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LIPSCHITZ STABILITY IN THE DETERMINATION OF THE PRINCIPAL
PART OF A PARABOLIC EQUATION

GANGHUA YUANY2 AND MASAHIRO YAMAMOTO!
Abstract. Let y(h)(¢,z) be one solution to

Oyt ) — > 95(ai;(x)duy(t, ) = h(t,z), 0 < t < T, 3 € Q

3,j=1

with a non-homogeneous term h, and y|o,r)xo0 = 0, where Q@ C R" is a bounded domain. We
discuss an inverse problem of determining n(n + 1)/2 unknown functions a:; by {9.y(he)|o,1)xrg>
y(he)(0, ) }1<e<e, after selecting input sources hy, ..., he, suitably, where I'g is an arbitrary subboundary,
0, denotes the normal derivative, 0 < 6 < T and £y, € N. In the case of ¢p = (n+ 1)2n/27 we prove the
Lipschitz stability in the inverse problem if we choose (hi, ..., he,) from a set H C {C§°((0,T) x w)}©
with an arbitrarily fixed subdomain w C 2. Moreover we can take ¢y = (n + 3)n/2 by making special
choices for hy, 1 < ¢ < fy. The proof is based on a Carleman estimate.

Mathematics Subject Classification. 35R30, 35K20.

Received March 7, 2007. Revised December 31, 2007.
Published online July 19, 2008.

1. INTRODUCTION AND MAIN RESULTS

In this paper we consider the following parabolic equation:

n

Oy (t, ) — Z 0;(a;j(x)0iy(t,x)) = h(t,z), (t,x) € Q=(0,T) xQ (1.1)
y(t,z) =0, (t,z)eX=(0,T)x099Q, y(0,-) € L*Q). (1.2)

Here 2 C R™ is a bounded domain whose boundary 90 is sufficiently smooth, and z = (21,...,2,) € R,
O =42,0=5=,V=(0,..,0,), h € C((0,T) x w), and w is an arbitrarily fixed subdomain of €. Let
a = (a1,a2,...,ap) be a multi-index with a; € NU {0}. We set 99 = 971 952...05™, |a| = a1 + ag + ... + a,

and v = v(z) = (v1(2), ..., vn(2)) is the external unit normal vector to 92 at z. Let 9, = v - V.
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Assume that
ai; € Cl(ﬁ), QAij = Ajj, 1< i,j <n, (13)

and that the coefficients {a;;} = {a;; }1<i,j<n satisfy the uniform ellipticity: there exists a constant r > 0 such
that

n

Z 2)G¢ > rlCP,  CeR", zel. (14)

For y(0,-) € L?(f2), we can prove (e.g., Pazy [37]) that y({ai;},h) € C([0,T]; L*(Q)) N C((0,T); H*(2) N
H(2))NCH((0,T); L*()) and see also (1.6) below. By y ({ai;}, h) (t,z) we denote one function satisfying (1.1)-
(1.2). We note that y({a;;}, ) is uniquely determined upon specification of an initial value in L*(Q).

We consider the following inverse problem:

Inverse problem. Let 6 € (0,T) be arbitrarily fixed and T'g # () be an arbitrary relatively open subset of 9.
Select £y € N, hy € C3°((0,T) xw), 1 < £ < £y suitably and determine a;;(z), z € 2, 1 <1, j < n by observation
data d,y({ai;}, he)|o,m)xr, and y({as;}, he)(0,2), x € Q, 1 <L < L.

We can consider a more general parabolic equation with lower-order terms:

Oy(t, x) Z 0;(a;;(x)0iy(t, x))

1,j=1

+Zb )Oiy(t, @) + c(2)y(t,x) + h(t,z), (t,z) €Q

and discuss the determination of a;j, b;, ¢, 1 <4, j < n by similar observations. The method is same because a
basic estimate (Thm. 2.1) is insensitive to such lower-order terms. However for simplicity, we consider only the
determination of the principal part.

In the formulation of the inverse problem, the initial values are also unknown. The non-homogeneous terms hy,
1 < ¢ < £y, are considered as input sources to system (1.1)—(1.2) and are spatially restricted to a small subdomain
w C Q. Then we determine a;;(x), x € Q by observation data d,y({ai;},he)lo,r)xr, and y({ai;}, he)(0,-),
1 < /¢ < 4y, which are regarded as outputs.

We shall determine a;; in the neighbourhood of some known set of coefficients a'?. We shall denote by

ij
]) the unknown set of coefficients. Solutions associated to ag) will thus be known. The full knowledge

(2)

a!

allows for instance to approximately control the solutions to (1.1)—(1.2) associated to ag-) with the

1 . 1
"(”Jr ) coefficients a(J), we are

ofa

functlon h as the control function. In other words, in order to determine

2) by suitably changlng input sources hy. We

€]

ij
both parabolic equations with a-. and a-- , may be arbitrarily changed during the repeated processes. Our
1 _

assumed to be able to operate the heat processes associated to a;;

note that we need not know 1n1t1al data in repeatlng the processes associated to a;.’, and initial values for the

main concern is the stability estimate for the inverse problem: Estimate ) =1 llai; (?) | i1 (@) by suitable

norms of 0,y ({a } he) — vy ({a( )} he) and y({a },hz)( ) -y ({a@)} hz)( ), 1 < ¢ < ¥y The
stability is a fundamental mathematical subject in the inverse problem and immediately yields the uniqueness.
Stability estimates for inverse problems are not only important from the theoretical viewpoint, but also useful
for numerical algorithms. In particular, by Cheng and Yamamoto [10] for example, a stability estimate gives
convergence rates of Tikhonov regularized solutions, which are widely used as approximating solutions to the
inverse problems.
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M _
ij

al(?)HHl(Q), then we can apply the argument in Yamamoto and Zou [41] (pp. 1187-1188), and we can estimate

Here we assume that initial data are also unknown to be determined. If we can estimate ). =1 |a

y({az(-;)}7 he)(0,-)— y({az(-?)}7 he)(0,-). The argument is concerned with the parabolic equation backward in time.
As for the backward heat equation, see the monographs Ames and Straughan [2], Payne [36] and Klibanov [31]
as a recent paper. Our main concern is the determination of coefficients and so we will omit the estimation of
initial values.

We can consider an inverse problem for a usual initial value/boundary value problem by setting § = 0. In
the case where 6 = 0 and I'g is an arbitrary subboundary of €2, the corresponding inverse problem is open
(e.g., Chap. 9, Sect. 2 in Isakov [25]) even for the inverse problem of determining a single coefficient in a
parabolic equation. In the case of § = 0, if I'y C 92 is a sufficiently large portion and unknown coefficients a;;
satisfy some additional conditions, then applying an argument in Theorem 4.7 in Klibanov [30], we can prove

the stability provided that initial values satisfy some non-degeneracy condition similar to (1.7) below. The
(2)
ij
02 — szzl 0; (az(-?) (ac)é)i> (e.g., Chap. VIII, Sect. 5 in Hérmander [18]). Due to the additional conditions on 'y
(2)

additional condition on a;;’ is described by the pseudo-convexity for the corresponding hyperbolic operator

and a;;’, in the case of § = 0, the available results for the inverse parabolic problem are still incomplete, because

ij

the condition on az(-?) are concerned with the pseudo-convexity for the hyperbolic operator, so that 'y can not
be taken arbitrarily. Even if we can prove the stability for the case of § = 0, we have to assume that initial
values satisfy some non-degeneracy condition such as (1.7) below stated. From the practical viewpoint, this
means that we have to choose such special initial values, which may be difficult in practice. In our case, we
need not directly choose values y({ag)}, he)(6,-), but in order that those values at ¢t = 0 satisfy the requested
non-degeneracy condition, we should steer systems by choosing controls which can be limited in any small part
of Q). Therefore we can assert that our formulation is more realizable.

Our inverse problem is related to determination of thermal conductivity of an anisotropic medium by heat
conduction process. To the authors’ best knowledge, there are no papers on the determination of multiple
coefficients in the principal part of a parabolic equation, although we have an available methodology which
was initiated by Bukhgeim and Klibanov [8]. The determination of multiple coefficients requires repeat of
observations, and the application of the method in [8] needs independent consideration. Moreover, since we aim
at the global stability in the whole domain €2 by means of lateral Cauchy data on an arbitrary small subboundary
Iy C 02, we have to establish a relevant Carleman estimate (Thm. 2.1 below).

For statement of our main results, we need to introduce some notations. Let C*(Q), ¢ € N, denote the
usual space of functions of C*-class on Q, and C™ 11(Q) be the space of all the uniformly Lipschitz continuous
functions on § with the norm

|0%a(x) — 0%a(z")]
a|lrm-110y = |lal|m e + max sup ’
H HC D) H HC ) lal=m g 2/ €, z£a |x B :E/|

For a sequence {p¢(x)} := {pe(2)}, _,. w120 of C?-functions and 1 < k < @, we set
ST

Dj; = Dj5({pe})(x)
0505 (k—1)(n+1)+1 () O1P(—1)n+1)4+1(Z) - OnP(k—1)(nt1)+1(T)

et 0505 (k—1)(n+1)+2(T) O1p(e—1)n+1)+2(Z) - OnP(k—1)(nt1)+2(T)
= de . . . .

0i0j (k1) (n4 D) +n+1(2) P-4 D) +n41(2) o Fnpr-1)(nt1)4nr1(2)
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and

D Di, Dy, Ds, D3, DL
Dt D} ... D}, D .. D3 .. D2,
= det : . ) . . | |

Next we introduce an admissible set of unknown coefficients {a;;}. We choose m € N such that

n
> — + 3.
m 2+

Let us fix constants My > 0, r > 0 and smooth functions n;; = n;;(z), 1 < i, < n on Q. Let wy = {z € Q;
dist (z,0Q) < ro} with sufficiently small ro > 0. Then we note that dw; D 9. Henceforth [y] denotes the
greatest integer not exceeding v € R. We set

U = {{ai;}; ||ay]
a;j =1n;j inwi, and (1.3) and (1.4) are satisfied with fixedr > 0}. (1.5)

cm-11(Q) < MO;

For £ € NU {0} and mg € {0,1,...,2 [mTH} },and 0 <7 <7 < T, we can prove
ly(ais}, Ml cer mapmmo@)) < Collly(aiz}, R)(0, )2y + [hllweo,rmmo w))- (1.6)

Here Cy > 0 depends only ¢, 71,72 and U, and ||h|lwer(o,1;mm0(w)) = Zﬁ:o H@gh|\L1(07T;Hm0(w)). The proof
relies on semigroup theory (e.g., [37]) and is given in Appendix B.

Remark 1.1. In (1.5), we assume that a;; € C™ 11(Q). This can be partly relaxed. However, for the
proof, we have to assume that y({a;;},h)(t,-) € C3(Q) and by semigroup theory we discuss the approximate
controllability in H™(Q2) ¢ C3(Q) (by the Sobolev embedding theorem, e.g., Thm. 5.4 in Adams [1]), so that

with the Sobolev space we have to relate the regularity of functions in the domain of the operator A5 where
the operator A is defined by (1.9) below. For it, we need the regularity in H™(2) for an elliptic equation
223:1 dj(aj(z)0u(z)) = b(z), © € Q (e.g., Chap. 8 in Gilbarg and Trudinger [16]) and a;; € C™~11(Q) is a
required regularity condition (e.g., Thm. 8.13, p. 187, in [16]).

Moreover we assume that unknown coefficients {a;;} are given near the boundary 05, that is, a;; = 7;; in w;.
This means that we are interested in the determination of coefficients in a compact subset of 2 away from 92
with some distance. As is seen from the proof, condition (1.7) below is necessary and the homogeneous Dirichlet
boundary condition (1.2) implies that (1.7) does not hold on 92, because there exist zero column vectors of
D({y({agf)}, he)}). This technically motivates that we discuss the determination of {al(-;)} on Q\ wy, and that
we assume a%) = 1i; in wi. We further note that since we consider solutions in a time interval away from
t = 0, we can improve the regularity in ¢ € (71, 72) as we wish (see the proof of (1.6) in Appendix B), while the
z-regularity in H™(§) with m > % 4 3, is necessary for our argument.

Henceforth, for an arbitrarily fixed M > 0, we assume that

ly({aDY, B)(0, )| 2y < M, =12,

which means that the unknown initial values are bounded with an a priori bound M > 0.
Now we are ready to state our main results.
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Theorem 1.1. Let 0 < 1 < 0 <15 < T, T'g # 0 be an arbitrary relatively open subset of O, and let {ag-)} ceuU
be arbitrarily fived. We assume that hy € C§°((0,T) x w), 1 < £ < @, satisfy

D({y({al)}. o)} (B, 2) #0 (1.7)
for x € Q\ wi. Then there exists a constant Cy = Cy(U, M, {hs}) > 0 such that
Sollal) = ol <1 > 10ww{a} he) = By{a} he)ll i ey rasza o)
i,j=1 —
g (nJrTl)?n =1
+C1 > ly({al he)(0,) — y({al?} he)(0, )l (o (1.8)
=1

for all {az(-;)} ceu.

2
In order to estimate {ag;)} around a given {ag)}, we have to choose hyp, 1 < £ < W whose supports are

restricted to a small set (0,7") X w, so that the systems are steered to satisfy (1.7) on '\ w; at the time 6. The
choice is related to approximate controllability of parabolic equations (e.g., [39]).
Henceforth we define an operator A in L?(Q) by

n

(Ay)(z) = - ;1 9(aij(2)9iy(x)),  xeQ, 1L9)

D(A) = H*(Q) N H; (),

where D(A) denotes the domain of the operator A, and let y({a;;}, h, 1) denote the solution to (1.1) and (1.2)
with y(0,z) = p(x), z € .

Then we can prove:
Proposition 1.1. Let m; = [mTH}, that is, my = & if m is even and my = mT'H if m is odd. Let {a;;} € U.
For each 0 > 0 and p € L*(Q2), the set

{y({aij}, h,p)(0,-); h € C°((0,T) x w)}
is dense in D(A™) = {y € H*™1(Q); Alylaa =0, 0 < j <my — 1}.

By Proposition 1.1, we can prove the existence of hy € C§°((0,T) x w), 1 < £ < @ such that (1.7)
holds on €\ wy, which guarantees the Lipschitz stability in determining {agjl-)}. In fact, we arbitrarily choose
{pe}, e minza C C°(2) such that det D({pe})(x) # 0 for x € @\ wi. We note that p, € D(A™!). In terms

SUS—

of Proposition 1.1, for sufficiently small € > 0, we can fix hy € C5°((0,T) x w), 1 <£< w satisfying

n+1)*n
9@} h)0,) ~ pellms ey <=, 1505 DT

By the Sobolev embedding theorem, we have

ly({ay’y he)(6.-) = pell o < Ce. 1<L<
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By det D({p¢})(x) # 0for z € Q\ w1, we obtain (1.7) on © \ w; for sufficiently small e > 0. The control functions
he can be constructed in practice by means of the methods in Fabre et al. [14], Glowinski and Lions [17].

(2)
J

the zero initial value. That is, we let y({az(-?)}, h,0) be the unique solution to (1.1) and (1.2) with y(z,0) = 0,
x e Q. WesetEO:Wand

2
Now we discuss the set of such hy, 1 < /¢ < W For simplicity, for the system with known a;;’, we assume

H = {(h1, s hay) € {CE((0,T) x w)}; D({y({al)}, he, 0)})(0,2) #£ 0 for z € D\ wr }

From elliptic regularity (e.g., Thm. 8.13 in [16]) and semigroup theory (e.g., [37]), we can prove that there
exists a constant Cy > 0 such that

ly({ais} b O)ll o, 11s02@)) < Callbllr s (), (1.10)

where the constant Cs can be taken uniformly for {a;;} € Y. See Appendix B for the proof.
Therefore we can prove that for (hy, ..., he,) € H, there exists € = e(hy, ..., hg,) > 0 such that if (hq, ..., he,) €
{C5°((0,T) x w)}*o and maxi<e<y, [|he — hellLro,mm () < €, then (hi,...,hs,) € H by the definition of

D({y({ag)}, he,0)})(0, ). This means the stability of input sources (hq, ..., by, ) realizing the Lipschitz stability.
Since C§°((0,T) x w) is dense in C§((0,T) x w) with £ € N, we can take C§((0,T) x w) as a class of interior
input sources, using parabolic regularity properties (e.g., [37]).
Furthermore we can prove an even better result with smaller ¢y in Theorem 1.1. That is, with arbitrary

initial values for system (1.1) associated to the set of coefficients a'? we can choose he, 1 <4 < @ to

1]
establish the Lipschitz stability around az(-?) by means of @ data. The choice of such hy is different from

Theorem 1.1, but Proposition 1.1 guarantees that such a choice is possible.

Theorem 1.2. Let 0 < 71 < 0 <75 < T, Ty # 0 be an arbitrary relatively open subset of ) and let us fix
{ag)} € U. Then we can choose suitable hy € C§°((0,T) X w), 1 <€ < @ such that there exists a constant
Cy = Co(U, M, {hs}) > 0 such that

n(n+3)
2

- 1 2 1 2
ST lal) = aPlme < Co Y 10({al)} he) — Buy({al) Y, ) 2 (ry s roy)
i,j=1 =1
n(n2+3)
2
+C Y yHally he) (8, ) — y({a}, he) (8, )l s oy (1.11)
/=1

for all {ag;)} eu.

Since the number of the unknown coefficients is @, it is natural to expect that suitable @—times

observations can yield the Lipschitz stability, and even the result in Theorem 1.2 holds with overdetermining
observations (i.e., @—times observations). We do not presently know whether we can reduce the number

of observations to w In particular, for the case a;j(z) = { 87@), ;;j: we can prove that a single
observation by a suitable single input h; yields the Lipschitz stability. The proof is done similarly to Imanuvilov
and Yamamoto [23] where an inverse problem for an acoustic equation d?u = div (a(x)Vu) is discussed. In
(1.11), we can replace |\a§j1-) - az(-?) | 51 () by a weaker norm ||a£]1.) - a,E]Q-)HL2(Q) and can adopt the corresponding
weaker norms of observation data. As is stated as Theorem 2.1, our basic tool is an L?-weighted estimate
called a Carleman estimate where the right-hand side is estimated by an L2-weighted norm. We can prove

a similar Carleman estimate where the right-hand side is estimated in an H ~!-weighted space (Imanuvilov and
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Yamamoto [22,24]). Then ||al(-]1.) — ag) | L2(2) can be estimated by such an H~'-Carleman estimate by a method
similar to [23]. However we do not still know whether we can reduce the number of observations in the case of
la;’ = al l2(0)-

As for inverse problems of determining coefficients in parabolic equations, we refer to Danilaev [11], Elayyan
and Isakov [12], Imanuvilov and Yamamoto [20,22], Isakov [25], Isakov and Kindermann [26], Ivanchov [27],
Klibanov [30], Klibanov and Timonov [32], Yamamoto and Zou [41]. In particular, in [12,26,30], determination
problems for principal parts are discussed. In those existing papers, the determination of a single coefficient is
discussed, while we here consider an inverse problem of determining multiple coefficients of the principal part
by a finite set of observations.

Our formulation is with a finite number of observations and this kind of inverse problems was firstly solved by
Bukhgeim and Klibanov [8], whose methodology is based on Carleman estimates. For similar inverse problems for
other equations, we refer to Baudouin and Puel [3], Bellassoued [4], Bellassoued and Yamamoto [5], Bukhgeim [7],
Imanuvilov and Yamamoto [21,23], Isakov [25], Khaidarov [28], Klibanov [29,30], Klibanov and Timonov [32],
Klibanov and Yamamoto [33], Yamamoto [40].

For proving Theorems 1.1 and 1.2, we establish a Carleman estimate (Thm. 2.1) for functions with non-
compact support, and we apply a modification of arguments in [8,23].

This paper is composed of four sections and three appendices. In Section 2 we present Carleman estimates
and the proof is given in Appendix A. In Section 3, we prove Theorems 1.1 and 1.2. In Section 4, we prove
Proposition 1.1. In Appendix B, we prove estimates (1.6) and (1.10). Appendix C is devoted to the proof of
the existence of a suitable weight function for our Carleman estimate.

2. CARLEMAN ESTIMATES

In this section we will prove Carleman estimates for the parabolic equation. The results in this section may
have independent interests.

Lemma 2.1. Let Ty # 0 C 0K be an arbitrary relatively open subset. Then there exists a function d € C?(€2)
such that

d(z) >0 forzeQ, |Vd(z)] >0 forzeQ (2.1)
and
Z a;j ()0 d(x)vj(z) <0, x€dQ\Ty (2.2)
ij=1

or all a;; € CY(Q), ai; = aj;, 1 <i,j < n satisfying (1.4).
j j j

Lemma 2.1 can be derived directly from Lemma 1.2 in [19] where d(x) > 0 is not stated, and for convenience
we prove this lemma in Appendix C.

Example 2.1. Let us consider a special case where a;; =0 if ¢ # j and a;; =1 and
O ={z eR" |z| < R}, Ty = {x € 0Q; (x — zg,v(z)) >0} (2.3)

with an arbitrarily fixed zop € R™ \ Q. Here (-,-) denotes the scalar product in R”. Then we can take d(x) =
|z — 0|2
We present Carleman estimates for an operator L:

n

(Ly)(t.2) = dy(t,x) — Y Oj(aij(2)iy(t, ).

i,j=1
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Theorem 2.1. Assume that (1.4) holds and that a;; € C*(Q), a;j = aji, 1 <i,5 < n. Let d € C*(Q) be a
function satisfying (2.1) and (2.2), and let 0 < 71 < 0 < 15 be fized.

(1) Let o(t,z) = MA@ =BI=01") where B > 0 is a constant. Then there exists a number Ao > 0 such

that for an arbitrary X\ > Ao, we can choose a constant so(N\) > 0 satisfying: there exists a constant
Cy = Ci(s0,A) > 0 such that

1 n
/ B |0sw|? + E 10;0;0% | + s|V|? + s3|v|? 3 e**?da dt
(Tl,‘l‘g)XQ

i,j=1
T2
§01/ |Lv|2e25‘Pd:cdt+Cls/ / |0, 0|25 dn (2.4)
(71,72) X2 T1 To

for all s > sg and all v satisfying

{Lu € L*((m,m2) x Q), v e L*(11,72; H*(2) N Hy (), (2.5)

v(11,+) = v(72,-) = 0.

Moreover the constants sg and Cy continuously depend on A and szzl Haijﬂcl(ﬁ), 71,72, Q, v, while
Ao continuously depends on ZZ;’:1 ||aij||(;1(§), 71,72, Q, 7.

(2) Let p(t,z) = AMA@)=BIE=0P M) yhere My > SUDye (ry,mp) Bt — 0)%. Then there exist positive constants
Ao, So and Cy = Ca(Xo, So) such that

1 . »
/ o |0v]? + Z 10;0;0% | + sA\ 20| Vu|? + s AP [v]? 3 e?*Pda dt
(Tl,‘l‘g)XQ

ij=1

T2
< 02/ |Lv|2e25"9d:c dt + C’gs)\/ / g0|8l,v|2e25"9d2 (2.6)
(TI,TQ)XQ T1 Fg

for all s > sg, A > Ao and all v satisfying (2.5). The constants \g, so and Cz continuously depend on
2 =1 laijllcr @y, 710 72, @,

We prove the theorem in Appendix A.

As for Carleman estimates with regular weight function ¢(t, x), see Eller and Isakov [13], Hérmander [18],
Isakov [25], Khaldarov [28], Klibanov and Timonov [32], Lavrent’ev, Romanov and Shishat-skii [34]. With
these Carleman estimates for parabolic equations, we often have to change independent variables to address
the case of an arbitrary subboundary I'g of the boundary 0f2. As a result, it becomes much more complicated
to obtain a Lipschitz stability estimate over Q \ wi, for the coefficients which one tries to identify. As for
Carleman estimates for parabolic equations with singular weight function (¢, z), we can refer to Fursikov and
Imanuvilov [15], Imanuvilov [19], Imanuvilov and Yamamoto [22,24], and such Carleman estimates hold for a
function v not satisfying v(7, ) = v(m2,-) = 0.

Inequality (2.6) is a Carleman estimate for functions with non-compact support, and estimates the left-hand
side with the weighted L2-norms of Lv in (71, 72) x Q and d,v on (11, 72) x I'g. Once we can prove a Carleman
estimate for functions with compact support, we can immediately estimate functions with non-compact support
by means of a cut-off function, but the norm of the boundary value is stronger that the weighted L?-norm, and
any Carleman estimates for functions with compact support, does not give a better estimate for our inverse
problem.

Thanks to two large parameters A, s and the form of the weight function, Carleman estimate (2.6) can be
applied to inverse problems for a coupling system of parabolic and hyperbolic equations and thermoelastic plate
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equations in case (2.3) for example. For such applicability, we will prove Carleman estimates with regular ¢ (¢, x)
as Theorem 2.1.
As for Carleman estimates with two large parameters for functions with compact support, we can refer to [13].

3. PROOFS OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1. By 0 < 71 < 79 < T, we choose and fix 73,74 > 0 such that
O<m<n<m<mu<T.

It is sufficient to prove (1.8) with the norm in H?(73,74; L?(T'g)) of the first term on the righ-hand side. Let
d € C?(Q) satisfy (2.1) and (2.2). We choose 8 > 0 such that sup, ¢ d(z) < Smin{|r —6|%, |72 — 6]*}. We set

p(t,x) = exp{A(d(z) — |t — 6]*)}.
Let dy = inf,cq exp{Ad(z)} > 1. Then, by the choice of 5 > 0, we have
()0(9737) ZdO; @(Tl,f),(p(Tg,x) < 1§d07 xeﬁ

Thus for a sufficiently small € > 0, we can choose a small 6 = §(¢) > 0such that 1 <71 +20<0—-0 <0+ <
To — 20 < To,
o(t,x) >do—e, (t,x)€[0—05,0+6xQ
and
o(t,x) <do—2e, (t,x) € ([r1,71 +26]U[ra —25,72]) x Q.
We introduce a cut-off function x satisfying 0 < y <1, x € C°(0,T) and

. 0, t€[7-177—1+(5]u[7-2_6,7-2]7
X(t) = { 1L te|m + 26, — 20, (3.1)
Let us set
fii(@) = al (@) —al (@), Re(t,z) = y({a{?}, he)(t, ), (3.2)
(LMy)(t,z) = atyfza 5 (2)01).
2,j=1
By (1.1) and (1.2), we can see that the differences
Gt w) = y({a }, ho)(t.2) — y({al }, he) (t o)
satisfy
LOG,(t, x) Z 95 (fij()DiRe(t,x)), (t,x) € (0,T) x Q, (3.3)
7,j=1
1 2
Ttx) =0, (ta)e(0,T)xd0, 1<i< W (3.4)
We set
Z@(th) = atgé(ta I), d = sup (p(ta I) (35)

(t,z)E(T1,72) XQ
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and

(n+1)%n
3

U= Z 2elZ2(ry a2y + 1V 2T 200y s 2202y
=1

2

+ ||atzz||%2(Tl,T2;L2(Q)) + ||Vatzz||%2(7'1,7'2;L2(Q)))) )

N

<n+;>2n
V=1 Y 10.Gell7r2(rymaizzcroy
=1
Then by (3.1), (3.3) and (3.5), we have
LW (zex) = > 0 (xfij (€)0:0, Re(t, ) + 20 x (3.6)
ij=1
and
LD (x820) = Z 9; (X fi;(2);02 Re(t, 2)) + (X)) s e (3.7)
,J=1
We set

Ql = (Tl,TQ) x €.

Let 1 << @ By (1.6), we see that y({a(k)} he) € C3([m1,m2); H™(Q)), k = 1,2, so that the right-hand
sides of (3.6) and (3.7) are in L2(Q1). Moreover from (3.4) it follows that x9;2¢, xz¢ € C (11, 72]; H2(Q)NHE(Q)).
Furthermore, by (3.1), we have (x0:z¢)(71,-) = (x2¢)(11, ) = (XO12¢) (72, ) = (x2¢)(72,:) = 0.

Henceforth C; denote generic constants which are dependent on 2, T, 71, 72, 7, A, M, U, {h¢}, but independent
of s. We can apply Theorem 2.1.(1) to (3.6) and (3.7) in Q1. Then

/ {5V (x20)|? + s |xze|* }e**da dt < Oy Z Z / X202 fiiPe? P da dt

4,7=1|a|<1

2
+ Oy U2 do=28) 4 Cls/ 10, (xz0)[?e**7dE, s> so (3.8)
I'o
and

/ {5V (xOy20)|? + 8| xOrze|*e®*¥da dt < Oy Z > / X202 fi(z)|>e®*?dz dt
3,7=1 |a|<1
T2
+ CL U5 d0=28) 4 05 / 18, (xOyz0)|?e>°¢dE, s> s0. (3.9)

71 JIo
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Here we have used that dyx # 0 only if p(¢,2) < dy — 2¢. On the other hand, we have

/ 10776 (0, z)[Pe**? ") dy = / IX(0)07¢ (0, )| 2e**# ") dz
Q Q

2
— / Oy ( / |X(t)atg@(t,x)|2e2w<m>d:c) dt
T1 Q

< / 202510l + s1wollxdrge ) P da dt + / 210,52 x|Or x|
Q1

1

< 02/ |X8t24|2e2s<p(t’z)dlﬂdt+CQ(SJF1)/ |XZE|2e2s<p(t,z)dmdt+CQUQQQS(dofk). (3.10)

1 1

By (3.8)—(3.10), we obtain
[ 10idi(6. 00
Q

< Cs Z Z/ X102 fi (@) 2P dx dt + UZe?s(10729) 4 ge25Py2 (3.11)

i,j=1|a|<1

for sufficiently large s > 0. Similarly we have
[ 1V0idi(6.2)e 70 da
Q

<Cy Z Z/ 2102 fij (@) [Pe*Pda dt + UZe?s(d0729) 4 ge2e®y2 (3.12)

=1 |a|<1

for sufficiently large s > 0. By (3.3), we have
n

LOYG(0,2) = > (9;£:5(x))0i Re(6, ) Z fi5(@)0:0;Re(0, ), =€ (3.13)

4,j=1 4,J=1

for1</¢< w Let us consider the above equations for 1 < ¢ < n + 1. Then we have

81R1(9,£C) 82R1(9,£C) . aan(G,x) Z;‘Lzl ajflj(m)
O Ry(0,)  92Ra(0,2) ... 9,Ra(6,) > i1 05 faj(x)

. . _ . ) (3.14)
81Rn+1(9, CE) 82Rn+1(9, CE) N 8an+1(9, ’JJ) Z?:l 6jfnj (I)

L(l)gl (9, I) — ZZ]‘:I fijé)i@le (9, I)
LWy (0,2) = 327, fij0:0;Ra (0, 2)

LG 1 (0,2) = X7y fij0i0; Rnia (0, )
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Because linear system (3.14) is composed of (n + 1) equations with respect to n unknowns and possesses a

solution (2?21 0 f15(), 2251 93 fa5(@), - 200 0jfnj($))

, the coefficients matrix must satisfy

L(l)gl (9, ’JJ) — ZZ]’:I fijc?ic?le (9, QC) 81R1 (9, ’JJ) e aan (9, QC)
LWGa(0,2) = Y27 fi;0:0;Ra(0, ) O Ra(0,2) ... OnR2(0,7)
det ) ) =0.
L(1)§n+1(9, $) — ZZ]’:I fijé)ié)jRnH(H, I) 61Rn+1(9, $) . 6an+1(9 I)
Let us set Df(z) = D} ({y({a; )}, he)})(0,2). Then we have
ZD x)fij(x +22D x)fij(x) =Yi(x), =€ Q\w, (3.15)
i<j
where © ©
L(l)gl(eax) aly({aij }ahl)(eax) any({aij }’7h1)(97$)
LOG60.2)  dwy({a) b ha)O.0) .. Ouy({al} he)(0,2)
Yi(z) = det ] i . ]
LOGs1(0,2)  dy({a) Y has)(O,0) .. Ony({al'} hura)(6,)
We set
Ya(x)
LOnia(0,0)  Owy({al) b hur2)(2) .o Ouy({al} husa) (0, 2)
~ 2 2
e | Ps@0) owe ) hass)00) o Ouy({al)} s (0,0)
LOGana(0,2)  dry({a]' }, hanso)(B2) .. Ony({af)’} hanto) (0, )
Y(n+21)n ($)
L(l)gé(n—kl)zn—n(oa ’JJ) 31y({‘1£]2)}7 h%(n+1)2n—n)(9a 1')
~ 2
LG inyznnir (7)) 01y({a }i hsnsnyzn—nin)(0,2)
= det ) )
L(l)g%(nJrl)Qn(ov ’JJ) aly({ag)}ﬂ h%(nJrl)?n)(eﬂ :L')
any({ag)}v h%(nJrl)?nfn)(ea 1')
2
dny({ai}}, tyrin-nin) ()
8 ({ ’L] } hl(n+1 )(0 I)
Similarly to (3.15), we can obtain
> D) fii(x) + 2 Dii(@) fij(z) = Yi(z), z€Q\w (3.16)
7j=1 i<j
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for 1 <k < @ Equation (3.16) is a linear system with respect to @ unknown f;;. Condition (1.7)

implies that the determinant of the coefficient matrix does not vanish on € \ wy. Applying the Cramer formula,
we can solve (3.16) uniquely with respect to @ unknowns f;;. Therefore, taking into consideration the

definition of Y3 (x), we can represent the solution f;; by

(n+1)2n
2

fij(x) = cfj(x)L(l)ﬂg(G,x), r€Q\wy, 1<i,j<n (3.17)
=1

with some cfj(ac), 1<i,j<n 1<¢< w By the Sobolev embedding theorem (e.g., Thm. 5.4 in [1],
Cor. 9.1, p. 46, in Vol. 1 of [35]), we see that H™(Q) C C3(Q2). Hence ;g({az(-?)},hg) € C3([m,m2); H™(Q)) C
C3([r1,72]; C3(Q)), and so ij € CYQ\wy),1<i,j<n, 1<£< W Moreover, since cfj are given by
values (not including the derivatives) of DF;(x), we see that ||c]| o@en) < CL.

By noting also that f;;(z) =0, € w1, 1 <4,j < n, by means of (3.17) and cfj € CH(Q\ wy), we have

(n+1)2n
2
[ S eem@penascs S Y [ 0000 00
2 o)<t =1 |a|<1’9
<n+;>2n )
~ 1
+C5 > Z/|0§yg(9,ac)|2e25"’(9’””)dx, 1<i,j<n, 1SESW- (3.18)
=1 J|a|<3”9
By (3.11) and (3.12), we have
(n+;)2n
/|0§0tﬂg(9,$)|2625"’(9’z)dx
=1 |aj<1”9
n T
S S [ st ([ e son) o
ij=1|a]<1”% Tl
+ CU?e?5(d0=29) | 502512 (3.19)

for all large s > 0. By (3.18) and (3.19), we obtain

Y / 102 fiy () 2290 4
Q

i.j=1 o] <1

%3 s

ij=1lal<1 .

T2

er(«p(t,zw(e,m))dt) e

(n+1)2%n
2

+Cy Z Z/|3§‘Z72(9,x)|2625"°(9’m)d:c+C’7U2625(d0725)+C7se25¢V2 (3.20)
=1 |a|<3’9
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for large s > 0. Applying the Lebesgue theorem, we have

sup
zeQ

T2
§/ exp (2se)‘d1 (e*w‘t*e|2 — 1)) dt =0(1) ass— oo,

1

/72 e28(<ﬁ(t,w)—w(9,w))dt‘ — sup
o) e

/T2 exp (236’\d(”)(e_w‘t_9|2 — 1)) dt‘

T1

where di = infyecqo d(x). Then

n T:
32 S [ 1o s e ( / zeQS(“’(t’x)_"’(e’x))dt) d
Q T1

i.j=1la|<1

=o(1) Z Z /Q|8§‘fij(x)|262w(‘9’x)dx as § — 0.

i,j=1|a]<1

Hence, from (3.20) we have

1=o(1) > > / 102 fii () 2?5?00 Az < CyU%e?3(D0729) 4 Ogse®* P2
ij=1]al<1”9

(n+1)%n
2

+Cs Z Z/|a§g€(971)|2925¢(6’z)d1‘ as s — o0.
Q

(=1 |a|<3

By (0, z) > dy for = € Q, we obtain

(L=o(1) Y > e%do/ 109 fij ()P da < CoU?e?*(@072¢) 4 Cyses PV
i,j=1|a|<1 Q2

(n+1)2%n
2

+ Gy Z Z/|a;‘gz(9’x)|2625<p(0,m)dz as § — 00,
Q

(=1 |a|<3

that is,

(I=o(1) > > / |02 fij (2)Pda < CoU2e™ 458 4 Cyse?s(P—do)y/2
Q

ij=1lal<1

(n+1)%n
2

20 Y [maeae t ar as s — o
Q

=1 |a|<3

On the other hand, we can prove the following estimate:

U< CoV2+Cio Y, > / 0% fij ()P de.
Q

i.j=1 o] <1

(3.21)

(3.22)
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In fact, by (3.3) and (3.4) we have

{U”&mmxw=z” L0, ([ @0 Re(1,2)), (t,2) € (0,T) x O
(3.23)

Oye(t,z) =0, (t,z) € (0,T) x9N, 1<L< (”“)

Apply Lemma 1.1 in [19] (¢f. Lem. 2.4 in [20]) to (3.23). Then we can see that there exist ¢ € C?(Q2) and a
constant g > 0 such that for a constant o > o we can choose 7y(0) > 0 such that for each 1 > ny(0), we have

coto(®) B 330¢0(x)
/ (77—|V0tye|2 P 5 |0:e| ) J(t, x)da dt
(T3,T4)><Q ( )

tf’l'g)(ﬂ;*t) ( 77’3)3(7'4

< Cn Z > / |8§fij(x)|2J(t,m)dxdt

ij=1|a]=1" (T3:74)

T4 %o ()
+01177/ |0, 0 e |* 1
T3 o

—( Py t)J(t,x)dE.

Here we set
27’ (eawo(az) _ eQanOHC(ﬁ))

(t — T3)(T4 — t)

J(t,x) = exp

By the proof of Lemma 1.1 in [19], we see that the constant C11 > 0 can be taken uniformly in a;; € U, and
see also [9,15] as for the proof. We note that Ci; is dependent on o, but independent of 7, and the constant og
depends on Y. We fix o > g and 1 > no(c). Then

0<Ci1 SJ(t,x)
forx € Qand 1 <t< 7 and

nead)g(z)

AT re y oy

J(t,z) < Ciz

for x € Q and 75 < t < 74. Hence we have

/iuvawz+@mﬁﬁmw

1

coad Y |

i,j=1 |a|<1 (73,

0% fi, (2)[2da dt + Cis / / 10, 0,37, 2. (3.24)
T4)><Q To

Similarly, we can obtain

/(W%M?H%M%mm

1

<esd Y |

i,j=1|a|<1 (73,74) X

0% £, (2)[2da dt + Cis / 10,0257 2d5. (3.25)

T3 JTo

By (3.24) and (3.25), we complete the proof of (3.22).
We can obtain (1.6) by substituting (3.22) into (3.21) and taking s large enough. Thus the proof of Theo-
rem 1.1 is completed.
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Proof of Theorem 1.2. Let B = (bi;)1<i,j<n b€ an n X n matrix such that b;; € R and det B > 0. We set

7j=1

and
51(1’) = l‘%, ,9\2(1') = 21’11'2; 53(33) = 22'311'37 SRR lg\n(x) = 21’11'7“
Gnt1(x) = 23, Gnya () = 23223, ..., Gon—1(2) = 2T22y,

/g\(7L§1)7L72($) = I%_l, /g\(nél)nil(fﬂ) = 2xn_1xn,

/g\(n+21)n (I) = xi

(n+1)%n
2

Let us define an -dimensional vector by

(2020021112 904200). a0 i)
Fasag s (0) g (0, Gugona ()
(BB Tl BB, Gl
§% (), q1(x),. .. ,ﬁn(x)) . (3.26)

Therefore, noting that 0;0;gr = 0, we obtain

Dl (o)) = der 00 1)

1
= (0;0;Gr)det B, 1<k< ”(”; ) 1<ij<n
Hence

2det B 0 0 0 0
0  2etB 0 - 0 0
0 0  2detB -+ 0 0
D({ge})(z) = : : : . : :
0 0 0 - 2detB 0

0 0 0 - 0 2detB

(n+1)n

Consequently we have det D({g,})(z) = (2det B)™ = > 0. We introduce a cut-off function x; € C§°(Q2) such
that xy1 =1 on Q \ wy. Then we have

m
2

X19¢ € D (A[ﬁ]) and D({x19:})(2) >0, z€Q\wr. (3.27)

Here we recall that A is defined by (1.9).
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By Proposition 1.1, for arbitrarily u, € L?(£2), we can choose hy € C§°((0,T) x w), 1 < £ < (n+23)", so that
for a sufficiently small € > 0 we have

~ n+1)n
Iy({a}, e )6, ~ xafillm ey < =) 15 0< PEL
and o)
2 ~
Hy <{aij h h<n+21>n+kvﬂ<n+21>n +k) 0,) - XlngH?ﬂ(Q) <e 1<k<n

Here we note that y({ag)}, h, i) denotes the solution to (1.1) and (1.2) with y(0,-) = pu. Since m > & + 3, we
have H™(Q2) C C?(Q). Then we can obtain

(2 ~ 7 (n+1)n
90} e ) 0.) vl oy <= 1< 0< OF (3.28)
and
(2) = x13 < <k<
Hy ({aij },h(n+21)7l+k,u<n+21>n+k 0,-) — x19k e e, 1<k<n (3.29)
Let
/}Zl n 277/
( )1§e§( +21)
= <h1, hoy ... hpt1, hpgo, hpgs, o ooy honga, .o
hn3+22n2,n , hn3+22n2,n+1, . ,hn3+2;z,n +n>
= <h1, hn(n2+1)+1, ey hn(n2+1)+n, h,Q, hn(n2+1)+1, ey hn(n2+1)+n, ey
hn(n2+1) , hn('n.2+l)+1, R hn(n2+1)+n) (3.30)
and
(ﬁ4)1<e< (n+21)2n = (ﬁla ﬁ27 s 7ﬁn+1a ﬁnJrQa ﬁnJrSa s 7ﬁ2n+2; ceey
ﬁn3+2;r2fn ; ﬁn3+2;r2fn 410 7//~l/\n3+227127n +n>
= <u1, ;Ln(n2+1)+1, e ,un(n2+1)+n, Mo, Mn(n2+1)+1, ce ,/Ln(n2+1)+n, ceey
Mn(n2+1> , Mn(n2+1>+1, - ,/J/n(n2+1)+n> . (3.31)

By (3.27)—(3.31), we can obtain

D({y({a? V. he, i) (0. 2) > 0, z€Q\wy

. . o (n+1)2n
by taking e small enough. Thus, by applying Theorem 1.1 to hy, 1 </ < 5

completed.

, the proof of Theorem 1.2 is
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4. PROOF OF PROPOSITION 1.1

For the proof, we will use the dual space D(A~™1), which is defined as follows. By || - || and (-, ) we denote
the norm and the scalar product in L?(f2), respectively. We recall that the operator A in L%(Q) is defined
by (1.9). Henceforth [y] denotes the greatest integer not exceeding v € R. Since a;; € C™~11(Q), elliptic
regularity results (e.g., Thm. 8.13, p. 187, in [16]) yield

O Aull < lull 20y < Aull, u € D(A).

Next, using ||A*~1u|| < C1||A*ul| for u € D(AF) and k € N, we repeatedly apply Theorem 8.13 in [16] and we
see
Or AR < [lull oy < CullAPull,  w € D(AY) (4.1)

where k = 0,1, ..., [mTH} Here the constant C; > 0 is independent of u € D(A¥), and || - | rr2x () denotes the
norm in H?*(2). In particular,

CrHlA™ ull < Jlull gom @) < CLA™ull,  u € D(A™). (4.2)
Moreover it is known that there exists a sequence of eigenvalues {x;};jen of A:
0< k1 <Ky L oo — 00,

where r; appears the same time as its multiplicity. Then we can form an orthonormal basis {e;};en in L?(£2)
such that Ae; = xje;. We have

2

oo
1A%l = | D w3 (u,e5)
j=1

and D(A?), ¢ € NU {0}, is a Hilbert space with the scalar product

o0

(ua 'U)’D(Af) = Z ’i?e(ua ej)(U7 ej)'

j=1

In particular, D(A%) = L?(€2), and D(A™) is dense in L?(12), and the embedding is continuous. Identifying the
dual space of L?(2) with L?(Q), we have D(A™) C L?(Q2) C (D(A™))’ topologically (e.g., [6]). Henceforth we
set (D(A™)) = D(A™™) and pami) < u,& >pa-m1) denotes the value of a linear functional £ € (D(A™))’
at u. We note that

D(Am) < U, § >pa-my= (4, §)
if u € D(A™) and ¢ € L*(Q) (e.g., V.2 in [6]).

Since L*(Q) is dense in D(A~™1), in terms of the choice of the norm on D(A), we see that A~ is extended
uniquely to a bounded operator in D(A™™) and ||ul|pg-m1) = [|A~™ ul|. By the density of C§°(Q) in L*(£2),
we see also that C§°(Q) is dense in D(A~™1). Furthermore it is seen that e *4 is an analytic semigroup in
D(A~™1) and A~mMe 4 = et AT,

Now we proceed to the proof of the proposition. Without loss of generality, we can suppose that y(0) = u = 0,
because the parabolic equation (1.1) is linear. First we consider

—2 4+ Ax(t,2) =0, (t,2)€Q,

z = 0; (ta QC) € Ea (43)
2(T,x) =&(x), €€,
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where & € D(A™™1). We can verify (e.g., [37]) that for every & € D(A~™1), there exists a unique solution
z € C([0,T]; D(A~™)) such that

Izl c(o,71;pa-m1)) < Clléllpa-m1)-

Recall that y({ai;}, h,0)(t, z) is the solution to (1.1) and (1.2) with y(0) = 0 where h € C§°((0,T) x w). We
will prove

pam) (Y{aii}, 0T, ), ) pa-mry =r2(0,15D(am1)) (s 2) 20, 73p(A—m1)) - (4.4)
In fact, by the density of C§°(€2) in D(A~™1), there exists a sequence &, € C§° (), k € N such that & — &
in D(A~™). By z; we denote the solution to (4.3) with the final value & at ¢t = T. Then zx,y({ai;}, h,0) €

CH([0,T]; L*(Q))NC([0,T); D(A)) (e.g., Thm. 3.5, p. 114, in [37]). Therefore we can multiply (1.1) with z(, ),
so that by integrating by parts, we have

(y({aiz}, b, 0)(T,-), &k) L2() = (B, 21) L2 ((0,7)x ) -

Noting that h € C§°((0,T) x w), we can further rewrite it as
pam) (Y{ai}, b 0)(T, ), Ek) pa—my =rL2(0,150(am1)) (Bs 28) 120 7D (A 1)) -

Since y({ai;}, h,0)(¢,-) = f(f e~ =9)An(s,)ds for t > 0 (e.g., [37]) and h € C3°((0,T) x w), we directly see that
y({ai;}, h,0)(T, ) € D(A™"). Hence, as k — oo, we have

D(A"‘l)<y({aij}a h, 0)(T, ), €>D(A7m1) =L2(0,T;D(A™1)) (h, Z>L2(O,T;D(A*m1)) .

Thus we proved (4.4).
For the proof of the proposition, it is sufficient to verify that if

D(Am1)<y({aij}vha0)(T7 ')a£>D(A—m1) =0 (4.5)
for all h € C§°((0,T) x w), then & = 0. Let us assume (4.5). Then for any 6 € (0,T"), by (4.4) we have
L2(0,T—6;’D(A7"1))<h7 Z>L2(O,T76;D(A*m1)) =0 forall h e C5°((0, T —0) x w).

By the smoothing property for the parabolic equation (e.g., [37]), we know that z € L2?(0,T — §;D(A)) C
L2(0,T — 6; H*>(Q) N H(2)). Therefore

L2(O,T76;D(Am1))<ha Z>L2(O,T—6;D(A*m1)) = (h, Z)L2(0,7-5:L2(2)

= (h, 2)2(0,7—8;L2(w))

for all h € C§°((0,T — 0) x w). Hence we have z = 0 in (0,7 — §) X w. By the unique continuation for
parabolic equations (e.g., Saut and Scheurer [38]), we can see that z = 0 in (0,7 — §) x Q. We note that a
Carleman estimate yields the unique continuation by an argument similar to the one in obtaining (3.22). Since
0 is arbitrary and z € C([0,T]; D(A~"™1)), we can obtain £ = 0. Thus the proof of Proposition 1.1 is completed.
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APPENDIX A. PROOF OF THEOREM 2.1

The proof is adapted from the proofs in [15,19], where the authors treat the case of the weight function
containing a singular function.

Henceforth we take A > 1 and by C; we denote generic constants which do not depend on s and A, and
continuously depend on ZZ]':1 ||aij||cl(§), 71,72, 2, r. It suffices to prove (2.6) for the operator

Lv = 0w — Z a;;(2)0;0;v.

ij=1

In fact, we have

n

Lv=Lv— Z (0ja:5(x))0v(t, )

ij=1
and 0;a;; € L*(Q). Therefore

4 / |Lv|2e28“’dxdt+/ |Vo2e**¢dz dt
(11,72)XQ (11,72) %X

2/ |Lv|?e?*%dz dt.
(71,72) X

Hence in (2.6) with E, we further choose sg > 0 sufficiently large and we absorb the term C f(ﬁ X0 |Vo|2e2s¢dz dt

into the left-hand side. Moreover, fixing A in (2.6), we obtain (2.4).
Henceforth we set

Q1 = (11,72) X Q, Y1 = (11, 72) x 0Q

and
n

a(x,6,6) = Y a6, €= (C1rnCn)s £= (61, 6) ER™, (L) € Qu.

4,J=1

Let w(t,x) = e?v(t, x). By (2.5) we have
w(ry, ) = w(m,) =0 in . (A1)
Let

Pw=e**Le”*?w =¢e**Lv in Q.

It is easy to see that the operator P has the form

Pw = 0w — Z aijé?i@jw + 25\ Z Qij (&d)ajw

i,j=1 i,j=1

+sXow Y aij(0:d)did — *N9*w Y ai;(0;d)0;d

i,7=1 i,j=1

+ sApw Z a;;0;0;d — swop. (A.2)

i,7=1
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We set
le + PQ'(U = Pw — s)\Qng Z Q5 (&d)c?]d
ij=1
—SApw Z a;;0;0;d + swoyp = fs  in Qq, (A.3)
ij=1
where
Piw=— Z aij0;0jw — s>\ p?*a(x, Vd, Vd)w, (A4)
ij=1
n
Pyw = 0yw + 2s\p Z a;;(0;d)0;w. (A.5)
ij=1
Equation (A.3) implies
1 fellZ2(qu) = 1Prwll7e(qyy + 1PowllFe (g, + 2(Prw, Pow) p2(gy)- (A.6)
By virtue of (A.4) and (A.5) we have
n
(Prw, Pow)r2g,) = | — Z a;;0;0;w — 52)\2302wa(:£, Vd,Vd),orw
vt L2(Q1)
_ / 253N wp’a(z, Vd, Vd)a(x, Vd, Vw) dzdt — / 250p Y ai;0i0;w Y ake(pd)Opw da dt
1 @1 i,j=1 k=1
We note
Vw = (d,w)v on Xy, (A.8)

because v € L?(1y, 72; H2(Q) N HY(Q)) implies w|y, = 0.
Noting also that a;; = aj; and w(m,-) = w(me,-) = 0, we transform I, I and I3 by integrating by parts
respectively:

- i 232
I, :/ |f9t'w Z (Dia)05w + Z a;;(05w)0; Opw — ST<P2(Z(QC,Vd, Vd)at(wQ) de dt
@ = e
n $2)\2
:/ ow Y (Bhaig)djw +w ——0y(¢a(x, Vd, Vd)) | dadt, (A.9)
1 i,j=1

I, = —/ s*A3p? Z aija(z, Vd, Vd)(0;d)0; (w?)dz dt

! 4,J=1

— / 3 M la(x, Vd, Vd)* + s Nw?e® > 05(asa(x, Vd, Vd)dd) | dadt (A.10)

1 ij=1
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and

/ (Z a;;0;0; w) (23)«,0 z": akg(akd)ﬁgw> dadt

i,7=1 k=1

n

/ { Z 25Ap(0;a45)( Z ake(Okd)Opw + 25\2¢p Z a;;(0;w)(0;d) Z ake(Opd)Opw

i,7=1 k=1 i,7=1 k=1

+ 2s\p Z [aijaiw Z aj(au@kd)é)gw] + 2s\p Z (aijaiw Z akg(akd)ajagw> }dxdt

ij=1 k=1 ij=1 k=1
/ Z a;jvjO0w s\ Z ape(Ord)Opw | dX.
Zr \ij=1 k=1

By using (A.8) and a;; = a;;, we can obtain

13:/ {225)\308(1” &u}Zau akdangrQs)\gaZa”aw )(0;d) Zake (Ord)Orw

i,7=1 k(=1 i,j=1 k=1
+ 25 p Z {aij(&-w) Z @-(akzakd)aew] + sAp Z {akgakd Z ai;0p ((aiw)ajw)] }d:c dt
ij=1 k=1 k=1 ij=1

— 25\ [ ¢lo,w|?a(z,v,v)a(z, Vd,v)dS
DY

Integrating by parts, we have

Ig:/ {ZQSA@@GU 6’LU Zau é)kdé)gw

i,j=1 k=1

+ 25)\250a(:c, Vd, Vw)2 + 2sAp Z [aij&-w Z 8j(ak48kd)84w]

ij=1 k,e=1

— s\?pa(z, Vd, Vd)a(x, Vw, Vw) — s\p Z Or(akeOkd)a(z, Vw, Vw)
k¢

n

— SAp Z

k,e=1

4,j=1

aeOrd i (6gaij)(6iw)a ] }dx dt

fs)\/ elo,w|a(z, v, v)a(z, Vd,v)d3. (A.11)
P
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By (A.9)—(A.11), we have

(P1w7P2w)L2(Q1) = /

1 ij=1

l353A4¢3w2a($, Vd, Vd)Q + ( Z (ajaw)é)zw) PQUJ

+ 28X\ pa(x, Vd, Vw)? — s \*pa(z, Vd, Vd)a(z, Vw, Vw) | dz dt

- s)\/ plo,w|a(z, v, v)a(z, Vd,v)dY + X, (A.12)
DY

where

2,2 n
X3 :/ {w282>\ oi(p*a(x,Vd,Vd)) + s> 3w?p? Z 0j(a;ja(x,Vd,Vd)0;d)

4,J=1

+ 25\ Z {aij(aiw) Z 8j(ak48kd)84w] — 8\ Z O (areOrd)a(z, Vw, Vw)

3,j=1 k,t=1 k,e=1

k=1 ij=1

) Z {akgakd Z (8gaij)(8iw)8jw] }d:c dt.

Then by a;; € C1(Q), we obtain

|Xq] < Cg/ [(sAp + 1)|[Vw|? + (s X3p* + $2A%p?)w?] dz dt. (A.13)

Q1

Multiply (A.3) by sA2pwa(x, Vd, Vd) and integrate by parts in @1, and we obtain

/ s\2pfsa(x,Vd, Vd)w dx dt

= / {5)\2<pa(ac, Vd,Vd)wPyw — s°X\¢3a(z, Vd, Vd)*w?
+ s\2pa(z, Vw, Vw)a(x, Vd, Vd) 4+ s\3pa(z, Vd, Vd)a(z, Vd, Vw)w

+ s 2w Z 0j(a;ja(x, Vd, Vd))@iw}dm dt.

i,j=1
Consequently
253\ / Pda(x,Vd, Vd)*widz dt
1

= 2/ s\2pa(z, Vw, Vw)a(z, Vd, Vd)dz dt + 2X,, (A.14)
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where
X = / {s)\Qcpw Z 9j(aija(x,Vd,Vd))0;w + s\*pa(x,Vd, Vd)a(z, Vd, Vw)w
1 ij=1

+ s\2pa(z, Vd, Vd)wPyw — sA\? fopa(z, Vd, Vd)w}d:n dt.

By a;; € C! () and the Schwarz inequality, we obtain

1
[Xa] < el Powllzacon) + Cs/ [(s"A%" + " Xp)w? + N V] dzdt

1

1
+ §||fs||2L2(Q1)' (A.15)

Using 353\ p3w?a(x, Vd, Vd)? = s3\ p3w?a(x, Vd, Vd)? + 2s*Xp?w?a(z, Vd, Vd)? in (A.12) and substituting
(A.14) into the above second term, we have

s N Pw?a(x, Vd, Vd)? + Z(ﬁjaij)aiw Pyw

ij=1

(le,Pgw)L2(Q1) :/

1

+ 25X\ pa(x, Vd, Vw)? + s\2pa(x, Vd, Vd)a(z, Vw, Vw) | dz dt

— s\ [ plo,wra(z, v, v)a(x, Vd,v)dE + X1 4+ 2Xo.
2y

Therefore we see that

2(Prw, Pyw)r2(g,) > / 2[s* N pPw?a(x, Vd, Vd)* + sN2pa(x, Vd, Vd)a(z, Vw, Vw)]dz dt
1

n

1
+ /Ql 2 (§P2w) 2 Z (6]‘@1']‘)81'11} dx dt

ij=1

- 25)\/ oo wa(x, v,v)a(x, Vd, v)dE + 2X; + 4X,.
DY

Applying

2
n n

1 1
2 §(P2w) 2 Z (ajaij)aiw < Z|P2’LU|2 +4 Z (ajaij)aiw ,

ij=1 1,5=1
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by virtue of A > 1, (A.6), (A.13) and (A.15), we obtain

||f5||2L2(Q1) = ||P1w||2L2(Q1) + ||P2w||%2(Q1) + 2(Prw, Bw)r2(q,)
1
> || Prwl|7zq,) + §||P2w||%2(Q1)

+/ 2[s* N pPw?a(z, Vd, Vd)? + sA\*pa(x, Vd, Vd)a(z, Vw, Vw)]dr dt

- C4/ (N2 + shp + )|Vl + (83230 + 52 A2 + s2 A p)w?|dz dt
1

— 2||fs||%2(Q1) - 23)\/ 0|0, w|*a(x, v,v)a(z, Vd,v)dY.

DY
Since d € C?(Q) satisfies |Vd(z)| > 0, z € Q, by (1.4) we can obtain
2 1 2 1 2

I £sllz2(01) = §||P1w||L2(Q1) + 6||P2w||L2(Q1)

+Cs / (83X Bw? 4+ s\ 2| Vw|?)dx dt
1

—Cg / (A2 + sAp + 1)Vl + (s X3¢ + s2A*p? + s A p)w?]dz dt

2
- —s)\/ olo,wa(x, v,v)a(x, Vd,v)dX.
3 o
In terms of the definition of f, in (A.3), we have

1220, < Cr /Q (2N 2w 4 [Powf?)da dt.

1

Therefore, using also (2.2), we obtain
T2
08||PU}||%2(Q1) + Cgs)\/ / 0|0, w|*d¥
T JTo
1 1
> §||P1U}||%2(Q1) + EHPQ’LUH%Q(QI) +/ (0553)\4903 _ 0853)\3()03 _ 0832)\4(‘02 _ 0882)\4(p)w2d$dt
Q1

+ / (C55\2p — Cgshp — CgA 2 — Cg)|Vw|?da dt.

Noting that ¢ > 1 on @1, we can find constants A9 > 0 and sy > 0 which continuously depend on
ZZ]':1 llaijllcr (@), 15 72, €% 1 such that

T2
Cosh [ [ plonuPas+ CallPulliag,) = I1Proltg, + Pl
T1 0

—|—/ (s* M Pw? + sA?o|Vw|?)dz dt
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for all s > sp and A > Ag. By (A.4) and (A.5), we have

2

|(Pyw)(z,)[* > Cio Z aij0i0;w| — Cpys* A\ phw?

ij=1
and
|(Pow)(,1)|? > Ciolopw|* — C11822\2% | Vw|?,
so that
2
1 n
/ — | |oyw)® + Z aij0;0;w| | +s\2p|Vuw|? + s NpPw? § dedt
s -
1 i,j=1
T2
< 012/ |Pw|2dxdt+0125)\/ / 0|0, w|*dS (A.16)
Q1 To
for all s > sg and A > Ag.
Moreover we have
w ﬁzﬁjw 8 8j<p
0,0 | =) =—— - —5
N NG 202
1 .
ol {(9;w)(Dip) + (9sw) () 7 (0i0) G p)w, 1<ij<mn, (A.17)
and
Z a;;0,0; < )
7,7=1 \/_
n
9 Zi,j 1‘%66]90
1 n
——5 2 @ (0w)(0¢)
P2 =1
where we set g = >°0';_ a;;0;0;w. Since w(t,-) € H} () for almost all ¢ € [y, 72, we apply a usual a priori

estimate for the Dirichlet problem for the elliptic equation (e.g., [16]), so that

‘Z,] 1‘11388]80
/208( ) (t,x)dx < Cy / d+C / P lw(t, z)|*dx
i,j=1
wt,:c2 -
oy [ HBIE Zaij(aiw(ajso) d
Q ¢ =1
2
1 n
Q

i,j=1
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On the other hand, (A.17) yields

1
/—|0i0jw(t,x)|2dx
QP
2

w |ai8‘90|2 2 1 2 2 2 2

<o [Lloa, () + 225 Luriot + i
149{ i\ 7% = ¢3(|J|| I + [0iw]*[0;0]%)

1
+ E|81<p|2|8]go|2w2}(t,m)dx (Alg)

Since 9;¢0 = A\(9;d)p and 8;0;p = N(9;0;d)¢ + A*(0;d)(d;d)p, we see by A > 1 that

|ai90(ta :L')| < Cl5>‘90(ta :L')a
10:0;0(t, )| < Cis\p(t,z), 1<i,j<n, (t,z)<€ Q. (A.20)

Hence, ¢ > 1, (A.18) and (A.19) yield

- 1 9°(t,z)
———0;0;w(t,x)|*dz < C / 4 C /)\4w2+>\2 Vwl|?)(t, z)dz.
g_:l/szso(tw)' et a)fdes G |G T vt

With (A.16), we obtain

1 - ,
/ o |0sw|? + Z 10;0;w]? | + s 2@ Vw]? + s*A*3w? 3 dadt

! i,j=1
T2
< 017/ |Pw|2d:cdt+C’17s)\/ / 0|0, w|*dX
Q1 T1 o

for all s > sp and A > Ag. Substituting w = e*?v and noting v|y;, = 0 and (A.20), we can complete the proof

of (2.6).
In (2.6), fixing A > \g and replacing e** s by s, we can derive (2.4) from (2.6). Thus the proof of Theorem 2.1

is completed.

AppPENDIX B. PROOF OF (1.6) AND (1.10)

For {a;;} € U, we recall that the operator A in L?(Q) is defined by (1.9), and that (4.1) holds.
Moreover the fractional power A7, v € R is defined (e.g., [37]). Applying the interpolation theorem (e.g., [35])

in (4.1), we see that
m+ 1} mg

CrH[A u|l < [lullamoqe) < CillA = ull, mo=0,1,2,...,2 [T ueDAD). (B.1)
On the other hand, —A generates an analytic semigroup in L?(Q) (e.g., [37]) and we have

t
o) = vl{o) () =t [t -ods, 0<e<T.
0

Here and henceforth we regard h(t) = h(t,-) as an element in L?(0,T; L*(Q2)). Therefore by h € C§°((0,T) X w),

we have .
Oly(t) = (—A) e+ / e *Afh(t —s)ds, 0<t<T.
0
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Furthermore h € C§°((0,T) x w) yields ||A2"9/h(t)| < Ca||Ofh(t) | zrmo(wy by (B.1). On the other hand,
|Afe 4| < % for t > 0 (e.g., Sect. 2.6 in [37]), and by the proof in [37], we see that the constant Cs > 0 can
be chosen uniformly in {a;;} € U. Consequently we obtain

mo Cs toome
A% 0fy(0)] < ozl + Cs [ 1A ofie = 5) s
T 2

C
< ( _37 + CB) (el + rllwer o, mmo wyy), T <t < T (B.2)

Thus, in terms of (B.1), the proof of (1.6) is completed.
Next we prove (1.10). We see that H™(Q2) C C%(Q) from the Sobolev embedding theorem (e.g., [1,35]).
Similarly to (B.2), in terms of (B.1) we have

ly({ai;}, b Ol cpo,mco@ < Cally({aiz}ts b 0)llero,rysm o)

t t t
< 05/ |AZ e *Ah(t — s)||ds = 05/ e *AAT h(t — s)||ds < CG/ At = 8)|| zrm (o) ds.
0 0 0
Thus the proof of (1.10) is completed.

ApPPENDIX C. PROOF OF LEMMA 2.1

In Chae, Imanuvilov and Kim [9], Fursikov and Imanuvilov [15], the following lemma is proved. See also
Imanuvilov [19].

Lemma C.1. Let © C R" be a bounded domain whose_boundary o9 is of class C? and w C Q be a subdomain
such that @ C Q. Then there exists a function d € C2() such that

d(x) >0,2€Q, dlyg=0, |Vd)|>0zecQ\w.

Now we proceed to the proof of Lemma 2.1. Let us enlarge the domain {2 to a domain Q) which has the
following properties:

QCQ 9N C N Int(Q\Q) # 0.
Choose a subdomain w such that @ C Int(Q2\Q). Thus, by Lemma C.1, there exists a function d(z) in ©
which satisfies d(z) > 0, x € Q, d|,5 = 0 and |[Vd(z)| > 0, x € Q\w. Therefore d(z) > 0, z € Q and
|Vd(z)| > 0,2 € Q. Finally, we have to verify Xn: a;j(2)0;d(x)vj(z) <0, x € 9Q\I'y. Since 0Ny C a0, we

4,j=1

have d|so\r, = 0 from d|,5 = 0, which implies Vd(z) = d,d(z)v(x),z € OQ\Ty, that is, Vd is parallel to v
on OO\Tg. Therefore, by d > 0 in Q, we have Vd(z) = —|Vd(x)|v(z), z € IQ\Ty. By |Vd(z)| > 0 on Q, we

obtain v(z) = —‘g;l—gg‘, x € OQ\I'y. Therefore by (1.4) we see

n

Z a;j(2)0;d(x)vj(z) = — V@] <0, x € OO\Iy.

Thus the proof of Lemma 2.1 is completed.
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