤ C
[
‖u− ũ‖L2(Ω) + ‖h− h̃‖L2(Γ1)

]
≤ 2δC. (6.18)

Thus, ‖(y, u, h) − (ỹ, ũ, h̃)‖Y ≤ 2 max{C, 1}δ, that is, {(yε, uε, hε)}ε∈E is the δ-realizing sequence with the
required properties.

By the initial construction we have

lim sup
ε→0

∫
Ω

ũ2
ε dμε =

∫
Ω

u2 dx, lim sup
ε→0

∫
Γ1

h̃2
ε dμS

ε =
∫
Γ1

h2 dl. (6.19)

In order to obtain the convergence

lim sup
ε→0

∫
Ω

(yε − zd)2 dμε =
∫
Ω

(ỹ − zd)2 dx (6.20)

we make use the idea of Cioranescu, Murat and Zhikov (see [9,35]). For this we introduce the following auxiliary
problem: find pε ∈ V (Ω,Γ2, dμε) such that∫

Ω

[(Aε∇pε,∇Ψ) + αpεΨ] dμε =
∫
Ω

yεΨ dμε, ∀ Ψ ∈ C∞(Ω,Γ2). (6.21)

Note that the linear span of the test functions Ψ ∈ C∞(Ω,Γ2) is dense in L2(Ω), hence we may take pε as test
function in (3.5) under u = uε and h = hε and yε as test function in (6.21). Then, using the symmetry-property
of the matrix Aε we get ∫

Ω

y2
ε dμε =

∫
Ω

uεpε dμε +
∫
Γ1

hεpε dμS
ε ∀ ε ∈ E. (6.22)

Since uε = ũ ∈ C∞(Ω), hε = h̃ ∈ C∞(Γ1), and pε ⇀ p in L2(Ω, dμε), it follows that

lim
ε→0

∫
Ω

uεpε dμε = lim
ε→0

∫
Ω

ũpε dμε =
∫
Ω

ũ p dx, lim
ε→0

∫
Γ1

hεpε dμS
ε =

∫
Γ1

h̃ p dl,
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where p ∈ H1(Ω) is the solution of a limit problem to (6.21). Note that since yε
2
⇀ ỹ(x) it follows that pε

2
⇀ p(x),

where ∫
Ω

[
(Ahom(x)∇p,∇Ψ) + αpΨ

]
dx =

∫
Ω

ỹΨ dx, ∀ Ψ ∈ C∞(Ω,Γ2).

Hence, returning to (6.22), we have

lim
ε→0

∫
Ω

y2
ε dμε = lim

ε→0

⎡⎣∫
Ω

uεpε dμε +
∫
Γ1

hεpε dμS
ε

⎤⎦ =
∫
Ω

ũ p dx+
∫
Γ1

h̃ p dl =
∫
Ω

ỹ2 dx,

i.e. yε→ỹ strongly in L2(Ω, dμε). Using this fact we immediately obtain

lim
ε→0

∫
Ω

(yε − zd)2 dμε =
∫
Ω

(ỹ − zd)2 dx. (6.23)

As a result, combining (6.19) and (6.23) we deduce lim sup
ε→0

Iε(yε, uε, hε) = I0(ỹ, ũ, h̃). Since

∣∣∣I0(ỹ, ũ, h̃) − I0(y, u, h)
∣∣∣ ≤ Ĉδ �

with some constant Ĉ independent of δ, this concludes the proof.

Remark 6.5. Note that the result of the previous lemma remains correct without assuming Aε to be symmetric,
if we assume that the homogenized matrix in Definition 6.1 satisfies the condition AT

ε (x)∇yε ⇀ (Ahom)T∇y0
in L2(Ω, dμε)2 for every {yε} such that⎧⎨⎩(y, u, h) ∈ Zε(Ω,Γ1) :

∫
Ω

[
(AT

ε (x)∇y,∇ϕ) + αyϕ
]

dμε =
∫
Ω

uϕ dμε +
∫
Γ1

hϕ dμS
ε , ∀ ϕ ∈ C∞(Ω,Γ2)

⎫⎬⎭
� (yε, uε, hε) → (y0, u0, h0) in the sense of w-convergence.

Furthermore, we emphasize that this property holds automatically for a μ-measurable symmetric periodic matrix
Aε(x) = A(ε−1x) satisfying the condition of ellipticity and boundedness (3.2).

Now we are in a position to prove the main result of this section.

Theorem 6.6. Under supposition of Lemma 6.2 for the family of problems (3.3)–(3.6) there exists a unique
homogenized optimal control problem which has the following representation

−div(Ahom(x)∇y) + αy = u in Ω, (6.24)

y = 0 on Γ2 ∂y/∂νAhom = h on Γ1, (6.25)

|u| ≤ cu a.e. in Ω, |h| ≤ ch a.e. on Γ1, (6.26)

I0(y, u, h) = k1

∫
Ω

(y − zd)2 dx+ k2

∫
Ω

u2 dx+ k3

∫
Γ1

h2 dl → inf, (6.27)

where ∂y/∂νAhom =
2∑

i,j=1

ahom
ij (x)

∂y

∂xij
cos(n, xi), cos(n, xi) is i-th direction cosine of n, n being the normal at Γ1

exterior to Ω.
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Moreover, the sequence of optimal solutions {(y0
ε , u

0
ε, h

0
ε) ∈ Ξε} for the original problems (3.3)–(3.6) and

corresponding minimal values of the cost functional (3.3) satisfy the following variational properties:

lim
ε→0

inf
(y,u,h)∈Ξε

Iε(y, u, h) = I0(y0, u0, h0) = inf
(y,u,h)∈Ξ0

I0(y, u, h), (6.28)

y0
ε

2→ y0, u0
ε → u0 in L2(Ω, dμε), h0

ε → h0 in L2(Γ1, dμS
ε ), (6.29)

where (y0, u0, h0) is a unique solution of the homogenized problem (6.24)–(6.27).

Proof. As immediately follows from Lemmas 3.7 and 6.2 for the sequence of constrained minimization prob-
lems (3.11) there exists a variational limit (3.12) the main components of which can be recovered in the form (6.2)
and (6.14), respectively. Moreover, from (6.2) we have the following implication

(y, u, h) ∈ Ξ0 ⇒ (y, u, h) ∈ Graph(Phom).

It is clear now that the limit problem (3.12) can be written in the form of the optimal control problem (6.24)–
(6.27). Therefore, in view of Definition 3.8 the problem (6.24)–(6.27) is the homogenized optimal control problem
for the original family (3.3)–(3.6).

Applying now Theorem 5.7 we come to the following variational properties of the homogenized prob-
lem (6.24)–(6.27): let {(y0

ε , u
0
ε, h

0
ε)} be the sequence of optimal triplets for the problems (3.3)–(3.6), then

lim
ε→ 0

Iε(y0
ε , u

0
ε, h

0
ε) = lim

ε→ 0
inf

(yε,uε,hε)∈Ξε

Iε(yε, uε, hε) = inf
(y,u,h)∈Ξ0

I0(y, u, h) = I0(y0, u0, h0),

(y0
ε , u

0
ε, h

0
ε)

w−→ (y0, u0, h0). (6.30)

Hence Iε(y0
ε , u

0
ε, h

0
ε) → I0(y0, u0, h0). Rewriting this in the explicit form we get

lim
ε→0

⎡⎣k1

∫
Ω

(y0
ε − zd)2 dμε + k2

∫
Ω

(u0
ε)

2 dμε + k3

∫
Γ1

(h0
ε)

2 dμS
ε

⎤⎦ =

k1

∫
Ω

(y0 − zd)2 dx+ k2

∫
Ω

(u0)2 dx+ k3

∫
Γ1

(h0)2 dl.

Therefore the validity of this equality for every ki ≥ 0 implies

lim
ε→0

∫
Ω

(y0
ε)2 dμε =

∫
Ω

(y0)2 dx, lim
ε→0

∫
Ω

(u0
ε)

2 dμε =
∫
Ω

(u0)2 dx, lim
ε→0

∫
Γ1

(h0
ε)

2 dμS
ε =

∫
Ω

(h0)2 dl.

Combining these properties with (6.30) and using Proposition 4.1 we obtain the required assertions (6.28)–(6.29).
This concludes the proof. �

7. Construction of suboptimal controls

We now focus on the construction of approximations to the optimal solution of the original problem (3.3)–
(3.6) for ε small enough. We define suboptimal controls (usub

ε , hsub
ε ) which approximate the optimal value of

the original problem (3.3)–(3.6). To do so, we introduce the following concept:
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Definition 7.1. We say that a sequence of pairs
{
(usub

ε , hsub
ε )

}
ε>0

is asymptotically suboptimal to the prob-

lem (3.3)–(3.6) if there exists a constant Ĉ > 0 independent of ε such that for every δ (0 < δ < δ0) there is
ε0 > 0 satisfying

∣∣∣∣ inf
(y,u,h)∈Ξε

Iε(y, u, h) − Iε(ysub
ε , usub

ε , hsub
ε )

∣∣∣∣ < Ĉδ ∀ ε < ε0, (7.1)

where ysub
ε = ysub

ε (usub
ε , hsub

ε ) denote the corresponding solutions of the boundary value problem (3.4)–(3.5).

Theorem 6.6 leads to the following final result:

Theorem 7.2. Let u0 ∈ L2(Ω) and h0 ∈ L2(Γ1) be the optimal controls for the homogenized problem (6.24)–
(6.27). Then any δ-realizing sequence to the pair (u0, h0) is asymptotically suboptimal for the original optimal
control problem (3.3)–(3.6).

Proof. Let (y0, u0, h0) be a unique solution of the homogenized problem (6.24)–(6.27). For a given δ > 0
we construct the δ-realizing sequence {(yε, uε, hε) ∈ Ξε}ε∈E by the usual way, that is, uε = ũ, hε = h̃, and
yε = yε(ũ, h̃) is the corresponding solution of the boundary value problem (3.4)–(3.5) under u = ũ and h = h̃.
Here

ũ ∈ C∞(Ω), |ũ| ≤ cu in Ω, ‖ũ− u0‖L2(Ω) ≤ δ,

h̃ ∈ C∞(Γ1), |h̃| ≤ ch on Γ1, ‖h̃− h0‖L2(Γ1) ≤ δ.

}
(7.2)

It is clear that (see Lem. 6.4)

lim sup
ε→0

∫
Ω

(yε − zd)2 dμε =
∫
Ω

(ỹ − zd)2 dx, ‖y0 − ỹ‖H1(Ω) ≤ 2δC (see (6.18)), (7.3)

lim sup
ε→0

∫
Ω

ũ2
ε dμε =

∫
Ω

(u0)2 dx, lim sup
ε→0

∫
Γ1

h̃2
ε dμS

ε =
∫
Γ1

(h0)2 dl, (7.4)

where ỹ is a unique solution of the problem (6.24)–(6.25) under u = ũ and h = h̃. Besides, in view of these
relations, we have the following obvious estimates:

k2

∣∣∣∣∣∣
∫
Ω

(u0)2 dx−
∫
Ω

(ũ)2 dx

∣∣∣∣∣∣ ≤ k2

(
δ0 + 2‖u0‖L2(Ω)

)
δ = C2δ, (7.5)

k3

∣∣∣∣∣∣
∫
Ω

(h0)2 dx−
∫
Ω

(h̃)2 dx

∣∣∣∣∣∣ ≤ k3

(
δ0 + 2‖h0‖L2(Γ1)

)
δ = C3δ, (7.6)

k1

∣∣∣∣∣∣
∫
Ω

(y0 − zd)2 dx−
∫
Ω

(ỹ − zd)2 dx

∣∣∣∣∣∣ ≤ 4k1

(
δ0C + ‖y0 − zd‖L2(Ω)

)
Cδ = C1δ. (7.7)
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(a) (b)

Figure 2. (a) The cell of grid periodicity. (b) Periodic grid on Ω.

We now observe that∣∣∣∣ inf
(y,u,h)∈Ξε

Iε(y, u, h) − Iε(yε, uε, hε)
∣∣∣∣ =

∣∣∣Iε(y0
ε , u

0
ε, h

0
ε) − Iε(yε, ũ, h̃)

∣∣∣ ≤ ∣∣Iε(y0
ε , u

0
ε, h

0
ε) − I0(y0, u0, h0)

∣∣
+
∣∣∣I0(ỹ, ũ, h̃) − Iε(yε, ũ, h̃)

∣∣∣+ ∣∣∣I0(y0, u0, h0) − I0(ỹ, ũ, h̃)
∣∣∣ ≤ ∣∣Iε(y0

ε , u
0
ε, h

0
ε) − I0(y0, u0, h0)

∣∣
+
∣∣∣I0(ỹ, ũ, h̃) − Iε(yε, ũ, h̃)

∣∣∣+ k1

∣∣∣∣∣∣
∫
Ω

(y0 − zd)2 dx−
∫
Ω

(ỹ − zd)2 dx

∣∣∣∣∣∣
+ k2

∣∣∣∣∣∣
∫
Ω

(u0)2 dx−
∫
Ω

(ũ)2 dx

∣∣∣∣∣∣+ k3

∣∣∣∣∣∣
∫
Γ1

(h0)2 dl −
∫
Γ1

(h̃)2 dl

∣∣∣∣∣∣ = J1 + J2 + J3 + J4 + J5.

To conclude the proof, we note that for a given δ > 0 one can always find: (1) ε1 > 0 such that J1 < δ/2
for all ε < ε1 by Theorem 6.6; (2) ε2 > 0 such that J2 < δ/2 for all ε < ε2 by Lemma 6.4. Besides, J3 < C1δ,
J4 < C2δ, and J5 < C3δ by estimates (7.5)–(7.7). As a result, we have∣∣∣∣ inf

(y,u,h)∈Ξε

Iε(y, u, h) − Iε(yε, uε, hε)
∣∣∣∣ ≤ (1 + C1 + C2 + C3) δ

for all ε < min{ε1, ε2}. Thus, we have obtained the required estimate (7.1). �

8. An example for the homogenization of an optimal control problem
on an ε-periodic square grid

On the domain Ω that was defined in (2.1) we consider the ε-periodic square grid εF with the cell of
periodicity ε�. Here the set � = [0, 1)2 contains the “cross”-structure such as indicated in Figure 2(a).

Following the notation of Section 1 we say that Ωε has ε-periodic grid-like structure if Ωε = Ω∩εF . As usual
we set ∂Ω = Γ1 ∪ Γ2, where Γ1 =

{
x ∈ Ω̄

∣∣x2 = 0, 0 < x1 < a
}
.

We begin with some standard notations on graphs (see [22]). Let V ε =
{
vJ : J ∈ Jε

}
be the set of vertices

of our ε-periodic graph (grid) Ωε, let Eε =
{
ei : i ∈ İε

}
be the index set of corresponding edges. Here by Jε
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and İε we denote the index sets for vertices and edges, respectively. For given vertex vJ we consider the set of
edges that are incident at vJ . The corresponding set of edge-indices is denoted by

İJ =
{
i ∈ İε : ei is incident at vJ

}
.

The cardinality of İJ is the edge degree at vJ that is dJ = |İJ |. It is easy to see that dJ ≤ 4 in our case.
Note that as follows from Figure 2(b) every edge ei on the graph Ωε can be parameterized by x ∈ [0, li] where

li ≤ ε/2 denotes the length of the edge ei. With every edge ei we will associate a so-called “state-function”

yi : [0, li] → R
1, i ∈ İε.

Since we are going to consider an optimal control problem on bounded periodic graph it is necessary to
specify boundary and so-called transmission conditions at the vertices V ε of Ωε. To this end we subdivide the
set of vertices (nodes) as follows:

V ε = V ε
S ∪ V ε

M ,

where V ε
S denotes the set of simple modes such that dJ = 1 and V ε

M signifies the set of multiple nodes where
4 ≥ dJ > 1. The set of simple nodes V ε

S will be divided as

V ε = V ε
Γ1

∪ V ε
Γ2
,

where V ε
Γ1

represent the set of simple nodes belonging to Γ1-boundary and V ε
Γ2

signifies those simple nodes
which are belonging to Γ2-boundary. It is easy to see that in the case of ε-periodic grid on Ω there is not any
simple node lying in the interior of the domain Ω. Further we will look at the set V ε

Γ1
as the set of control-active

Neumann nodes and at V ε
Γ2

as the set of nodes with zero Dirichlet conditions.
On all edges ei we consider differential operator Li of the following form

Liyi = −Riy
′′
i + αyi,

where Ri ≥ α > 0. Moreover, using the ε-periodic structure of Ωε we will always suppose that for every ε-cell
ε�j we have (see Fig. 4(a))

Ri = β, Ri+1 = γ, Ri+2 = β, Ri+3 = γ, (8.1)
where α−1 ≥ β, γ ≥ α > 0.

We now define the classes of admissible controls Uε and Hε where

Uε =
{
u : Ωε → R

1 : u
∣∣
li
∈ L2(0, li); |u(x)| ≤ cu for almost every x ∈ Ωε

}
, (8.2)

Hε =

{
h = (h1, h2, . . . , hLε) ∈ R

Lε : Lε = |V ε
Γ1
|,

Lε∑
K=1

h2
K <∞, |hK | ≤ ch

}
. (8.3)

Here cu, ch are some positive constant, by |V ε
Γ1
| we denote the amount of all simple nodes belonging to Γ1.

Let k1, k2, k3 (ki > 0) be penalty terms and let zd, ud, and hd be given functions of C0(Ω) . We consider the
following optimal control problem on the grid Ωε

−Riy
′′
i + αyi = ui, x ∈ (0, li), i ∈ İε, (8.4)

yi(vJ ) = 0, i ∈ İε
J , vJ ∈ V ε

Γ2
, (8.5)∑

i∈Iε
J

Riy
′
i(vJ ) = 0, vJ ∈ V ε

M , (8.6)

yi(vJ ) = hk(J), ∀ vJ ∈ V ε
Γ1
, i ∈ Iε

J ; k(J) ∈ {1, 2, . . . , Lε}, (8.7)
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u ∈ Uε, h ∈ Hε, (8.8)

Iε(y, u, h) =
∑
i∈İε

k1

li∫
0

(yi − zd

∣∣
ei

)2 dx + k2

∑
i∈İε

li∫
0

(ui − ud

∣∣
ei

)2 dx+ k3

Lε∑
K=1

(hK − hd(vJ ))2 → inf . (8.9)

Using the property of the sets Uε and Hε and invoking the standard arguments it is easy to prove that for
every ε ∈ E the problem (8.4)–(8.9) admits a unique optimal triplet (y0

ε , u
0
ε, h

0
ε) which can be characterized by

some adjoint system.
Our aim is to study the asymptotic behavior of this problem as ε tends to 0. For this we reformulate the

problem (8.4)–(8.9) in the terms of some variational control problem defined on spaces with singular measures.
We introduce the �-periodic Borel measure μ in R

2 as follows:

μ =
1
2
(μ1 + μ2 + μ3 + μ4),

where μi are the 1-dimensional Lebesgue measures on the corresponding line segments (edges) Ii (see Fig. 2).
Also we define the �S-periodic Radon measure μS in R

1 as μS = δ(1/2,0), where δ(1/2,0) is Dirac measure at
the point (1/2, 0) ∈ �S. It is easy to see that∫

�

dμ = 1 and
∫

�S

dμS = 1.

Therefore we may define the “scaling” measures

με(B) = ε2μ(ε−1B), μS
ε (B1) = εμS(ε−1B1),

where B, B1 are corresponding Borel sets in R
2 and R

1 respectively. Obviously, each of these measures με,
μS

ε converges weakly to the corresponding Lebesgue measure: dμε ⇀ dx, dμS
ε ⇀ dl. Here dx and dl are the

Lebesgue measures in R
2 and R

1, respectively.
Now we define the matrix Aε(x) = A(ε−1x) as follows

A(z) =
[
a11(z) 0
0 a22(z)

]
,

where a11(z) = β and a22(z) = γ. It is easy to see that such defined matrix is symmetric, μ-measurable and
satisfying the property (3.2).

As a result the original optimal control problem can be presented in the form∫
Ω

[
(A(ε−1x)∇y,∇ϕ) + αyϕ

]
dμε =

∫
Ω

uϕ dμε +
∫
Γ1

hϕ dμS
ε , ∀ ϕ ∈ C∞(Ω,Γ2), (8.10)

y ∈ V (Ω,Γ2, dμε), |u| ≤ cu με-a.e. in Ω, |h| ≤ ch μS
ε -a.e. on Γ1, (8.11)

Iε(y, u, h) = k1

∫
Ω

(y − zd)2 dμε + k2

∫
Ω

(u− ud)2 dμε + k3

∫
Γ1

(h− hd)2 dμS
ε → inf . (8.12)

The validity of this representation immediately follows from the Proposition 3.2 and Remark 4.4. Then,
due to Theorem 6.6, the control problem (8.10)–(8.12) admits a homogenization and the limit problem can be
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Aε, δ
δ→0−−−−→ Asing

ε

ε→0

⏐⏐1 ε→0

⏐⏐1
Ahom

δ
δ→0−−−−→ Ahom

Figure 3. Homogenization diagram.
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(b)

Figure 4. (a) ε�J -cell. (b) Periodicity cell for Fδ.

recovered in the form

−div(Ahom∇y) + αy = u in Ω, (8.13)

y = 0 on Γ2, ∂y/∂νAhom = h on Γ1, (8.14)

|u| ≤ cu a.e. in Ω, |h| ≤ ch a.e. on Γ1, (8.15)

I0(y, u, h) = k1

∫
Ω

(y − zd)2 dx + k2

∫
Ω

(u− ud)2 dx+ k3

∫
Γ1

(h− hd)2 dl. (8.16)

The identification of the matrix Ahom can be done in different ways either by definition, i.e. as the solution
of the minimum problem (Ahomξ, ξ) = min

p∈Vpot
(A(ξ+p), ξ+p) (see [35]), or using a more classical method: firstly,

we homogenize the problem on the grid with non-zero thickness in a usual way (see [31,37]) and then pass
to the limit as thickness goes to zero. As for the second approach it was shown in [8] that in this case the
corresponding diagram of homogenization (see Fig. 3) is commutative.

Here δ denotes a small parameter which characterizes the fixed “thickness” of graphs. The corresponding
structures will be called δ-grids Fδ.

We will follow the second approach. Therefore we define the ε-periodic δ-grids Fδ
ε be setting Fδ

ε = ε−1Fδ,
the cell of periodicity �δ for Fδ has the form that Figure 4(b) shows.

Let με
δ(B) = ε2μδ(ε−1 B) and μδ is the measure on Fδ that can be defined as the probability measure

in Ω supported by the cross-bar in �δ and is uniformly distributed on it. The weak limit of this measure μδ

as δ → 0 is the singular measure μ which was defined before. Assume that the matrix Aε,δ = A(ε−1x), i.e.
Aε,δ = diag(β, γ).
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Then using the standard technique of homogenization (see [29,31]) we get Aε,δ
ε→0−→ Ahom

δ , where

Ahom
δ =

[
bδ11 0
0 bδ22

]
, bδ11 =

1
(2 − δ)

[
β + o(δ1/2)

]
, bδ22 =

1
(2 − δ)

[
γ + o(δ1/2)

]
.

Furthermore, due to the results of Saint Jean Paulin and Cioranescu [31] we may take the limit Ahom
δ

δ→0−→
Ahom. As a result we obtain (for details we refer to [2,28,29,31]) Ahom = diag(1

2β,
1
2γ).

Thus the homogenized state equation for the limit problem (8.13)–(8.16) has the form

−β ∂
2y

∂x2
1

− γ
∂2y

∂x2
2

+ 2αy = 2u in Ω, y = 0 on Γ2, γ
∂y

∂x2
= 2h on Γ1.

Furthermore, in view of the result of Theorem 6.6 the homogenized optimal control problem (8.13)–(8.16)
satisfies the variational properties (6.28)–(6.29). Note also that another approach for the identification of
homogenized operators −div(Ahom∇y), the so called direct asymptotic method, was proposed by Mazja and
Slutskij in [26].

In the case when a = 2, α = β = γ = 1, Ω =
{
(x1, x2) : x1 ∈ (0, 2), 0 < x2 <

√
2x1 − x2

1

}
, hd = 0,

zd = exp (r), ud = exp(r)
(
1 − 2r2 − 6r3 − 2r4

)
, r = (x2

1 + x2
2 − 2x1)−1, we have that

u0 = exp(r)
(
1 − 2r2 − 6r3 − 2r4

)
and h0 = 0

are the optimal controls to the homogenized problem (8.13)–(8.16). Hence, in view of Theorem 6.6 the restriction
of these functions on the sets Ωε and V ε

Γ1
, respectively, can be taken as suboptimal controls to the original

problem on an ε-periodic square grid (8.4)–(8.8).
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Étienne (1994).
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