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MESH-INDEPENDENCE AND PRECONDITIONING
FOR SOLVING PARABOLIC CONTROL PROBLEMS WITH MIXED
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Abstract. Optimal control problems for the heat equation with pointwise bilateral control-state
constraints are considered. A locally superlinearly convergent numerical solution algorithm is proposed
and its mesh independence is established. Further, for the efficient numerical solution reduced space
and Schur complement based preconditioners are proposed which take into account the active and
inactive set structure of the problem. The paper ends by numerical tests illustrating our theoretical
findings and comparing the efficiency of the proposed preconditioners.
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1. Introduction

In this work we study a locally superlinearly convergent algorithm for computing the solution of constrained
distributed optimal control problems for processes governed by the linear heat equation

yt − αΔy = f + u in Q, y(0) = y◦ on Ω, (1.1)

where Ω ⊂ R
d represents the domain of interest and Q is the space-time cylinder. Furthermore, f is a given

source, y◦ denotes the initial temperature, and α > 0 is a given constant reflecting heat conduction properties.
We consider (1.1) together with homogeneous Dirichlet boundary conditions. In what follows we call y the state
and u the control (variable), respectively.

Recently, there has been significant interest in optimally controlling (1.1) subject to pointwise mixed control-
state constraints of the type

a ≤ y + cu ≤ b almost everywhere (a.e.) in Q, (1.2)
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where a, b ∈ Lq(Q), for some q > 2 and with a < b, and c ∈ L∞(Q), with c ≥ εc > 0 a.e. in Q or c ≤ εc < 0
a.e. in Q. Mixed control-state constraints are of interest in several respects: (i) They occur in Lavrentiev-type
regularized state constrained optimal control problems, where typically c ≡ ε > 0. In contrast to the measure-
valuedness of the Lagrange multiplier associated with pure state constraints (i.e., c ≡ 0 in (1.2)), the multiplier
pertinent to the mixed control-state constraints enjoys L2(Q)-regularity; see, e.g., [20]. This makes analytical
investigations as well as the development of fast numerical solution methods amenable. (ii) On the other hand,
mixed control-state constraints may appear in their own right. For instance, for c < 0 (1.2) can be interpreted
as to restrict the control by some multiple of the state. In thermal processes this might be intended to avoid
material tensions due to a significant difference between the state (temperature) and the control (heating or
cooling) action.

Based on earlier experience [10,12,13], here we propose a primal-dual active set or, equivalently, semismooth
Newton method for the numerical solution of the underlying constrained optimal control problems. It turns
out that the method converges locally at a superlinear rate in function space as well as in finite dimensions
after discretization. In addition we prove that the convergence is mesh-independent. In both cases we extend
currently available work for the control of elliptic partial differential equations [9,11] to the parabolic case. This
is of particular interest with respect to the mesh-independence, since there are no such results available even
in the case where the mixed control-state constraints are replaced by the more accessible pointwise control
constraints a ≤ u ≤ b a.e. in Q. We emphasize that our findings for the mixed control-state constraints readily
carry over to the case of pure control constraints.

As the discretization of time-dependent PDE-constrained optimization problems naturally results in an ex-
tremely large scale problem, preconditioned iterative solvers for the resulting subsystems have to be employed.
For research papers on reliable preconditioning in (unconstrained) optimal control of PDEs we refer to, e.g., [2–4].
The literature on preconditioning techniques in the case of additional inequality constraints and, in particular,
in connection with active set solvers is relatively scarce. Therefore, another goal of the present work is to
introduce a preconditioning technique which is tailored to the active respectively inactive set structure of our
solver and, hence, is able to handle additional pointwise inequality constraints efficiently.

The subsequent sections are organized as follows. In Section 2 we introduce the optimal control problem
under consideration and present first-order necessary and sufficient optimality conditions. Section 3 is devoted
to the development and convergence analysis of our solution algorithms. Then, in Section 4, we prove mesh
independence of our method. Finally, numerical examples illustrating the efficient performance of our solver
are discussed in Section 5. This section also contains an investigation of appropriate preconditioners for the
iterative solvers considered.

2. The optimal control problem

In this section we formulate the optimal control problem with mixed pointwise control-state constraints and
review first-order necessary optimality conditions.

2.1. The constrained optimal control problem

Suppose that Ω is an open and bounded subset of R
d, d ∈ {2, 3}, with Lipschitz boundary Γ = ∂Ω. For T > 0

we set Q = (0, T ) × Ω and Σ = (0, T ) × Γ. Moreover, by L2(0, T ; H1
0(Ω)) we denote the space of (equivalence

classes) of measurable abstract functions ϕ : [0, T ] → H1
0 (Ω), which are square integrable, i.e.,

∫ T

0

‖ϕ(t)‖2
H1

0 (Ω) dt < ∞.

For the definition of Sobolev spaces we refer the reader, e.g., to [1,6]. In particular, H−1(Ω) stands for the
dual space of H1

0 (Ω). Note that the space H1
0 (Ω) is continuously embedded in L6(Ω) for spatial dimension

d ≤ 3. When t is fixed, the expression ϕ(t) stands for the function ϕ(t, ·) considered as a function in Ω only.
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Recall that
W (0, T ) =

{
ϕ ∈ L2(0, T ; H1

0 (Ω)) : ϕt ∈ L2(0, T ; H−1(Ω))
}

is a Hilbert space supplied with its common inner product; see [5], p. 473, for instance. Since H1
0 (Ω) is

continuously embedded in Lr(d)(Ω) with r(1) ∈ [2, +∞], r(2) ∈ [2, +∞) and r(d) ∈ [2, 2d/(d − 2)] for all d ≥ 3,
we have that W (0, T ) is continuously embedded in L2(0, T ; Lr(d)(Ω)). Further, it is well-known that W (0, T ) is
continuously embedded in C([0, T ]; L2(Ω)); see [21], Theorem 3.10. Notice that L2(0, T ; L2(Ω)) can be identified
with L2(Q). By Aubin’s lemma [18], W (0, T ) is compactly embedded into L2(Q). Moreover, it follows from

∫ T

0

∫
Ω

|ϕ(t,x)|3 dxdt ≤
∫ T

0

(∫
Ω

|ϕ(t,x)|2 dx
)1/2(∫

Ω

|ϕ(t,x)|4 dx
)1/2

dt

=
∫ T

0

‖ϕ(t)‖L2(Ω)‖ϕ(t)‖2
L4(Ω) dt

≤ ‖ϕ‖C([0,T ];L2(Ω))‖ϕ‖
2
L2(0,T ;L4(Ω))

for any ϕ ∈ W (0, T ) that W (0, T ) is continuously embedded into L3(Q) for spatial dimension d ≤ 3.
We consider a distributed optimal control problem for the heat equation with mixed pointwise control-state

constraints. The goal is to minimize the cost function J : W (0, T )× L2(Q) → [0,∞) given by

J(y, u) =
1
2

∫ T

0

∫
Ω

αQ |y − zQ|2 dxdt +
1
2

∫
Ω

αΩ |y(T ) − zΩ|2 dx

+
κ

2

∫ T

0

∫
Ω

|u − ud|2 dxdt,

(2.1)

where the state y and the control u are coupled by the linear boundary value problem

yt(t,x) − αΔy(t,x) = f(t,x) + u(t,x) for almost all (t,x) ∈ Q, (2.2a)

y(t, s) = 0 for almost all (t, s) ∈ Σ, (2.2b)

y(0,x) = y◦(x) for almost all x ∈ Ω. (2.2c)

In (2.1) we assume that αQ and αΩ are non-negative weights satisfying αQ ∈ L∞(Q) and αΩ ∈ L∞(Ω),
respectively. The desired states zQ ∈ L2(Q), zΩ ∈ L2(Ω) and the nominal control ud ∈ L3(Q) are given, and
κ > 0 denotes a regularization parameter. For the data in (2.2) we suppose that the inhomogeneity f belongs
to L2(0, T ; H−1(Ω)), α > 0 holds true, and the initial state satisfies y◦ ∈ L2(Ω). It is well-known that for
any u ∈ L2(Q) there exists a unique solution y ∈ W (0, T ) of the state equation (2.2). Moreover, the mapping
u 
→ y(u) is continuous from L2(Q) to W (0, T ); see [14,21]. If, in addition, y◦ ∈ H1

0 (Ω), f ∈ L2(Q) hold and Ω
is sufficiently smooth (e.g., Ω is convex with Lipschitz-continuous boundary), then the state y belongs even to
L2(0, T ; H2(Ω) ∩ H1

0 (Ω)) ∩ H1(0, T ; L2(Ω)).
We also impose bilateral pointwise control-state constraints. For that purpose let a, b ∈ L3(Q) be given

lower and upper bounds, respectively. Moreover, let c ∈ L∞(Q) satisfy c ≥ εc > 0 (or c ≤ εc < 0) for almost all
(f.a.a.) (t,x) ∈ Q. We define the two Banach spaces

X = W (0, T )× L2(Q), Y = L2(0, T ; H1
0 (Ω)),

and denote the common compact embedding operators by ı : W (0, T ) → L2(Q) and j : L2(Q) → Y ′. Then
admissible state-control pairs (y, u) are required to belong to the closed convex set

Xad =
{
(y, u) ∈ X

∣∣ a ≤ ıy + cu ≤ b a.e. in Q
}

. (2.3)
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For a compact formulation of the optimal control problem we introduce the affine linear mapping e : X → Y ′

by

〈e(y, u), ϕ〉Y ′,Y =
∫ T

0

〈yt(t) − f(t), ϕ(t)〉H−1(Ω),H1
0 (Ω)dt +

∫
Ω

α∇y · ∇ϕ − uϕdxdt

for (y, u) ∈ X and ϕ ∈ Y , where the dual Y ′ of Y is identified with L2(0, T ; H−1(Ω)), and 〈· , ·〉H−1(Ω),H1
0 (Ω)

denotes the duality pairing between H1
0 (Ω) and its dual H−1(Ω). The feasible set is given by

Φ(P) =
{
x = (y, u) ∈ Xad

∣∣ e(x) = 0 in Y ′ and y(0) = y◦ in L2(Ω)
}
.

Throughout the paper we assume that Φ(P) �= ∅.
Our infinite dimensional optimal control problem now reads

min J(x) subject to (s.t.) x ∈ Φ(P). (P)

Since Φ(P) �= ∅ by assumption, there exists a unique solution x∗ = (y∗, u∗) of (P). The uniqueness follows
from the strict convexity properties of the objective functional. If y◦ ∈ H1

0 (Ω) and f ∈ L2(Q) hold, then
y∗ ∈ L2(0, T ; H2(Ω) ∩ H1

0 (Ω)) ∩ H1(0, T ; L2(Ω)).
The first-order optimality conditions of (P) are stated in the next theorem.

Theorem 2.1. Suppose that Φ(P) �= ∅ and that x∗ = (y∗, u∗) ∈ Φ(P) is the solution of (P). Then there exists
a unique Lagrange multiplier pair (p∗, λ∗) ∈ W (0, T )×L2(Q) satisfying, together with (y∗, u∗), the dual system
(here written in its strong form)

− p∗t − αΔp∗ + λ∗ = −αQ(y∗ − zQ) in Q, (2.4a)

p∗ = 0 on Σ, (2.4b)

p∗(T ) = −αΩ(y∗(T ) − zΩ) in Ω, (2.4c)

κ(u∗ − ud) − p∗ + cλ∗ = 0 in Q, (2.4d)

λ∗ = max(0, λ∗ + σ(y∗ + cu∗ − b)) + min(0, λ∗ + σ(y∗ + cu∗ − a)) on Q, (2.4e)

where σ is an arbitrary function in L∞(Q) with σ(t,x) ≥ σ > 0 f.a.a. (t,x) ∈ Q. In (2.4e) the min- and
max-operations are interpreted in the pointwise almost everywhere sense.

Proof. The proof follows from arguments analogous to those given in [9], Section 2. �

Note that (2.4e) is a nonlinear complementarity problem (NCP) function based reformulation of the comple-
mentarity systems

λ∗
a ≥ 0, a − y∗ − cu∗ ≤ 0, λ∗

a(a − y∗ − cu∗) = 0, a.e. in Q, (2.5)

λ∗
b ≥ 0, y∗ + cu∗ − b ≤ 0, λ∗

b(y
∗ + cu∗ − b) = 0, a.e. in Q, (2.6)

with λ∗ = λ∗
b − λ∗

a.

2.2. The reduced optimal control problem

Since, for any u ∈ L2(Q), there exists a unique solution y = y(u) ∈ W (0, T ) of the state equation (2.2), we
can define the bounded and affine linear solution operator

S : L2(Q) → W (0, T ), u 
→ A−1(f + ju),
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where A = ( ∂
∂t − αΔ) : W (0, T ) → Y ′ is linear and bounded. For later use, let A∗ denote the adjoint operator

of A. Next we introduce the so-called reduced cost functional

Ĵ(u) = J(S(u), u).

Further, we define the set of admissible controls

Uad =
{
u ∈ L2(Q)

∣∣ a ≤ ıS(u) + cu ≤ b a.e. in Q
}
,

which has the following properties.

Proposition 2.2. The set Uad is convex, closed and bounded in L2(Q).

Proof. Closedness and convexity follow immediately. Therefore, we only focus on the boundedness of Uad. Since
y = S(u), i.e., Ay = f + ju, we have a ≤ ıy + c u ≤ b a.e. in Q. Setting v := ıy + c u we obtain

(
A + jc−1ı id

)
y = f + jc−1v and a ≤ v ≤ b a.e. in Q.

From this we infer

‖y‖2
L2(Q)

‖c‖L∞(Q)
≤ 1

2
‖y◦‖2

L2(Ω) +
(
‖f‖L2(Q) + |εc|−1 max(‖a‖L2(Q), ‖b‖L2(Q))

)
‖y‖L2(Q).

Hence, y is bounded in L2(Q). Since c ∈ L∞(Q) with |c| ≥ εc > 0 a.e. in Q, we infer that u is bounded in
L2(Q). This proves the assertion. �

Remark 2.3. In the context of Lavrentiev-type regularization of state constrained optimal control problems
one is interested in setting c ≡ εn > 0 and studying εn ↓ 0. In this case, our arguments in the proof of
Proposition 2.2 yield the boundedness of y = yεn in L2(Q) uniformly with respect to εn.

Problem (P) can be equivalently expressed as

min Ĵ(u) s.t. u ∈ Uad. (P̂)

For accessing the gradient of Ĵ we have to guarantee differentiability of S. As in [21], one argues that S is
continuously differentiable as a mapping from L2(Q) to W (0, T ). The action of the derivative S′(u) (we also
write y′(u)) on some v ∈ L2(Q), i.e., S′(u)v = w, is characterized by the solution w of the initial-boundary
value problem

wt − αΔw = jv in Q,

w = 0 on Σ, (2.7)

w(0) = 0 in Ω.

Considering the adjoint equations (2.4a)–(2.4c) with y = y(u), we find that the adjoint state depends on u
and λ, i.e., p = p(u, λ). Similarly, we obtain the differentiability of the adjoint state p(u, λ) considered as a
function of u and λ.

The derivative of Ĵ at a point u ∈ L2(Q) is represented by

Ĵ ′(u) = S′(u)∗
∂J(S(u), u)

∂y
+

∂J(S(u), u)
∂u

= −p(u) + κ(u − ud) in Q,
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where p(u) solves the equation

−pt − αΔp = αQ(zQ − y(u)) in Q,

p = 0 on Σ,

p(T ) = αΩ(zΩ − y(u)(T )) in Ω.

The first-order necessary optimality condition of (P̂) is given by the variational inequality

〈Ĵ ′(u∗), u − u∗〉L2(Q) ≥ 0 for all u ∈ Uad.

This is equivalent to

κ(u∗ − ud) − p∗ + cλ∗ = 0, (2.8a)

λ∗ = max (0, λ∗ + σ(y(u∗) + cu∗ − b)) + min (0, λ∗ + σ(y(u∗) + cu∗ − a)) (2.8b)

in Q for some arbitrarily fixed, positive σ ∈ L∞(Q), and with p∗ = p(u∗) solving (2.4a)–(2.4c). Thus, the
first-order necessary optimality conditions for (P̂) are given by (2.8) together with (2.4a)–(2.4c).

To express (P̂) as a bilateral control constrained problem we set ã = a − ı3A−1f , b̃ = b − ı3A−1f , with ı3
denoting the continuous embedding operator from W (0, T ) into L3(Q) for d ≤ 3. Moreover, we define the linear
and bounded operators T = ıA−1j : L2(Q) → L2(Q) and F = T + c id : L2(Q) → L2(Q). By assumption c �= 0
is satisfied. Since ı is compact and j as well as A−1 are continuous, the operator T is compact. If

− c is no eigenvalue of T , (2.9)

we infer from the Fredholm theory that the linear operator F admits a (unique) inverse. Thus, (P̂) can be
expressed equivalently as a bilaterally control constrained problem for the new control variable v := Fu

min J̃(v) s.t. v ∈ Vad =
{
v ∈ L2(Q)

∣∣ ã ≤ v ≤ b̃ a.e. in Q
}
, (P̃)

with J̃ = Ĵ ◦ F−1. Notice that (P̃) is a minimization problem with bilateral control constraints, but with no
equality constraints. Of course, v∗ = Fu∗ is the solution of (P̃). We will make use of (P̃) when establishing a
mesh-independence principle of our algorithm in Section 4.

Remark 2.4. Note that the smoothness of the bounds ã and b̃ depends on the smoothness of a, b and A−1f .
In particular, if a and b are constant and f ≡ 0 holds, (P̃) is an optimal control problem with constant box
constraints. On the other hand, higher regularity properties can be ensured by proper assumptions on a, b
and f . In our numerical test examples carried out in Section 5 we have ã, b̃ ∈ C(Ω) ∩ C∞(Ω).

In order to ease the notation, in what follows we frequently neglect the embedding operators.

3. The semismooth Newton method

In this section, to solve (P) numerically a Newton-type algorithm is applied to the first-order necessary
optimality conditions of (P̂). For the generalized (Newton) differentiation of the min- and max-operators in
function space we rely on the following definition which is due to [12].

Definition 3.1. Let V , W be two Banach spaces, S ⊂ V a non-empty open set, F : S → W a given mapping,
and v∗ ∈ S. If there exists a neighborhood N(v∗) ⊂ S and a family of mappings G : N(v∗) → L(V, W ) such
that

lim
‖v‖V ↓0

1
‖v‖V

‖F (v∗ + v) − F (v∗) − G(v∗ + v)v‖W = 0, (3.1)
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then F is called Newton-differentiable at v∗, and G(v∗) is said to be a generalized derivative (or Newton map)
for F at v∗.

Here, L(V, W ) denotes the Banach space of all bounded and linear operators from V to W endowed with the
common norm. Moreover, we write L(V ) = L(V, V ).

Remark 3.2. The function max : Lp(Q) → Ls(Q) is Newton differentiable for 1 ≤ s < p ≤ ∞ (see [12]). If
F : Lr(Q) → Lp(Q) is Fréchet differentiable for some 1 ≤ r ≤ ∞, then the function

(t,x) 
→ χA(t,x) · ∇F (u(t,x)), (t,x) ∈ Q, (3.2)

is a generalized derivative of max(0, F (·)) : Lr(Q) → Ls(Q). Here, χA denotes the characteristic function of
the set A ⊂ Q, where F (u(·)) is positive, i.e., χA(t,x) = 1 if F (u(t,x)) > 0 and χA(t,x) = 0 otherwise. From
min(0, F (·)) = −max(0,−F (·)), we see that an analogous differentiation formula holds true for the min-function.

Next observe that (2.8a) in (2.4a)–(2.4c) with y∗ = y(u∗) yields

(A∗ + c−1 id)p∗ = αQ(zQ − y(u∗)) + κc−1(u∗ − ud). (3.3)

Consequently, assuming that

− c−1 is no eigenvalue of A∗, (3.4)

we have p∗ = p(u∗) ∈ Y uniquely. Parabolic regularity results yield p(u∗) ∈ W (0, T ). This relation holds true
whenever y = y(u) in the right hand side of the adjoint system and κ(u − ud) − p + cλ = 0 on Σ. Further we
conclude λ = λ(u).

Choosing σ = κ/c2 ∈ L∞(Q) with σ ≥ κ/ε2
c > 0 in (2.8b) and taking into account (2.8a), we obtain

c−1
(
κ(ud − u∗) + p∗(u∗)

)
− max

(
0, c−1(κud + p∗(u∗)) + κc−2(y(u∗) − b)

)
−min

(
0, c−1(κud + p∗(u∗)) + κc−2(y(u∗) − a)

)
= 0.

(3.5)

Thus, we introduce the mapping F : L2(Q) → L2(Q) by

F (u) = c−1
(
κ(ud − u) + p(u)

)
− max

(
0, c−1(κud + p(u)) + κc−2(y(u) − b)

)
− min

(
0, c−1(κud + p(u)) + κc−2(y(u) − a)

)
.

(3.6)

Then, (3.5) becomes the nonsmooth operator equation

F (u∗) = 0 in L2(Q). (3.7)

Now suppose ū ∈ L2(Q) is some given approximation of u∗. Then, since y(ū) as well as p(ū) are continuously
differentiable from L2(Q) to W (0, T ) ↪→ L3(Q) and ud, a, b ∈ L3(Q) by assumption, Remark 3.2 provides
Newton differentiability of the min- and max-terms in (3.5), respectively. A particular Newton map of F at ū
in direction u ∈ L2(Q) is given by

G(ū)u =
1
c

(
p′(ū)u − κu

)
− 1

c2
χ{

λ(ū)+ κ
c2

(y(ū)+cū−b)>0
}(cp′(ū)u + κy′(ū)u

)
− 1

c2
χ{

λ(ū)+ κ
c2

(y(ū)+cū−a)<0
}(cp′(ū)u + κy′(ū)u

)
,

(3.8)
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where δy = y′(ū)u ∈ W (0, T ) solves the linearized state equations

δyt − αΔδy = u in Q, (3.9a)

δy = 0 on Σ, (3.9b)

δy(0) = 0 in Ω, (3.9c)

and δp = p′(ū)u ∈ W (0, T ) solves the linearized adjoint system

−δpt − αΔδp + c−1δp = −αQδy + κc−1u in Q, (3.10a)

δp = 0 on Σ, (3.10b)

δp(T ) = −αΩδy(T ) in Ω. (3.10c)

It follows by standard arguments that for every u ∈ L2(Q) there exist uniquely determined δy ∈ W (0, T ) and
δp ∈ W (0, T ) solving (3.9) and (3.10), respectively.

In Algorithm 1 we formulate the corresponding generalized Newton method for finding u∗ ∈ L2(Q) such that
(3.7) holds true. Due to the additional regularity of F implied by (3.1) we call it a semismooth Newton method.

Algorithm 1 (semismooth Newton method).

1: Choose u0 ∈ L2(Q), and set k = 0.
2: repeat
3: Compute G(uk) according to (3.8) and solve for δuk:

G(uk)δuk = −F (uk)

with F given by (3.6).
4: Set uk+1 = uk + δuk, and k = k + 1.
5: until some stopping rule is satisfied.

We have the following convergence result; see [12].

Theorem 3.3. Let {uk}k∈N be a sequence generated by Algorithm 1. Then, {uk}k∈N converges to the solution
u∗ ∈ Uad of (P) at a q-superlinear rate provided that u0 ∈ L2(Q) is sufficiently close to u∗.

Algorithm 1 can be expressed equivalently as a primal-dual active-set strategy. In fact, using (3.2) and
defining λk = c−1

(
κ(ud − uk) + p(uk)

)
and

Ak
b =

{
(t,x) ∈ Q

∣∣∣λk +
κ

c2
(yk(uk) + cuk − b) > 0 a.e.

}
,

Ak
a =

{
(t,x) ∈ Q

∣∣∣λk +
κ

c2
(yk(uk) + cuk − a) < 0 a.e.

}
,

Ik = Q \ Ak, with Ak = Ak
b ∪ Ak

a,

(3.11)

we obtain the following linearization of (3.5) at (u, y(u), p(u)) with respect to the independent variable u:

1
c

(
κ(ud − uk − δuk) + p(uk) + p′(uk)δuk

)
− 1

c2
χAk

b

(
c(κud + p(uk) + p′(uk)δuk) + κ(y(uk) + y′(uk)δuk − b)

)
− 1

c2
χAk

a

(
c(κud + p(uk) + p′(uk)δuk) + κ(y(uk) + y′(uk)δuk − a)

)
= 0.

(3.12)
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Here δu ∈ L2(Q) represents the increment. A closer look reveals:

y(uk) + y′(uk)δuk + cuk+1 = a on Ak
a, (3.13a)

y(uk) + y′(uk)δuk + cuk+1 = b on Ak
b , (3.13b)

κ(uk+1 − ud) − p(uk) − p′(uk)δuk = 0 on Ik, (3.13c)

where uk+1 = uk + δuk. Note that (3.13c) can be viewed as

λk + δλk = 0 on Ik, (3.13d)

with δλk = −κδuk +p′(uk)δuk. The active respectively inactive set behavior of the variables in (3.13) motivates
Algorithm 2.

Algorithm 2 (primal-dual active set strategy).

1: Choose starting values λ0 and u0, compute y0 = S(u0) and p0 satisfying (2.4a)–(2.4d). Set k = 0.
2: repeat
3: Determine the active sets Ak

a, Ak
b and the inactive set Ik according to (3.11).

4: Compute the (unique) solution xk = (uk, yk) with pertinent multiplier λk and adjoint state pk of⎧⎨
⎩

min J(x) over x = (y, u) ∈ X
s.t. e(x) = 0, y(0) = y◦,

y + cu = a on Ak
a and y + cu = b on Ak

b .
(3.14)

5: Set k = k + 1.
6: until some stopping rule is satisfied.

Utilizing the setting on Ak
a and Ak

b , note that the feasible set of the minimization problem (3.14) in step 4 of
Algorithm 2 becomes

yt − αΔy + c−1χAk
a∪Ak

b
y = f + χIku + c−1(χAk

a
a + χAk

b
b),

y = 0 on Σ, y(0) = y◦ in Ω.

Given u, this system admits a unique solution. The radial unboundedness of J with respect to u on the feasible
set now guarantees the existence of a unique solution to (3.14).

Let δyk = y′(uk)δuk and δpk = p′(uk)δuk. Then yk+1 = yk + δyk solves

yk+1
t − αΔyk+1 = f + uk+1 in Q, (3.15a)

yk+1 = 0 on Σ, (3.15b)

yk+1(0) = y◦ in Ω. (3.15c)

Furthermore, pk+1 = pk + δpk satisfies

−pk+1
t − αΔpk+1 + λk+1 = −αQ(yk+1 − zQ) in Q, (3.16a)

pk+1 = 0 on Σ, (3.16b)

pk+1(T ) = −αΩ(yk+1(T ) − zΩ) in Ω. (3.16c)
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Utilizing (3.13) we derive from (3.15a)

yk+1
t − αΔyk+1 +

1
c
χAkyk+1 − 1

κ
χIkpk+1 = f +

1
c

(
χAk

a
a + χAk

b
b
)

+ χIkud (3.17)

with Ak = Ak
a ∪ Ak

b . Since

λk+1 = λk + δλk =
1
c

(
pk+1 + κ(ud − uk+1)

)
(see (2.4d)), we conclude from (3.13d) that

− pk+1
t +

(
− αΔ +

1
c
χAk

)
pk+1 +

(
αQ +

κ

c2
χAk

)
yk+1 = αQzQ − κ

c

(
χAkud − 1

c

(
χAk

a
a + χAk

b
b
))

. (3.18)

Summarizing, (3.17) and (3.18) can be written compactly as

(
αQ + κ

c2 χAk − ∂
∂t − αΔ + 1

cχAk

∂
∂t − αΔ + 1

cχAk − 1
κχIk

)(
yk+1

pk+1

)
=

(
αQzQ − κ

c

(
χAkud − 1

c (χAk
a
a + χAk

b
b)
)

f + 1
c

(
χAk

a
a + χAk

b
b
)

+ χIkud

)
. (3.19)

This is the reduced form of the Newton system which is used in our numerics; compare (5.1) in Section 5.

4. Mesh-independence

In this section we give sufficient conditions for the mesh-independent convergence of Algorithm 2. The proof
technique is based on a combination of arguments in [15] and [9]. Throughout we assume y◦, zQ, zΩ, αQ, and
αΩ are sufficiently regular; see [15], Table 1.

We proceed as in [15], Section 3, and [8]. Let Ωh be a family of grids depending on the parameter h > 0.
On these grids, P 0

h and P 1
h are the spaces of all piecewise constant respectively piecewise linear finite elements.

Furthermore, we define the operators of orthogonal projections by Ri
h : L2(Ω) → P i

h for i ∈ {0, 1}. We suppose
that the finite element grids are chosen in such a way that

‖ϕ −Ri
hϕ‖Hr(Ω) ≤ cΩhs−r ‖ϕ‖Hs(Ω) for all ϕ ∈ Hs(Ω),

where r ∈ [0, i], s ∈ [r, i + 1], cΩ > 0, and i ∈ {0, 1}. Next we introduce approximations for functions defined
on Q. Let tj = jht, 0 ≤ j ≤ nt, be a chosen grid in [0, T ] with step size ht = T/nt. To simplify the presentation,
i.e., to avoid terms of the type O(ht + h2) in our error analysis, we couple the time and spatial discretization
in the following manner: we suppose that there are constants 0 < c1 ≤ c2 such that

c1h
2 ≤ ht ≤ c2h

2; (4.1)

see, e.g., [8].
Next we define the finite dimensional spaces

S0
h =

{
ϕh : Q → R

∣∣ϕh(t) = ϕh(tj) ∈ P 0
h , t ∈ [tj−1, tj), 1 ≤ j ≤ nt

}
,

S1
h =

{
ϕh : Q → R

∣∣ϕh(t) = P j−1
j (ϕh)(t), t ∈ [tj−1, tj ], ϕh(tj) ∈ P 1

h , 1 ≤ j ≤ nt

}
,

where
P j−1

j (ϕh)(t) =
tj − t

ht
ϕh(tj−1) +

t − tj−1

ht
ϕh(tj) for t ∈ [tj−1, tj ].

The corresponding restriction operators are Gi
h : L2(Q) → Si

h with i ∈ {0, 1}. Note that the elements of S0
h

are piecewise constant in space and time (on intervals [tj−1, tj)), and the elements of S1
h are piecewise linear in

space and time.
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The operator A−1 is approximated by A−1
h : Y ′ → S1

h as follows: for every g ∈ Y ′ the element yh = A−1
h g ∈ S1

h

solves ∫
Ω

yh(tj) − yh(tj−1)
ht

ϕh + α∇yh(tj) · ∇ϕh dx =
〈

1
ht

∫ tj

tj−1

g(t) dt, ϕh

〉
H−1(Ω),H1

0 (Ω)

(4.2a)

for all 1 ≤ j ≤ nt and ϕh ∈ P 1
h together with the boundary and initial conditions

yh(tj , ·) = 0 on Γ, 1 ≤ j ≤ nt, and yh(0) = R1
hy◦ in Ω. (4.2b)

Hence, we have applied the implicit Euler method for the time integration and the piecewise linear finite element
method for the spatial discretization.

By Sh : L2(Q) → S1
h ⊂ W (0, T ), u 
→ A−1

h (f + u) we introduce an approximation of the affine linear
operator S introduced in Section 2.2. The discretized set of admissible controls is defined as

Uh
ad =

{
uh ∈ S0

h

∣∣ a ≤ ıhSh(uh) + cuh ≤ b a.e. in Q
}

,

where ıh denotes the (orthogonal) projection of Y onto S0
h. We may consider j|S0

h
= ı∗h, where ı∗h denotes the

adjoint of ıh. Further, for simplicity we assume a, b, c, ud, αQ ∈ S0
h; otherwise a corresponding discretization has

to be considered.
Then, (P̂) is discretized by the family of finite-dimensional problems

min Ĵh(uh) s.t. uh ∈ Uh
ad (P̂h)

with Ĵh(uh) = J(Sh(uh), uh) for uh ∈ S0
h.

Proceeding as in Section 3 we formulate a semismooth Newton method for (P̂h). For that purpose we
introduce the operator Fh : S0

h → S0
h,

Fh(uh) = c−1
(
κ(ud − uh) + ıhph(uh)

)
− max

(
0, c−1(κud + ıhph(uh)) + κc−2(ıhyh(uh) − b)

)
− min

(
0, c−1(κud + ıhph(uh)) + κc−2(ıhyh(uh) − a)

)
,

(4.3)

where yh(uh) = A−1
h (f + ı∗huh) ∈ S1

h and ph(uh) ∈ S1
h solves the adjoint equation of (4.2):

∫
Ω

ph(tj) − ph(tj−1)
ht

ϕh − α∇ph(tj−1) · ∇ϕh dx =
1
ht

∫ tj

tj−1

(αQ(t)(yh(t) − zQ(t)), ϕh)L2(Ω) dt (4.4a)

for all 1 ≤ j ≤ nt and ϕh ∈ P 1
h together with the boundary and initial conditions

ph(tj , ·) = 0 on Γ, 0 ≤ j ≤ nt − 1,

ph(0) = R1
h

(
αΩ(zΩ − yh(T ))

)
in Ω.

(4.4b)

As a mapping between finite dimensional spaces, Fh is Newton-differentiable. The generalized derivative of Fh

at a point ūh ∈ S0
h in direction uh is given by

Gh(ūh)uh = c−1
(
ıhp′h(ūh)uh − κuh

)
− c−2χ{

λh(ūh)+ κ
c2

(ıhyh(ūh)+cūh−b)>0
}(cıhp′h(ūh)uh + κıhy′

h(ūh)uh

)
− c−2χ{

λh(ūh)+ κ
c2

(ıhyh(ūh)+cūh−a)<0
}(cıhp′h(ūh)uh + κıhy′

h(ūh)uh

)
,

(4.5)
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where yh = y′
h(ūh)uh ∈ S1

h solves (compactly written)

Ahyh = ı∗huh (4.6a)

together with the boundary and initial conditions

yh(tj , ·) = 0 on Γ, 1 ≤ j ≤ nt, and yh(0) = 0 in Ω (4.6b)

for all 1 ≤ j ≤ nt, and ph = p′h(ūh)uh ∈ S1
h is the solution to

∫
Ω

ph(tj) − ph(tj−1)
ht

ϕh − α∇ph(tj−1) · ∇ϕh − c(tj−1)−1ph(tj−1)ϕh dx =

1
ht

∫ tj

tj−1

(αQ(t)yh(t) − κc(t)−1uh(t), ϕh)L2(Ω) dt (4.7a)

for all 1 ≤ j ≤ nt and ϕh ∈ P 1
h together with the boundary and initial conditions

ph(tj , ·) = 0 on Γ, 0 ≤ j ≤ nt − 1, and ph(0) = −R1
h

(
αΩyh(T )

)
in Ω. (4.7b)

The discretized version of Algorithm 1 is given by Algorithm 3.

Algorithm 3 (discretized semismooth Newton method).

1: Choose u0
h ∈ S0

h, and set k = 0.
2: repeat
3: Compute Gh(uk

h) according to (4.5) and solve for δuk
h:

Gh(uk
h)δuk

h = −Fh(uk
h),

with Fh given by (4.3).
4: Set uk+1

h = uk
h + δuk

h, and k = k + 1.
5: until some stopping rule is satisfied.

We have the following convergence theorem; see [7,12].

Theorem 4.1. Let {uk
h}k∈N be a sequence in S0

h generated by Algorithm 3. Then, {uk
h}k∈N converges to the

solution u∗
h ∈ Uh

ad of (P̂h) at a superlinear rate provided that u0
h ∈ L2(Q) is sufficiently close to u∗

h.

To apply the results in [15] we have to introduce an approximation for the bilaterally control constrained
problem (P̃). For that purpose we set Th = ıhA−1

h ı∗h : S0
h → S0

h and Fh = (Th + c id).
Note that due to the existence of a unique solution of (4.2) and [8], Corollary 3.1, we have

‖Th‖L(S0
h,L2(Q)) = sup

‖uh‖S0
h
=1

‖ıhA−1
h ı∗huh‖L2(Q)

≤ cA

and further
‖Fh‖L(S0

h,L2(Q)) ≤ cA + ‖c‖L∞(Q) =: cF .

Let u ∈ L2(Q) be given. For y = T uh and yh = Thuh we have the estimate [8], Corollary 3.1,

‖y − yh‖L2(Q) ≤ cT h2 ‖y‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) (4.8)
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with a constant cT > 0 provided that Ω is convex with Lipschitz-continuous boundary and f ∈ L2(Q). We infer
from (4.8) that

‖F − Fh‖L(S0
h,L2(Q)) = sup

‖uh‖S0
h
=1

(
‖ı(A−1 −A−1

h )ı∗huh‖L2(Q)

+ ‖(ı − ıh)A−1
h ı∗huh‖L2(Q)

)
→ 0 for h → 0. (4.9)

Then we have the existence of F−1
h for h sufficiently small.

Recall that (2.9) ensures the invertibility of F , and define the restriction operator ı̂h : L2(Q) → S0
h with

ı̂h|S0
h

= idS0
h
. Then, for all sufficiently small h,

‖ id−ı̂hF−1
|
S0

h

Fh‖L(S0
h
) ≤

1
2
·

Hence, by the Neumann lemma, ı̂hF−1
|
S0

h

is invertible for all sufficiently small h.

From the perturbation lemma [16], p. 45, we then deduce the uniform (w.r.t. h) boundedness of ‖F−1
h ‖L(S0

h)

for all sufficiently small h.
In the following we assume that ã, b̃ ∈ L∞(Q), see (P̃), and that the set of admissible controls is defined by

V h
ad =

{
vh ∈ S0

h

∣∣ ã ≤ vh ≤ b̃ in Q
}

= Vad ∩ S0
h = R0

hVad.

For ã, b̃ ∈ L∞(Q) with b̃ − ã ≥ ε > 0, this can always be achieved after the transformation

w :=
2

b̃ − ã
v − ã + b̃

b̃ − ã

since then −1 ≤ w ≤ 1 a.e. in Q.
We approximate (P̃) by the family of problems

min J̃h(vh) s.t. vh ∈ V h
ad, (P̃h)

where J̃h = J̃ ◦F−1
h . It follows that (P̃h) has a unique optimal solution v∗h ∈ V h

ad for every h > 0. Moreover, we
have the following result [15], Theorem 3.2.

Theorem 4.2. Suppose that Ω is convex with Lipschitz-continuous boundary, ã, b̃ ∈ L∞(Q) and the inhomo-
geneity f is sufficiently smooth. Then there exists a constant c∗ > 0 satisfying

‖v∗ − v∗h‖L2(Q) ≤ c∗h for every h > 0, (4.10)

where v∗h ∈ V h
ad and v∗ ∈ Vad denote the unique optimal solutions of (P̃h) and (P̃), respectively.

From Theorem 4.2 we immediately derive the following corollary.

Corollary 4.3. Let u∗ and u∗
h denote the unique solutions to (P̂) and (P̂h), respectively. Under the assumptions

of the previous theorem we have
lim
h→0

‖u∗ − u∗
h‖L2(Q) = 0.

Proof. Note that u∗ = F−1v∗ and u∗
h = F−1

h v∗h. Using (4.9)–(4.10) it follows that

‖u∗ − u∗
h‖L2(Q) ≤ ‖F−1v∗ −F−1v∗h‖L2(Q) + ‖F−1v∗h −F−1

h v∗h‖L2(Q) ≤

O(h) + ‖F−1‖L(L2(Q))‖Fh −F‖L(S0
h,L2(Q))‖F−1

h ‖L(S0
h)‖v∗h‖S0

h
→ 0

for h → 0, which proves the assertion. �
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Remark 4.4. We note that
lim
h→0

‖(ı − ıh)A−1
h g‖L2(Q) = O(h) for g ∈ Y ′

yields
‖F − Fh‖L(S0

h,L2(Q)) = O(h)

and further in Corollary 4.3
‖u∗ − u∗

h‖L2(Q) = O(h).

We end this section by establishing the mesh independence result. For this purpose we first recall that

W (0, T ) ↪→ L3(Q) (4.11)

for d ≤ 3, which is of importance with respect to the Newton-differentiability of the max- and min-operators;
compare Remark 3.2. Further note that F , cf. (3.6), can be written as

F (u) = c−1(κ(ud − u) + Lpu + fp) − max(0, L�u + f� − κc−1(c−1b − ud))

− min(0, L�u + f� − κc−1(c−1a − ud))

with

Lp = −(A∗ + c−1 id)−1(αQA−1 + c−1κ id) ∈ L(Y ′, W (0, T )), (4.12a)

L� = c−1Lp + κc−2A−1 ∈ L(Y ′, L3(Q)), (4.12b)

fp = (A∗ + c−1 id)−1(αQ(zQ −A−1f) + c−1κud) ∈ L3(Q), (4.12c)

f� = c−1fp + κc−2A−1f ∈ L3(Q). (4.12d)

In the discrete setting we analogously obtain

Fh(uh) = c−1(κ(ud − uh) + ıh(Lp,huh + fp,h))

− max(0, ıh(L�,hu + f�,h) − κc−1(c−1b − ud))

− min(0, ıh(L�,hu + f�,h) − κc−1(c−1a − ud)).

Hence, we are in a framework similar to the one considered in [9] for elliptic equations. For establishing the
mesh independence result, it therefore remains to verify Assumption 4.1 of [9] on Q, i.e., we have to show that

lim
h→0+

max(‖fp − fp,h‖L3(Q), ‖f� − f�,h‖L3(Q)) = 0, (4.13)

lim
h→0+

‖u∗ − u∗
h‖L2(Q) = 0, (4.14)

lim
h→0+

max(‖Lpu
∗ − Lp,hu∗

h‖L3(Q), ‖L�u
∗ − L�,hu∗

h‖L3(Q)) = 0, (4.15)

max(‖Lp,h‖L(Y ′,L3(Q)), ‖L�,h‖L(Y ′,L3(Q))) ≤ K (4.16)

for some constant K > 0. For this purpose note first that (4.14) immediately follows from Corollary 4.3.
Moreover, the estimate

‖y − yh‖L3(Q) ≤ c̃T h ‖y‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) (4.17)

is satisfied with a constant c̃T > 0 independent of h. Indeed, [8], Corollary 3.1, yields

‖y − yh‖L2(0,T ;H1(Ω))∩H1/2(0,T ;L2(Ω)) ≤ ĉT h ‖y‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)),
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and Theorem A.1 in Appendix A implies the estimate (4.17). For the remaining conditions observe that

lim
h→0+

max(‖A−1 −A−1
h ‖L(Y ′,L3(Q)), ‖A−∗ −A−∗

h ‖L(Y ′,L3(Q))) = 0 (4.18)

and consequently
lim

h→0+
‖(A∗ + c id)−1 − (A∗ + c id)−1

h ‖L(Y ′,L3(Q)) = 0. (4.19)

Indeed, (4.18) follows from the decomposition ‖y − yh‖L3(Q) ≤ ‖y − yLM‖L3(Q) + ‖yLM − yh‖L3(Q), where yLM

denotes the approximation of y obtained by the implicit line method with piecewise linear and continuous
interpolation in time (identical to the interpolation in time for yh). Note that

‖y − yLM‖L3(Q) ≤ C(T )‖y − yLM‖3/2
C(0,T ;L2(Ω))‖y − yLM‖3/2

L2(0,T ;L6(Ω)),

where C(T ) > 0 denotes some constant depending on T . Then, according to [17], Theorem 11.1, we have
‖y − yLM‖L3(Q) → 0 as h → 0. The convergence of ‖yLM − yh‖L3(Q) follows from standard finite element
estimates. From (4.18) and (4.19) we infer that there exist hp > 0 and Kp > 0 (independently of h) such that

lim
h→0+

‖Lpu
∗ − Lp,hu∗

h‖L3(Q) = 0 and (4.20a)

‖Lp,h‖L(Y ′,L3(Q)) ≤ Kp for all 0 < h ≤ hp. (4.20b)

Similarly one shows that there exist h� and K� > 0 (independently of h) such that

lim
h→0+

‖L�u
∗ − L�,hu∗

h‖L3(Q) = 0 and (4.21a)

‖L�,h‖L(Y ′,L3(Q)) ≤ K� for all 0 < h ≤ h�. (4.21b)

This verifies (4.15) and (4.16). Now, condition (4.13) immediately follows. Under these conditions which
establish a L3(Q)-L2(Q) norm gap in order to obtain Newton differentiability of the max- and min-terms in F ,
the following mesh independence result holds.

Theorem 4.5. Let (4.13)–(4.16) be satisfied. Further assume that

meas({|L�u
∗ + f� − κc−2b| = 0}) = 0, (4.22a)

meas({|L�u
∗ + f� − κc−2a| = 0}) = 0 (4.22b)

holds true. Then, for arbitrarily fixed θ ∈ (0, 1), there exist δ∗ > 0 and h∗ > 0 such that for all h ≤ h∗ and
k ∈ N0

‖uk+1 − u∗‖L2(Q) ≤ θ‖uk − u∗‖L2(Q),

‖uk+1
h − u∗

h‖S0
h

≤ θ‖uk
h − u∗

h‖S0
h

provided that max(‖u0 − u∗‖L2(Q), ‖u0
h − u∗

h‖S0
h
) ≤ δ∗.

Proof. The proof lies in the verification of (4.13)–(4.16) before the theorem and in [9] Lemma 4.1 and Theo-
rem 4.1. �

Note that assumption (4.22) guarantees that the non-differentiability of the max- and min-operators in F is
concentrated only on a set of measure zero. It corresponds to a strict complementarity assumption in connection
with the pointwise inequality constraints. The assertion of the theorem states that, given a linear rate of
convergence, for sufficiently small mesh sizes h and sufficiently good initial guesses u0 and u0

h the continuous as
well as the discrete Newton process converge at this specified linear rate.
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Finally we remark that if one also has to consider discretizations ah, bh, ud,h, ch, fh of the data a, b, ud, c, f
then, under our regularity assumptions, the corresponding interpolation errors tend to zero as h → 0+ and our
results remain true.

5. Preconditioning and numerical experiments

In this section we validate our theoretical findings by numerical tests. Further, since the discretization yields
large scale finite dimensional problems, we have to resort to iterative solvers for the subsystems occurring in our
primal-dual active-set method. This requires suitable preconditioning of the system matrices. Here we propose
preconditioning techniques taking into account the active/inactive set structure.

All test problems considered in this section are two-dimensional with Ω = (0, 1) × (0, 1). Further, in all test
cases the cost parameters had the values αQ ≡ 1, αΩ ≡ 10, and κ = 0.1. We present three examples including
bilateral control-state constraints, degenerate solutions or lack of strict complementarity. While Example 5.1.1
satisfies c > 0, in Examples 5.1.2–5.1.3 we consider situations where c < 0, i.e., where a strict positivity
assumption on c is violated. The latter assumption is standard in Lavrentiev-type regularization. However, as
long as our assumptions (2.9) and (3.4) are satisfied our theoretical results remain true.

All coding is done in Matlab, and the computations are performed on a standard 1.7 GHz desktop PC.

5.1. Presentation of the examples

In this subsection we specify the numerical examples. We also highlight some properties of the respective
solution such as degeneracy and lack of strict complementarity. By degeneracy we refer to situations where
the primal quantity c u∗ + y∗ and/or the corresponding Lagrange multiplier λ∗ exhibit a very flat transition
into the active set and/or zero. The problem is said to satisfy strict complementarity, if ({|c u∗ + y∗ − b| =
0} ∪ {|c u∗ + y∗ − a| = 0})∩ {|λ∗| = 0} has zero measure. Lack of strict complementarity as well as degeneracy
may complicate the numerical active set detection and, thus, may slow down a solution algorithm. It will turn
out, however, that our semismooth Newton, or equivalently primal-dual active set, solver is not affected by
these adverse situations.

5.1.1. Example: Bilateral constraints

We consider problem (P) with final time T = 1, heat conductivity α = 0.1, weighting functions αQ ≡ 1 and
αΩ ≡ 10 in the cost functional, lower bound a ≡ 0.02 and upper bound b ≡ 0.1 for the inequality constraints,
and c ≡ 0.1. Moreover, we have

y◦(x) = (1 − x1)(1 − x2) sin(7πx1x2) cos(2πx1),
zQ(t,x) = 10y◦(x) cos(2πtx1),

zΩ(x) =
1
10

y◦ cos(2.4πTx1),

ud(t,x) = (1 − x1)(1 − x2) sin(2πx1x2)et,

f(t,x) = 20x1x2(1 − x1)(1 − x2) sin(πtx1)

for (t,x) ∈ Q and x = (x1, x2) ∈ Ω.
Figures 1–4 show the active/inactive set structure at times t = 0.025, t = 0.05, t = 0.65 and t = T = 1. The

inactive set is displayed in white, the a-active set in gray, and in black the b-active set is shown. The solution
is active from below throughout the whole time interval (0, T ). With respect to the upper bound b, we observe
active and inactive zones over the entire time horizon.

5.1.2. Example: Degenerate solution

In contrast to the previous example, we consider unilateral constraints of the type y + cu ≤ b.
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Figure 1. Example 5.1.1: Inequality and active sets at time step t = 0.025.
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Figure 2. Example 5.1.1: Inequality and active sets at time step t = 0.05.
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Figure 3. Example 5.1.1: Inequality and active sets at time step t = 0.65.

Further data values are T = 1, α ≡ 0.1, αQ ≡ 1 and αΩ ≡ 1. The upper bound is b ≡ 1, and c ≡ −0.1.
Moreover, let

y◦(x) = (1 − x1)(1 − x2) sin(7πx1x2) cos(2πx1),

zQ(t,x) =
1

αQ

(
− ∂p†

∂t
(t,x) − Δp†(t,x) + λ†(t,x)

)
+ y†(t,x),

zΩ(x) = y◦(x)(1 + T ) sin(3.6πTx2),

ud(t,x) = u†(t,x) − 1
α

(
p†(t,x) + cλ†(t,x)

)
,

f(t,x) =
∂y†

∂t
(t,x) − Δy†(t,x) − u†(t,x),
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Figure 4. Example 5.1.1: Inequality and active sets at time step t = T = 1.
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Figure 5. Example 5.1.2: Inequality and active sets at time step t = 0.01.

where

y†(t,x) = y◦ sin(3πtx2)(1 + t),

p†(t,x) = 10 sin(3πx1) cos(3πx2 + 1.5π)et,

u†(t,x) =
1
c

(
y†(t,x) − ϑ(t) (cos(3πtx2) + 1) η(x) − d

)
,

λ†(t,x) =
{

10y◦(x)2et in Q1

0 else,

and

η(x) =

⎧⎨
⎩

1 − 4x1 + 4x2
1 for 0 < x1 ≤ 0.5,

0.9744− 4x1 + 4x2
1 for 0.58 ≤ x1 < 1,

0 else,

ϑ(t) = −5 +
1
9
(
184.6875 t− 241.375 t2 + 97.1875 t3

)
,

Q1 = {(t, x1, x2) ∈ Q : ϑ(t) (cos(3πtx2) + 1) η(x) > 0} .

Figures 5–8 show the active/inactive sets at times t = 0.01, t = 0.59, t = 0.60 and t = 0.61. As in
Example 5.1.1, the inactive set is displayed in white, the active set in black. Figures 6–8 clearly show degeneracy,
i.e., a very flat transition of y + cu into the active set, with respect to space and, when considering the slowly
(in x2-direction) moving active area in the center of the figure, to a certain extent also in time.
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Figure 6. Example 5.1.2: Inequality and active sets at time step t = 0.59.
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Figure 7. Example 5.1.2: Inequality and active sets at time step t = 0.6.
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Figure 8. Example 5.1.2: Inequality and active sets at time step t = 0.61.

5.1.3. Example: Lack of strict complementarity

This unilaterally constrained example is constructed such that the solution has areas lacking strict comple-
mentarity.
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Figure 9. Example 5.1.3: Inequality and active sets at time step t = 0.025.

We have T = 1, α ≡ 0.1, αQ ≡ 1 and αΩ ≡ 1. The upper bound is b ≡ 1, and c ≡ −0.1. Moreover, we have

y◦(x) = (1 − x1)(1 − x2) sin(7πx1x2) cos(2πx1),

zQ(t,x) =
1

αQ

(
− ∂p†

∂t
(t,x) − Δp†(t,x) + λ†(t,x)

)
+ y†(t,x),

zΩ(x) = y◦(x)(1 + T ) sin(3.6πTx2),

ut(t,x) = u†(t,x) − 1
α

(
p†(t,x) + cλ†(t,x)

)
,

f(t,x) =
∂y†

∂t
(t,x) − Δy†(t,x) − u†(t,x),

where

y†(t,x) = y◦(x)
(
1 + sin(πt2)

)
,

p†(t,x) = 10 sin(3πx1) cos(3πx2 + 1.5π)et,

u†(t,x) = −1
c

(
y†(t,x) − min {η − t, 0} + b

)
,

λ†(t,x) =
{

10y◦(x)2et on Q1

0 else,

and

η(x) = 20(1 − x1)(1 − x2)x1x2 cos(πx1x2) − 1.3,

Q1 = {(t,x) ∈ Q : η(x) + min {t, 0.6} > 0} .

Figures 9–12 show the value for λ∗ + σ (y∗ − c · u∗ − b) and the active sets at times t = 0.025, t = 0.5,
t = 0.7 and t = 1. The inactive set is displayed in white, the strongly active set, i.e. the set where strict
complementarity holds true, in black. The weakly active set, which is the set where y∗ + cu∗ − b = 0, and the
dual variable λ∗ = 0, are displayed in gray.

Figure 10 shows the active set at the center of the domain Ω. In Figures 11 and 12 an annulus area with
lack of strict complementarity surrounding the active set can be observed.
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Figure 10. Example 5.1.3: Inequality and active sets at time step t = 0.5.
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Figure 11. Example 5.1.3: Inequality and active sets at time step t = 0.7.
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Figure 12. Example 5.1.3: Inequality and active sets at time step t = 1.

5.2. Solving the linear system

In every step of the discretized primal-dual active set method (resp. semismooth Newton method) a linear
system of the form (

Mk
1 Mk

2(
Mk

2

)T
Mk

4

)(
yk+1

pk+1

)
=
(

rk
1

rk
2

)
(5.1)

has to be solved. Above, Mk
1 ∈ R

n2m×n2m is an invertible matrix, Mk
2 ∈ R

n2m×n2m is an upper block triangular
matrix, and Mk

4 ∈ R
n2m×n2m is not invertible, in general. In our numerical tests we study several preconditioned

iterative solvers.
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5.2.1. Preconditioned reduced system

The system (5.1) can be solved by a GMRES iteration. In order to speed up the process we employ a problem
related preconditioner which is based on the active and inactive set structure. In fact, we use an incomplete
LU -factorization of an approximation of the Mk

2 -block in (5.1). Recall that Mk
2 is the discretization of the

operator − ∂
∂t −Δ− 1

cχAk . If we define M2 ∈ R
n2m as the discretization of − ∂

∂t −Δ, then Mk
2 can be written as

the sum of a constant part and a part depending on the active set of the previous iteration; i.e., Mk
2 = M2−Dk,

where Dk is the discretization of 1
cχAk . Let L̃ and Ũ be the lower and upper triangular, respectively, incomplete

LU -factors of the constant part M2, i.e., L̃Ũ ≈ P̃M2, where P̃ is a permutation matrix. Then, instead of (5.1),
we solve the equivalent system(

P̃Mk
1 P̃T P̃Mk

2(
Mk

2

)T
P̃T Mk

4

)(
ỹk+1

pk+1

)
=

(
P̃ rk

1

rk
2

)
(5.2)

yk+1 = P̃T ỹk+1. (5.3)

The preconditioner is realized by solving
(

0 L̃Ũ

ŨT L̃T 0

)(
ỹk+1

pk+1

)
= r (5.4)

for some given right hand side r ∈ R
2n2m. In our numerical tests the following correction term in (5.4) improved

the effect of the preconditioner:

ŨT L̃T yk+1 = r̃2 (5.5)

L̃Ũpk+1 = r̃1 − P̃Mk
1 P̃T yk+1,

where r̃1 denotes the vector containing the first n2m components of a given right hand side r and r̃2 denotes
the vector containing the second n2m components of r. Note that the correction term on the right hand side of
the second equation provides information contained in Mk

1 .

5.2.2. Preconditioned Schur complement

As an alternative to the preceding approach, for solving the linear system (5.1) a reduction to a symmetric
positive definite system and a subsequent application of the CG-method can be employed.

Computing the Schur complement, the linear system (5.1) is equivalent to((
Mk

2

)T (
Mk

1

)−1
Mk

2 − Mk
4

)
pk+1 =

(
Mk

2

)T (
Mk

1

)−1
rk
1 − rk

2 (5.6)

yk+1 =
(
Mk

1

)−1 (
rk
1 − Mk

2 pk+1
)
. (5.7)

If Mk
2 is invertible, then the system matrix in (5.6) is positive definite. In this case (5.6) can be solved by using

a preconditioned conjugate gradient method. In this work, we tested several preconditioning techniques. The
following scheme produced the best results.

Let the matrices L, U, P be the outcome of an incomplete LU -factorization of the constant part MT
2 ,

i.e. LU ≈ PMT
2 . The idea behind the preconditioning of the equation (5.6) is to neglect the matrix Mk

4 and to
solve the equation MT

2

(
Mk

1

)−1
M2p = r for a given right hand side r. We approximate the latter equation by

using the incomplete factorization. This leads to the following system

LU
(
Mk

1

)−1
UT LT p̃ = Pr (5.8)

p = PT p̃.
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Table 1. Comparison of the total number of inner iterations and CPU-time for Example 5.1.1
solving the full system.

Precond. (5.4) Precond. (5.5)
h−1 h−1

t #it CPU(s) #it CPU(s)
30 20 41 47.01 25 33.82
30 30 43 84.15 25 58.49
40 30 49 190.33 30 143.31
40 40 49 312.31 30 219.44
50 40 58 766.31 35 574.41

Table 2. Comparison of the total number of inner iterations and CPU-time for Example 5.1.1
solving the reduced system.

Precond. (5.8) SSOR-CG
h−1 h−1

t #it CPU(s) #it CPU(s)
30 20 58 41.65 2392 266.77
30 30 61 70.64 2543 436.39
40 30 95 191.89 4414 1500.32
40 40 100 297.56 4716 2249.85
50 40 164 800.62 7162 5610.81

In our numerics, in order to further reduce the computational cost, we replace Mk
1 by a diagonal matrix M̃k

1 ,
which arises from a mass lumping technique.

5.3. Discussion

Next we discuss the effect of the preconditioning techniques. Further we verify our theoretical mesh inde-
pendence and fast local convergence results.

5.3.1. Effect of preconditioning

For Example 5.1.1, Table 1 compares the effect of the preconditioners (5.4) and (5.5), respectively, when using
the GMRES-method for solving the reduced system (5.2). For the same test example, in Table 2 we compare
the performance of the CG method for solving the reduced system (5.6) and when using the preconditioning
scheme (5.8) and a standard SSOR-CG preconditioner, respectively.

Based on our experience resulting also from further test runs (including Examples 5.1.2 and 5.1.3) and based
on the results displayed in Tables 1 and 2 we draw the following conclusions:

• The correction step added in (5.5) improves the performance of the preconditioner significantly.
• The preconditioning scheme (5.8) is clearly more effective than a standard SSOR-CG preconditioner.
• Compared to the preconditioners for the Schur complement, the preconditioners used for the reduced

system show a remarkable stability of the number of iterations (#it) with respect to varying mesh size.
• The preconditioned GMRES solvers for the reduced system require more memory than the precondi-

tioned Schur complement solvers.

5.3.2. Dependence on the mesh-size

In Table 3 we document the results for Examples 5.1.1–5.1.3 for various mesh sizes. In order to further
reduce the computational burden, we employ an inexact semismooth Newton (respectively primal-dual active
set) method. In fact, the Newton system in every iteration of the method is solved to a relative residual (resrel)
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Table 3. Number of SSN iterations for Examples 5.1.1–5.1.3.

Ex. 5.1.1 Ex. 5.1.2 Ex. 5.1.3
h−1 h−1

t #it #it #it
30 20 4 6 6
30 30 4 6 8
40 30 4 5 7
40 40 4 6 6
50 40 4 5 6
50 50 4 6 6
60 60 5 5 6
64 64 5 5 6
64 96 5 5 6

norm accuracy smaller than a tolerance εk. The quantity εk is initialized by ε1 := 0.1. Then, in each semismooth
Newton iteration the tolerance is computed as

εk+1 = max
{
εmin, min

{
0.8 εk, 10−3 ‖resrel‖

}}
with εmin = 10−9. The semismooth Newton algorithm is terminated if either the active sets of two consecutive
iterations do not change, or as soon as the norm of the NCP-function based reformulation of the complementarity
system is smaller than εs and ‖resrel‖ < εs. The stopping tolerance is chosen as εs = εmin/h2.

The results displayed in Table 3 clearly verify the mesh independent behavior for all three examples.

5.3.3. Superlinear convergence

In this section the convergence behaviour of the algorithm is investigated. Our theoretical results in Section 4
predict a locally superlinear rate.

For Example 5.1.1 with a mesh size h−1 = 64 and a time step size h−1
t = 96, the quotients ‖uk+1

h −u∗
h‖S0

h
/‖uk

h−
u∗

h‖S0
h

and ‖yk+1
h − y∗

h‖S1
h
/‖yk

h − y∗
h‖S1

h
are plotted in Figure 13. As before, we employ an inexact semismooth

Newton method, but now with εmin = 10−10. The reference (exact) solution was computed by using smaller
stopping tolerances, i.e., ε = 10−12 for the inner iterations and ε/h2 for the complementarity condition and the
norm of the relative residual for the outer iterations.

In all cases shown in Figures 13 and 14 we find that the respective quotient is decreasing to zero as the
iteration number k is increased. This behavior indicates a superlinear convergence rate of our method. Moreover,
combining these results with the ones of the preceding section the superlinear rate appears to be even mesh
independent.

A. Embedding result

We define the Sobolev space

H1,1/2(Q) = H1/2(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)).

Theorem A.1. The following continuous embedding holds true:

H1,1/2(Q) ⊂ Lq(Q) for q ∈
(

2,
10
3

)
·
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1 2 3 4 5
10

−4

10
−2

10
0

10
2

Quotients |uk+1−u*| / |uk−u*|

1 2 3 4 5
10

−4

10
−2

10
0

Quotients |yk+1−y*| / |yk−y*|

Figure 13. Quotients for convergence rate for Example 5.1.1.
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Figure 14. Errors for convergence rate for Example 5.1.1.

Proof. First recall that H1(Ω) ⊂ L6(Ω) for Ω ⊂ R
d, d ≤ 3. Moreover, we have

H1/2(0, T ; L2(Ω)) ⊂ Lq̂(0, T ; L2(Ω)) for q̂ ∈ [2, +∞),

which follows from [19], Remark 1, p. 328. Hence, we conclude

H1,1/2(Q) ⊂ L2(0, T ; L6(Ω)) ∩ Lq̂(0, T ; L2(Ω)) for q̂ ∈ [2, +∞). (1.9)
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Subsequently, let 2 < q = (q − r) + r, 0 ≤ r ≤ q, p1, p2, s1, s2 ∈ [1, +∞) with

p−1
1 + p−1

2 = 1 and s−1
1 + s−1

2 = 1. (1.10)

Further, the following conditions have to hold true:

p1(q − r) = 6, rp2 = 2, s1(q − r) = 2, rs2 = κ, (1.11)

with κ > 0. Then, we have

∫ T

0

∫
Ω

|y(t,x)|qdxdt ≤
∫ T

0

‖y‖q−r
L6(Ω)‖y‖

r
L2(Ω)dt

≤ ‖y‖q−r
L2(0,T ;L6(Ω))‖y‖

r
Lκ(0,T ;L2(Ω)), (1.12)

where we used 1/s1 = 2/(q − r) and 1/s2 = r/κ.
The conditions in (1.10) yield

q = 6 − 2r and q = 2 +
r(κ − 2)

κ
· (1.13)

The requirement q > 2 yields κ > 2 and r < 2. The second relation in (1.13) implies 2 < q < 2 + r < 4. Let
q = 4 − ε with ε ∈ (0, 2). Then,

p1 =
4

2 − ε
, p2 =

4
2 + ε

, s1 =
4

3(2 − ε)
, s2 =

2κ

2 + ε
·

Now, (1.10) and κ > 2 imply ε ∈ (2/3, 2). Hence,

q ∈
(

2,
10
3

)
·

The assertion follows from (1.9), which implies that the right hand side in (1.12) is bounded. �
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[20] F. Tröltzsch, Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Opt.

15 (2005) 616–634.
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