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CRITICAL POINTS OF AMBROSIO-TORTORELLI CONVERGE
TO CRITICAL POINTS OF MUMFORD-SHAH

IN THE ONE-DIMENSIONAL DIRICHLET CASE
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Abstract. Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero
Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to con-
verge to particular critical points of the corresponding variant of the Mumford-Shah functional; those
exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem
of brittle fracture in an elastic material.
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1. Introduction

In the late 80’s, Mumford and Shah proposed a new functional for image segmentation in their celebrated
paper [13]. If g ∈ L∞(Ω; [0, 1]) represents a continuous interpolation of the collected pixelated data over the
image domain Ω ⊂ R

2, then the proposed segmentation consists in minimizing

(u, K) �→ MS(u, K) :=
∫

Ω\K

|∇u|2 dx + 2H1(K) + λ

∫
Ω

(u − g)2 dx,

among all compact subsets K ⊂ Ω and all u ∈ H1(Ω \ K). In that functional, λ is a positive weight left
to the investigator’s appreciation, K represents the contours of the image, and u the resulting grey contrast
(0 ≤ u(x) ≤ 1).

Proving existence for minimizers of that functional was not a trivial task and it gave rise to a abundant
literature spearheaded by the work of De Giorgi and that of Ambrosio on the space SBV (Ω); see e.g. [1].
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The underlying idea was to view MS(u, K) as a one field functional

MS(u) =
∫

Ω

|∇u|2 dx + 2H1(S(u)) + λ

∫
Ω

(u − g)2 dx, (1.1)

over SBV (Ω), the space of functions u ∈ L1(Ω) such that their distributional derivative is a Radon measure Du
with finite total variation |Du|(Ω), jump set S(u) (the complement of the set of Lebesgue points for u), and
no Cantor part. The next step was to prove existence of a minimizer um of MS in that space, and then to
show that the pair (um, S(um)) was actually a minimizer for MS. That program was successfully completed,
culminating in [8].

From a computational standpoint, the search for a minimizer of (1.1) is not easy, because the test fields exhibit
discontinuities at unknown locations and the implementation of classical finite element methods becomes a
perilous endeavor. A possible remedy consists in resorting to variational convergence, specifically Γ-convergence,
so as to approximate MS by a more regular functional – denoted henceforth by ATε – whose minimizers are
easier to evaluate. For more information on Γ-convergence, we refer the interested reader to e.g. [7] and merely
emphasize for now that an important property of Γ-convergence is that (approximate) minimizers of ATε that
converge as ε ↘ 0 will converge to bona fide minimizers of MS.

There is by now an abundant literature on the approximation of the Mumford-Shah functional and many
approximating sequences have been proposed. The most computationally efficient in our opinion is that origi-
nally proposed by Ambrosio and Tortorelli in [2,3], in the footstep of the functional proposed by Modica and
Mortola for the approximation of the perimeter [12]. Consider

ATε(u, v) =
∫

Ω

(
(ηε + v2)|∇u|2 + ε|∇v|2 +

(1 − v)2

ε

)
dx + λ

∫
Ω

(u − g)2 dx,

with 0 < ηε << ε. It is proved in [2,3] that ATε Γ(B(Ω) × B(Ω))-converges to MS, suitably extended to a
two-field functional as

MS(u, v) =

{
MS(u) if v ≡ 1
+∞ otherwise.

Above, B(Ω) stands for the set of all Borel functions on Ω, and the convergence is the convergence in measure.
Actually, we can also view the convergence as taking place in L2(Ω) × L2(Ω).

The functional ATε is easily seen, through the direct method of the Calculus of Variations, to admit at
least one minimizing pair (uε, vε) ∈ H1(Ω) × H1(Ω), for any fixed value of ε. The associated sequence is
bounded in e.g. L∞(Ω) × L∞(Ω), and a subsequence can be shown to converge in measure (and also strongly
in L2(Ω) × L2(Ω)) to (u, v ≡ 1), which, by the already evoked property of Γ-convergence, will be a minimizer
for MS.

In an apparently disconnected context, recent years have witnessed the birth of a variational theory of brittle
fracture evolution. One of its constitutive elements is that, at each time, the total energy of the system, the
sum of the elastic and surface energies, is to be minimized among all admissible competitors [10]. That total
energy is a close parent of the Mumford-Shah functional MS for image segmentation. It is given – say in anti-
plane shear, for which the displacement field is unidirectional, and for normalized shear modulus and fracture
toughness – by

F(u, v) =

⎧⎨
⎩

∫
Ω

|∇u|2 dx + 2H1(S(u)) if u ∈ SBV (Ω), and v ≡ 1

+∞ otherwise.
(1.2)

In the context of fracture, the displacement field u is typically constrained by boundary values, say U on ∂Ω,
and the crack may go to the boundary of Ω. Thus we should impose that

u = U on ∂Ω \ S(u),
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u being considered as an element of SBV (R2) such that u ≡ U on R
2\Ω with U defined on R

2 (say U ∈ H1(R2)).
The relevant literature speaks of a hard device in this situation. In any case, the above quoted Γ-convergence
result still applies in the current setting, so that F , trivially extended to some Ω′ ⊃ Ω, can be variationally
approximated by Eε, a close variant of ATε defined as

Eε(u, v) :=
∫

Ω′

(
(ηε + v2)|∇u|2 + ε|∇v|2 +

(1 − v)2

ε

)
dx, (1.3)

with (u, v) ∈ H1(Ω′) × H1(Ω′) and u ≡ U on Ω′ \ Ω.

Remark 1.1. The extension to a larger domain Ω′ permits the introduction of boundary jumps (boundary
cracks) without modification of the resulting surface energy. In the remainder of the study, we prefer to restrict
the functional to Ω, while imposing that the admissible fields u belong to SBV (R2) with u = U on R

2 \ Ω. In
that case, the correct surface energy for the Γ(B(Ω) × B(Ω))-limit of Eε is

2H1(S(u) ∩ Ω) + H1(S(u) ∩ ∂Ω).

Although the functional Eε is immediately seen to admit minimizers at fixed ε, those are not so easily
determined computationally because Eε is not convex in its two arguments, but only separately in each of them.
This is a cause of major difficulties, as explained in [6]. The most expedient computational algorithm consists in
performing alternate minimization in each variable at fixed ε. According to [6], that algorithm asymptotically
converges to a critical point (uε, vε) of Eε. Thus, algorithmically, we should investigate the limit behavior of
critical pairs (uε, vε) for Eε. Note that, at the expense of starting the alternate minimization with the same
profile, say vε = 1, uε = U , we can easily enforce the additional assumption that

Eε(uε, vε) ≤ C < ∞,

for some ε-independent positive constant C.
Critical points of Eε are not necessarily minimizers of Eε, and it is not so clear that they will converge toward

even a critical point of F . We recall, see [4], Chapter 7, that a critical point of F is a couple (u, v) such that F
remains stationary under admissible inner variations, i.e.,

dF (
u ◦ (id + tφ)−1, 1

)
dt

|t=0 = 0, with φ ∈ C∞
0 (Ω; R2).

If they do, then the Ambrosio-Tortorelli approximation scheme will prove even more fruitful, because fracture
evolutions are more likely to be paths along critical (or maybe meta-stable) points for F than those along
global minimizers of F , and the result would provide a theoretical, as well as a numerical tool for extending the
variational theory of brittle fracture to a more realistic setting.

Unfortunately, criticality is not easily reconciled with variational convergence. Successful attempts have been
made in other settings such as that of the Allen-Cahn functional in phase transitions, see [11,16,17], or that of
the Ginzburg-Landau functional in superconductivity, see [5,15], but, to our knowledge, nothing of the kind has
been investigated in the framework of image segmentation via the Mumford-Shah functional.

This study is a first step in that direction. It investigates the one-dimensional case. Of course, the one-
dimensional setting is of limited interest from the standpoint of applications to fracture, because one-dimensional
fracture is primarily a textbook problem, except maybe when used in trusses. It is of marginal interest within
the context of image segmentation, i.e. for ATε and MS, although it may prove relevant for the de-blurring
of bar codes [18]. Pursuing a similar analysis in a higher dimensional setting is quite a challenge for the time
being. Among the many obstacles, the lack of explicit solutions for the Euler-Lagrange system associated with
the criticality of the approximating fields uε, vε for the Ambrosio-Tortorelli functional (see (2.4) below) makes
the jump profile for vε less evident than in the Allen-Cahn, or Ginzburg-Landau settings. But, the knowledge
of an explicit optimal profile in those settings is a precious ingredient in the analysis of critical points.
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In the next section, the one-dimensional functional is introduced and the three main results are stated: the
convergence of critical points of Eε to specific critical points of F (see Thm. 2.2); conversely, any specific critical
point of F as described in Theorem 2.2 is actually a limit of critical points of Eε (see Thm. 2.4); finally, the
convergence of the various terms in the energy Eε to their F -analogues (see Thm. 2.5). The reader will note
that, thanks to Theorem 2.2, the Ambrosio-Tortorelli approximation acts as a selection mechanism for the
Mumford-Shah functional, in that only critical points with jumps that are symmetrically located on the interval
of study can be obtained through that approximation and that, thanks to Theorem 2.4, all of those are actually
attained as limits of critical points of Eε. Also, Theorem 2.5 demonstrates that, generically, the Ambrosio-
Tortorelli energy evaluated at one of its critical points converges to the Mumford-Shah energy, evaluated at the
limit of that (sequence of) critical point(s). Section 3 establishes some general a priori estimates, and most
notably bounds the discrepancy (see (3.3)), a pivotal quantity in the study of critical points because of its link
to the energy momentum tensor (see e.g. [5,14]). Section 4 is devoted to the proof of the first theorem; Section
5 carries out that of the second theorem, while Section 6 details that of the third theorem.

2. Statement of the results

Throughout, C stands for a generic positive constant (so that e.g. C = 2C) and L is the length of the interval
under consideration.

For ε > 0, we consider the following ε-indexed one-dimensional Ambrosio-Tortorelli type functional (see (1.3)):

Eε(u, v) =
∫ L

0

(
(ηε + v2)(u

′
)2 + ε(v

′
)2 +

(1 − v)2

ε

)
dx. (2.1)

In (2.1), ηε is a positive number, and (uε, vε) belongs to the space Yε defined by

Yε := {u, v ∈ H1(0, L), u(0) = 0, u(L) = aε}

with aε > 0. Note that these boundary constraints are not really restrictive in one dimension (up to translation
of u).

We assume that, as ε ↘ 0,
aε → a > 0; ηε/ε → 0, i.e. ηε � ε. (2.2)

We also introduce, for u ∈ SBV (R), the one dimensional Mumford-Shah functional (see (1.2) and Rem. 1.1):

F(u, v) =

⎧⎪⎨
⎪⎩

∫ L

0

(u′)2 dx + 2# (S(u) ∩ (0, L)) + # (S(u) ∩ {0, L}) if v ≡ 1

+∞ otherwise.
(2.3)

In (2.3), u′ denotes the approximate derivative of u, i.e. the density of the absolutely continuous part of
the measure Du with respect to the Lebesgue measure, while S(u) denotes the jump set of u, defined as the
complement in R of the set of Lebesgue points of u.

As explained in the introduction, we wish to impose Dirichlet type boundary conditions on the test fields.
Thus, the pair (u, v) should lie in Y defined as

Y := {u ∈ SBV (R) : u ≡ 0 on (−∞, 0), u ≡ a on (L, +∞)} × L∞((0, L)),

so that, in particular, S(u) ⊂ [0, L].
The spaces Yε and Y are endowed with the L2((0, L), R2) topology. We recall that Eε Γ-converges to F hence

minimizers of Eε converge to minimizers of F . Those are very easy to identify: for a <
√

L the only minimizer is
u ≡ ax/L, while for a >

√
L they are u = aχ(L,∞), or u = aχ(0,∞), where χ denotes the characteristic function

of a set (for a =
√

L all of the above are minimizers). Thus we see that fracture is indeed induced by this
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model, even for minimizers, by a boundary “tug” when a large enough. Minimization favors boundary cracks
because the associated surface energy has a lesser weight (1 versus 2). In the context of Remark 1.1, an energy
that would weigh equally (0, L) and {0, L} would produce, for a >

√
L, a minimizer of the form u = aχ(b,∞)

for any b ∈ [0, L]. However, our results below would prove that not all of these minimizers are produced by this
limit process.

As announced in the introduction, we propose to study the convergence property of critical points other
than the minimizers. The critical points of the one dimensional Mumford-Shah functional are easily identified
from (7.42) in [4], Chapter 7, as those pairs (u, v) with v ≡ 1, and u piecewise constant with a finite number of
jumps, or u ≡ ax/L.

Let (uε, vε) be critical points of the Ambrosio-Tortorelli functional (2.1), i.e. pairs of functions (uε, vε) ∈ Yε

that satisfy the Euler-Lagrange equations

−εv
′′
ε + vε(u

′
ε)

2 +
vε − 1

ε
= 0

[u
′
ε(ηε + v2

ε)]′ = 0

uε(0) = 0, uε(L) = aε

v
′
ε(0) = v

′
ε(L) = 0.

(2.4)

Our main goal is to study the limit properties of (uε, vε) as ε goes to 0, provided additionally that

Eε(uε, vε) ≤ C < ∞. (2.5)

The above bound is natural from a computational standpoint, as already emphasized in the introduction.
Note that the second equation of (2.4) implies that

u
′
ε(ηε + v2

ε) = cε, (2.6)

for some constant cε. It follows that u
′
ε has a constant sign. The Dirichlet boundary conditions on uε imply

that cε > 0 and thus that
uε ↗ from 0 to aε. (2.7)

One can substitute the relation (2.6) into the first equation of (2.4), and obtain

−εv
′′
ε +

vεc
2
ε

(ηε + v2
ε)2

+
vε − 1

ε
= 0

v
′
ε(0) = v

′
ε(L) = 0.

(2.8)

It is a crucially convenient feature of the one-dimensional case that the system of ODE’s can be reduced to this
single second-order ODE (up to the unknown parameter cε though) with Neumann boundary conditions. We
will use the properties, in particular symmetry properties, of solutions to this type of ODE’s. However it is not
our goal to completely classify the solutions to (2.8) or perform their stability analysis. Rather we focus on the
ε → 0 asymptotic analysis and we look to employ, as much as possible, arguments that are independent of the
dimension and could be recast in dimensions higher than 1.

Remark 2.1. Equation (2.6) would still hold true if Neumann boundary conditions, namely u′
ε(0) = u′

ε(L) = 0,
were imposed on uε, in lieu of the adopted Dirichlet boundary conditions. But then, u′

ε ≡ 0, vε ≡ 1, and the
problem becomes trivial.
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a

a/2

-a

-a/2

v

u

Figure 1. n = 4, well case.

It is the presence of the fidelity term
∫ L

0
|u−g|2 dx of image segmentation that renders the Neumann problem

non-trivial. As mentioned in the introduction, our present focus is the Dirichlet case, where no fidelity term is
present.

Our main result is the following. It states on the one hand the symmetry properties of the solutions to (2.4),
and on the other hand the more difficult fact that cε can only cluster to the two values 0 and a/L.

Theorem 2.2. At the possible expense of extracting a subsequence of ε ↘ 0, cε → c0 where c0 ∈ {0, a/L}
and (uε, vε) converges to a critical point (u, 1) of F . In other words, uε(x) → u(x)(∈ SBV (R)) and vε(x) →
1, for a.e. x ∈ (0, L).

If c0 = a/L, the limit critical point is u ≡ ax/L.
If c0 = 0, there exists a fixed number n such that, at the possible expense of extracting a subsequence of ε ↘ 0,

vε – extended by symmetry to (−L, L) – is a juxtaposition of n identical graphs. The repeated subgraph exhibits
either a strict minimum point (“well case”), for all ε’s, or a strict maximum point, for all ε’s (“bell case”).
The limit critical point u – extended by anti-parity to (−L, L) – is constant on (−L,−L + L/n), with value −a
in the former case (see Fig. 1), or on (−L,−L + 2L/n), with value −(n− 1)a/n in the latter case (see Fig. 2),
then it jumps by a value of 2a/n at the end of each interval of length 2L/n .

Remark 2.3. The Ambrosio-Tortorelli functional acts as a selector for the critical points of the Mumford-Shah
functional, in that it asymptotically equi-distributes the possible jumps of u over the interval [0, L]. The graph
of u extended by antiparity looks like a piece of a “perfect staircase”: all steps have the same height and the
same width.

Our next main result is a converse of the above theorem in the sense that any “perfect staircase” critical
point of the Mumford-Shah functional F as described in Theorem 2.2 is actually a limit of critical points of the
Ambrosio-Tortorelli functional Eε.



582 G.A. FRANCFORT ET AL.

a
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a/4

-a/4

Figure 2. n = 4, bell case.

Theorem 2.4. Let u be a “perfect staircase” function on [0, L] with n steps when viewed as a function on [−L, L]
as described in Theorem 2.2. Then, for all ε sufficiently small, there exists a critical point (uε, vε) (i.e. with
v

′
ε(0) = v

′
ε(L) = 0 and uε(0) = 0, uε(L) = aε), of Eε such that vε has exactly n isolated local maxima in [−L, L]

and
lim
ε→0

‖uε − u‖L2((0,L) or equiv. (−L,L)) = 0. (2.9)

We are also in a position to evaluate the measure limits of each of the terms entering the energy functional
defined in (2.1). This is the object of the following:

Theorem 2.5. If uε → u, a critical point for the Mumford-Shah functional, as given in Theorem 2.2, then
• the limit measure of (ηε + v2

ε)(u′
ε)2dx is (u′)2dx, u′, the approximate gradient of u, being 0 or a/L;

• the limit measure of ε(v′ε)2dx, which is also that of (1 − vε)2/εdx, is a finite sum of Dirac masses
which, in the case that u is piecewise constant (c0 = 0), are located at the end of each step of the
“perfect staircase” that represents u. Each of those masses has weight 1 when the mass is located inside
(0, L) and 1/2 if it is located at x = 0, L, if any.

Remark 2.6. In the case c0 = a/L, we expect that, for ε small enough, uε(x) = aεx/L and vε(x) = L2/(L2 +
a2

εε), which would prove that vε has no v-jump in the sense of Definition 3.5 below, and thus that the resulting
measure limit is always

∑
x∈S(u)∩(0,L) δx + 1/2

∑
x∈S(u)∩{0,L} δx.

3. Preliminary estimates

3.1. Classical a priori estimates

In this section, we establish a few canonical estimates that will prove instrumental in the proof of Theorems 2.2
and 2.5. These estimates are completely standard but we include their proofs for convenience of the reader.
The a priori bound (2.5) is essential in all that follows.
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First note that, from (2.5) and (2.6),

C ≥ Eε(uε, vε) ≥
∫ L

0

(ηε + v2
ε)(u

′
ε)

2dx =
∫ L

0

cεu
′
εdx = aεcε,

so that

cε ≤ C
aε

·
Hence, up to the possible expense of extracting a subsequence,

cε → c0, ε ↘ 0. (3.1)

The proof of Theorem 2.2 will hinge on the actual values that c0 can take. This will be the object of Lemma 4.4
in the next section.

For now, we prove some elementary estimates on the critical points (uε, vε) of (2.1), which, by the way, are
smooth by elliptic regularity.

A first result is a maximum principle for vε, namely,

Lemma 3.1.
0 ≤ vε ≤ 1.

Proof. Multiplying both sides of the first equation of (2.4) by v−ε = max(0,−vε), we get

∫ L

0

−εv
′′
ε v−ε dx +

∫ L

0

vε(u
′
ε)

2v−ε dx +
∫ L

0

vε − 1
ε

v−ε dx = 0.

Because of the Neumann boundary conditions on vε, this yields

∫ L

0

εv
′
ε(v

−
ε )

′
dx +

∫ L

0

vε(u
′
ε)

2v−ε dx +
∫ L

0

vε − 1
ε

v−ε dx = 0,

or still

−
∫ L

0

ε((v−ε )
′
)2dx −

∫ L

0

(v−ε )2(u
′
ε)

2dx −
∫ L

0

(v−ε + 1)
ε

v−ε dx = 0. (3.2)

Each term on the right hand side of (3.2) is nonpositive. Thus,

∫ L

0

(v−ε + 1)
ε

v−ε dx = 0,

hence v−ε ≡ 0.
Multiplication of the first equation of (2.4) by (vε − 1)+ = max(0, vε − 1) would yield the other inequality. �
Next, we establish the convergence properties of the pair (uε, vε).

Lemma 3.2.
vε → 1, strongly in L2((0, L)),

and, modulo extraction,
uε → u ∈ BV ((0, L)), strongly in L1((0, L)),

u′
ε → c0, a.e. in (0, L).

Further, |Du|((0, L)) ≤ a and c0 ≤ a/L.
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Proof. The energy bound (2.5) immediately implies the first convergence. The monotone character (2.7) of uε,
together with (2.2), implies that uε is bounded in BV ((0, L)). By the compactness of BV in L1 (see [9]), a
subsequence of uε converges in L1((0, L)) to u ∈ BV ((0, L)).

Because of the weak lower semi-continuous character of the total variation,

|Du|((0, L)) ≤ lim inf
ε

|Duε|((0, L)) = lim inf
ε

aε = a,

hence the bound on |Du|((0, L)).
By virtue of (2.6),

u
′
ε(x) → c0 as ε → 0 for a.e x ∈ (0, L).

Fatou’s lemma then yields the following refined bound on c0:

c0L =
∫ L

0

lim
ε→0

u
′
ε ≤ lim

ε→0

∫ L

0

u
′
ε = a. �

It is also standard that, in such a context, a Noether type conservation law holds, as stated in the following:

Proposition 3.3. {
1
2

(
(1 − vε)2

ε
− (ηε + v2

ε)(u
′
ε)

2 − ε(v
′
ε)

2

)}′

= 0.

Proof. The left hand side of the previous expression also reads as

Aε :=
(vε − 1)v

′
ε

ε
− εv

′
εv

′′
ε − vεv

′
ε(u

′
ε)

2 − (v2
ε + ηε)u

′
εu

′′
ε

= v
′
ε

(
−εv

′′
ε − vε(u

′
ε)

2 +
vε − 1

ε

)
− (v2

ε + ηε)u
′
εu

′′
ε .

The first and second equation of (2.4) then imply that

Aε = −v
′
ε(2vε(u

′
ε)

2) − (v2
ε + ηε)u

′
εu

′′
ε = −u

′
ε[u

′′
ε (ηε + v2

ε) + 2vεv
′
εu

′
ε] = −u

′
ε[u

′
ε(ηε + v2

ε)]′ = 0. �

An immediate consequence of the proposition above is that

(1 − vε)2

ε
− (ηε + v2

ε)(u
′
ε)

2 − ε(v
′
ε)

2 = dε (3.3)

for some constant dε. Furthermore, we can estimate this discrepancy constant dε as follows

|dε|L =
∫ L

0

|dε| dx =
∫ L

0

∣∣∣∣(1 − vε)2

ε
− (ηε + v2

ε)(u
′
ε)

2 − ε(v
′
ε)

2

∣∣∣∣ dx

≤
∫ L

0

{
(1 − vε)2

ε
+ (ηε + v2

ε)(u
′
ε)

2 + ε(v
′
ε)

2

}
dx ≤ C.

Thus,
|dε| ≤ C. (3.4)

This bound is key to the following gradient estimates.

Lemma 3.4. For ε small enough,

∥∥∥u
′
ε

∥∥∥
∞

≤ C
(εηε)1/2

and
∥∥∥v

′
ε

∥∥∥
∞

≤ C
ε
·
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Whenever c0 > 0, the following refined estimates hold true:

∥∥∥u
′
ε

∥∥∥
∞

≤ C
ε
,

vε(x) ≥ C√ε, ∀x ∈ (0, L).

Proof. From (3.3) and (3.4), we find that

ε(v
′
ε)

2 =
(1 − vε)2

ε
− (ηε + v2

ε)(u
′
ε)

2 − dε ≤ (1 − vε)2

ε
+ C ≤ 1

ε
+ C, (3.5)

from which the L∞-estimate of v
′
ε follows. Moreover,

cεu
′
ε = (ηε + v2

ε)(u
′
ε)

2 =
(1 − vε)2

ε
− ε(v

′
ε)

2 − dε ≤ (1 − vε)2

ε
+ C ≤ 1

ε
+ C ≤ 2

ε
(3.6)

from which the refined estimate on the L∞-norm of u
′
ε follows if c0 > 0. The lower bound for vε is in turn

immediate from (3.6), (2.6) and (2.2).
Finally, because u

′
ε = cε/(ηε + v2

ε), we deduce from (3.6) that

(u
′
ε)

2 ≤ 2
εcε

cε

ηε + v2
ε

≤ 2
εηε

and thus obtain the first estimate on the L∞-norm of u
′
ε, independently of the value of c0. �

3.2. Definition of v-jump

We start by the following remark: recalling that u′
ε = cε/(ηε + v2

ε), we may rewrite (3.3) in the form

(1 − vε)2

ε
− c2

ε

ηε + v2
ε

− ε(v
′
ε)

2 = dε. (3.7)

Consequently, if xε is a critical point of vε, i.e. v
′
ε(xε) = 0 and, using the fact that vε ≤ 1, we have

(ηε + v2
ε(xε))(1 − vε(xε))2 ≤ ε(c2

ε + |dε|).

It easily follows that either vε(xε) > 1 − 2
√

ε
√

c2
ε + |dε| or vε(xε) < 2

√
ε
√

c2
ε + |dε|. Recalling that cε and |dε|

are both bounded independently of ε, we can write that there exists a constant C such that the extremal values
of vε are either > 1 − C√ε or < C√ε. Let us denote by mε = min[0,L] vε and Mε = max[0,L] vε it follows that
two cases are possible: either

mε > 1 − C√ε, (3.8)
or

mε < C√ε and 1 − C√ε < Mε. (3.9)
Indeed, the case Mε < C√ε would violate the energy bound (2.5).

This motivates the:

Definition 3.5. We call xε ∈ [0, L] a v-jump if xε is a critical point of vε with vε(xε) ≤ C√ε.

In view of the above discussion, it is equivalent (for ε small enough) to define a v-jump as a critical point
of vε such that vε(xε) ≤ aε with aε ≤ α for any threshold value α < 1. Moreover case (3.8) happens if and only
if there is no v-jump, and case (3.9) if and only if there is at least a v-jump.
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Note that the pair
(uε, vε) =

(
aεx/L, L2/(L2 + εa2

ε)
)

is always a solution of (2.4).
We now show that in the case (3.8), or the case of no v-jump, it is the only possible solution.

Lemma 3.6. If, for some ε sufficiently small, vε has no v-jump in (0, L) then the only solution to (2.4) is
(uε, vε) =

(
aεx/L, L2/(L2 + εa2

ε)
)
.

Proof. Differentiating equation (2.6), we get u
′′
ε (ηε + v2

ε) + 2vεv
′
εu

′
ε = 0 and therefore

u′′
ε =

−2vεu
′
εv

′
ε

ηε + v2
ε

· (3.10)

Differentiating the first equation in (2.4) gives

− εv
′′′
ε + v

′
ε(u

′
ε)

2 + 2vεu
′
εu

′′
ε +

v
′
ε

ε
= 0. (3.11)

Substituting (3.10) into (3.11), we find that

−εv
′′′
ε + v

′
ε

[
(u

′
ε)

2 +
1
ε
− 4

(vεu
′
ε)

2

ηε + v2
ε

]
= 0.

With w := v
′
ε, the above equation becomes {

−εw
′′

+ weε = 0

w(0) = 0, w(L) = 0,
(3.12)

where

eε = (u
′
ε)

2 +
1
ε
− 4

(vεu
′
ε)2

ηε + v2
ε

and substituting (2.6)

eε =
1
ε

+
c2
ε

(ηε + v2
ε)2

− 4
c2
εv

2
ε

(ηε + v2
ε)3

=
(ηε + v2

ε)3 + εc2
ε(ηε − 3v2

ε)
ε(ηε + v2

ε)3
·

When there is no v-jump then, as remarked above, vε ≥ 1
2 and one can easily show that then eε > 0. Multiplying

(3.12) by w and after suitable integration by parts, it follows that (3.12) has a unique solution w ≡ 0. Thus vε

is a constant. Hence the result. �
An obvious corollary of Lemma 3.6 is:

Remark 3.7. Whenever c0 = 0, then there exists a v-jump for a subsequence of ε ↘ 0.

4. Proof of Theorem 2.2

4.1. Symmetry properties

We start by stating some relatively easy symmetry properties of the solutions to (2.4). These follow from
the equation (2.8) which we recall here⎧⎪⎨

⎪⎩
−εv

′′
ε +

vεc
2
ε

(ηε + v2
ε)2

+
vε − 1

ε
= 0

v
′
ε(0) = v

′
ε(L) = 0.

(4.1)
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(i) (ii)

Figure 3. (i) The well; (ii) the bell.

Observe that that equation is of the form

{
v

′′
ε = fε(vε)

v
′
ε(0) = v

′
ε(L) = 0,

(4.2)

with fε of class C2. Symmetry properties follow.

Lemma 4.1. The graph of vε is symmetric with respect to all the vertical lines passing through its critical
points, which in turn are all (including boundary points) absolute maxima or minima of vε.

Proof. If xc
ε is a critical point of vε, then we can symmetrize the graph of vε through the vertical line x = xc

ε.
The uniqueness provided by the Cauchy-Lipschitz theorem for (4.2) imply the symmetry of the graph of vε

around this line. In particular the graph of vε can be symmetrized with respect to x = 0 and vε can thus be
extended into an even function on [−L, L]. Given xc

ε a critical point of vε, the above mentioned symmetry
implies the maximality or minimality of xc

ε on (−L, 2xc
ε + L), and ultimately, by reiteration, on (−L, L). �

In the sequel we will often consider this extension of vε to [−L, L], still denoting it vε.
With the same symmetry argument, we obtain the following more precise description of the graph of vε.

Proposition 4.2. Given ε, there exists an integer nε such that the graph of vε in (−L, L) is made of nε identical
symmetric subgraphs. Moreover, if there is a v-jump, then each subgraph is a symmetric well with a unique
interior critical point which is a v-jump, or a symmetric bell with a v-jump at each end (see Fig. 3).

It remains to show that nε may be chosen independently of ε. To this effect, we calculate the cost of each
v-jump for ε sufficiently small. When there is a v-jump we are in case (3.9). Thus we can find points α < β on
each subgraph satisfying say vε(α) ≤ 1/10 and vε(β) ≥ 9/10. Consequently, each v-jump costs at least

∫ β

α

(
ε(v

′
ε)

2 +
(1 − vε)2

ε

)
dx ≥

∫ β

α

∣∣∣2v
′
ε(1 − vε)

∣∣∣ dx

≥
∣∣∣∣∣
∫ β

α

(2vε − v2
ε)′ dx

∣∣∣∣∣ = (2vε − v2
ε)(β) − (2vε − v2

ε)(α) ≥ 3/4. (4.3)
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Thus, because of the energy bound (2.5), nε must be bounded.
So, up to possible subsequence extraction, we can consider that nε is a constant n for all ε sufficiently small.

Remark 4.3. The uniqueness of the “well” and “bell” profiles is not clear to us at this time. If it is the case,
then solutions to (2.4) would be completely determined by their number of jumps (+ boundary values).

4.2. Characterisation of the possible limiting slopes

We prove that cε can only converge to two possible values.

Lemma 4.4. c0 ∈ {0, a/L}.
Proof. Note that, by Lemma 3.2, c0 ≤ a/L. Assume by contradiction that 0 < c0 < a/L.

We first explain the idea of the proof. By Lemma 3.6, the difficulty in the proof can only come from the
smallness of vε. In other words, there must be a v-jump. Then, let xε ∈ [0, L] be the miniminal point of vε

on [0, L]; according to (3.9), vε(xε) ≤ Cε1/2. Combining this with the lower bound on v in Lemma 3.4, we
obtain that

min
[0,L]

vε ∼ √
ε.

Our proof is then based on the estimate on the size of the set {vε ≤ M
√

ε}, for M large enough.
Recalling that u

′
ε = cε/(ηε + v2

ε), we rewrite the first equation of (2.4) as

− εv
′′
ε +

vεc
2
ε

(ηε + v2
ε)2

+
vε − 1

ε
= 0.

Integrate this equation over {vε ≤ M
√

ε} to obtain

∫
{vε≤M

√
ε}

εv
′′
ε dx =

∫
{vε≤M

√
ε}

vεc
2
ε

(ηε + v2
ε)2

dx +
∫
{vε≤M

√
ε}

vε − 1
ε

dx. (4.4)

We now recall that

The number of connected components of Dε :={vε ≤ M
√

ε} is bounded by a constant C. (4.5)

Indeed the study of the previous subsection implies that the number of connected components of Dε is precisely
the number of periods of vε, hence that it is bounded by nε + 1 ≤ C.

On each connected component (ai, bi) of Dε, we obtain, by virtue of the gradient bound of Lemma 3.4,∣∣∣∣∣
∫ bi

ai

εv
′′
ε

∣∣∣∣∣ =
∣∣∣εv′

ε(bi) − εv
′
ε(ai)

∣∣∣ ≤ C.

Then, with (4.5), the left hand side of (4.4) is bounded from above by C. Because c0 > 0, Lemmata 3.1 and 3.4
imply that 1 ≥ vε(x) ≥ C√ε, ∀x ∈ [0, L]. It follows that, for ε sufficiently small, v2

ε(x) � ηε, ∀x ∈ [0, L]. Thus
the right hand-side is bounded from below by∫

{vε≤M
√

ε}

Cvε

v4
ε

dx− |{vε ≤ M
√

ε}|
ε

≥ C |{vε ≤ M
√

ε}|
M3ε3/2

− |{vε ≤ M
√

ε}|
ε

≥ C|{vε ≤ M
√

ε}|
M3ε3/2

·

Therefore, for ε sufficiently small,

C ≥ C |vε ≤ M
√

ε|
M3ε3/2

,

implying in turn that ∣∣{vε ≤ M
√

ε}∣∣ ≤ CM3ε3/2. (4.6)
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Using this inequality and the refined gradient bound for uε in Lemma 3.4 yields

aε =
∫ L

0

u
′
εdx =

∫
{vε≤M

√
ε}

u
′
εdx +

∫
{M

√
ε≤vε≤ 1

2}
u

′
εdx +

∫
{vε≥ 1

2 }
u

′
εdx

≤ CM3ε1/2 +
∫
{M

√
ε≤vε≤ 1

2}
u

′
εdx +

∫ L

0

u
′
εχ{vε≥ 1

2}dx =: CM3ε1/2 + Jε + Kε. (4.7)

Next, we bound Jε and Kε from above.
Because u

′
ε(x) → c0 a.e. x ∈ (0, L) and χ{vε≥ 1

2 }(x) → χ(0,L)(x) a.e x ∈ (0, L), it follows that wε(x) :=

u
′
ε(x)χ{vε≥ 1

2}(x) → c0χ(0,L)(x) a.e. x ∈ (0, L). On the other hand, for all x ∈ (0, L),

|wε(x)| =
cε

ηε + v2
ε(x)

χ{vε≥ 1
2 }(x) ≤ 4cε ≤ C.

Hence, by Lebesgue’s dominated convergence theorem,

Kε =
∫ L

0

wεdx →
∫ L

0

c0χ(0,L)dx = c0L. (4.8)

From the energy bound (2.5), it follows that

C ≥
∫ L

0

(1 − vε)2

ε
dx ≥

∫
{vε≤1/2}

(1 − vε)2

ε
dx ≥

∫
{vε≤1/2}

1
4ε

dx =
1
4ε

|{vε ≤ 1/2}| ,

yielding the estimate

∣∣{M√
ε ≤ vε ≤ 1/2}∣∣ ≤ |{vε ≤ 1/2}| ≤ Cε. (4.9)

On {M√
ε ≤ vε ≤ 1/2}, we recover, for ε small enough, the refined estimate on u′

ε from Lemma 3.4, that is

u
′
ε =

cε

ηε + v2
ε(x)

≤ cε

v2
ε

≤ cε

M2ε
≤ 2c0

M2ε
· (4.10)

Inserting inequalities (4.9) and (4.10) into the expression for Jε produces the following uniform upper bound:

Jε =
∫
{M

√
ε≤vε≤ 1

2}
u

′
ε ≤ 2c0

M2ε
Cε =

C
M2

· (4.11)
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Coalescing (4.7), (4.8) and (4.11) and letting ε tend to 0 finally leads to

a ≤ C
M2

+ c0L.

We let M tend to ∞ and obtain a contradiction since a > c0L. Thus c0 ∈ {0, a/L} as desired. �
Remark 4.5. In this proof we have tried again to make minimal use of one-dimensional arguments. The only
place where the symmetry of the solution is used for simplicity is in the proof of (4.5). But this can easily be
avoided: we can show instead directly from (2.8) that the number of connected components of Dε is bounded
by Cε−1/3 and this suffices in the proof.

4.3. Form of u

It remains for us to establish the form of the limit critical point. Note that uε is also extended by reflection
about 0 so that

uε(−L) = −aε. (4.12)
Proposition 4.2 immediately implies the following quantization property for the function uε:

uε

(
−L +

2kL

n

)
= −aε +

2kaε

n
for 0 ≤ k ≤ n. (4.13)

Indeed, recalling (2.6) and (4.12),

2aε =
∫ L

−L

cε

ηε + v2
ε

dx = n

∫ −L+2L/n

−L

cε

ηε + v2
ε

dx = n

(
uε

(
−L +

2L

n

)
+ aε

)
.

Now, denote by n the number of times vε reaches its minimal value (n = n in the well case and n = n + 1
in the bell case). Because of the quantization property (4.13), it suffices to consider the case n = 1 in the well
case, and n = 2 in the bell case.

Assume first – well case – that vε(−L) = vε(L) = Mε and that vε reaches its minimum (a v-jump) at x = 0
and that 0 is the only critical point for vε on (−L, L).

Fix δ < L. Then, for ε sufficiently small, vε converges to 1 uniformly on K := [δ, L]. Indeed, the closed set
Aε := {x ∈ (−L, L) | vε(x) ≤ 1 − ε1/4} is centered around 0, as immediately seen from the assumption that
there is only one critical point at 0. Further,

C ≥
∫ L

−L

(1 − vε)2

ε
≥

∫
Aε

(ε1/4)2

ε
=

|Aε|
ε1/2

,

hence diam (Aε) ≤ Cε1/2 < δ for ε ≤ ε0.
Consequently, u

′
ε = cε/(ηε + v2

ε) converges uniformly to c0(= 0) on K. Thus for any x ∈ K

uε(x) = uε(L) −
∫ L

x

u
′
ε(t)dt = aε −

∫ L

x

u
′
ε(t)dt −→ a − c0(L − x). (4.14)

Using the arbitrariness of δ, we conclude, since c0 = 0, that u = a on (0, L]. Similarly, we would find that
u = −a on (−L, 0).

Assume now – bell case – that vε(−L) = vε(L) = mε and that vε reaches its maximum at x = 0 and that
0 is the only critical point for vε on (−L, L). An argument identical to that above would demonstrate that
u′

ε converges uniformly to 0 on K := [−L + δ, L − δ], for δ small. But we know that uε(0) = 0, so that, for
any x ∈ (−L, L),

uε(x) = uε(0) +
∫ x

0

u
′
ε(t)dt = 0 +

∫ x

0

u
′
ε(t)dt −→ c0x. (4.15)

Using the arbitrariness of δ, we conclude, since c0 = 0, that u = 0 on (−L, L).
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Remark 4.6. Note that all results of this subsection hold true in the case c0 �= 0, in particular (4.14) and
(4.15), provided that vε admits a v-jump.

Finally we examine the case c0 = a/L. If there is no v-jump then in view of Lemma 3.6, the result is that
announced in Theorem 2.2. If there is a v-jump, then according to Remark 4.6, all results of the previous case
hold true and, in particular (4.14) and (4.15). Hence the result upon replacing c0 by a/L.

5. Proof of Theorem 2.4

In this section, we prove Theorem 2.4. To this end, we will use the Γ-convergence of the Ambrosio-Tortorelli
functional Eε to the Mumford-Shah functional F together with the equi-distribution of the v-jumps of any
critical point (uε, vε) of Eε.

Suppose now that u is a piecewise constant function with n steps in [0, L] as described in Theorem 2.2.
Because our method is general enough to handle all possible configurations of u, we can assume from now on
that, with N := n−1, u ≡ 0 on (0, L/2N), jumps by a/N at L/2N , and then jumps by a value of a/N at the end
of each interval of length L/N . We will construct critical points of Eε – points that satisfy the Euler-Lagrange
equations (2.4) – that converge to (u, 1).

Before going into the details of the proof, we briefly explain the ideas. Suppose we have found (uε, vε). Then,
from Theorem 2.2, we know that vε has a periodic structure with an equi-distribution of v-jumps. Furthermore,
the function uε enjoys a quantization property: its values at v-jumps are explicit, depending only on aε, L
and the number of jumps. By our assumption on the structure of u, the graph of vε is expected to consist of
N symmetric wells on [0, L]. Then, we have uε(0) = 0 and uε(kL/2N) = kaε/2N for 0 ≤ k ≤ 2N . Furthermore,
the graph of vε on [0, L/2N] is a half-well with a sink at x = L/2N . This sink is clearly a v-jump. If we are able to
construct a critical point (uε, vε) of Eε on [0, L/2N ] having one v-jump with uε(0) = 0 and uε(L/2N) = aε/2N ,
then we can glue appropriately identical pieces of this critical point to produce a critical point of Eε on [0, L],
still denoted by (uε, vε), such that uε(0) = 0, uε(L) = aε and also that vε has N v-jumps and n = N + 1 local
maxima. The gluing process is always possible because the first equation of (2.4) is satisfied on each interval of
length L/2N and also, since v

′
ε = 0, at the gluing points. We can thus assume without loss of generality that

N = 1 and that the v-jump is at x = L. In this case, for ε small, the graph of the function vε, if it exists, is a
half-well and u = 0 in [0, L) with u(L) = a. We now investigate the details.

The sought functions vε clearly belong to

U := {v ∈ H1(0, L) : μ ≤ v(0) ≤ 2 − μ; v(L) ≤ α}.

In the above definition, 0 < α < μ < 1, both are independent of ε. Further conditions on μ and α will be added
later on whenever necessary.

The heuristic argument above suggests that we seek local minimizers (uε, vε) in the following set

Bε := {(u, v) ∈ (H1(0, L))2 : u(0) = 0, u(L) = aε, v ∈ U}.

We use the following notation:

Fε(v, r, s) :=
∫ s

r

(
ε(v

′
)2 +

(1 − v)2

ε

)
dx

for 0 ≤ r ≤ s ≤ L and note that, for f(x) = x−x2/2, then, for all v ∈ H1(0, L) and for all 0 ≤ x1 ≤ x2 ≤ x3 ≤ L,

Fε(v, x1, x3) ≥ 2 |f(v(x1)) + f(v(x3)) − 2f(v(x2))| . (5.1)
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Indeed, assume with no loss of generality that v ∈ C1(0, L). Then, by Cauchy’s inequality,

Fε(v, x1, x3) =
∫ x3

x1

(
ε(v

′
)2 +

(1 − v)2

ε

)
dx ≥

∫ x3

x1

2
∣∣∣v′

(1 − v)
∣∣∣ dx

= 2
∫ x2

x1

∣∣∣∣(v − v2

2

)′ ∣∣∣∣dx + 2
∫ x3

x2

∣∣∣∣(v − v2

2

)′∣∣∣∣ dx

≥ 2
∫ x2

x1

(
v − v2

2

)′

dx + 2
∫ x3

x2

−
(
v − v2

2

)′

dx

= 2(2f(v(x2)) − f(v(x1)) − f(v(x3))).

Arguing similarly, we also obtain

Fε(v, x1, x3) ≥ 2(f(v(x1)) + f(v(x3)) − 2f(v(x2)))

and thus (5.1) follows.
In a first step, we establish a universal lower bound for Eε over Bε as well as an upper bound for the infimum

of Eε over Bε. In fact, for all (u, v) ∈ Bε, we have

Eε(u, v) ≥ Fε(v, 0, L) ≥ 2(f(μ) − f(α)), (5.2)

while there exists (uε, vε) ∈ Bε such that, for ε small,

Eε(uε, vε) ≤ 1 + o(1). (5.3)

To see (5.2), let (u, v) ∈ Bε. Then, using (5.1) with x1 = x2 = 0 and x3 = L, we get

Fε(v, 0, L) ≥ 2(f(v(0)) − f(v(L))) ≥ 2( min
x∈[μ,2−μ]

f(x) − max
x≤α

f(x)) = 2(f(μ) − f(α)).

Assertion (5.3) is derived upon constructing a sequence (uε, vε) which is very similar to that used in the
proof of the Γ-lim sup of the Ambrosio-Tortorelli functional in [3]. We omit the details.

The direct method of the calculus of variations immediately implies that the minimum of Eε over Bε is
achieved at, say (uε, vε). By (5.3),

Eε(uε, vε) = min
(u,v)∈Bε

Eε(u, v) ≤ 1 + o(1). (5.4)

For a suitable choice of (μ, α), a minimizer (uε, vε) of Eε over Bε is actually a critical point of Eε for ε
sufficiently small. This is the object of the following:

Lemma 5.1. There exists (μ, α), independent of ε, such that if (uε, vε) is a minimizer of Eε over Bε then it is
a critical point of Eε if ε is small enough.

Proof. To prove the criticality of (uε, vε), it suffices to prove the following inequalities with a suitable choice
of (μ, α):

(i) μ < vε(0) < 2 − μ; and
(ii) vε(L) < α.

Indeed, then (uε, vε) is not on the boundary of Bε but rather in its interior, hence it is a local minimizer
of Eε and thus a critical point.

Our proof is by contradiction. We assume that there exists a sequence εj → 0 such that either (i), or (ii) is
not satisfied. Then, for each j, we have at least an equality in either (i), or (ii). However, through relabeling,
we can assume that either (i), or (ii) is never satisfied.
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Suppose that, for all ε, either vε(0) = μ, or vε(0) = 2 − μ. It is enough to consider the first case because
f(μ) = f(2 − μ) and only the value of f(v(0)) enters the proof.

We introduce the following special points xε. From (5.4), we know that

∫ 3L/4

L/4

(1 − vε)2

ε
dx ≤ Eε(uε, vε) ≤ 1 + o(1).

Thus, we can find points xε ∈ (L/4, 3L/4) such that vε(xε) → 1 as ε → 0. Then, using (5.1),

Fε(vε, 0, L) ≥ 2(2f(vε(xε)) − f(vε(0)) − f(vε(L))) ≥ 2(2f(vε(xε)) − f(μ) − f(α))
≥ 2(1 − f(μ) − f(α)) − o(1).

Therefore
1 + o(1) ≥ Eε(uε, vε) ≥ Fε(vε, 0, L) ≥ 2(1 − f(α) − f(μ)) − o(1). (5.5)

Thus, if we require additionally that
f(α) + f(μ) < 1/2, (5.6)

we reach a contradiction in (5.5).
Were (ii) not true, then vε(L) = α. Set

α∗
ε = minx∈[0,L]vε(x). (5.7)

Then, for all ε, one has α∗
ε ≤ α. We first improve the lower bound for Fε(vε, 0, L) as follows

Fε(vε, 0, L) ≥ 2 [1/2 + min {f(α) − 2f(α∗
ε), 1/2 − 2f(α)}] − o(1). (5.8)

Indeed, if yε ∈ (0, L] is such that vε(yε) = α∗
ε, then either xε > yε, or xε < yε. If xε ∈ (yε, L] then, applying (5.1)

with x1 = yε, x2 = xε, x3 = L, and recalling that α∗ ≤ α < 1, yields

Fε(vε, 0, L) ≥ 2(2f(vε(xε)) − f(vε(yε)) − f(vε(L))) ≥ 2(1 − f(α∗
ε) − f(α)) − o(1)

≥ 2(1 − 2f(α)) − o(1).

If xε < yε ≤ L, then, applying (5.1) with x1 = xε, x2 = yε, x3 = L yields

Fε(vε, 0, L) ≥ 2(f(vε(xε)) + f(vε(L)) − 2f(vε(yε)))
≥ 2(1/2 + f(α) − 2f(α∗

ε)) − o(1).

Hence (5.8).
If f(α) − 2f(α∗

ε) is strictly positive, say,

f(α) − 2f(α∗
ε) ≥

1
2
f(α) > 0 (5.9)

then we obtain a contradiction with (5.4) since

1/2 − 2f(α) > 0, (5.10)

provided α is small enough. Thus, the only case left is f(α) − 2f(α∗
ε) < 1

2f(α). But this case never occurs,
thanks to the following:
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Proposition 5.2. Take α1 ∈ (0, α), independent of ε, such that f(α) ≥ 4f(α1). Then,

min
x∈[0,L]

vε(x) = α∗
ε ≤ α1, (5.11)

and thus (5.9) is always satisfied.

Proof. Assume that (5.11) is false, i.e.
vε(x) ≥ α1, ∀x ∈ [0, L]. (5.12)

We show that the energy Eε(uε, vε) is actually greater than 1 and thus reach a new contradiction. Since (uε, vε)
minimizes Eε over Bε, (uε, vε) is, at the least, a critical point of Eε on (0, L) with respect to compactly supported
variations in both vε and uε. Thus, on (0, L),

−εv
′′
ε + vε(u

′
ε)

2 +
vε − 1

ε
= 0

[u
′
ε(ηε + v2

ε)]′ = 0.

(5.13)

The second equation of (5.13) shows that, on (0, L),

u
′
ε(x)(ηε + v2

ε(x)) = cε a.e. x (5.14)

for some constant cε. From (5.4), (5.14), and, since uε is in particular in W 1,1(0, L),

o(1) + 1 ≥ Eε(uε, vε) ≥
∫ L

0

(ηε + v2
ε)(u

′
ε)

2 =
∫ L

0

cεu
′
ε = aεcε,

so that
cε ≤ C

aε
·

Hence, at the possible expense of extracting a subsequence,

cε → c0, ε ↘ 0. (5.15)

On the other hand, the energy bound Eε(uε, vε) ≤ 1 + o(1) implies that vε converges to 1 in L2(0, L) and thus
vε(x) → 1 a.e. x ∈ (0, L). Therefore

u
′
ε(x) =

cε

ηε + v2
ε(x)

→ c0 as ε → 0 for a.e. x ∈ (0, L).

In view of (5.12) and (5.14), u
′
ε is bounded. Therefore, by Lebesgue’s dominated convergence theorem,

aε =
∫ L

0

u
′
εdx →

∫ L

0

c0dx = c0L.

Hence c0 = a/L > 0. Now,

∫ L

0

(ηε + v2
ε)(u

′
ε)

2dx =
∫ L

0

cεu
′
εdx = cεaε ≥ c0a − o(1) ≥ a2

L
− o(1).

This, together with inequality (5.2), allows us to deduce that

1 + o(1) ≥ Eε(uε, vε) =
∫ L

0

(ηε + v2)(u
′
)2dx + Fε(vε, 0, L) ≥ a2

L
+ 2(f(μ) − f(α)) − o(1).
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This is again impossible if we initially choose

a2

L
+ 2(f(μ) − f(α)) > 1. (5.16)

�

Summing up and recalling (5.6), (5.10) and (5.16), any minimizer (uε, vε) of Eε over Bε is actually a critical
point of Eε when ε is small enough, provided the following conditions on μ and α are satisfied

0 < α < μ < 1, f(μ) + f(α) < 1/2, 1/2− 2f(α) > 0,
a2

L
+ 2(f(μ) − f(α)) > 1. (5.17)

The set of (μ, α) meeting the above requirements is not empty. �
The third and final step in the proof of Theorem 2.4 is to describe the behavior of (uε, vε) as ε → 0. By

Lemma 5.1, we easily see that (uε, vε) is a local minimizer of Eε. To complete the proof, we have to prove that
(i) vε has only one v-jump at x = L; and
(ii) u, the limit function of uε in L2(0, L), is identically 0 on (0, L).

Let us prove (i). From the definition of vε, we know that vε(L) ≤ α < 1. We also know from Lemma 5.1
that (uε, vε) is a critical point of Eε, hence v

′
ε(0) = v

′
ε(L) = 0. Now, we invoke the remarks of Section 3.5 to

conclude that vε has a v-jump at x = L. If vε has another v-jump, either at x = 0 or at an interior point of
(0, L), then, using (4.3), we find that the limit energy of Eε is at least 2 × 3/4 = 3/2. However, from (5.4), we
know that the limit energy of Eε(uε, vε) is not greater than 1, and thus vε has only one v-jump at x = L.

It remains to establish (ii). From (i), we know that vε is a half-well with the sink at x = L. So, from
Theorem 2.2, we see that either u ≡ 0 or u(x) = ax/L for x ∈ (0, L). The latter case cannot happen, because
if it does, then by lower semicontinuity and recalling (5.2) and the fact that vε → 1 in L2(0, L), one finds that

1 ≥ lim inf
ε→0

Eε(uε, vε) ≥ lim inf
ε→0

∫ L

0

(ηε + v2
ε(x))(u

′
ε(x))2dx + lim inf

ε→0
Fε(vε, 0, L)

≥
∫ L

0

(u
′
(x))2dx + 2(f(μ) − f(α)) =

a2

L
+ 2(f(μ) − f(α)) > 1,

which is impossible in view of (5.17). The proof of Theorem 2.4 is now complete.

Remark 5.3. If N = 1 and the v-jump is at the boundary of (0, L) then the critical points (uε, vε) of Eε

constructed in Theorem 2.4 are also local minimizers of Eε. We conjecture that if N = 1 and the v-jump is
at L/2 or if N ≥ 2, then the critical points (uε, vε) found in Theorem 2.4 are also local minimizers of Eε.

6. Proof of Theorem 2.5

The measure limit of (ηε + v2
ε)(u′

ε)2dx is immediately computed upon remarking that, thanks to (2.6),

(ηε + v2
ε)(u′

ε)
2 = cεu

′
ε,

so that the measure limit of (ηε + v2
ε)(u′

ε)2dx is that of cεu
′
εdx. Testing with a smooth compactly supported

function ϕ, we obtain ∫ L

0

cεu
′
εϕ dx = −cε

∫ L

0

uεϕ
′ dx −→ −c0

∫ L

0

uϕ′ dx,

so that, upon recalling Theorem 2.2, we obtain the desired result. The reader will have not failed to note the
fortuitousness of the value of c0, i.e. 0, when u jumps; the result would be false if u could jump for non-zero
values of c0!
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The computation of the measure limit of the other two terms is more delicate. We first establish that there is
no concentration of energy for those two terms away from the jump points. We will only use the property that
there is a finite ε-independent number jof v-jumps on [0, L], denoted by x1

ε, ...., x
j
ε, with xk

ε → xk, k = 1, ..., j.

Lemma 6.1. For any compact subset K ⊂ [0, L] \ ∪k=1,...,j{xk}, we have∫
K

(
ε(v′ε(x))2 + (1 − vε(x))2/ε

)
dx ≤ CKε1/4,

where CK may depend only on K.

Proof. Consider Aε := {x ∈ [0, L] : vε(x) ≤ 1 − ε1/4}. Then, from the energy bound (2.5), |Aε| ≤ C√ε, while
{x1

ε, ..., x
j
ε} ⊂ Aε. For a given compact subset K of [0, L]\∪k=1,...,j{xk}, set δ := 1/2 mink=1,...,j dist(xk, K). If ε

is small enough, {x1, ..., xj} ⊂ Aε ⊂ Uδ := ∪k=1,...,j [xk −δ, xk +δ], so that, K∩Aε = ∅. Because K ⊂ [0, L]\Uδ,
it suffices to prove that ∫

[0,L]\Uδ

(
ε(v′ε(x))2 + (1 − vε(x))2/ε

)
dx ≤ CKε1/4. (6.1)

Let us denote Vδ = [0, L] \ Uδ. Multiplying both sides of the first equation of (2.4) by vε − 1 and integrating
over Vδ, we get∫

Vδ

−εv
′′
ε (x)(vε(x) − 1)dx +

∫
Vδ

vε(x)(u
′
ε(x))2(vε(x) − 1)dx +

∫
Vδ

(vε(x) − 1)2

ε
dx = 0. (6.2)

Note that Vδ is a union of a finite ε-independent number J (≤ j +1) of intervals on [0, L]: Vδ = ∪k=1,...,J [ak
ε , bk

ε ].
Now, integrating by parts the first term of (6.2), recalling (2.6) and rearranging, one obtains

∫
Vδ

ε(v
′
ε(x))2dx +

∫
Vδ

(vε(x) − 1)2

ε
dx =

J∑
k=1

ε
(
v

′
ε(b

k
ε)(vε(bk

ε) − 1) − v
′
ε(a

k
ε)(vε(ak

ε) − 1)
)

+
∫

Vδ

c2
ε

(ηε + v2
ε(x))2

vε(x)(1 − vε(x))dx. (6.3)

By the definitions of Aε and Vδ, we have |1 − vε| ≤ ε1/4 on Vδ. Combining this fact with the gradient bound for
vε in Lemma 3.4 yields that the right hand side of (6.3) is bounded from above by CKε1/4 for some constant CK

which may depend only on K. Hence the desired result stated in (6.1) follows. �
Remark 6.2. The previous lemma shows that the measure limits of ε(v′ε(x))2 dx, and of (vε(x)− 1)2/ε dx are
Dirac masses concentrated at x1, ..., xj . We will evaluate their respective weight in the fourth and final step
below.

Also note that, thanks to Lemma 3.6, those limits are immediately computed (and found to be 0!) in the
absence of v-jumps.

The second step consists in computing the limit d0 of the discrepancy dε defined in (3.3), which exists, at
least for a well chosen subsequence, by the boundedness (3.4) of dε. To this effect, we prove the following:

Lemma 6.3. d0 + c2
0 = 0.

Proof. Recalling (3.3) and (2.6), we obtain

dε + cεu
′
ε(x) =

(vε(x) − 1)2

ε
− ε(v′ε(x))2, (6.4)

and thus

|dε + cεu
′
ε(x)| =

∣∣∣∣ (vε(x) − 1)2

ε
− ε(v′ε(x))2

∣∣∣∣ . (6.5)
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Let Aε, K with |K| > 0 and δ be as in the proof of Lemma 6.1. Then, on K, one has 1 − ε1/4 ≤ vε ≤ 1. By
virtue of (2.6), u

′
ε is bounded on K. Upon integrating (6.5) over K, recalling Lemma 3.2 and letting ε ↘ 0, we

have by Lebesgue’s dominated convergence theorem

|K| ∣∣d0 + c2
0

∣∣ = lim
ε→0

∫
K

|dε + cεu
′
ε(x)| dx = lim

ε→0

∫
K

∣∣∣∣ (vε(x) − 1)2

ε
− ε(v′ε(x))2

∣∣∣∣ dx. (6.6)

In view of Lemma 6.1, the last term of the above equation is 0. Thus d0 + c2
0 = 0 as claimed. �

The third step consists of the following equi-partition result:

Lemma 6.4. For all x in [0, L],

|v′ε(x)| ≤ 1 − vε(x)
ε

·
Further,

lim
ε→0

∫ L

0

|ε(v′ε(x))2 − (vε(x) − 1)2/ε| dx = 0.

Proof. According to (6.4), the term (vε(x) − 1)2/ε − ε(v′ε(x))2 attains, for a fixed ε, its minimum on [0, L]
precisely where u′

ε = cε/(ηε + v2
ε) attains its minimum, or still, where vε attains its maximum. But, at such

points, v′ε cancels, so that the minimum of that term is non-negative. Thus,

∫ L

0

∣∣∣∣(vε(x) − 1)2

ε
− ε(v′ε(x))2

∣∣∣∣ dx =
∫ L

0

(
(vε(x) − 1)2

ε
− ε(v′ε(x))2

)
dx

=
∫ L

0

(dε + cεu
′
ε(x)) dx = Ldε + cεaε

→ Ld0 + c0a = L(d0 + c2
0) = 0,

in view of Lemma 6.3. �
The fourth and final step consists in evaluating the respective weights of the Dirac masses making up the

limit of ε(v′ε(x))2 dx and of (vε(x) − 1)2/ε dx.
To this effect, we first remark that, at the possible expense of extending vε by reflection around x = 0 and/or

x = L, we may always compute the measure limit μ of (ε(v′ε(x))2 + (vε(x)−1)2/ε) dx over some I ⊃ [0, L], so
that μ(∂I) = 0, in which case μ(I) = limε

∫
I(ε(v

′
ε(x))2 +(vε(x)−1)2/ε) dx, while Lemma 6.4 still applies over I.

Note that

∫
I

(
ε(v′ε(x))2 +

(vε(x)−1)2

ε
− 2|v′ε(x)|(1−vε(x))

)
dx =

∫
I

(
ε1/2|v′ε(x)|− (1−vε(x))

ε1/2

)2

dx

≤
∫

I

∣∣∣∣ε(v′ε(x))2− (1−vε(x))2

ε

∣∣∣∣ dx,

which goes to 0 with ε, according to Lemma 6.4 above. Thus, the total mass of the measure limit of (ε(v′ε(x))2 +
(vε(x)−1)2/ε) dx, is also that of 2|v′ε(x)|(1−vε(x)) dx. But, we know, according to Proposition 4.2, that the
graph of vε is symmetric around each v-jump, so that it suffices to compute the mass of measure limit of
2|v′ε(x)|(1−vε(x)) dx over a half well, that is,

∫
{x:vε(x)∈[mε,Mε]}

2|v′ε(x)|(1−vε(x)) dx,
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or still, since v′ε(x) > 0 on {x : vε(x) ∈ [mε, Mε]},
∫ Mε

mε

2(1 − y) dy = (2Mε − M2
ε ) − (2mε − m2

ε) −→ 1,

as ε ↘ 0, since Mε ↗ 1, while mε ↘ 0. Hence the measure limit μ is given by

μ = 2
∑

{x: x is a v-jump}
δx.

The proof of Theorem 2.5 is now complete.
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