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LIPSCHITZ STABILITY IN THE DETERMINATION OF THE PRINCIPAL
PART OF A PARABOLIC EQUATION

Ganghua Yuan
1, 2

and Masahiro Yamamoto
1

Abstract. Let y(h)(t, x) be one solution to

∂ty(t, x) −
n∑

i,j=1

∂j(aij(x)∂iy(t, x)) = h(t, x), 0 < t < T, x ∈ Ω

with a non-homogeneous term h, and y|(0,T )×∂Ω = 0, where Ω ⊂ R
n is a bounded domain. We

discuss an inverse problem of determining n(n + 1)/2 unknown functions aij by {∂νy(h�)|(0,T )×Γ0 ,
y(h�)(θ, ·)}1≤�≤�0 after selecting input sources h1, ..., h�0 suitably, where Γ0 is an arbitrary subboundary,
∂ν denotes the normal derivative, 0 < θ < T and �0 ∈ N. In the case of �0 = (n + 1)2n/2, we prove the
Lipschitz stability in the inverse problem if we choose (h1, ..., h�0) from a set H ⊂ {C∞

0 ((0, T ) × ω)}�0

with an arbitrarily fixed subdomain ω ⊂ Ω. Moreover we can take �0 = (n + 3)n/2 by making special
choices for h�, 1 ≤ � ≤ �0. The proof is based on a Carleman estimate.
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1. Introduction and main results

In this paper we consider the following parabolic equation:

∂ty(t, x) −
n∑

i,j=1

∂j(aij(x)∂iy(t, x)) = h(t, x), (t, x) ∈ Q ≡ (0, T ) × Ω (1.1)

y(t, x) = 0, (t, x) ∈ Σ ≡ (0, T )× ∂Ω, y(0, ·) ∈ L2(Ω). (1.2)
Here Ω ⊂ R

n is a bounded domain whose boundary ∂Ω is sufficiently smooth, and x = (x1, ..., xn) ∈ R
n,

∂t = ∂
∂t , ∂j = ∂

∂xj
, ∇ = (∂1, ..., ∂n), h ∈ C∞

0 ((0, T ) × ω), and ω is an arbitrarily fixed subdomain of Ω. Let
α = (α1, α2, ..., αn) be a multi-index with αj ∈ N ∪ {0}. We set ∂αx = ∂α1

1 ∂α2
2 ...∂αn

n , |α| = α1 + α2 + ...+ αn,
and ν = ν(x) = (ν1(x), ..., νn(x)) is the external unit normal vector to ∂Ω at x. Let ∂ν = ν · ∇.
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Assume that

aij ∈ C1(Ω), aij = aji, 1 ≤ i, j ≤ n, (1.3)

and that the coefficients {aij} ≡ {aij}1≤i,j≤n satisfy the uniform ellipticity: there exists a constant r > 0 such
that

n∑
i,j=1

aij(x)ζiζj ≥ r|ζ|2, ζ ∈ R
n, x ∈ Ω. (1.4)

For y(0, ·) ∈ L2(Ω), we can prove (e.g., Pazy [37]) that y({aij}, h) ∈ C([0, T ];L2(Ω)) ∩ C((0, T );H2(Ω) ∩
H1

0 (Ω))∩C1((0, T );L2(Ω)) and see also (1.6) below. By y ({aij}, h) (t, x) we denote one function satisfying (1.1)–
(1.2). We note that y({aij}, h) is uniquely determined upon specification of an initial value in L2(Ω).

We consider the following inverse problem:

Inverse problem. Let θ ∈ (0, T ) be arbitrarily fixed and Γ0 
= ∅ be an arbitrary relatively open subset of ∂Ω.
Select �0 ∈ N, h� ∈ C∞

0 ((0, T )×ω), 1 ≤ � ≤ �0 suitably and determine aij(x), x ∈ Ω, 1 ≤ i, j ≤ n by observation
data ∂νy({aij}, h�)|(0,T )×Γ0 and y({aij}, h�)(θ, x), x ∈ Ω, 1 ≤ � ≤ �0.

We can consider a more general parabolic equation with lower-order terms:

∂ty(t, x) =
n∑

i,j=1

∂j(aij(x)∂iy(t, x))

+
n∑
i=1

bi(x)∂iy(t, x) + c(x)y(t, x) + h(t, x), (t, x) ∈ Q

and discuss the determination of aij , bi, c, 1 ≤ i, j ≤ n by similar observations. The method is same because a
basic estimate (Thm. 2.1) is insensitive to such lower-order terms. However for simplicity, we consider only the
determination of the principal part.

In the formulation of the inverse problem, the initial values are also unknown. The non-homogeneous terms h�,
1 ≤ � ≤ �0, are considered as input sources to system (1.1)–(1.2) and are spatially restricted to a small subdomain
ω ⊂ Ω. Then we determine aij(x), x ∈ Ω by observation data ∂νy({aij}, h�)|(0,T )×Γ0 and y({aij}, h�)(θ, ·),
1 ≤ � ≤ �0, which are regarded as outputs.

We shall determine aij in the neighbourhood of some known set of coefficients a(2)
ij . We shall denote by

a
(1)
ij the unknown set of coefficients. Solutions associated to a

(2)
ij will thus be known. The full knowledge

of a(2)
ij allows for instance to approximately control the solutions to (1.1)–(1.2) associated to a

(2)
ij with the

function h as the control function. In other words, in order to determine n(n+1)
2 coefficients a(1)

ij , we are

assumed to be able to operate the heat processes associated to a(2)
ij by suitably changing input sources h�. We

note that we need not know initial data in repeating the processes associated to a(1)
ij , and initial values for the

both parabolic equations with a
(1)
ij and a

(2)
ij , may be arbitrarily changed during the repeated processes. Our

main concern is the stability estimate for the inverse problem: Estimate
∑n

i,j=1 ‖a(1)
ij − a

(2)
ij ‖H1(Ω) by suitable

norms of ∂νy
(
{a(1)
ij }, h�

)
− ∂νy

(
{a(2)
ij }, h�

)
and y

(
{a(1)
ij }, h�

)
(θ, ·) − y

(
{a(2)
ij }, h�

)
(θ, ·), 1 ≤ � ≤ �0. The

stability is a fundamental mathematical subject in the inverse problem and immediately yields the uniqueness.
Stability estimates for inverse problems are not only important from the theoretical viewpoint, but also useful
for numerical algorithms. In particular, by Cheng and Yamamoto [10] for example, a stability estimate gives
convergence rates of Tikhonov regularized solutions, which are widely used as approximating solutions to the
inverse problems.
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Here we assume that initial data are also unknown to be determined. If we can estimate
∑n

i,j=1 ‖a(1)
ij −

a
(2)
ij ‖H1(Ω), then we can apply the argument in Yamamoto and Zou [41] (pp. 1187–1188), and we can estimate

y({a(1)
ij }, h�)(0, ·)−y({a(2)

ij }, h�)(0, ·). The argument is concerned with the parabolic equation backward in time.
As for the backward heat equation, see the monographs Ames and Straughan [2], Payne [36] and Klibanov [31]
as a recent paper. Our main concern is the determination of coefficients and so we will omit the estimation of
initial values.

We can consider an inverse problem for a usual initial value/boundary value problem by setting θ = 0. In
the case where θ = 0 and Γ0 is an arbitrary subboundary of Ω, the corresponding inverse problem is open
(e.g., Chap. 9, Sect. 2 in Isakov [25]) even for the inverse problem of determining a single coefficient in a
parabolic equation. In the case of θ = 0, if Γ0 ⊂ ∂Ω is a sufficiently large portion and unknown coefficients aij
satisfy some additional conditions, then applying an argument in Theorem 4.7 in Klibanov [30], we can prove
the stability provided that initial values satisfy some non-degeneracy condition similar to (1.7) below. The
additional condition on a

(2)
ij is described by the pseudo-convexity for the corresponding hyperbolic operator

∂2
t −

∑n
i,j=1 ∂j

(
a
(2)
ij (x)∂i

)
(e.g., Chap. VIII, Sect. 5 in Hörmander [18]). Due to the additional conditions on Γ0

and a(2)
ij , in the case of θ = 0, the available results for the inverse parabolic problem are still incomplete, because

the condition on a
(2)
ij are concerned with the pseudo-convexity for the hyperbolic operator, so that Γ0 can not

be taken arbitrarily. Even if we can prove the stability for the case of θ = 0, we have to assume that initial
values satisfy some non-degeneracy condition such as (1.7) below stated. From the practical viewpoint, this
means that we have to choose such special initial values, which may be difficult in practice. In our case, we
need not directly choose values y({a(2)

ij }, h�)(θ, ·), but in order that those values at t = θ satisfy the requested
non-degeneracy condition, we should steer systems by choosing controls which can be limited in any small part
of Ω. Therefore we can assert that our formulation is more realizable.

Our inverse problem is related to determination of thermal conductivity of an anisotropic medium by heat
conduction process. To the authors’ best knowledge, there are no papers on the determination of multiple
coefficients in the principal part of a parabolic equation, although we have an available methodology which
was initiated by Bukhgeim and Klibanov [8]. The determination of multiple coefficients requires repeat of
observations, and the application of the method in [8] needs independent consideration. Moreover, since we aim
at the global stability in the whole domain Ω by means of lateral Cauchy data on an arbitrary small subboundary
Γ0 ⊂ ∂Ω, we have to establish a relevant Carleman estimate (Thm. 2.1 below).

For statement of our main results, we need to introduce some notations. Let C�(Ω), � ∈ N, denote the
usual space of functions of C�-class on Ω, and Cm−1,1(Ω) be the space of all the uniformly Lipschitz continuous
functions on Ω with the norm

‖a‖Cm−1,1(Ω) = ‖a‖Cm(Ω) + max
|α|=m

sup
x,x′∈Ω, x �=x′

|∂αx a(x) − ∂αx a(x
′)|

|x− x′| ·

For a sequence {ρ�(x)} := {ρ�(x)}1≤�≤ (n+1)2n
2

of C2-functions and 1 ≤ k ≤ n(n+1)
2 , we set

Dk
ij = Dk

ij({ρ�})(x)

= det

⎛⎜⎜⎜⎝
∂i∂jρ(k−1)(n+1)+1(x) ∂1ρ(k−1)(n+1)+1(x) · · · ∂nρ(k−1)(n+1)+1(x)
∂i∂jρ(k−1)(n+1)+2(x) ∂1ρ(k−1)(n+1)+2(x) · · · ∂nρ(k−1)(n+1)+2(x)

...
...

. . .
...

∂i∂jρ(k−1)(n+1)+n+1(x) ∂1ρ(k−1)(n+1)+n+1(x) . . . ∂nρ(k−1)(n+1)+n+1(x)

⎞⎟⎟⎟⎠
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and

D({ρ�})(x)

= det

⎛⎜⎜⎜⎝
D1

11 D1
12 . . . D1

1n D1
22 . . . D1

2n . . . D1
nn

D2
11 D2

12 . . . D2
1n D2

22 . . . D2
2n . . . D2

nn
...

...
. . .

...
...

. . .
...

. . .
...

D
1
2 (n+1)n
11 D

1
2 (n+1)n
12 . . . D

1
2 (n+1)n
1n D

1
2 (n+1)n
22 . . . D

1
2 (n+1)n
2n . . . D

1
2 (n+1)n
nn

⎞⎟⎟⎟⎠.
Next we introduce an admissible set of unknown coefficients {aij}. We choose m ∈ N such that

m >
n

2
+ 3.

Let us fix constants M0 > 0, r > 0 and smooth functions ηij = ηij(x), 1 ≤ i, j ≤ n on Ω. Let ω1 = {x ∈ Ω;
dist (x, ∂Ω) < r0} with sufficiently small r0 > 0. Then we note that ∂ω1 ⊃ ∂Ω. Henceforth [γ] denotes the
greatest integer not exceeding γ ∈ R. We set

U = {{aij}; ‖aij‖Cm−1,1(Ω) ≤M0,

aij = ηij inω1, and (1.3) and (1.4) are satisfied with fixed r > 0}. (1.5)

For � ∈ N ∪ {0} and m0 ∈ {0, 1, ..., 2 [m+1
2

]}
, and 0 < τ1 < τ2 < T , we can prove

‖y({aij}, h)‖C�([τ1,τ2];Hm0 (Ω)) ≤ C0(‖y({aij}, h)(0, ·)‖L2(Ω) + ‖h‖W �,1(0,T ;Hm0 (ω))). (1.6)

Here C0 > 0 depends only �, τ1, τ2 and U , and ‖h‖W �,1(0,T ;Hm0 (ω)) =
∑�
j=0 ‖∂jt h‖L1(0,T ;Hm0 (ω)). The proof

relies on semigroup theory (e.g., [37]) and is given in Appendix B.

Remark 1.1. In (1.5), we assume that aij ∈ Cm−1,1(Ω). This can be partly relaxed. However, for the
proof, we have to assume that y({aij}, h)(t, ·) ∈ C3(Ω) and by semigroup theory we discuss the approximate
controllability in Hm(Ω) ⊂ C3(Ω) (by the Sobolev embedding theorem, e.g., Thm. 5.4 in Adams [1]), so that
with the Sobolev space we have to relate the regularity of functions in the domain of the operator A[ m+1

2 ] where
the operator A is defined by (1.9) below. For it, we need the regularity in Hm(Ω) for an elliptic equation∑n

i,j=1 ∂j(aij(x)∂iu(x)) = b(x), x ∈ Ω (e.g., Chap. 8 in Gilbarg and Trudinger [16]) and aij ∈ Cm−1,1(Ω) is a
required regularity condition (e.g., Thm. 8.13, p. 187, in [16]).

Moreover we assume that unknown coefficients {aij} are given near the boundary ∂Ω, that is, aij = ηij in ω1.
This means that we are interested in the determination of coefficients in a compact subset of Ω away from ∂Ω
with some distance. As is seen from the proof, condition (1.7) below is necessary and the homogeneous Dirichlet
boundary condition (1.2) implies that (1.7) does not hold on ∂Ω, because there exist zero column vectors of
D({y({a(2)

ij }, h�)}). This technically motivates that we discuss the determination of {a(1)
ij } on Ω \ ω1, and that

we assume a(1)
ij = ηij in ω1. We further note that since we consider solutions in a time interval away from

t = 0, we can improve the regularity in t ∈ (τ1, τ2) as we wish (see the proof of (1.6) in Appendix B), while the
x-regularity in Hm(Ω) with m > n

2 + 3, is necessary for our argument.
Henceforth, for an arbitrarily fixed M > 0, we assume that

‖y({a(j)
ij }, h)(0, ·)‖L2(Ω) ≤M, j = 1, 2,

which means that the unknown initial values are bounded with an a priori bound M > 0.
Now we are ready to state our main results.
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Theorem 1.1. Let 0 < τ1 < θ < τ2 < T , Γ0 
= ∅ be an arbitrary relatively open subset of ∂Ω, and let {a(2)
ij } ∈ U

be arbitrarily fixed. We assume that h� ∈ C∞
0 ((0, T )× ω), 1 ≤ � ≤ (n+1)2n

2 , satisfy

D({y({a(2)
ij }, h�)})(θ, x) 
= 0 (1.7)

for x ∈ Ω \ ω1. Then there exists a constant C1 = C1(U ,M, {h�}) > 0 such that

n∑
i,j=1

‖a(1)
ij − a

(2)
ij ‖H1(Ω) ≤ C1

(n+1)2n
2∑
�=1

‖∂νy({a(1)
ij }, h�) − ∂νy({a(2)

ij }, h�)‖H2(τ1,τ2;L2(Γ0))

+ C1

(n+1)2n
2∑
�=1

‖y({a(1)
ij }, h�)(θ, ·) − y({a(2)

ij }, h�)(θ, ·)‖H3(Ω) (1.8)

for all {a(1)
ij } ∈ U .

In order to estimate {a(1)
ij } around a given {a(2)

ij }, we have to choose h�, 1 ≤ � ≤ (n+1)2n
2 whose supports are

restricted to a small set (0, T )×ω, so that the systems are steered to satisfy (1.7) on Ω \ ω1 at the time θ. The
choice is related to approximate controllability of parabolic equations (e.g., [39]).

Henceforth we define an operator A in L2(Ω) by⎧⎪⎪⎨⎪⎪⎩
(Ay)(x) = −

n∑
i,j=1

∂j(aij(x)∂iy(x)), x ∈ Ω,

D(A) = H2(Ω) ∩H1
0 (Ω),

(1.9)

where D(A) denotes the domain of the operator A, and let y({aij}, h, μ) denote the solution to (1.1) and (1.2)
with y(0, x) = μ(x), x ∈ Ω.

Then we can prove:

Proposition 1.1. Let m1 =
[
m+1

2

]
, that is, m1 = m

2 if m is even and m1 = m+1
2 if m is odd. Let {aij} ∈ U .

For each θ > 0 and μ ∈ L2(Ω), the set

{y({aij}, h, μ)(θ, ·); h ∈ C∞
0 ((0, T ) × ω)}

is dense in D(Am1) = {y ∈ H2m1(Ω); Ajy|∂Ω = 0, 0 ≤ j ≤ m1 − 1}.
By Proposition 1.1, we can prove the existence of h� ∈ C∞

0 ((0, T ) × ω), 1 ≤ � ≤ (n+1)2n
2 such that (1.7)

holds on Ω \ ω1, which guarantees the Lipschitz stability in determining {a(1)
ij }. In fact, we arbitrarily choose

{ρ�}1≤�≤ (n+1)2n
2

⊂ C∞
0 (Ω) such that det D({ρ�})(x) 
= 0 for x ∈ Ω \ ω1. We note that ρ� ∈ D(Am1). In terms

of Proposition 1.1, for sufficiently small ε > 0, we can fix h� ∈ C∞
0 ((0, T )× ω), 1 ≤ � ≤ (n+1)2n

2 satisfying

‖y({a(2)
ij }, h�)(θ, ·) − ρ�‖H2m1 (Ω) < ε, 1 ≤ � ≤ (n+ 1)2n

2
·

By the Sobolev embedding theorem, we have

‖y({a(2)
ij }, h�)(θ, ·) − ρ�‖C2(Ω) < Cε, 1 ≤ � ≤ (n+ 1)2n

2
·
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By detD({ρ�})(x) 
= 0 for x ∈ Ω \ ω1, we obtain (1.7) on Ω \ ω1 for sufficiently small ε > 0. The control functions
h� can be constructed in practice by means of the methods in Fabre et al. [14], Glowinski and Lions [17].

Now we discuss the set of such h�, 1 ≤ � ≤ (n+1)2n
2 . For simplicity, for the system with known a(2)

ij , we assume

the zero initial value. That is, we let y({a(2)
ij }, h, 0) be the unique solution to (1.1) and (1.2) with y(x, 0) = 0,

x ∈ Ω. We set �0 = (n+1)2n
2 and

H = {(h1, ..., h�0) ∈ {C∞
0 ((0, T ) × ω)}�0 ; D({y({a(2)

ij }, h�, 0)})(θ, x) 
= 0 for x ∈ Ω \ ω1.}

From elliptic regularity (e.g., Thm. 8.13 in [16]) and semigroup theory (e.g., [37]), we can prove that there
exists a constant C2 > 0 such that

‖y({aij}, h, 0)‖C([0,T ];C2(Ω)) ≤ C2‖h‖L1(0,T ;Hm(Ω)), (1.10)

where the constant C2 can be taken uniformly for {aij} ∈ U . See Appendix B for the proof.
Therefore we can prove that for (h1, ..., h�0) ∈ H, there exists ε = ε(h1, ..., h�0) > 0 such that if (h̃1, ..., h̃�0) ∈

{C∞
0 ((0, T ) × ω)}�0 and max1≤�≤�0 ‖h� − h̃�‖L1(0,T ;Hm(Ω)) < ε, then (h̃1, ..., h̃�0) ∈ H by the definition of

D({y({a(2)
ij }, h�, 0)})(θ, x). This means the stability of input sources (h1, ..., h�0) realizing the Lipschitz stability.

Since C∞
0 ((0, T )× ω) is dense in C�0((0, T )× ω) with � ∈ N, we can take C�0((0, T )× ω) as a class of interior

input sources, using parabolic regularity properties (e.g., [37]).
Furthermore we can prove an even better result with smaller �0 in Theorem 1.1. That is, with arbitrary

initial values for system (1.1) associated to the set of coefficients a(2)
ij , we can choose h�, 1 ≤ � ≤ (n+3)n

2 to

establish the Lipschitz stability around a
(2)
ij by means of (n+3)n

2 data. The choice of such h� is different from
Theorem 1.1, but Proposition 1.1 guarantees that such a choice is possible.

Theorem 1.2. Let 0 < τ1 < θ < τ2 < T , Γ0 
= ∅ be an arbitrary relatively open subset of ∂Ω and let us fix
{a(2)
ij } ∈ U . Then we can choose suitable h� ∈ C∞

0 ((0, T )× ω), 1 ≤ � ≤ n(n+3)
2 such that there exists a constant

C2 = C2(U ,M, {h�}) > 0 such that

n∑
i,j=1

‖a(1)
ij − a

(2)
ij ‖H1(Ω) ≤ C2

n(n+3)
2∑
�=1

‖∂νy({a(1)
ij }, h�) − ∂νy({a(2)

ij }, h�)‖H2(τ1,τ2;L2(Γ0))

+ C2

n(n+3)
2∑
�=1

‖y({a(1)
ij }, h�)(θ, ·) − y({a(2)

ij }, h�)(θ, ·)‖H3(Ω) (1.11)

for all {a(1)
ij } ∈ U .

Since the number of the unknown coefficients is n(n+1)
2 , it is natural to expect that suitable n(n+1)

2 -times
observations can yield the Lipschitz stability, and even the result in Theorem 1.2 holds with overdetermining
observations (i.e., n(n+3)

2 -times observations). We do not presently know whether we can reduce the number

of observations to n(n+1)
2 . In particular, for the case aij(x) =

{
a(x), i = j,
0, i 
= j,

we can prove that a single

observation by a suitable single input h1 yields the Lipschitz stability. The proof is done similarly to Imanuvilov
and Yamamoto [23] where an inverse problem for an acoustic equation ∂2

t u = div (a(x)∇u) is discussed. In
(1.11), we can replace ‖a(1)

ij − a
(2)
ij ‖H1(Ω) by a weaker norm ‖a(1)

ij − a
(2)
ij ‖L2(Ω) and can adopt the corresponding

weaker norms of observation data. As is stated as Theorem 2.1, our basic tool is an L2-weighted estimate
called a Carleman estimate where the right-hand side is estimated by an L2-weighted norm. We can prove
a similar Carleman estimate where the right-hand side is estimated in an H−1-weighted space (Imanuvilov and
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Yamamoto [22,24]). Then ‖a(1)
ij − a

(2)
ij ‖L2(Ω) can be estimated by such an H−1-Carleman estimate by a method

similar to [23]. However we do not still know whether we can reduce the number of observations in the case of
‖a(1)
ij − a

(2)
ij ‖L2(Ω).

As for inverse problems of determining coefficients in parabolic equations, we refer to Danilaev [11], Elayyan
and Isakov [12], Imanuvilov and Yamamoto [20,22], Isakov [25], Isakov and Kindermann [26], Ivanchov [27],
Klibanov [30], Klibanov and Timonov [32], Yamamoto and Zou [41]. In particular, in [12,26,30], determination
problems for principal parts are discussed. In those existing papers, the determination of a single coefficient is
discussed, while we here consider an inverse problem of determining multiple coefficients of the principal part
by a finite set of observations.

Our formulation is with a finite number of observations and this kind of inverse problems was firstly solved by
Bukhgeim and Klibanov [8], whose methodology is based on Carleman estimates. For similar inverse problems for
other equations, we refer to Baudouin and Puel [3], Bellassoued [4], Bellassoued and Yamamoto [5], Bukhgeim [7],
Imanuvilov and Yamamoto [21,23], Isakov [25], Khăıdarov [28], Klibanov [29,30], Klibanov and Timonov [32],
Klibanov and Yamamoto [33], Yamamoto [40].

For proving Theorems 1.1 and 1.2, we establish a Carleman estimate (Thm. 2.1) for functions with non-
compact support, and we apply a modification of arguments in [8,23].

This paper is composed of four sections and three appendices. In Section 2 we present Carleman estimates
and the proof is given in Appendix A. In Section 3, we prove Theorems 1.1 and 1.2. In Section 4, we prove
Proposition 1.1. In Appendix B, we prove estimates (1.6) and (1.10). Appendix C is devoted to the proof of
the existence of a suitable weight function for our Carleman estimate.

2. Carleman estimates

In this section we will prove Carleman estimates for the parabolic equation. The results in this section may
have independent interests.

Lemma 2.1. Let Γ0 
= ∅ ⊂ ∂Ω be an arbitrary relatively open subset. Then there exists a function d ∈ C2(Ω)
such that

d(x) > 0 for x ∈ Ω, |∇d(x)| > 0 for x ∈ Ω (2.1)

and
n∑

i,j=1

aij(x)∂id(x)νj(x) ≤ 0, x ∈ ∂Ω \ Γ0 (2.2)

for all aij ∈ C1(Ω), aij = aji, 1 ≤ i, j ≤ n satisfying (1.4).

Lemma 2.1 can be derived directly from Lemma 1.2 in [19] where d(x) > 0 is not stated, and for convenience
we prove this lemma in Appendix C.

Example 2.1. Let us consider a special case where aij = 0 if i 
= j and aii = 1 and

Ω = {x ∈ R
n; |x| < R}, Γ0 = {x ∈ ∂Ω; (x− x0, ν(x)) ≥ 0} (2.3)

with an arbitrarily fixed x0 ∈ R
n \ Ω. Here (·, ·) denotes the scalar product in R

n. Then we can take d(x) =
|x− x0|2.

We present Carleman estimates for an operator L:

(Ly)(t, x) = ∂ty(t, x) −
n∑

i,j=1

∂j(aij(x)∂iy(t, x)).
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Theorem 2.1. Assume that (1.4) holds and that aij ∈ C1(Ω), aij = aji, 1 ≤ i, j ≤ n. Let d ∈ C2(Ω) be a
function satisfying (2.1) and (2.2), and let 0 ≤ τ1 < θ < τ2 be fixed.

(1) Let ϕ(t, x) = eλ(d(x)−β|t−θ|2), where β > 0 is a constant. Then there exists a number λ0 > 0 such
that for an arbitrary λ ≥ λ0, we can choose a constant s0(λ) ≥ 0 satisfying: there exists a constant
C1 = C1(s0, λ) > 0 such that

∫
(τ1,τ2)×Ω

⎧⎨⎩1
s

⎛⎝|∂tv|2 +
n∑

i,j=1

|∂i∂jv|2
⎞⎠+ s|∇v|2 + s3|v|2

⎫⎬⎭ e2sϕdxdt

≤ C1

∫
(τ1,τ2)×Ω

|Lv|2e2sϕdxdt+ C1s

∫ τ2

τ1

∫
Γ0

|∂νv|2e2sϕdΣ (2.4)

for all s > s0 and all v satisfying{
Lv ∈ L2((τ1, τ2) × Ω), v ∈ L2(τ1, τ2;H2(Ω) ∩H1

0 (Ω)),

v(τ1, ·) = v(τ2, ·) = 0.
(2.5)

Moreover the constants s0 and C1 continuously depend on λ and
∑n

i,j=1 ‖aij‖C1(Ω), τ1, τ2, Ω, r, while
λ0 continuously depends on

∑n
i,j=1 ‖aij‖C1(Ω), τ1, τ2, Ω, r.

(2) Let ϕ(t, x) = eλ(d(x)−β|t−θ|2+M1), where M1 > supt∈(τ1,τ2) β(t− θ)2. Then there exist positive constants
λ0, s0 and C2 = C2(λ0, s0) such that

∫
(τ1,τ2)×Ω

⎧⎨⎩ 1
sϕ

⎛⎝|∂tv|2 +
n∑

i,j=1

|∂i∂jv|2
⎞⎠+ sλ2ϕ|∇v|2 + s3λ4ϕ3|v|2

⎫⎬⎭ e2sϕdxdt

≤ C2

∫
(τ1,τ2)×Ω

|Lv|2e2sϕdxdt+ C2sλ

∫ τ2

τ1

∫
Γ0

ϕ|∂νv|2e2sϕdΣ (2.6)

for all s > s0, λ > λ0 and all v satisfying (2.5). The constants λ0, s0 and C2 continuously depend on∑n
i,j=1 ‖aij‖C1(Ω), τ1, τ2, Ω, r.

We prove the theorem in Appendix A.
As for Carleman estimates with regular weight function ϕ(t, x), see Eller and Isakov [13], Hörmander [18],

Isakov [25], Khăıdarov [28], Klibanov and Timonov [32], Lavrent’ev, Romanov and Shishat·skĭı [34]. With
these Carleman estimates for parabolic equations, we often have to change independent variables to address
the case of an arbitrary subboundary Γ0 of the boundary ∂Ω. As a result, it becomes much more complicated
to obtain a Lipschitz stability estimate over Ω \ ω1, for the coefficients which one tries to identify. As for
Carleman estimates for parabolic equations with singular weight function ϕ(t, x), we can refer to Fursikov and
Imanuvilov [15], Imanuvilov [19], Imanuvilov and Yamamoto [22,24], and such Carleman estimates hold for a
function v not satisfying v(τ1, ·) = v(τ2, ·) = 0.

Inequality (2.6) is a Carleman estimate for functions with non-compact support, and estimates the left-hand
side with the weighted L2-norms of Lv in (τ1, τ2)×Ω and ∂νv on (τ1, τ2) × Γ0. Once we can prove a Carleman
estimate for functions with compact support, we can immediately estimate functions with non-compact support
by means of a cut-off function, but the norm of the boundary value is stronger that the weighted L2-norm, and
any Carleman estimates for functions with compact support, does not give a better estimate for our inverse
problem.

Thanks to two large parameters λ, s and the form of the weight function, Carleman estimate (2.6) can be
applied to inverse problems for a coupling system of parabolic and hyperbolic equations and thermoelastic plate
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equations in case (2.3) for example. For such applicability, we will prove Carleman estimates with regular ψ(t, x)
as Theorem 2.1.

As for Carleman estimates with two large parameters for functions with compact support, we can refer to [13].

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. By 0 < τ1 < τ2 < T , we choose and fix τ3, τ4 > 0 such that

0 < τ3 < τ1 < τ2 < τ4 < T.

It is sufficient to prove (1.8) with the norm in H2(τ3, τ4;L2(Γ0)) of the first term on the righ-hand side. Let
d ∈ C2(Ω) satisfy (2.1) and (2.2). We choose β > 0 such that supx∈Ω d(x) < βmin{|τ1 − θ|2, |τ2 − θ|2}. We set

ϕ(t, x) = exp{λ(d(x) − β|t− θ|2)}.

Let d0 = infx∈Ω exp{λd(x)} ≥ 1. Then, by the choice of β > 0, we have

ϕ(θ, x) ≥ d0, ϕ(τ1, x), ϕ(τ2, x) < 1 ≤ d0, x ∈ Ω.

Thus for a sufficiently small ε > 0, we can choose a small δ = δ(ε) > 0 such that τ1 < τ1 + 2δ < θ− δ < θ+ δ <
τ2 − 2δ < τ2,

ϕ(t, x) ≥ d0 − ε, (t, x) ∈ [θ − δ, θ + δ] × Ω

and
ϕ(t, x) ≤ d0 − 2ε, (t, x) ∈ ([τ1, τ1 + 2δ] ∪ [τ2 − 2δ, τ2]) × Ω.

We introduce a cut-off function χ satisfying 0 ≤ χ ≤ 1, χ ∈ C∞
0 (0, T ) and

χ(t) =
{

0, t ∈ [τ1, τ1 + δ] ∪ [τ2 − δ, τ2],
1, t ∈ [τ1 + 2δ, τ2 − 2δ]. (3.1)

Let us set
fij(x) = a

(1)
ij (x) − a

(2)
ij (x), R�(t, x) = y({a(2)

ij }, h�)(t, x), (3.2)

(L(1)y)(t, x) ≡ ∂ty −
n∑

i,j=1

∂j(a
(1)
ij (x)∂iy).

By (1.1) and (1.2), we can see that the differences

ỹ�(t, x) = y({a(1)
ij }, h�)(t, x) − y({a(2)

ij }, h�)(t, x)

satisfy

L(1)ỹ�(t, x) =
n∑

i,j=1

∂j (fij(x)∂iR�(t, x)) , (t, x) ∈ (0, T ) × Ω, (3.3)

ỹ�(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω, 1 ≤ � ≤ (n+ 1)2n
2

· (3.4)

We set
z�(t, x) = ∂tỹ�(t, x), Φ = sup

(t,x)∈(τ1,τ2)×Ω

ϕ(t, x) (3.5)



534 G. YUAN AND M. YAMAMOTO

and

U =

( (n+1)2n
2∑
�=1

(‖z�‖2
L2(τ1,τ2;L2(Ω)) + ‖∇z�‖2

L2(τ1,τ2;L2(Ω))

+ ‖∂tz�‖2
L2(τ1,τ2;L2(Ω)) + ‖∇∂tz�‖2

L2(τ1,τ2;L2(Ω)))

) 1
2

,

V =

⎛⎜⎝ (n+1)2n
2∑
�=1

‖∂ν ỹ�‖2
H2(τ1,τ2;L2(Γ0))

⎞⎟⎠
1
2

.

Then by (3.1), (3.3) and (3.5), we have

L(1)(z�χ) =
n∑

i,j=1

∂j (χfij(x)∂i∂tR�(t, x)) + z�∂tχ (3.6)

and

L(1)(χ∂tz�) =
n∑

i,j=1

∂j
(
χfij(x)∂i∂2

tR�(t, x)
)

+ (∂tχ)∂tz�. (3.7)

We set

Q1 = (τ1, τ2) × Ω.

Let 1 ≤ � ≤ (n+1)2n
2 . By (1.6), we see that y({a(k)

ij }, h�) ∈ C3([τ1, τ2];Hm(Ω)), k = 1, 2, so that the right-hand
sides of (3.6) and (3.7) are in L2(Q1). Moreover from (3.4) it follows that χ∂tz�, χz� ∈ C([τ1, τ2];H2(Ω)∩H1

0 (Ω)).
Furthermore, by (3.1), we have (χ∂tz�)(τ1, ·) = (χz�)(τ1, ·) = (χ∂tz�)(τ2, ·) = (χz�)(τ2, ·) = 0.

Henceforth Cj denote generic constants which are dependent on Ω, T , τ1, τ2, r, λ, M , U , {h�}, but independent
of s. We can apply Theorem 2.1.(1) to (3.6) and (3.7) in Q1. Then

∫
Q1

{s|∇(χz�)|2 + s3|χz�|2}e2sϕdxdt ≤ C1

n∑
i,j=1

∑
|α|≤1

∫
Q1

χ2|∂αx fij |2e2sϕdxdt

+ C1U
2e2s(d0−2ε) + C1s

∫ τ2

τ1

∫
Γ0

|∂ν(χz�)|2e2sϕdΣ, s ≥ s0 (3.8)

and

∫
Q1

{s|∇(χ∂tz�)|2 + s3|χ∂tz�|2]e2sϕdxdt ≤ C1

n∑
i,j=1

∑
|α|≤1

∫
Q1

χ2|∂αx fij(x)|2e2sϕdxdt

+ C1U
2e2s(d0−2ε) + C1s

∫ τ2

τ1

∫
Γ0

|∂ν(χ∂tz�)|2e2sϕdΣ, s ≥ s0. (3.9)
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Here we have used that ∂tχ 
= 0 only if ϕ(t, x) ≤ d0 − 2ε. On the other hand, we have∫
Ω

|∂tỹ�(θ, x)|2e2sϕ(θ,x)dx =
∫

Ω

|χ(θ)∂tỹ�(θ, x)|2e2sϕ(θ,x)dx

=
∫ θ

τ1

∂t

(∫
Ω

|χ(t)∂tỹ�(t, x)|2e2sϕ(t,x)dx
)

dt

≤
∫
Q1

2(|∂2
t ỹ�||∂tỹ�|χ2 + s|∂tϕ||χ∂tỹ�|2)e2sϕdxdt+

∫
Q1

2|∂tỹ�|2χ|∂tχ|e2sϕdxdt

≤ C2

∫
Q1

|χ∂tz�|2e2sϕ(t,x)dxdt+ C2(s+ 1)
∫
Q1

|χz�|2e2sϕ(t,x)dxdt+ C2U
2e2s(d0−2ε). (3.10)

By (3.8)–(3.10), we obtain∫
Ω

|∂tỹ�(θ, x)|2e2sϕ(θ,x)dx

≤ C3

⎧⎨⎩
n∑

i,j=1

∑
|α|≤1

∫
Q1

χ2|∂αx fij(x)|2e2sϕdxdt+ U2e2s(d0−2ε) + se2sΦV 2

⎫⎬⎭ (3.11)

for sufficiently large s > 0. Similarly we have∫
Ω

|∇∂tỹ�(θ, x)|2e2sϕ(θ,x)dx

≤ C4

⎧⎨⎩
n∑

i,j=1

∑
|α|≤1

∫
Q1

χ2|∂αx fij(x)|2e2sϕdxdt+ U2e2s(d0−2ε) + se2sΦV 2

⎫⎬⎭ (3.12)

for sufficiently large s > 0. By (3.3), we have

L(1)ỹ�(θ, x) =
n∑

i,j=1

(∂jfij(x))∂iR�(θ, x) +
n∑

i,j=1

fij(x)∂i∂jR�(θ, x), x ∈ Ω (3.13)

for 1 ≤ � ≤ (n+1)2n
2 . Let us consider the above equations for 1 ≤ � ≤ n+ 1. Then we have

⎛⎜⎜⎜⎝
∂1R1(θ, x) ∂2R1(θ, x) . . . ∂nR1(θ, x)
∂1R2(θ, x) ∂2R2(θ, x) . . . ∂nR2(θ, x)

...
...

. . .
...

∂1Rn+1(θ, x) ∂2Rn+1(θ, x) . . . ∂nRn+1(θ, x)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
∑n

j=1 ∂jf1j(x)∑n
j=1 ∂jf2j(x)

...∑n
j=1 ∂jfnj(x)

⎞⎟⎟⎟⎠ (3.14)

=

⎛⎜⎜⎜⎝
L(1)ỹ1(θ, x) −

∑n
i,j=1 fij∂i∂jR1(θ, x)

L(1)ỹ2(θ, x) −
∑n
i,j=1 fij∂i∂jR2(θ, x)
...

L(1)ỹn+1(θ, x) −
∑n
i,j=1 fij∂i∂jRn+1(θ, x)

⎞⎟⎟⎟⎠.
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Because linear system (3.14) is composed of (n + 1) equations with respect to n unknowns and possesses a
solution

(∑n
j=1 ∂jf1j(x),

∑n
j=1 ∂jf2j(x), . . . ,

∑n
j=1 ∂jfnj(x)

)
, the coefficients matrix must satisfy

det

⎛⎜⎜⎜⎝
L(1)ỹ1(θ, x) −

∑n
i,j=1 fij∂i∂jR1(θ, x) ∂1R1(θ, x) . . . ∂nR1(θ, x)

L(1)ỹ2(θ, x) −
∑n

i,j=1 fij∂i∂jR2(θ, x) ∂1R2(θ, x) . . . ∂nR2(θ, x)
...

...
. . .

...
L(1)ỹn+1(θ, x) −

∑n
i,j=1 fij∂i∂jRn+1(θ, x) ∂1Rn+1(θ, x) . . . ∂nRn+1(θ, x)

⎞⎟⎟⎟⎠ = 0.

Let us set Dk
ij(x) ≡ Dk

ij({y({a(2)
ij }, h�)})(θ, x). Then we have

n∑
j=1

D1
jj(x)fjj(x) + 2

∑
i<j

D1
ij(x)fij(x) = Y1(x), x ∈ Ω \ ω1, (3.15)

where

Y1(x) = det

⎛⎜⎜⎜⎜⎝
L(1)ỹ1(θ, x) ∂1y({a(2)

ij }, h1)(θ, x) . . . ∂ny({a(2)
ij }, h1)(θ, x)

L(1)ỹ2(θ, x) ∂1y({a(2)
ij }, h2)(θ, x) . . . ∂ny({a(2)

ij }, h2)(θ, x)
...

...
. . .

...
L(1)ỹn+1(θ, x) ∂1y({a(2)

ij }, hn+1)(θ, x) . . . ∂ny({a(2)
ij }, hn+1)(θ, x)

⎞⎟⎟⎟⎟⎠.
We set

Y2(x)

= det

⎛⎜⎜⎜⎜⎝
L(1)ỹn+2(θ, x) ∂1y({a(2)

ij }, hn+2)(θ, x) . . . ∂ny({a(2)
ij }, hn+2)(θ, x)

L(1)ỹn+3(θ, x) ∂1y({a(2)
ij }, hn+3)(θ, x) . . . ∂ny({a(2)

ij }, hn+3)(θ, x)
...

...
. . .

...
L(1)ỹ2n+2(θ, x) ∂1y({a(2)

ij }, h2n+2)(θ, x) . . . ∂ny({a(2)
ij }, h2n+2)(θ, x)

⎞⎟⎟⎟⎟⎠,
...

...

Y (n+1)n
2

(x)

= det

⎛⎜⎜⎜⎜⎝
L(1)ỹ 1

2 (n+1)2n−n(θ, x) ∂1y({a(2)
ij }, h 1

2 (n+1)2n−n)(θ, x) . . .

L(1)ỹ 1
2 (n+1)2n−n+1(θ, x) ∂1y({a(2)

ij };h 1
2 (n+1)2n−n+1)(θ, x) . . .

...
...

. . .
L(1)ỹ 1

2 (n+1)2n(θ, x) ∂1y({a(2)
ij };h 1

2 (n+1)2n)(θ, x) . . .

∂ny({a(2)
ij }, h 1

2 (n+1)2n−n)(θ, x)

∂ny({a(2)
ij }, h 1

2 (n+1)2n−n+1)(θ, x)
...

∂ny({a(2)
ij }, h 1

2 (n+1)2n)(θ, x)

⎞⎟⎟⎟⎟⎠.

Similarly to (3.15), we can obtain

n∑
j=1

Dk
jj(x)fjj(x) + 2

∑
i<j

Dk
ij(x)fij(x) = Yk(x), x ∈ Ω \ ω1 (3.16)
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for 1 ≤ k ≤ n(n+1)
2 . Equation (3.16) is a linear system with respect to n(n+1)

2 unknown fij . Condition (1.7)
implies that the determinant of the coefficient matrix does not vanish on Ω \ ω1. Applying the Cramer formula,
we can solve (3.16) uniquely with respect to n(n+1)

2 unknowns fij . Therefore, taking into consideration the
definition of Yk(x), we can represent the solution fij by

fij(x) =

(n+1)2n
2∑
�=1

c�ij(x)L
(1)ỹ�(θ, x), x ∈ Ω \ ω1, 1 ≤ i, j ≤ n (3.17)

with some c�ij(x), 1 ≤ i, j ≤ n, 1 ≤ � ≤ (n+1)2n
2 . By the Sobolev embedding theorem (e.g., Thm. 5.4 in [1],

Cor. 9.1, p. 46, in Vol. 1 of [35]), we see that Hm(Ω) ⊂ C3(Ω). Hence y({a(2)
ij }, h�) ∈ C3([τ1, τ2];Hm(Ω)) ⊂

C3([τ1, τ2];C3(Ω)), and so c�ij ∈ C1(Ω \ ω1), 1 ≤ i, j ≤ n, 1 ≤ � ≤ (n+1)2n
2 . Moreover, since c�ij are given by

values (not including the derivatives) of Dk
ij(x), we see that ‖c�ij‖C1(Ω\ω1) ≤ C′

5.

By noting also that fij(x) = 0, x ∈ ω1, 1 ≤ i, j ≤ n, by means of (3.17) and c�ij ∈ C1(Ω \ ω1), we have

∫
Ω

∑
|α|≤1

|∂αx fij(x)|2e2sϕ(θ,x)dx ≤ C5

(n+1)2n
2∑
�=1

∑
|α|≤1

∫
Ω

|∂αx ∂tỹ�(θ, x)|2e2sϕ(θ,x)dx

+ C5

(n+1)2n
2∑
�=1

∑
|α|≤3

∫
Ω

|∂αx ỹ�(θ, x)|2e2sϕ(θ,x)dx, 1 ≤ i, j ≤ n, 1 ≤ � ≤ (n+ 1)2n
2

· (3.18)

By (3.11) and (3.12), we have

(n+1)2n
2∑
�=1

∑
|α|≤1

∫
Ω

|∂αx ∂tỹ�(θ, x)|2e2sϕ(θ,x)dx

≤ C6

n∑
i,j=1

∑
|α|≤1

∫
Ω

|∂αx fij(x)|2e2sϕ(θ,x)

(∫ τ2

τ1

e2s(ϕ(t,x)−ϕ(θ,x))dt
)

dx

+ C6U
2e2s(d0−2ε) + C6se2sΦV 2 (3.19)

for all large s > 0. By (3.18) and (3.19), we obtain

n∑
i,j=1

∑
|α|≤1

∫
Ω

|∂αx fij(x)|2e2sϕ(θ,x)dx

≤ C7

n∑
i,j=1

∑
|α|≤1

∫
Ω

|∂αx fij(x)|2e2sϕ(θ,x)

(∫ τ2

τ1

e2s(ϕ(t,x)−ϕ(θ,x))dt
)

dx

+ C7

(n+1)2n
2∑
�=1

∑
|α|≤3

∫
Ω

|∂αx ỹ�(θ, x)|2e2sϕ(θ,x)dx+ C7U
2e2s(d0−2ε) + C7se2sΦV 2 (3.20)
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for large s > 0. Applying the Lebesgue theorem, we have

sup
x∈Ω

∣∣∣∣∫ τ2

τ1

e2s(ϕ(t,x)−ϕ(θ,x))dt
∣∣∣∣ = sup

x∈Ω

∣∣∣∣∫ τ2

τ1

exp
(
2seλd(x)(e−λβ|t−θ|

2 − 1)
)

dt
∣∣∣∣

≤
∫ τ2

τ1

exp
(
2seλd1(e−λβ|t−θ|

2 − 1)
)

dt = o(1) as s −→ ∞,

where d1 = infx∈Ω d(x). Then

n∑
i,j=1

∑
|α|≤1

∫
Ω

|∂αx fij(x)|2e2sϕ(θ,x)

(∫ τ2

τ1

e2s(ϕ(t,x)−ϕ(θ,x))dt
)

dx

= o(1)
n∑

i,j=1

∑
|α|≤1

∫
Ω

|∂αx fij(x)|2e2sϕ(θ,x)dx as s −→ ∞.

Hence, from (3.20) we have

(1 − o(1))
n∑

i,j=1

∑
|α|≤1

∫
Ω

|∂αx fij(x)|2e2sϕ(θ,x)dx ≤ C8U
2e2s(d0−2ε) + C8se2sΦV 2

+ C8

(n+1)2n
2∑
�=1

∑
|α|≤3

∫
Ω

|∂αx ỹ�(θ, x)|2e2sϕ(θ,x)dx as s −→ ∞.

By ϕ(θ, x) ≥ d0 for x ∈ Ω, we obtain

(1 − o(1))
n∑

i,j=1

∑
|α|≤1

e2sd0

∫
Ω

|∂αx fij(x)|2dx ≤ C9U
2e2s(d0−2ε) + C9se2sΦV 2

+ C9

(n+1)2n
2∑
�=1

∑
|α|≤3

∫
Ω

|∂αx ỹ�(θ, x)|2e2sϕ(θ,x)dx as s −→ ∞,

that is,

(1 − o(1))
n∑

i,j=1

∑
|α|≤1

∫
Ω

|∂αx fij(x)|2dx ≤ C9U
2e−4sε + C9se2s(Φ−d0)V 2

+ C9

(n+1)2n
2∑
�=1

∑
|α|≤3

∫
Ω

|∂αx ỹ�(θ, x)|2e2s(Φ−d0)dx as s −→ ∞. (3.21)

On the other hand, we can prove the following estimate:

U2 ≤ C10V
2 + C10

n∑
i,j=1

∑
|α|≤1

∫
Ω

|∂αx fij(x)|2dx. (3.22)
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In fact, by (3.3) and (3.4) we have{
L(1)∂tỹ�(t, x) =

∑n
i,j=1 ∂j(fij(x)∂i∂tR�(t, x)), (t, x) ∈ (0, T )× Ω,

∂tỹ�(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω, 1 ≤ � ≤ (n+1)2n
2 ·

(3.23)

Apply Lemma 1.1 in [19] (cf. Lem. 2.4 in [20]) to (3.23). Then we can see that there exist ψ0 ∈ C2(Ω) and a
constant σ0 > 0 such that for a constant σ ≥ σ0 we can choose η0(σ) > 0 such that for each η ≥ η0(σ), we have∫

(τ3,τ4)×Ω

(
ηeσψ0(x)

(t− τ3)(τ4 − t)
|∇∂tỹ�|2 +

η3e3σψ0(x)

(t− τ3)3(τ4 − t)3
|∂tỹ�|2

)
J(t, x)dxdt

≤ C11

n∑
i,j=1

∑
|α|=1

∫
(τ3,τ4)×Ω

|∂αx fij(x)|2J(t, x)dxdt

+ C11η

∫ τ4

τ3

∫
Γ0

|∂ν∂tỹ�|2 ηeσψ0(x)

(t− τ3)(τ4 − t)
J(t, x)dΣ.

Here we set

J(t, x) = exp

⎧⎨⎩2η
(
eσψ0(x) − e2σ‖ψ0‖C(Ω)

)
(t− τ3)(τ4 − t)

⎫⎬⎭ ·

By the proof of Lemma 1.1 in [19], we see that the constant C11 > 0 can be taken uniformly in aij ∈ U , and
see also [9,15] as for the proof. We note that C11 is dependent on σ, but independent of η, and the constant σ0

depends on U . We fix σ > σ0 and η > η0(σ). Then

0 < C11 ≤ J(t, x)

for x ∈ Ω and τ1 < t < τ2 and

J(t, x),
ηeσψ0(x)

(t− τ3)(τ4 − t)
J(t, x) ≤ C12

for x ∈ Ω and τ3 < t < τ4. Hence we have∫
Q1

(|∇∂tỹ�|2 + |∂tỹ�|2
)
dxdt

≤ C13

n∑
i,j=1

∑
|α|≤1

∫
(τ3,τ4)×Ω

|∂αx fij(x)|2dxdt+ C13

∫ τ4

τ3

∫
Γ0

|∂ν∂tỹ�|2dΣ. (3.24)

Similarly, we can obtain∫
Q1

(|∇∂2
t ỹ�|2 + |∂2

t ỹ�|2)dxdt

≤ C13

n∑
i,j=1

∑
|α|≤1

∫
(τ3,τ4)×Ω

|∂αx fij(x)|2dxdt+ C13

∫ τ4

τ3

∫
Γ0

|∂ν∂2
t ỹ�|2dΣ. (3.25)

By (3.24) and (3.25), we complete the proof of (3.22).
We can obtain (1.6) by substituting (3.22) into (3.21) and taking s large enough. Thus the proof of Theo-

rem 1.1 is completed.
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Proof of Theorem 1.2. Let B = (bij)1≤i,j≤n be an n× n matrix such that bij ∈ R and detB > 0. We set

g̃i(x) =
n∑
j=1

bijxj , 1 ≤ i ≤ n

and

ĝ1(x) = x2
1, ĝ2(x) = 2x1x2, ĝ3(x) = 2x1x3, . . . , ĝn(x) = 2x1xn,

ĝn+1(x) = x2
2, ĝn+2(x) = 2x2x3, . . . , ĝ2n−1(x) = 2x2xn,

...
...

ĝ (n+1)n
2 −2

(x) = x2
n−1, ĝ (n+1)n

2 −1
(x) = 2xn−1xn,

ĝ (n+1)n
2

(x) = x2
n.

Let us define an (n+1)2n
2 -dimensional vector by(

g1(x), g2(x), . . . , gn+1(x), gn+2(x), gn+3(x), . . . , g2n+2(x), . . . ,

gn3+2n2−n
2

(x), gn3+2n2−n
2 +1

(x), . . . , gn3+2n2−n
2 +n

(x)
)

=
(
ĝ1(x), g̃1(x), . . . , g̃n(x), ĝ2(x), g̃1(x), . . . , g̃n(x), . . . ,

ĝn(n+1)
2

(x), g̃1(x), . . . , g̃n(x)
)
. (3.26)

Therefore, noting that ∂i∂j g̃k = 0, we obtain

Dk
ij({g�})(x) = det

(
∂i∂j ĝk ∗
0 B

)
= (∂i∂j ĝk)detB, 1 ≤ k ≤ n(n+ 1)

2
, 1 ≤ i, j ≤ n.

Hence

D({g�})(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2detB 0 0 · · · 0 0
0 2detB 0 · · · 0 0
0 0 2detB · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2detB 0
0 0 0 · · · 0 2detB

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Consequently we have det D({g�})(x) = (2detB)
(n+1)n

2 > 0. We introduce a cut-off function χ1 ∈ C∞
0 (Ω) such

that χ1 = 1 on Ω \ ω1. Then we have

χ1g� ∈ D
(
A[m+1

2 ]
)

and D({χ1g�})(x) > 0, x ∈ Ω \ ω1. (3.27)

Here we recall that A is defined by (1.9).
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By Proposition 1.1, for arbitrarily μ� ∈ L2(Ω), we can choose h� ∈ C∞
0 ((0, T ) × ω), 1 ≤ � ≤ (n+3)n

2 , so that
for a sufficiently small ε > 0 we have

‖y({a(2)
ij }, h�, μ�)(θ, ·) − χ1ĝ�‖Hm(Ω) ≤ ε, 1 ≤ � ≤ (n+ 1)n

2

and ∥∥∥y ({a(2)
ij }, h (n+1)n

2 +k
, μ (n+1)n

2 +k

)
(θ, ·) − χ1g̃k

∥∥∥
Hm(Ω)

≤ ε, 1 ≤ k ≤ n.

Here we note that y({a(2)
ij }, h, μ) denotes the solution to (1.1) and (1.2) with y(0, ·) = μ. Since m > n

2 + 3, we
have Hm(Ω) ⊂ C2(Ω). Then we can obtain

‖y({a(2)
ij }, h�, μ�)(θ, ·) − χ1ĝ�‖C2(Ω\ω1) ≤ ε, 1 ≤ � ≤ (n+ 1)n

2
(3.28)

and ∥∥∥y ({a(2)
ij }, h (n+1)n

2 +k
, μ (n+1)n

2 +k

)
(θ, ·) − χ1g̃k

∥∥∥
C2(Ω\ω1)

≤ ε, 1 ≤ k ≤ n. (3.29)

Let

(ĥ�)1≤�≤ (n+1)2n
2

=

(
ĥ1, ĥ2, . . . , ĥn+1, ĥn+2, ĥn+3, . . . , ĥ2n+2, . . . ,

ĥn3+2n2−n
2

, ĥn3+2n2−n
2 +1

, . . . , ĥn3+2n2−n
2 +n

)

≡
(
h1, hn(n+1)

2 +1
, . . . , hn(n+1)

2 +n
, h2, hn(n+1)

2 +1
, . . . , hn(n+1)

2 +n
, . . . ,

hn(n+1)
2

, hn(n+1)
2 +1

, . . . , hn(n+1)
2 +n

)
(3.30)

and

(μ̂�)1≤�≤ (n+1)2n
2

≡
(
μ̂1, μ̂2, . . . , μ̂n+1, μ̂n+2, μ̂n+3, . . . , μ̂2n+2, . . . ,

μ̂n3+2n2−n
2

, μ̂n3+2n2−n
2 +1

, . . . , μ̂n3+2n2−n
2 +n

)

=
(
μ1, μn(n+1)

2 +1
, . . . , μn(n+1)

2 +n
, μ2, μn(n+1)

2 +1
, . . . , μn(n+1)

2 +n
, . . . ,

μn(n+1)
2

, μn(n+1)
2 +1

, . . . , μn(n+1)
2 +n

)
. (3.31)

By (3.27)–(3.31), we can obtain

D({y({a(2)
ij }, ĥ�, μ̂�)})(θ, x) > 0, x ∈ Ω \ ω1

by taking ε small enough. Thus, by applying Theorem 1.1 to ĥ�, 1 ≤ � ≤ (n+1)2n
2 , the proof of Theorem 1.2 is

completed.
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4. Proof of Proposition 1.1

For the proof, we will use the dual space D(A−m1 ), which is defined as follows. By ‖ · ‖ and (·, ·) we denote
the norm and the scalar product in L2(Ω), respectively. We recall that the operator A in L2(Ω) is defined
by (1.9). Henceforth [γ] denotes the greatest integer not exceeding γ ∈ R. Since aij ∈ Cm−1,1(Ω), elliptic
regularity results (e.g., Thm. 8.13, p. 187, in [16]) yield

C−1
1 ‖Au‖ ≤ ‖u‖H2(Ω) ≤ ‖Au‖, u ∈ D(A).

Next, using ‖Ak−1u‖ ≤ C′
1‖Aku‖ for u ∈ D(Ak) and k ∈ N, we repeatedly apply Theorem 8.13 in [16] and we

see
C−1

1 ‖Aku‖ ≤ ‖u‖H2k(Ω) ≤ C1‖Aku‖, u ∈ D(Ak) (4.1)

where k = 0, 1, ...,
[
m+1

2

]
. Here the constant C1 > 0 is independent of u ∈ D(Ak), and ‖ · ‖H2k(Ω) denotes the

norm in H2k(Ω). In particular,

C−1
1 ‖Am1u‖ ≤ ‖u‖H2m1(Ω) ≤ C1‖Am1u‖, u ∈ D(Am1 ). (4.2)

Moreover it is known that there exists a sequence of eigenvalues {κj}j∈N of A:

0 < κ1 ≤ κ2 ≤ ... −→ ∞,

where κj appears the same time as its multiplicity. Then we can form an orthonormal basis {ej}j∈N in L2(Ω)
such that Aej = κjej . We have

‖A�u‖ =

⎛⎝ ∞∑
j=1

κ2�
j (u, ej)2

⎞⎠
1
2

and D(A�), � ∈ N ∪ {0}, is a Hilbert space with the scalar product

(u, v)D(A�) =
∞∑
j=1

κ2�
j (u, ej)(v, ej).

In particular, D(A0) = L2(Ω), and D(Am1) is dense in L2(Ω), and the embedding is continuous. Identifying the
dual space of L2(Ω) with L2(Ω), we have D(Am1) ⊂ L2(Ω) ⊂ (D(Am1 ))′ topologically (e.g., [6]). Henceforth we
set (D(Am1 ))′ = D(A−m1) and D(Am1)< u, ξ >D(A−m1) denotes the value of a linear functional ξ ∈ (D(Am1 ))′

at u. We note that
D(Am1)< u, ξ >D(A−m1)= (u, ξ)

if u ∈ D(Am1) and ξ ∈ L2(Ω) (e.g., V.2 in [6]).
Since L2(Ω) is dense in D(A−m1), in terms of the choice of the norm on D(A), we see that A−m1 is extended

uniquely to a bounded operator in D(A−m1) and ‖u‖D(A−m1) = ‖A−m1u‖. By the density of C∞
0 (Ω) in L2(Ω),

we see also that C∞
0 (Ω) is dense in D(A−m1). Furthermore it is seen that e−tA is an analytic semigroup in

D(A−m1) and A−m1e−tA = e−tAA−m1 .
Now we proceed to the proof of the proposition. Without loss of generality, we can suppose that y(0) = μ = 0,

because the parabolic equation (1.1) is linear. First we consider⎧⎪⎪⎨⎪⎪⎩
−∂z
∂t +Az(t, x) = 0, (t, x) ∈ Q,

z = 0, (t, x) ∈ Σ,

z(T, x) = ξ(x), x ∈ Ω,

(4.3)
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where ξ ∈ D(A−m1). We can verify (e.g., [37]) that for every ξ ∈ D(A−m1 ), there exists a unique solution
z ∈ C([0, T ];D(A−m1)) such that

‖z‖C([0,T ];D(A−m1)) ≤ C‖ξ‖D(A−m1).

Recall that y({aij}, h, 0)(t, x) is the solution to (1.1) and (1.2) with y(0) = 0 where h ∈ C∞
0 ((0, T ) × ω). We

will prove

D(Am1) 〈y({aij}, h, 0)(T, ·), ξ〉D(A−m1) =L2(0,T ;D(Am1)) 〈h, z〉L2(0,T ;D(A−m1)) . (4.4)

In fact, by the density of C∞
0 (Ω) in D(A−m1), there exists a sequence ξk ∈ C∞

0 (Ω), k ∈ N such that ξk −→ ξ
in D(A−m1 ). By zk we denote the solution to (4.3) with the final value ξk at t = T . Then zk, y({aij}, h, 0) ∈
C1([0, T ];L2(Ω))∩C([0, T ];D(A)) (e.g., Thm. 3.5, p. 114, in [37]). Therefore we can multiply (1.1) with zk(t, x),
so that by integrating by parts, we have

(y({aij}, h, 0)(T, ·), ξk)L2(Ω) = (h, zk)L2((0,T )×Ω).

Noting that h ∈ C∞
0 ((0, T ) × ω), we can further rewrite it as

D(Am1)〈y({aij}, h, 0)(T, ·), ξk〉D(A−m1) =L2(0,T ;D(Am1)) 〈h, zk〉L2(0,T ;D(A−m1)) .

Since y({aij}, h, 0)(t, ·) =
∫ t
0

e−(t−s)Ah(s, ·)ds for t > 0 (e.g., [37]) and h ∈ C∞
0 ((0, T )×ω), we directly see that

y({aij}, h, 0)(T, ·) ∈ D(Am1 ). Hence, as k −→ ∞, we have

D(Am1)〈y({aij}, h, 0)(T, ·), ξ〉D(A−m1) =L2(0,T ;D(Am1)) 〈h, z〉L2(0,T ;D(A−m1)) .

Thus we proved (4.4).
For the proof of the proposition, it is sufficient to verify that if

D(Am1)〈y({aij}, h, 0)(T, ·), ξ〉D(A−m1) = 0 (4.5)

for all h ∈ C∞
0 ((0, T ) × ω), then ξ = 0. Let us assume (4.5). Then for any δ ∈ (0, T ), by (4.4) we have

L2(0,T−δ;D(Am1))〈h, z〉L2(0,T−δ;D(A−m1)) = 0 for all h ∈ C∞
0 ((0, T − δ) × ω).

By the smoothing property for the parabolic equation (e.g., [37]), we know that z ∈ L2(0, T − δ;D(A)) ⊂
L2(0, T − δ;H2(Ω) ∩H1

0 (Ω)). Therefore

L2(0,T−δ;D(Am1))〈h, z〉L2(0,T−δ;D(A−m1)) = (h, z)L2(0,T−δ;L2(Ω))

= (h, z)L2(0,T−δ;L2(ω))

for all h ∈ C∞
0 ((0, T − δ) × ω). Hence we have z = 0 in (0, T − δ) × ω. By the unique continuation for

parabolic equations (e.g., Saut and Scheurer [38]), we can see that z = 0 in (0, T − δ) × Ω. We note that a
Carleman estimate yields the unique continuation by an argument similar to the one in obtaining (3.22). Since
δ is arbitrary and z ∈ C([0, T ];D(A−m1)), we can obtain ξ = 0. Thus the proof of Proposition 1.1 is completed.
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Appendix A. Proof of Theorem 2.1

The proof is adapted from the proofs in [15,19], where the authors treat the case of the weight function
containing a singular function.

Henceforth we take λ > 1 and by Cj we denote generic constants which do not depend on s and λ, and
continuously depend on

∑n
i,j=1 ‖aij‖C1(Ω), τ1, τ2,Ω, r. It suffices to prove (2.6) for the operator

L̃v = ∂tv −
n∑

i,j=1

aij(x)∂i∂iv.

In fact, we have

Lv = L̃v −
n∑

i,j=1

(∂jaij(x))∂iv(t, x)

and ∂jaij ∈ L∞(Ω). Therefore

C1

(∫
(τ1,τ2)×Ω

|Lv|2e2sϕdxdt+
∫

(τ1,τ2)×Ω

|∇v|2e2sϕdxdt

)

≥
∫

(τ1,τ2)×Ω

|L̃v|2e2sϕdxdt.

Hence in (2.6) with L̃, we further choose s0 > 0 sufficiently large and we absorb the term C1

∫
(τ1,τ2)×Ω |∇v|2e2sϕdxdt

into the left-hand side. Moreover, fixing λ in (2.6), we obtain (2.4).
Henceforth we set

Q1 = (τ1, τ2) × Ω, Σ1 = (τ1, τ2) × ∂Ω

and

a(x, ζ, ξ) ≡
n∑

i,j=1

aij(x)ζiξj , ζ = (ζ1, ..., ζn), ξ = (ξ1, ..., ξn) ∈ R
n, (t, x) ∈ Q1.

Let w(t, x) = esϕv(t, x). By (2.5) we have

w(τ1, ·) = w(τ2, ·) = 0 in Ω. (A.1)

Let

Pw ≡ esϕL̃e−sϕw = esϕL̃v in Q1.

It is easy to see that the operator P has the form

Pw = ∂tw −
n∑

i,j=1

aij∂i∂jw + 2sλϕ
n∑

i,j=1

aij(∂id)∂jw

+ sλ2ϕw

n∑
i,j=1

aij(∂id)∂jd− s2λ2ϕ2w

n∑
i,j=1

aij(∂id)∂jd

+ sλϕw

n∑
i,j=1

aij∂i∂jd− sw∂tϕ. (A.2)
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We set

P1w + P2w = Pw − sλ2ϕw

n∑
i,j=1

aij(∂id)∂jd

−sλϕw
n∑

i,j=1

aij∂i∂jd+ sw∂tϕ ≡ fs in Q1, (A.3)

where

P1w = −
n∑

i,j=1

aij∂i∂jw − s2λ2ϕ2a(x,∇d,∇d)w, (A.4)

P2w = ∂tw + 2sλϕ
n∑

i,j=1

aij(∂id)∂jw. (A.5)

Equation (A.3) implies

‖fs‖2
L2(Q1)

= ‖P1w‖2
L2(Q1) + ‖P2w‖2

L2(Q1)
+ 2(P1w,P2w)L2(Q1). (A.6)

By virtue of (A.4) and (A.5) we have

(P1w,P2w)L2(Q1) =

⎛⎝−
n∑

i,j=1

aij∂i∂jw − s2λ2ϕ2wa(x,∇d,∇d), ∂tw
⎞⎠
L2(Q1)

−
∫
Q1

2s3λ3wϕ3a(x,∇d,∇d)a(x,∇d,∇w) dxdt−
∫
Q1

2sλϕ
n∑

i,j=1

aij∂i∂jw

n∑
k,�=1

ak�(∂kd)∂�w dxdt

≡ I1 + I2 + I3. (A.7)

We note
∇w = (∂νw)ν on Σ1, (A.8)

because v ∈ L2(τ1, τ2;H2(Ω) ∩H1
0 (Ω)) implies w|Σ1 = 0.

Noting also that aij = aji and w(τ1, ·) = w(τ2, ·) = 0, we transform I1, I2 and I3 by integrating by parts
respectively:

I1 =
∫
Q1

[
∂tw

n∑
i,j=1

(∂iaij)∂jw +
n∑

i,j=1

aij(∂jw)∂i∂tw − s2λ2

2
ϕ2a(x,∇d,∇d)∂t(w2)

]
dxdt

=
∫
Q1

⎡⎣∂tw n∑
i,j=1

(∂iaij)∂jw + w2 s
2λ2

2
∂t(ϕ2a(x,∇d,∇d))

⎤⎦ dxdt, (A.9)

I2 = −
∫
Q1

s3λ3ϕ3
n∑

i,j=1

aija(x,∇d,∇d)(∂id)∂j(w2)dxdt

=
∫
Q1

⎡⎣3s3λ4w2ϕ3a(x,∇d,∇d)2 + s3λ3w2ϕ3
n∑

i,j=1

∂j(aija(x,∇d,∇d)∂id)
⎤⎦ dxdt (A.10)
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and

I3 =
∫
Q1

−
⎛⎝ n∑
i,j=1

aij∂i∂jw

⎞⎠⎛⎝2sλϕ
n∑

k,�=1

ak�(∂kd)∂�w

⎞⎠ dxdt

=
∫
Q1

{
n∑

i,j=1

2sλϕ(∂jaij)(∂iw)
n∑

k,�=1

ak�(∂kd)∂�w + 2sλ2ϕ

n∑
i,j=1

aij(∂iw)(∂jd)
n∑

k,�=1

ak�(∂kd)∂�w

+ 2sλϕ
n∑

i,j=1

⎡⎣aij∂iw n∑
k,�=1

∂j(ak�∂kd)∂�w

⎤⎦ + 2sλϕ
n∑

i,j=1

⎛⎝aij∂iw n∑
k,�=1

ak�(∂kd)∂j∂�w

⎞⎠}dxdt

− 2
∫

Σ1

⎛⎝ n∑
i,j=1

aijνj∂iw

⎞⎠⎛⎝sλϕ n∑
k,�=1

ak�(∂kd)∂�w

⎞⎠ dΣ.

By using (A.8) and aij = aji, we can obtain

I3 =
∫
Q1

{
n∑

i,j=1

2sλϕ(∂jaij)∂iw
n∑

k,�=1

ak�(∂kd)∂�w + 2sλ2ϕ

n∑
i,j=1

aij(∂iw)(∂jd)
n∑

k,�=1

ak�(∂kd)∂�w

+ 2sλϕ
n∑

i,j=1

⎡⎣aij(∂iw)
n∑

k,�=1

∂j(ak�∂kd)∂�w

⎤⎦ + sλϕ
n∑

k,�=1

⎡⎣ak�∂kd n∑
i,j=1

aij∂� ((∂iw)∂jw)

⎤⎦}dxdt

− 2sλ
∫

Σ1

ϕ|∂νw|2a(x, ν, ν)a(x,∇d, ν)dΣ.

Integrating by parts, we have

I3 =
∫
Q1

{
n∑

i,j=1

2sλϕ(∂jaij)(∂iw)
n∑

k,�=1

ak�(∂kd)∂�w

+ 2sλ2ϕa(x,∇d,∇w)2 + 2sλϕ
n∑

i,j=1

⎡⎣aij∂iw n∑
k,�=1

∂j(ak�∂kd)∂�w

⎤⎦
− sλ2ϕa(x,∇d,∇d)a(x,∇w,∇w) − sλϕ

n∑
k,�=1

∂�(ak�∂kd)a(x,∇w,∇w)

− sλϕ
n∑

k,�=1

⎡⎣ak�∂kd n∑
i,j=1

(∂�aij)(∂iw)∂jw

⎤⎦}dxdt

− sλ

∫
Σ1

ϕ|∂νw|2a(x, ν, ν)a(x,∇d, ν)dΣ. (A.11)
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By (A.9)–(A.11), we have

(P1w,P2w)L2(Q1) =
∫
Q1

[
3s3λ4ϕ3w2a(x,∇d,∇d)2 +

⎛⎝ n∑
i,j=1

(∂jaij)∂iw

⎞⎠P2w

+ 2sλ2ϕa(x,∇d,∇w)2 − sλ2ϕa(x,∇d,∇d)a(x,∇w,∇w)

]
dxdt

− sλ

∫
Σ1

ϕ|∂νw|2a(x, ν, ν)a(x,∇d, ν)dΣ +X1, (A.12)

where

X1 =
∫
Q1

{
w2 s

2λ2

2
∂t(ϕ2a(x,∇d,∇d)) + s3λ3w2ϕ3

n∑
i,j=1

∂j(aija(x,∇d,∇d)∂id)

+ 2sλϕ
n∑

i,j=1

⎡⎣aij(∂iw)
n∑

k,�=1

∂j(ak�∂kd)∂�w

⎤⎦− sλϕ

n∑
k,�=1

∂�(ak�∂kd)a(x,∇w,∇w)

− sλϕ

n∑
k,�=1

⎡⎣ak�∂kd n∑
i,j=1

(∂�aij)(∂iw)∂jw

⎤⎦}dxdt.

Then by aij ∈ C1(Ω), we obtain

|X1| ≤ C2

∫
Q1

[
(sλϕ + 1)|∇w|2 + (s3λ3ϕ3 + s2λ3ϕ2)w2

]
dxdt. (A.13)

Multiply (A.3) by sλ2ϕwa(x,∇d,∇d) and integrate by parts in Q1, and we obtain

∫
Q1

sλ2ϕfsa(x,∇d,∇d)w dxdt

=
∫
Q1

{
sλ2ϕa(x,∇d,∇d)wP2w − s3λ4ϕ3a(x,∇d,∇d)2w2

+ sλ2ϕa(x,∇w,∇w)a(x,∇d,∇d) + sλ3ϕa(x,∇d,∇d)a(x,∇d,∇w)w

+ sλ2ϕw

n∑
i,j=1

∂j(aija(x,∇d,∇d))∂iw
}

dxdt.

Consequently

2s3λ4

∫
Q1

ϕ3a(x,∇d,∇d)2w2dxdt

= 2
∫
Q1

sλ2ϕa(x,∇w,∇w)a(x,∇d,∇d)dxdt + 2X2, (A.14)
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where

X2 =
∫
Q1

{
sλ2ϕw

n∑
i,j=1

∂j(aija(x,∇d,∇d))∂iw + sλ3ϕa(x,∇d,∇d)a(x,∇d,∇w)w

+ sλ2ϕa(x,∇d,∇d)wP2w − sλ2fsϕa(x,∇d,∇d)w
}

dxdt.

By aij ∈ C1(Ω) and the Schwarz inequality, we obtain

|X2| ≤ 1
16

‖P2w‖L2(Q1) + C3

∫
Q1

[
(s2λ4ϕ2 + s2λ4ϕ)w2 + λ2ϕ|∇w|2] dxdt

+
1
2
‖fs‖2

L2(Q1). (A.15)

Using 3s3λ4ϕ3w2a(x,∇d,∇d)2 = s3λ4ϕ3w2a(x,∇d,∇d)2 +2s3λ4ϕ3w2a(x,∇d,∇d)2 in (A.12) and substituting
(A.14) into the above second term, we have

(P1w,P2w)L2(Q1) =
∫
Q1

[
s3λ4ϕ3w2a(x,∇d,∇d)2 +

⎛⎝ n∑
i,j=1

(∂jaij)∂iw

⎞⎠P2w

+ 2sλ2ϕa(x,∇d,∇w)2 + sλ2ϕa(x,∇d,∇d)a(x,∇w,∇w)

]
dxdt

− sλ

∫
Σ1

ϕ|∂νw|2a(x, ν, ν)a(x,∇d, ν)dΣ +X1 + 2X2.

Therefore we see that

2(P1w,P2w)L2(Q1) ≥
∫
Q1

2[s3λ4ϕ3w2a(x,∇d,∇d)2 + sλ2ϕa(x,∇d,∇d)a(x,∇w,∇w)]dxdt

+
∫
Q1

2
(

1
2
P2w

)⎛⎝2
n∑

i,j=1

(∂jaij)∂iw

⎞⎠ dxdt

− 2sλ
∫

Σ1

ϕ|∂νw|2a(x, ν, ν)a(x,∇d, ν)dΣ + 2X1 + 4X2.

Applying

2

∣∣∣∣∣∣12(P2w)

⎛⎝2
n∑

i,j=1

(∂jaij)∂iw

⎞⎠∣∣∣∣∣∣ ≤ 1
4
|P2w|2 + 4

∣∣∣∣∣∣
n∑

i,j=1

(∂jaij)∂iw

∣∣∣∣∣∣
2

,
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by virtue of λ > 1, (A.6), (A.13) and (A.15), we obtain

‖fs‖2
L2(Q1) = ‖P1w‖2

L2(Q1)
+ ‖P2w‖2

L2(Q1) + 2(P1w,P2w)L2(Q1)

≥ ‖P1w‖2
L2(Q1)

+
1
2
‖P2w‖2

L2(Q1)

+
∫
Q1

2[s3λ4ϕ3w2a(x,∇d,∇d)2 + sλ2ϕa(x,∇d,∇d)a(x,∇w,∇w)]dxdt

− C4

∫
Q1

[(λ2ϕ+ sλϕ+ 1)|∇w|2 + (s3λ3ϕ3 + s2λ4ϕ2 + s2λ4ϕ)w2]dxdt

− 2‖fs‖2
L2(Q1) − 2sλ

∫
Σ1

ϕ|∂νw|2a(x, ν, ν)a(x,∇d, ν)dΣ.

Since d ∈ C2(Ω) satisfies |∇d(x)| > 0, x ∈ Ω, by (1.4) we can obtain

‖fs‖2
L2(Q1)

≥ 1
3
‖P1w‖2

L2(Q1)
+

1
6
‖P2w‖2

L2(Q1)

+ C5

∫
Q1

(s3λ4ϕ3w2 + sλ2ϕ|∇w|2)dxdt

− C6

∫
Q1

[(λ2ϕ+ sλϕ+ 1)|∇w|2 + (s3λ3ϕ3 + s2λ4ϕ2 + s2λ4ϕ)w2]dxdt

− 2
3
sλ

∫
Σ1

ϕ|∂νw|2a(x, ν, ν)a(x,∇d, ν)dΣ.

In terms of the definition of fs in (A.3), we have

‖fs‖2
L2(Q1)

≤ C7

∫
Q1

(s2λ4ϕ2w2 + |Pw|2)dxdt.

Therefore, using also (2.2), we obtain

C8‖Pw‖2
L2(Q1) + C8sλ

∫ τ2

τ1

∫
Γ0

ϕ|∂νw|2dΣ

≥ 1
3
‖P1w‖2

L2(Q1) +
1
6
‖P2w‖2

L2(Q1) +
∫
Q1

(C5s
3λ4ϕ3 − C8s

3λ3ϕ3 − C8s
2λ4ϕ2 − C8s

2λ4ϕ)w2dxdt

+
∫
Q1

(C5sλ
2ϕ− C8sλϕ− C8λ

2ϕ− C8)|∇w|2dxdt.

Noting that ϕ ≥ 1 on Q1, we can find constants λ0 > 0 and s0 > 0 which continuously depend on∑n
i,j=1 ‖aij‖C1(Ω), τ1, τ2,Ω, r such that

C9sλ

∫ τ2

τ1

∫
Γ0

ϕ|∂νw|2dΣ + C9‖Pw‖2
L2(Q1) ≥ ‖P1w‖2

L2(Q1) + ‖P2w‖2
L2(Q1)

+
∫
Q1

(s3λ4ϕ3w2 + sλ2ϕ|∇w|2)dxdt
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for all s > s0 and λ > λ0. By (A.4) and (A.5), we have

|(P1w)(x, t)|2 ≥ C10

∣∣∣∣∣∣
n∑

i,j=1

aij∂i∂jw

∣∣∣∣∣∣
2

− C11s
4λ4ϕ4w2

and
|(P2w)(x, t)|2 ≥ C10|∂tw|2 − C11s

2λ2ϕ2|∇w|2,
so that

∫
Q1

⎧⎪⎨⎪⎩ 1
sϕ

⎛⎜⎝|∂tw|2 +

∣∣∣∣∣∣
n∑

i,j=1

aij∂i∂jw

∣∣∣∣∣∣
2
⎞⎟⎠+ sλ2ϕ|∇w|2 + s3λ4ϕ3w2

⎫⎪⎬⎪⎭ dxdt

≤ C12

∫
Q1

|Pw|2dxdt+ C12sλ

∫ τ2

τ1

∫
Γ0

ϕ|∂νw|2dΣ (A.16)

for all s > s0 and λ > λ0.
Moreover we have

∂i∂j

(
w√
ϕ

)
=
∂i∂jw√

ϕ
− ∂i∂jϕ

2ϕ
3
2
w

− 1
2ϕ

3
2
{(∂jw)(∂iϕ) + (∂iw)(∂jϕ)} +

3
4ϕ

5
2
(∂iϕ)(∂jϕ)w, 1 ≤ i, j ≤ n, (A.17)

and

n∑
i,j=1

aij∂i∂j

(
w√
ϕ

)

=
g√
ϕ
−
∑n
i,j=1 aij∂i∂jϕ

2ϕ
3
2

w +
3

4ϕ
5
2
w

n∑
i,j=1

aij(∂iϕ)(∂jϕ)

− 1
ϕ

3
2

n∑
i,j=1

aij(∂iw)(∂jϕ)

where we set g =
∑n

i,j=1 aij∂i∂jw. Since w(t, ·) ∈ H1
0 (Ω) for almost all t ∈ [τ1, τ2], we apply a usual a priori

estimate for the Dirichlet problem for the elliptic equation (e.g., [16]), so that

∫
Ω

n∑
i,j=1

∣∣∣∣∂i∂j ( w√
ϕ

)∣∣∣∣2 (t, x)dx ≤ C13

∫
Ω

g(t, x)2

ϕ
dx+ C13

∫
Ω

∣∣∣∑n
i,j=1 aij∂i∂jϕ

∣∣∣2
ϕ3

|w(t, x)|2dx

+ C13

∫
Ω

w(t, x)2

ϕ5

∣∣∣∣∣∣
n∑

i,j=1

aij(∂iϕ)(∂jϕ)

∣∣∣∣∣∣
2

dx

+ C13

∫
Ω

1
ϕ3

∣∣∣∣∣∣
n∑

i,j=1

aij(∂iw)∂jϕ

∣∣∣∣∣∣
2

dx. (A.18)
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On the other hand, (A.17) yields∫
Ω

1
ϕ
|∂i∂jw(t, x)|2dx

≤ C14

∫
Ω

{∣∣∣∣∂i∂j ( w√
ϕ

)∣∣∣∣2 +
|∂i∂jϕ|2
ϕ3

w2 +
1
ϕ3

(|∂jw|2|∂iϕ|2 + |∂iw|2|∂jϕ|2)

+
1
ϕ5

|∂iϕ|2|∂jϕ|2w2

}
(t, x)dx. (A.19)

Since ∂iϕ = λ(∂id)ϕ and ∂i∂jϕ = λ(∂i∂jd)ϕ+ λ2(∂id)(∂jd)ϕ, we see by λ > 1 that

|∂iϕ(t, x)| ≤ C15λϕ(t, x),

|∂i∂jϕ(t, x)| ≤ C15λ
2ϕ(t, x), 1 ≤ i, j ≤ n, (t, x) ∈ Q1. (A.20)

Hence, ϕ ≥ 1, (A.18) and (A.19) yield

n∑
i,j=1

∫
Ω

1
ϕ(t, x)

|∂i∂jw(t, x)|2dx ≤ C16

∫
Ω

g2(t, x)
ϕ(t, x)

+ C16

∫
Ω

(λ4w2 + λ2|∇w|2)(t, x)dx.

With (A.16), we obtain

∫
Q1

⎧⎨⎩ 1
sϕ

⎛⎝|∂tw|2 +
n∑

i,j=1

|∂i∂jw|2
⎞⎠+ sλ2ϕ|∇w|2 + s3λ4ϕ3w2

⎫⎬⎭dxdt

≤ C17

∫
Q1

|Pw|2dxdt+ C17sλ

∫ τ2

τ1

∫
Γ0

ϕ|∂νw|2dΣ

for all s > s0 and λ > λ0. Substituting w = esϕv and noting v|Σ1 = 0 and (A.20), we can complete the proof
of (2.6).

In (2.6), fixing λ > λ0 and replacing eλM1s by s, we can derive (2.4) from (2.6). Thus the proof of Theorem 2.1
is completed.

Appendix B. Proof of (1.6) and (1.10)

For {aij} ∈ U , we recall that the operator A in L2(Ω) is defined by (1.9), and that (4.1) holds.
Moreover the fractional power Aγ , γ ∈ R is defined (e.g., [37]). Applying the interpolation theorem (e.g., [35])

in (4.1), we see that

C−1
1 ‖Am0

2 u‖ ≤ ‖u‖Hm0(Ω) ≤ C1‖A
m0
2 u‖, m0 = 0, 1, 2, ..., 2

[
m+ 1

2

]
, u ∈ D(A

m0
2 ). (B.1)

On the other hand, −A generates an analytic semigroup in L2(Ω) (e.g., [37]) and we have

y(t) ≡ y({aij}, h, μ)(t, ·) = e−tAμ+
∫ t

0

e−sAh(t− s)ds, 0 < t < T.

Here and henceforth we regard h(t) = h(t, ·) as an element in L2(0, T ;L2(Ω)). Therefore by h ∈ C∞
0 ((0, T )×ω),

we have

∂�ty(t) = (−A)�e−tAμ+
∫ t

0

e−sA∂�th(t− s)ds, 0 < t < T.
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Furthermore h ∈ C∞
0 ((0, T ) × ω) yields ‖Am0

2 ∂�th(t)‖ ≤ C2‖∂�th(t)‖Hm0 (ω) by (B.1). On the other hand,
‖A�e−tA‖ ≤ C3

t�
for t > 0 (e.g., Sect. 2.6 in [37]), and by the proof in [37], we see that the constant C3 > 0 can

be chosen uniformly in {aij} ∈ U . Consequently we obtain

‖Am0
2 ∂�ty(t)‖ ≤ C3

τ
�+

m0
2

1

‖μ‖ + C3

∫ t

0

‖Am0
2 ∂�th(t− s)‖ds

≤
(

C3

τ
�+

m0
2

1

+ C3

)
(‖μ‖ + ‖h‖W �,1(0,T ;Hm0 (ω))), τ1 ≤ t ≤ τ2. (B.2)

Thus, in terms of (B.1), the proof of (1.6) is completed.
Next we prove (1.10). We see that Hm(Ω) ⊂ C2(Ω) from the Sobolev embedding theorem (e.g., [1,35]).

Similarly to (B.2), in terms of (B.1) we have

‖y({aij}, h, 0)‖C[0,T ];C2(Ω) ≤ C4‖y({aij}, h, 0)‖C[0,T ];Hm(Ω)

≤ C5

∫ t

0

‖Am
2 e−sAh(t− s)‖ds = C5

∫ t

0

‖e−sAAm
2 h(t− s)‖ds ≤ C6

∫ t

0

‖h(t− s)‖Hm(Ω)ds.

Thus the proof of (1.10) is completed.

Appendix C. Proof of Lemma 2.1

In Chae, Imanuvilov and Kim [9], Fursikov and Imanuvilov [15], the following lemma is proved. See also
Imanuvilov [19].

Lemma C.1. Let Ω̃ ⊂ R
n be a bounded domain whose boundary ∂Ω̃ is of class C2 and ω ⊂ Ω̃ be a subdomain

such that ω ⊂ Ω̃. Then there exists a function d ∈ C2(Ω̃) such that

d(x) > 0, x ∈ Ω̃, d|∂Ω̃ = 0, |∇d(x)| > 0, x ∈ Ω̃ \ ω1.

Now we proceed to the proof of Lemma 2.1. Let us enlarge the domain Ω to a domain Ω̃ which has the
following properties:

Ω ⊂ Ω̃ ∂Ω\Γ0 ⊂ ∂Ω̃ Int(Ω̃\Ω) 
= ∅.
Choose a subdomain ω such that ω ⊂ Int(Ω̃\Ω). Thus, by Lemma C.1, there exists a function d(x) in Ω̃

which satisfies d(x) > 0, x ∈ Ω̃, d|∂Ω̃ = 0 and |∇d(x)| > 0, x ∈ Ω̃\ω. Therefore d(x) > 0, x ∈ Ω and

|∇d(x)| > 0, x ∈ Ω. Finally, we have to verify
n∑

i,j=1

aij(x)∂id(x)νj(x) ≤ 0, x ∈ ∂Ω\Γ0. Since ∂Ω\Γ0 ⊂ ∂Ω̃, we

have d|∂Ω\Γ0 = 0 from d|∂Ω̃ = 0, which implies ∇d(x) = ∂νd(x)ν(x), x ∈ ∂Ω\Γ0, that is, ∇d is parallel to ν
on ∂Ω\Γ0. Therefore, by d > 0 in Ω, we have ∇d(x) = −|∇d(x)|ν(x), x ∈ ∂Ω\Γ0. By |∇d(x)| > 0 on Ω, we
obtain ν(x) = − ∇d(x)

|∇d(x)| , x ∈ ∂Ω\Γ0. Therefore by (1.4) we see

n∑
i,j=1

aij(x)∂id(x)νj(x) = −

n∑
i,j=1

aij(x)∂id(x)∂jd(x)

|∇d(x)| ≤ 0, x ∈ ∂Ω\Γ0.

Thus the proof of Lemma 2.1 is completed.
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