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CONTROLLED FUNCTIONAL DIFFERENTIAL EQUATIONS:
APPROXIMATE AND EXACT ASYMPTOTIC TRACKING

WITH PRESCRIBED TRANSIENT PERFORMANCE
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2
and Philip Townsend
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Abstract. A tracking problem is considered in the context of a class S of multi-input, multi-output,
nonlinear systems modelled by controlled functional differential equations. The class contains, as a
prototype, all finite-dimensional, linear, m-input, m-output, minimum-phase systems with sign-definite
“high-frequency gain”. The first control objective is tracking of reference signals r by the output y of
any system in S : given λ ≥ 0, construct a feedback strategy which ensures that, for every r (assumed
bounded with essentially bounded derivative) and every system of class S , the tracking error e = y− r
is such that, in the case λ > 0, lim supt→∞ ‖e(t)‖ < λ or, in the case λ = 0, limt→∞ ‖e(t)‖ = 0. The
second objective is guaranteed output transient performance: the error is required to evolve within a
prescribed performance funnel Fϕ (determined by a function ϕ). For suitably chosen functions α, ν
and θ, both objectives are achieved via a control structure of the form u(t) = −ν(k(t))θ(e(t)) with
k(t) = α(ϕ(t)‖e(t)‖), whilst maintaining boundedness of the control and gain functions u and k. In
the case λ = 0, the feedback strategy may be discontinuous: to accommodate this feature, a unifying
framework of differential inclusions is adopted in the analysis of the general case λ ≥ 0.
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1. Introduction

In precursors [6–8] to the present paper, an approximate tracking problem is addressed for various classes of
systems. Let S be some given system class and let R be a class of reference signals. By approximate tracking,
we mean attainment of the following: for any prescribed λ > 0, determine a continuous output feedback strategy
which ensures that, for every system (with output y) in S and every reference signal r ∈ R, (i) the tracking
error e = y− r is ultimately contained in the ball of radius λ centred at 0 (equivalently, lim supt→∞ ‖e(t)‖ < λ),
and (ii) the error e exhibits prescribed transient behaviour (that is, for some suitable prescribed function ϕ
with 0 < lim inft→∞ ϕ(t) <∞, we have ‖e(t)‖ < 1/ϕ(t) for all t > 0). The present paper encompasses not only
approximate tracking but also the problem of asymptotic tracking with prescribed transient behaviour: in the
latter case, an output feedback strategy (possibly discontinuous) is sought which ensures that, for every system
of class S, every reference signal r ∈ R and some suitable prescribed function ϕ, with ϕ(t) → ∞ as t → ∞,
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Figure 1. Performance funnel Fϕ.

we have ‖e(t)‖ < 1/ϕ(t) for all t > 0 (and so e(t) → 0 as t → ∞). Both cases (approximate and asymptotic
tracking) are analysed within a unified framework of functional differential inclusions.

The focus of our study will be nonlinear systems (akin to those considered in [6]), with control input t �→
u(t) ∈ Rm, modelled by functional differential equations of the form

ẏ(t) = f(d(t), (Ty)(t), u(t)), y|[−h,0] = y0 ∈ C([−h, 0],Rm), h ≥ 0, (1.1)

where f is continuous, T is a causal operator, d may be thought of as a continuous and bounded perturbation,
and h ≥ 0 quantifies the “memory” of the system. As in [6–8], the class R of reference signals is taken to be the
space W 1,∞(R+,R

m) of bounded locally absolutely continuous functions r : R+ → Rm with essentially bounded
derivative ṙ ∈ L∞(R+,R

m).
The paper is structured as follows. Section 2 formulates the control objectives and, in Section 3, a full

description of the system class S is provided. Section 4 details the feedback structure, the potentially discontin-
uous nature of which leads to an interpretation of the closed-loop system in the form of a functional differential
inclusion. An existence theory (which may be of independent interest) for functional differential inclusions
of sufficient generality to encompass the closed-loop system is developed in Section 5. The main results on
transient behaviour and asymptotic tracking for the closed-loop system are given in Section 6.

2. Control objectives and the performance funnel

The two control objectives are:
(i) tracking of any reference signal r ∈ R := W 1,∞(R+,R

m) by the output y, that is, for arbitrary λ ≥ 0, we
seek an output feedback strategy which ensures that, for every r ∈ R, every solution of the closed-loop
system is bounded and the tracking error e = y − r is such that either lim supt→∞ ‖e(t)‖ < λ if λ > 0
or limt→∞ ‖e(t)‖ = 0 if λ = 0;

(ii) prescribed transient behaviour of the tracking error.
Both objectives are captured in the concept of a performance funnel

Fϕ :=
{
(t, e) ∈ R+ × Rm

∣∣ ϕ(t) ‖e‖ < 1
}

associated with a function ϕ (the reciprocal of which determines the funnel boundary) in

Φλ :=
{
ϕ ∈ ACloc(R+,R)

∣∣ ϕ(0) = 0, ϕ(s) > 0 ∀ s > 0, lim inf
s→∞ ϕ(s) = 1/λ,

∃ c > 0 : ϕ̇(s) ≤ c[1 + ϕ(s)] for a.a. s > 0
}
,

with the convention that, if λ = 0, then 1/λ := ∞ (and so ϕ(t) → ∞ as t → ∞). Here, ACloc(R+,R) denotes
the space of locally absolutely continuous functions R+ → R.

If a feedback structure can be devised which ensures that, for every system of the underlying class and every
r ∈ R, the graph of the tracking error e = y−r is properly contained in Fϕ in the sense that supt∈R+

ϕ(t)‖e(t)‖ <
1 then the tracking objective (i) is attained, and (ii) transient behaviour is governed by the choice of ϕ:
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for example, if λ > 0 and ϕ is chosen as the function t �→ min{t/τ, 1}/λ, then the prescribed tracking accuracy
λ > 0 is achieved within the prescribed time τ > 0.

The intuition underpinning the feedback structure proposed below is an intrinsic high-gain property of the
system class which ensures that, if (t, e(t)) approaches the funnel boundary, then the control input attains values
sufficiently large to preclude boundary contact.

3. Class of systems

For m ∈ N and an interval I ⊂ R, C(I,Rm) denotes the space of continuous functions I → Rm. If I is an
interval of the form [−h, a) or [−h, a], 0 < a < ∞, and x ∈ C(I,Rm), then, for each σ ∈ J := I\[−h, 0), we
define the function xσ ∈ C([−h,∞),Rm) by

xσ(t) :=
{
x(t), t ∈ [−h, σ],
x(σ), t > σ.

For h, t ∈ R+, w ∈ C([−h, t],Rm), τ > t and δ > 0, define

C(w;h, t, τ, δ) :=
{
v ∈ C([−h, τ ],Rm)

∣∣ v|[−h,t] = w, ‖v(s) − w(t)‖ ≤ δ ∀ s ∈ [t, τ ]
}
,

that is, the space of all continuous extensions v of w ∈ C([−h, t],Rm) to the interval [−h, τ ] with the property
that ‖v(s) − w(t)‖ ≤ δ for all s ∈ [t, τ ].

We first define a class of operators Th, parameterized by h ≥ 0.

Definition 3.1 (operator class Th). An operator T is said to be of class Th if, and only if, the following hold:
(i) For some q ∈ N, T : C([−h,∞),Rm) → L∞

loc(R+,R
q).

(ii) T is a causal operator: for all x, y ∈ C([−h,∞),Rm) and all τ > 0

x(t) = y(t) ∀ t ∈ [−h, τ ] =⇒ (Tx)(t) = (Ty)(t) ∀ t ∈ [0, τ ].

(iii) For each t ≥ 0 and each w ∈ C([−h, t],Rm), there exist τ > t, δ > 0 and c0 > 0 such that

ess-sups∈[t,τ ]‖(Txτ )(s) − (Tyτ)(s)‖ ≤ c0 sups∈[t,τ ] ‖x(s) − y(s)‖ ∀ x, y ∈ C(w;h, t, τ, δ).

(iv) For every c1 > 0, there exists c2 > 0 such that, for all y ∈ C([−h,∞),Rm),

sup
t∈[−h,∞)

‖y(t)‖ ≤ c1 =⇒ ‖(Ty)(t)‖ ≤ c2 for a.a. t ≥ 0.

Remark 3.2. Property (iii) is a technical assumption of local Lipschitz type which is used in establishing
well-posedness of the closed-loop system (defined later in Sect. 4.1). We will have occasion to give meaning to
Tx, for a function x ∈ C(I,Rm) on a bounded interval I of the form [−h, a) or [−h, a], where 0 < a < ∞.
This we do by showing that T “localizes”, in a natural way, to an operator T̃ : C(I,Rm) → L∞

loc(J,R
q), where

J := I \ [−h, 0). In particular, and invoking causality, we may define T̃ x ∈ L∞
loc(J,R

q) by the property

T̃ x|[0,σ] = Txσ|[0,σ] ∀ σ ∈ J.

Henceforth, we will not distinguish notationally an operator T and its “localisation” T̃ : the correct inter-
pretation being clear from context. For example, with this convention in place, we may reinterpret the
lefthand side of the displayed inequality in property (iii) above as ess-sups∈[t,τ ]‖(Tx)(s) − (Ty)(s)‖, where
T = T̃ : C([−h, τ ], Rm) → L∞

loc([0, τ ],R
q) now represents a “localization” of the original causal operator

T : C([−h,∞),Rm) → L∞
loc(R+,R

q).
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Figure 2. System of class S.

We are now in a position to define the system class.

Definition 3.3 (system class S). The class S is comprised of m-input (u(t) ∈ Rm), m-output (y(t) ∈ Rm),
nonlinear systems (f, d, T ) of the form (1.1), satisfying the following assumptions.

(A1) The function f : Rp × Rq × Rm → Rm is continuous.
(A2) For each compact set K ⊂ Rp × Rq, the continuous function γK : R → R, given by

γK(s) := min
{
〈v, f(l, w, sv)〉| (l, w) ∈ K, ‖v‖ = 1

}
, (3.1)

is such that either (i) lim sups→∞ γK(s) = ∞, or (ii) lim sups→−∞ γK(s) = ∞.
(A3) d ∈ C(R+,R

p) is bounded.
(A4) T : C([−h,∞),Rm) → L∞

loc(R+,R
q) is of class Th.

3.1. Prototypical subclasses of S
3.1.1. Linear prototype

With reference to Figure 2, a system (1.1) of class S can be thought of as an interconnection of two subsystems.
The dynamical subsystem Λ1, which can be influenced directly by the control input u, is also driven by a
disturbance d and by the output w from the subsystem Λ2, formulated as a causal operator mapping the the
signal y to w (an internal quantity, unavailable for feedback purposes).

To illustrate this, consider the prototype class L of finite-dimensional, minimum-phase, m-input (u(t) ∈ Rm),
m-output (y(t) ∈ Rm) linear systems (A,B,C) with sign-definite high-frequency gain, in the sense that either
CB or −CB is positive definite (symmetry of CB is not assumed). The minimum-phase property is characterized
by

det
[
sI −A B
C 0

]
�= 0 for all s ∈ C+ := {s ∈ C| Re(s) ≥ 0}. (3.2)

Specifically,

L =
{
(A,B,C)| A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, m, n ∈ N, m ≤ n, CB sign definite, (3.2) holds

}
.

It is well known (see for example [4], Lem. 2.1.3) that, for each (A,B,C) ∈ L (and assuming m < n), there
exists a similarity transformation which takes the system into the form

ẏ(t) = A1y(t) +A2z(t) + CBu(t), y(0) = y0,
ż(t) = A3y(t) +A4z(t), z(0) = z0,

}
(3.3)

where, by the minimum-phase property, A4 is a Hurwitz matrix. Defining the function d (continuous and
bounded) and operator T (linear) by

d(t) := A2

(
exp(A4t)

)
z0, (Ty)(t) := A1y(t) +A2

∫ t

0

(
expA4(t− s)

)
A3y(s)ds , (3.4)
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we see that the original system (A,B,C) ∈ L can be recast in the form of the (linear) functional differential
equation

ẏ(t) = d(t) + (Ty)(t) + CB u(t), y(0) = y0 ∈ Rm,

which is of the form (1.1) with h = 0 and f : Rm × Rm × Rm → Rm, (l, w, v) �→ l + w + CB v. Clearly,
Assumption (A1) holds. Since A4 is Hurwitz, we see that (A3) and (A4) (with h = 0) are valid. It remains to
show that (A2) also holds. Recall that CB is sign definite and so either (i) CB is positive definite, which we
write symbolically as CB > 0, or (ii) −CB > 0. Let K ⊂ Rm × Rm be compact and define

cK := min{〈v, l + w〉 | (l, w) ∈ K, ‖v‖ = 1}.

Now, observe that

CB > 0 =⇒ min{〈v, CBv〉| ‖v‖ = 1} = 1
2‖(CB +BTCT )−1‖−1

−CB > 0 =⇒ min{〈v, CBv〉| ‖v‖ = 1} = − 1
2‖CB +BTCT ‖

Therefore,

(i) CB > 0, s ≥ 0 =⇒ γK(s) ≥ cK + 1
2s‖(CB +BTCT )−1‖−1 and so (A2)(i) holds,

(ii) − CB > 0, s ≤ 0 =⇒ γK(s) ≥ cK − 1
2s‖CB +BTCT ‖ and so (A2)(ii) holds.

3.1.2. Systems with input nonlinearity

To illustrate the generality afforded by Assumption (A2), consider a single-input, single-output (m = 1)
system (3.3) of class L with a nonlinearity g in the input channel

ẏ(t) = A1y(t) +A2z(t) + β g(u(t)), y(0) = y0,
ż(t) = A3y(t) +A4z(t), z(0) = z0,

}
(3.5)

where β := CB is now a non-zero real number. We assume only that g : R → R is a continuous unbounded
function with bounded even part, for example, g : v �→ (1 + v) cos v. Such a function can influence/reverse
the polarity of an input signal u(·) in a manner unpredictable by a controller. Defining d and T as in (3.4),
system (3.5) can be expressed as

ẏ(t) = d(t) + (Ty)(t) + βg(u(t)), y(0) = y0 ∈ R,

which again is of form (1.1). Assumptions (A1), (A3) and (A4) clearly hold. Define go and ge to be the odd
and even parts, respectively, of the function βg. To see that (A2) holds, let K ⊂ R × R be compact, define cK
as above, and observe that, since vgo(sv) = go(s) for all |v| = 1 and all s ∈ R,

γK(s) = min{v(l + w + ge(sv))| (l, w) ∈ K, |v| = 1} + go(s) ≥ cK − |ge(s)| + go(s) ∀ s. (3.6)

Since the function go is odd and unbounded, there must exist an unbounded monotone sequence (sn) (either
strictly increasing or strictly decreasing) such that go(sn) → ∞ as n → ∞ which, together with boundedness
of ge and (3.6), ensures γK(sn) → ∞ as n→ ∞.

3.1.3. Nonlinear systems

Now consider a further generalization of systems of form (3.5) to nonlinear systems of the form

ẏ(t) = f1(y(t), z(t)) + g(u(t)), y(0) = y0 ∈ R,
ż(t) = f2(y(t), z(t)), z(0) = z0 ∈ Rp,

}
(3.7)
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with f1 continuous, f2 locally Lipschitz, and (as above) g continuous and unbounded with bounded even part
(we have absorbed the parameter β �= 0 in g). Temporarily regarding y as an independent input to the second
subsystem in (3.7), denote the unique solution of the initial-value problem ż = f2(y, z), z(0) = z0, by z( · ; z0, y).
If we now assume that the second subsystem in (3.7) is input-to-state stable (ISS) (see [13]), then, for each
z0 ∈ Rp, we may define an operator C(R+,R) → C(R+,R × Rp) by

(Ty)(t) := (y(t), z(t; z0, y)) ∀ t ∈ R+.

This operator T is of class T0 (Assumption (A4) holds with h = 0, m = 1 and q = p+ 1). System (3.7) may be
expressed as the functional differential equation

ẏ(t) = f1((Ty)(t)) + g(u(t)), y(0) = y0,

which is of the form (1.1) with h = 0 and f : (l, w, v) �→ f1(w) + g(v). Evidently, Assumption (A1) holds,
Assumption (A3) is vacuous, and Assumption (A2) holds by the argument (mutatis mutandis) used in Sec-
tion 3.1.2.

3.1.4. Systems with delays and hysteresis

Finally, we remark that nonlinear delay elements are incorporated in the operator class Th, see for exam-
ple [12], whilst the class T0 encompasses a wide range of hysteresis operators, including many physically moti-
vated effects: as observed in [5], examples such as relay hysteresis, elastic-plastic hysteresis, backlash hysteresis,
Prandtl and Preisach operators (for background, see [2,10]) are of class T0.

4. Feedback control

We proceed to make precise the proposed output feedback structure. Let λ ≥ 0 and ϕ ∈ Φλ. Let ν : R → R

be any continuous function with the properties

lim sup
k→∞

ν(k) = +∞ and lim inf
k→∞

ν(k) = −∞ , (4.1)

for example, ν : k �→ k cos k. Let α : [0, 1) → R+ be a continuous unbounded injection, for example, α : s �→
s/(1 − s). Define

μ :=

⎧⎨
⎩

1
2 supt∈R+

ϕ(t)
, if ϕ is bounded,

0, otherwise.

If μ > 0, let satμ : Rm → B := {v ∈ Rm| ‖v‖ ≤ 1} be any continuous function with the property that
satμ(e) = ‖e‖−1e for all ‖e‖ > μ, in which case the control strategy takes the form

u(t) = −ν(k(t))satμ(y(t) − r(t)), k(t) = α(ϕ(t)‖y(t) − r(t)‖).

In the case μ = 0, the control strategy is given formally by

u(t) = −ν(k(t))‖y(t) − r(t)‖−1(y(t) − r(t)), k(t) = α(ϕ(t)‖y(t) − r(t)‖). (4.2)

We accommodate each case and the (potential) discontinuity in (4.2) by embedding the control in a set-valued
map θμ, defined as follows:

θμ(e) =

{
{e‖e‖−1}, if ‖e‖ > μ,

B, if ‖e‖ ≤ μ,
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and interpret both control strategies in the following unified, set-valued sense:

u(t) ∈ −ν(k(t))θμ(y(t) − r(t)), k(t) = α(ϕ(t)‖y(t) − r(t)‖). (4.3)

The role of the function ν is similar to that of a “Nussbaum” [11] function, commonly invoked in adaptive
control, see, for example, [4]. If, for a given linear system (A,B,C) of prototype class L, the polarity of the
sign-definite high-frequency gain CB is known a priori, then the term ν(k(t)) in (4.3) can be replaced by k(t)
if CB is positive definite or by −k(t) if −CB is positive definite.

Care must be exercised in making sense of the closed-loop initial-value problem given by (1.1) and (4.3).
The central issue is to establish that ϕ(t)‖y(t) − r(t)‖ ∈ dom(α) = [0, 1) for all t ∈ R+. This we proceed to
demonstrate.

4.1. Closed-loop system

Let λ ≥ 0, ϕ ∈ Φλ, r ∈ R and let D ⊂ R+ × Rm denote the set

{(t, ξ) ∈ R+ × Rm | ϕ(t)‖ξ − r(t)‖ < 1}.

Let (f, d, T ) ∈ S. The conjunction of (1.1) with (4.3) yields the following closed-loop initial-value problem

ẏ(t) ∈ F (t, y(t), (Ty)(t)), y|[−h,0] = y0 ∈ C([−h, 0],Rm), (4.4)

where the set-valued map (t, y, w) �→ F (t, y, w) ⊂ Rm, given by

F (t, y, w) :=
{
f(d(t), w, u)

∣∣ u ∈ −ν
(
α(ϕ(t)‖y − r(t)‖)

)
θμ(y − r(t))

}
, (4.5)

is upper semicontinuous on D × Rq with non-empty, convex, compact values. By a solution of (4.4) we mean
a function y ∈ C(I,Rm) on some interval I of the form [−h, ρ], 0 < ρ < ∞ or [−h, ω), 0 < ω ≤ ∞, such that
y|[−h,0] = y0, y|J is locally absolutely continuous, with (t, y(t)) ∈ D for all t ∈ J and ẏ(t) ∈ F (t, y(t), (Ty)(t))
for almost all t ∈ J , where J := I \ [−h, 0). A solution is said to be maximal if it has no proper right extension
that is also a solution. A solution defined on [−h,∞) is said to be global. We will demonstrate that the
control objectives are achieved by establishing that: (i) the initial-value problem (4.4) has a solution; (ii) every
solution can be extended to a maximal solution; (iii) every maximal solution is global. Facts (i) and (ii) are a
consequence (Cor. 5.2) of the existence theory (Thm. 5.1) developed in Section 5 below; fact (iii) is the essence
of the main result in Theorem 6.1. Before proceeding to establish these facts, some commentary on the case
λ = 0 is warranted.

4.1.1. Commentary on the asymptotic tracking problem

Assume that λ = 0, in which case we have μ = 0, and so the formal control structure (4.2) is potentially
discontinuous. However, this need not always be the case. For example, with

ν : k �→ k cos(ak) and α : s �→ s

1 − s
,

where a > 0, the feedback (4.2) is, in fact, continuous on the domain D: in particular, the control takes the
form

u(t) = ψ(t, y(t) − r(t)), (4.6)
with ψ ∈ C(D,Rm) given by

ψ(t, ξ) := − cos
(

aϕ(t)‖ξ‖
1 − ϕ(t)‖ξ‖

) (
ϕ(t)ξ

1 − ϕ(t)‖ξ‖

)
∀ (t, ξ) ∈ D, (4.7)

in which case the map F in (4.4) is singleton valued.
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Figure 3. The funnel and tracking error e.
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Figure 4. The reference signal r and output y.

Example. Consider a single-input, single-output system (3.7) of the nonlinear prototype class, with f1, f2 : R2 →
R and g : R → R given by

f1(y, z) = z sin y, f2(y, z) = −z|z|+ y, g(u) = u1/3. (4.8)

As reference signal r ∈ R, we take r = ζ1/2, where ζ1 is the first component of the (chaotic) solution of the
following Lorenz system of equations:

ζ̇1(t) = ζ2(t) − ζ1(t), ζ1(0) = 1,

ζ̇2(t) = c0ζ1(t) − c1ζ2(t) − ζ1(t)ζ3(t), ζ2(0) = 0,

ζ̇3(t) = ζ1(t)ζ2(t) − c2ζ3(t), ζ3(0) = 3,

⎫⎪⎬
⎪⎭ (4.9)

with parameter values c0 = 28/10, c1 = 1/10 and c2 = 8/30. It is well known that the unique global solution
of (4.9) is bounded with bounded derivative, see for example [15].

Adopting control parameters a = 1/4 and ϕ : t �→ 2t, Figures 3–5 depict the behaviour of the closed-loop
system with zero initial state.

There are, of course, practical issues relating to the synthesis of the control strategy (4.6)–(4.7). Whilst
later analysis will establish the fact that supt∈R+

ϕ(t)‖y(t) − r(t)‖ < 1, and so boundedness of the control
function u is assured, practical computation of u(t) for large t may encounter numerical ill-conditioning insofar
as it involves the product of “large” and “small” quantities (since ϕ(t) → ∞ and ‖y(t) − r(t)‖ → 0 as t→ ∞).
These practical issues are not addressed in this paper (the purpose of which is to highlight those performance
characteristics that are attainable in principle): however, we remark that the ill-conditioning associated with
the case μ = 0 may be circumvented (at the expense of some degradation in performance) on setting λ > 0 and
replacing unbounded ϕ by a bounded function ϕ ∈ Φλ with lim inf t∈R+ ϕ(t) = 1/λ, in which case, the guaranteed
performance is weakened to that of approximate tracking, as quantified by lim supt→∞ ‖y(t) − r(t)‖ < λ.
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Figure 5. The control u.

5. Existence theory

Here, we present an existence theory of sufficient generality to encompass (4.4). Let D be a domain in
R+ × Rm, that is, a non-empty, connected, relatively open subset of R+ × Rm. Let (t, y, w) �→ G(t, y, w) ⊂ Rm

be upper semicontinuous on G := D × Rq, with non-empty, convex and compact values. Let h ≥ 0 and
T : C([−h,∞),Rm) → L∞

loc(R+,R
q) be a causal operator of class Th. For t0 ≥ 0, consider the initial-value

problem

ẏ(t) ∈ G(t, y(t), (Ty)(t)), y|[−h,t0] = y0 ∈ C([−h, t0],Rm), (t0, y0(t0)) ∈ D. (5.1)

We emphasize that, for reasons which will become apparent in the proof of Theorem 5.1 below, the parameter
t0 ≥ 0 has been incorporated in (5.1): this necessitates the obvious generalization of the earlier concept of
a solution introduced in the context of (4.4) wherein t0 = 0. Specifically, by a solution of (5.1) we mean a
function y ∈ C(I,Rm) for some interval I of the form [−h, ρ], t0 < ρ < ∞ or [−h, ω), t0 < ω ≤ ∞, such that
y|[−h,t0] = y0, y|J is locally absolutely continuous, ẏ(t) ∈ G(t, y(t), (Ty)(t)) for almost all t ∈ J , and (t, y(t)) ∈ D
for all t ∈ J , where J := I \ [−h, t0). Again, a solution is said to be maximal if it has no proper right extension
that is also a solution.

Theorem 5.1. For each t0 ≥ 0 and y0 ∈ C([−h, t0],Rm) with (t0, y0(t0)) ∈ D,

(i) the initial-value problem (5.1) has a solution;
(ii) every solution can be extended to a maximal solution y : [−h, ω) → Rm;
(iii) if y : [−h, ω) → Rm is a maximal solution of (5.1) and ω < ∞, then, for every σ ∈ [t0, ω) and every

compact set K ⊂ D, there exists t ∈ [σ, ω) such that (t, y(t)) �∈ K.

A proof of this result can be found in the Appendix.

Corollary 5.2. Let (f, d, T ) ∈ S, λ ≥ 0 and ϕ ∈ Φλ. Then, for every reference signal r ∈ R and all initial data
y0 ∈ C([−h, 0],Rm), application of the feedback (4.3) to the system (1.1) yields the initial-value problem (4.4)–
(4.5) which has a solution and every solution can be extended to a maximal solution y : [−h, ω) → Rm, 0 < ω ≤
∞. Furthermore, if y : [−h, ω) → Rm is a maximal solution and there exists a compact set K ⊂ D such that
(t, y(t)) ∈ K for all t ∈ [σ, ω), then ω = ∞.

Proof. Defining the domain D := {(t, y) ∈ R+ × Rm | ϕ(t) ‖y − r(t)‖ < 1}, we identify the initial-value prob-
lem (4.4)–(4.5) as a particular case of (5.1) (with G = F and t0 = 0):

ẏ(t) ∈ F (t, y(t), (Ty)(t)), y|[−h,0] = y0 ∈ C([−h, 0],Rm), (0, y0(0)) ∈ D, (5.2)

where F (t, y, w) = {f(d(t), w, u) | u ∈ −ν(α(ϕ(t)‖y − r(t)‖))θμ(y − r(t))}.
An application of Theorem 5.1 completes the proof. �
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6. Main result

We now arrive at the main result, statement (ii) of which asserts that the output of the closed-loop system
evolves within the performance funnel and is bounded away from the funnel boundary.

Theorem 6.1. Let (f, d, T, h) ∈ S, λ ≥ 0 and ϕ ∈ Φλ. Then for every reference signal r ∈ R and all
initial data y0 ∈ C([−h, 0],Rm), application of the feedback (4.3) to the system (1.1) yields the closed-loop
initial-value problem (4.4)–(4.5) which has a solution and each solution can be extended to a maximal solution
y : [−h, ω) → Rm. Every maximal solution y : [−h, ω) → Rm has the properties:

(i) ω = ∞;
(ii) supt∈R+

ϕ(t)‖y(t) − r(t)‖ < 1;
(iii) the function k : t �→ α(ϕ(t)‖y(t) − r(t)‖) is bounded.

Remark 6.2. The conjunction of assertions (i) and (ii) ensures that both control objectives are attained.
Assertion (iii) implies boundedness of the control. In the case where ϕ(t) → ∞ as t → ∞, assertion (ii) implies
asymptotic tracking: ‖y(t) − r(t)‖ → 0 as t→ ∞.

Proof. Let r ∈ R and y0 ∈ C([−h, 0],Rm). By Corollary 5.2, the closed-loop initial-value problem (4.4)–(4.5)
has a solution and every solution can be maximally extended. Let y : [−h, ω) → Rm be a maximal solution of
(4.4). Defining e(t) = y(t) − r(t) for all t ∈ [0, ω), we have

ė(t) + ṙ(t) ∈ F (t, e(t) + r(t), (Ty)(t)) for a.a. t ∈ [0, ω). (6.1)

Since (t, y(t)) ∈ D for all t ∈ [0, ω), it follows that ϕ(t)‖e(t)‖ < 1 for all t ∈ [0, ω). By properties of ϕ ∈ Φλ,
we may infer boundedness of the function e. Furthermore, since r ∈ R is bounded, we may conclude that y
is bounded. Invoking Assumptions (A3) and (A4) (in particular, property (iv) of the operator class Th), we
deduce the existence of a non-empty, compact set K ⊂ Rp × Rq such that (d(t), (Ty)(t)) ∈ K for almost all
t ∈ [0, ω). With this set, we associate the function γK, defined as in (3.1). Writing

Σ := {t ∈ [0, ω) | ‖e(t)‖ > μ}, and k(t) := α(ϕ(t)‖e(t)‖) ∀ t ∈ [0, ω),

we have

t ∈ Σ =⇒ 〈e(t), f(d(t), (Ty)(t),−ν(k(t))‖e(t)‖−1e(t))〉
≤ −‖e(t)‖ min{〈u, f(v, w, ν(k(t))u)〉| (v, w) ∈ K, ‖u‖ = 1}
= −‖e(t)‖γK(ν(k(t))). (6.2)

Noting that

t ∈ Σ =⇒ F (t, e(t) + r(t), (Ty)(t)) =
{
f(d(t), (Ty)(t),−ν(k(t))‖e(t)‖−1e(t))

}
,

we may infer from (6.2) that

〈e(t), v〉 ≤ −γK(ν(k(t)))‖e(t)‖ ∀ v ∈ F (t, e(t) + r(t), (Ty)(t)), ∀ t ∈ Σ.

Therefore, by (6.1) and essential boundedness of ṙ, there exists c0 > 0 such that

〈e(t), ė(t)〉 ≤
[
c0 − γK(ν(k(t)))

]
‖e(t)‖ for a.a. t ∈ Σ. (6.3)

By Assumption A2, either (i) lim sups→+∞ γK(s) = ∞, or (ii) lim sups→−∞ γK(s) = ∞. Therefore, there
exists an unbounded sequence (sn) ⊂ R, which is either strictly increasing (in case (i)) or strictly decreasing
(in case (ii)), such that the sequence (γK(sn)) is unbounded and strictly increasing, with γK(sn) > 0 for
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all n ∈ N. By properties (4.1) and continuity of ν, for every a, b ∈ R the set {κ > a| ν(κ) = b} is non-empty.
Let k1 ∈ {κ > α( 1

2 )| ν(κ) = s1} be arbitrary and define the strictly-increasing unbounded sequence (kn) in
(α( 1

2 ),∞) by the recursion kn+1 := inf{κ > kn| ν(κ) = sn+1}, and so γK(ν(kn)) = γK(sn) → ∞ as n→ ∞.
We proceed to prove boundedness of k. Seeking a contradiction, suppose k is unbounded (in which case,

im(k) = im(α) = [α(0),∞)). For each n ∈ N, define

τn := inf{t ∈ [0, ω)| k(t) = kn+1} and σn := sup{t ∈ [0, τn]| γK(ν(k(t))) = γK(ν(kn))}.

We briefly digress to assemble some useful facts.

Proposition 6.3. (a) σn < τn ∀ n ∈ N. (b) k(σn) < k(τn) ∀ n ∈ N. (c) k(t) ≥ kn ∀ t ∈ [σn, τn] ∀ n ∈ N.
(d) γK(ν(k(t))) ≥ γK(ν(kn)) > 0 ∀ t ∈ [σn, τn] ∀ n ∈ N. (e) [σn, τn] ⊂ Σ ∀ n ∈ N.

Proof. (a) Suppose, for contradiction, that σn = τn for some n ∈ N. Then,

γK(sn+1) = γK(ν(kn+1)) = γK(ν(k(τn))) = γK(ν(k(σn))) = γK(ν(kn)) = γK(sn),

which contradicts strict monotonicity of the sequence (γK(sn)).
(b) Suppose, for contradiction, that k(σn) ≥ k(τn) = kn+1 for some n ∈ N. Then, since k(0) = α(0) <

α(1/2) < kn+1, there exists s ≤ σn < τn such that k(s) = kn+1, whence the contradiction: τn = inf{t ∈
[0, ω)| k(t) = kn+1} ≤ s < τn.

(c) Suppose, for contradiction, that, for some n ∈ N and t ∈ [σn, τn], k(t) < kn. Then, since k(τn) = kn+1,
there exists s ∈ (σn, τn] such that k(s) = kn. Invoking the definition of σn, we arrive at a contradiction:
σn < s ≤ σn.

(d) Suppose, for contradiction, that, for some n ∈ N and t ∈ [σn, τn], γK(ν(k(t))) < γK(ν(kn)). Since

γK(ν(kn)) = γK(sn) < γK(sn+1) = γK(ν(kn+1)) = γK(ν(k(τn))),

it follows that, for some s ∈ (σn, τn], γK(ν(k(s))) = γK(ν(kn)), which contradicts the definition of σn.
(e) Suppose, for contradiction, that, for some n ∈ N, there exists t ∈ [σn, τn] such that t �∈ Σ, then ‖e(t)‖ ≤ μ.

Note that α(0) < α(1/2) and, if μ > 0, then α(μϕ(t)) ≤ α(1/2). Therefore, we arrive at a contradiction.

α(1/2) < kn ≤ k(t) = α(ϕ(t)‖e(t)‖) ≤ α(1/2). �

We now return to the proof of Theorem 6.1. From assertions (c) and (d) of Proposition 6.3, we may infer
that

1
2
< α−1(kn) ≤ α−1(k(t)) = ϕ(t)‖e(t)‖ < 1 ∀ t ∈ [σn, τn] ∀ n ∈ N, (6.4)

where α−1 : [α(0),∞) → [0, 1) is the inverse of the bijection α : [0, 1) → im(α), and

− 2ϕ2(t)‖e(t)‖γK(ν(k(t))) ≤ −ϕ(t)γK(ν(k(t))) ∀ t ∈ [σn, τn] ∀ n ∈ N. (6.5)

By properties of ϕ ∈ Φλ, there exists c1 > 0 such that ϕ̇(t) ≤ c1[1 + ϕ(t)] for almost all t which, together with
(6.3), yields, for almost all t ∈ Σ,

d
dt

[
ϕ(t)‖e(t)‖

]2 = 2ϕ(t)ϕ̇(t) ‖e(t)‖2 + 2ϕ2(t) 〈e(t), ė(t)〉

≤ 2c1 ϕ(t)[1 + ϕ(t)]‖e(t)‖2 + 2ϕ2(t)‖e(t)‖
(
c0 − γK(ν(k(t)))

)
.

Invoking (6.4), (6.5) and boundedness of e, we may conclude the existence of c2 > 0 such that

d
dt

[
ϕ(t)‖e(t)‖

]2 ≤ ϕ(t)
[
c2 − γK(ν(k(t)))

]
for a.a. t ∈ [σn, τn], ∀ n ∈ N. (6.6)
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Fix n ∈ N sufficiently large so that c2−γK(ν(kn)) < 0. Recalling that γK(ν(k(t))) ≥ γK(ν(kn)) for all t ∈ [σn, τn],
we have

d
dt

[ϕ(t)‖e(t)‖]2 < 0 for a.a. t ∈ [σn, τn]

and so ϕ(τn)‖e(τn)‖ < ϕ(σn)‖e(σn)‖. Therefore,

k(τn) = α
(
ϕ(τn)‖e(τn)‖

)
< α

(
ϕ(σn)‖e(σn)‖

)
= k(σn),

which contradicts assertion (b) of Proposition 6.3. This proves boundedness of k (and so ν◦k : t �→ ν(α(ϕ(t)‖y(t)−
r(t)‖)) is also bounded). By boundedness of t �→ k(t) = α(ϕ(t)‖e(t)‖), it follows that supt∈[0,ω) ϕ(t)‖y(t) −
r(t)‖ < 1, equivalently, there exists ε ∈ (0, 1) such that ϕ(t)‖y(t) − r(t)‖ ≤ 1 − ε for all t ∈ [0, ω).

Finally, we show that ω = ∞. By boundedness of y, there exists c3 > 0 such that ‖y(t)‖ ≤ c3 for all t ∈ [0, ω).
Suppose ω <∞. Then

K̃ := {(t, v) ∈ R+ × Rm| ϕ(t)‖v − r(t)‖ ≤ 1 − ε, ‖v‖ ≤ c3, t ∈ [0, ω]}

is a compact subset of D with the property (t, y(t)) ∈ K̃ for all t ∈ [0, ω), which contradicts assertion (iii) of
Theorem 5.1. Therefore, ω = ∞. This completes the proof. �
Remark 6.4. To paraphrase Wonham [17], p. 210, the internal model principle states that every “good”
regulator must incorporate a model of the outside world (in the sense that the feedback loop incorporates a
suitably reduplicated model of the dynamic structure of the exogenous signals which the closed-loop system
is required to track). In the context of linear systems with linear regulators (see [16,17]), “good” means
“structurally stable”; in a more general context of smooth nonlinear systems (see [14]), “good” amounts to a
“signal detection” property. In effect, “good” implies some robustness property of the closed loop. The feedback
structure proposed in the present paper ensures tracking of any signal of class W 1,∞(R+,R

m), yet it does not
contain a model capable of replicating this class of signals. For consistency with the internal model principle,
one must therefore conclude that the closed-loop system of the present paper lacks certain robustness properties.
This perceived lack of robustness may stem from the potential singularity introduced via the injection α in the
closed loop or from the unbounded nature of the funnel function ϕ. It is not unreasonable to expect that the
adoption of a bounded function ϕ (with attendant reduction in performance from asymptotic to approximate
tracking) might induce some robustness in the closed loop. However, in the absence of a rigorous robustness
analysis, the results of the paper are mainly of a theoretical nature, serving to illustrate those performance
characteristics that are attainable, in principle, under weak assumptions on the plant data.

A. Appendix: proof of Theorem 5.1

Let X be a normed vector space. The open ball of radius ε > 0 centred at x ∈ X is denoted by Bε(x) (the
ambient space X being clear from context), Bε(x) denotes the closure of Bε(x): if x = 0, then, for simplicity,
we write Bε in place of Bε(0).

We record the following properties of G:

(a) graph(G) := {(z, ζ)| ζ ∈ G(z), z ∈ G} is closed;

(b) if K ⊂ G is compact, then G(K) := ∪z∈KG(z) is compact;

(c) for each ε > 0, there exists a locally Lipschitz function g : G → Rm

such that graph(g) ⊂ graph(G) + Bε .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A.1)

For (a) see [1], Proposition 2, p. 41, for (b) see [1], Proposition 3, p. 42, for (c) see [1], Theorem 1, p. 84.
To facilitate the proof of the general result in Theorem 5.1, we first establish a variant in the restricted

context wherein G is a singleton-valued map G : (t, y, w) �→ {g(t, y, w)} and g : G → Rm is locally Lipschitz.
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Lemma A.1. Let g : G → Rm be a locally Lipschitz function. For t0 ≥ 0 and y0 ∈ C([−h, t0],Rm), the
initial-value problem

ẏ(t) = g(t, y(t), (Ty)(t)), y|[−h,t0] = y0 ∈ C([−h, t0],Rm), (t0, y0(t0)) ∈ D, (A.2)

has a unique maximal solution, y : [−h, ω) → Rm. Furthermore, if ω <∞, then, for every σ ∈ [t0, ω) and every
compact set K ⊂ D, there exists t ∈ [σ, ω) such that (t, y(t)) �∈ K.

Proof. Step 1: Existence of a unique solution on a small interval.
By property (iii) of T ∈ Th, there exist δ > 0, c0 > 0 and τ > t0 such that

‖(Ty)(t) − (Tz)(t)‖ ≤ c0 max
s∈[t0,τ ]

‖y(s) − z(s)‖ for a.a. t ∈ [t0, τ ] and all y, z ∈ C(y0;h, t0, τ, δ). (A.3)

Without loss of generality, we may assume that δ ∈ (0, 1) and τ − t0 > 0 are sufficiently small so that [t0, τ ] ×
Bδ(y0(t0)) ⊂ D. For each ρ ∈ (t0, τ ], define Cρ := C(y0, h, t0, ρ, δ) which, equipped with the metric

(y, z) �→ βρ(y, z) := sup
t∈[−h,ρ]

‖y(t) − z(t)‖,

is a complete metric space. Observe that, if y ∈ Cρ, then (t, y(t)) ∈ D for all t ∈ [t0, ρ]. For each ρ ∈ (t0, τ ],
define the operator Zρ on Cρ by

(Zρy)(t) :=

{
y0(t), t ∈ [−h, t0],
y0(t0) +

∫ t

t0
g(s, y(s), (Ty)(s))ds, t ∈ (t0, ρ).

We proceed to show that Zρ is a contraction. Define c1 := maxs∈[−h,t0] ‖y0(s)‖+ δ. By property (iv) of T , there
exists c2 > 0 such that

sup
t∈[−h,τ ]

‖y(t)‖ < c1 =⇒ ‖(Ty)(t)‖ < c2 for a.a. t ∈ [t0, τ ].

By the local Lipschitz property of g, there exists a constant c3 > 0 such that, for all t ∈ [t0, τ ],

‖g(t, y, w) − g(t, z, x)‖ ≤ c3

[
‖y − z‖ + ‖w − x‖

]
∀ y, z ∈ Bc1 , ∀ w, x ∈ Bc2 .

Write
g∗ := max{‖g(t, y, w)‖ | (t, y, w) ∈ [t0, τ ] × Bδ(y0(t0)) × Bc2}.

Fix ρ∗ ∈ (t0, τ ] sufficiently close to t0 so that

(ρ∗ − t0)(g∗ + (c0 + 1)c3) < δ.

Let ρ ∈ (t0, ρ∗] and y ∈ Cρ. By definition, (Zρy)|[−h,t0] = y0 and

‖(Zρy)(t) − y0(t0)‖ =
∥∥∥∥

∫ t

t0

g(s, y(s), (Ty)(s))ds
∥∥∥∥

≤
∫ ρ

t0

‖g(s, y(s), (Ty)(s))‖ds ≤ (ρ− t0)g∗ < δ ∀ t ∈ [t0, ρ].
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Therefore (Zρy)(·) ∈ Cρ. Furthermore,

βρ(Zρy, Zρz) = sup
t∈[t0,ρ]

∥∥∥∥
∫ t

t0

[
g(s, y(s), (Ty)(s)) − g(s, z(s), (Tz)(s))

]
ds

∥∥∥∥
≤

∫ ρ

t0

‖g(s, y(s), (Ty)(s))− g(s, z(s), (Tz)(s))‖ds

≤ (ρ− t0)c3
[
ess-sup
s∈[t0,ρ]

‖(Ty)(s) − (Tz)(s)‖ + βρ(y, z)
]

≤ (c0 + 1)(ρ− t0)c3 βρ(y, z) ∀ y, z ∈ Cρ,

wherein the last inequality follows by (A.3). Since (c0 +1)(ρ− t0)c3 < δ < 1, we may infer that Zρ : Cρ → Cρ is
a contraction. By the contraction mapping theorem, Zρ has a unique fixed point. Thus we have shown that, for
each ρ ∈ (t0, ρ∗], the initial-value problem (A.2) has a unique solution y ∈ Cρ. We stress that the uniqueness
property of y holds only in relation to solutions in the restricted class Cρ: there may exist another solution
on the interval [−h, ρ] which is not contained in the space Cρ. However, the following argument establishes
uniqueness of the solution on a sufficiently small interval. Let y∗ (not necessarily in Cρ∗) be a solution on
[−h, ρ∗]. Define

Δ := {t ∈ [t0, ρ∗] | ‖y∗(t) − y0(t0)‖ = δ}, ρ :=
{

inf Δ, Δ �= ∅,
ρ∗, Δ = ∅.

Clearly ρ > t0 and y := y∗|[−h,ρ] is in Cρ. Therefore, y is the unique solution of (A.2) on the interval [−h, ρ].
Step 2: Extended uniqueness: any two solutions must coincide on the intersection of their domains.

Let y1 : I1 → Rm and y2 : I2 → Rm be solutions of (A.2) and, without loss of generality, assume I2 ⊂ I1.
For contradiction, suppose that y1|I2 �= y2. Let t∗ := inf{t ∈ I2 | y1(t) �= y2(t)}. By the result in Step 1, the
solutions y1 and y2 must coincide on some interval [−h, ρ], with ρ > t0. Therefore, t∗ > t0. An application of
the result of Step 1 in the context of an initial-value problem of the form (A.2), with t∗ replacing t0 and initial
function y1|[−h,t∗] ∈ C([−h, t∗],Rm) replacing y0, yields the existence of a unique solution y ∈ C([−h, ρ],Rm)
for some ρ > t∗. It follows that y1(t) = y2(t) = y(t) for all t ∈ [−h, ρ], contradicting the definition of t∗.

Step 3: Existence of a unique maximal solution.
Let P be the set of all ρ > t0 such that there exists a solution yρ of (A.2) on the interval [−h, ρ]. By Step 1,

we know that P �= ∅. Let ω := supP and define y : [−h, ω) → Rm by the property

y|[−h,ρ] = yρ ∀ ρ ∈ P .

The function y is well-defined since, by Step 2, for all ρ1, ρ2 ∈ P , we have yρ2 = yρ1 |[−h,ρ2] whenever ρ2 ≤ ρ1.
Clearly y is a maximal solution and uniqueness follows by Step 2.

Step 4: Assume that y : [−h, ω) → Rm is a maximal solution with ω < ∞. Seeking a contradiction, suppose
there exist σ ∈ [t0, ω) and a compact set K ⊂ D such that (t, y(t)) ∈ K for all t ∈ [σ, ω). Then y is bounded and,
by property (iv) of T ∈ Th, Ty is essentially bounded. Therefore, the function t �→ (t, y(t), (Ty)(t)) is essentially
bounded and so, by continuity of g, it follows that ẏ is essentially bounded on the interval [t0, ω). Therefore
y is uniformly continuous on [−h, ω) and so extends to y∗ ∈ C([−h, ω],Rm). By compactness of K, we have
(ω, y∗(ω)) ∈ K ⊂ D. An application of the result of Step 1 in the context of an initial-value problem of the
form (A.2), with ω replacing t0 and y∗ replacing y0, yields the existence of a unique solution ye ∈ C([−h, ρ],Rm)
for some ρ > ω, with ye|[−h,ω) = y. This contradicts maximality of y. �

We are now in a position to prove the existence of a solution to the problem (5.1).
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Proof of Theorem 5.1

Proof. (i) Let (εn) ⊂ (0, 1) be a monotonically decreasing sequence with εn → 0 as n→ ∞. By property (A.1c),
for each n ∈ N, there exists a locally Lipschitz function gn : G → Rm with

graph(gn) ⊂ graph(G) + Bεn . (A.4)

By Lemma A.1, for each n ∈ N, the initial-value problem

ẏ(t) = gn(t, y(t), (Ty)(t)), y|[−h,t0] = y0 ∈ C([−h, t0],Rm), (t0, y0(t0)) ∈ D,

has a unique maximal solution which we denote by yn : [−h, ωn) → Rm.
Recalling that D is a relatively open subset of R+×Rm and invoking property (iii) of T ∈ Th, we may choose

δ > 0 sufficiently small and ω∗ > t0 sufficiently close to t0 so that

[t0, ω∗] × Bδ(y0(t0)) =: K0 ⊂ D,

and there exists c0 > 0 such that

ess-sup
t∈[t0,ω∗]

‖(Ty)(t) − (Tz)(t)‖ ≤ c0 max
t∈[t0,ω∗]

‖y(t) − z(t)‖ ∀ y, z ∈ C(y0;h, t0, ω∗, δ). (A.5)

For each n ∈ N, define

ω∗
n := min{ω∗, ωn}, Δn := {t ∈ [t0, ω∗

n)| ‖yn(t) − y0(t0)‖ = δ}, ρn :=
{

inf Δn, if Δn �= ∅,
ω∗

n, if Δn = ∅.

We claim that ρn < ωn for all n ∈ N. Suppose otherwise, then there exists n ∈ N such that ρn = ωn. It follows
that Δn = ∅ and so ωn = ω∗

n ≤ ω∗. Therefore, (t, yn(t)) ∈ K0 ⊂ D for all t ∈ [t0, ωn), contradicting the final
assertion of Lemma A.1. Therefore, ρn < ωn for all n ∈ N. Furthermore, for each n ∈ N, yn(t) ∈ Bδ(y0(t0)) for
all t ∈ [t0, ρn] and so

‖yn(t)‖ ≤ c1 := max
s∈[−h,t0]

‖y0(s)‖ + δ for all t ∈ [−h, ρn] and all n ∈ N.

By property (iv) of T ∈ Th, there exists c2 > 0 such that

‖(Tyn)(t)‖ ≤ c2 for a.a. t ∈ [t0, ρn] and all n ∈ N.

Write K1 := K0 × Bc2 and observe

(t, yn(t), (Tyn)(t)) ∈ K1 for a.a. t ∈ [t0, ρn] and all n ∈ N.

By property (A.1b) of G, the set K2 := G(K1) is compact. Let c3 := 1 + maxv∈K2 ‖v‖. Then, in view of (A.4),

‖gn(t, y, w)‖ < c3 for all (t, y, w) ∈ K1 and all n ∈ N. (A.6)

Therefore,

‖yn(ρn) − y0(t0)‖ ≤
∫ ρn

t0

‖ẏn(t)‖dt =
∫ ρn

t0

‖gn(t, yn(t), (Tyn)(t))‖dt

< c3|ρn − t0| ∀ n ∈ N. (A.7)
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Next, define ρ := infn∈N ρn ≥ t0. Seeking a contradiction, suppose ρ = t0. Fix n ∈ N sufficiently large so that
c3|ρn − t0| < δ and ρn < ω∗. Recalling that ρn < ωn, we have ρn < min{ω∗, ωn} = ω∗

n and so Δn �= ∅ and we
arrive at a contradiction:

δ = ‖yn(ρn) − y0(t0)‖ < c3|ρn − t0| < δ.

Therefore ρ ∈ (t0, ω∗]. For each n ∈ N, define

zn := yn|[t0,ρ] and wn := (Tyn)|[t0,ρ].

For all t ∈ [t0, ρ], (zn(t)) ⊂ Bδ(y0(t0)) and by (A.6),

‖żn(t)‖ < c3 for a.a. t ∈ [t0, ρ] and all n ∈ N. (A.8)

Therefore, the sequence (zn) ⊂ C([t0, ρ],Rm) is uniformly bounded and equicontinuous. By the Arzelà-Ascoli
theorem, and extracting a subsequence if necessary, we may assume that (zn) converges uniformly to z ∈
C([t0, ρ],Rm).

To complete the proof of assertion (i), we adopt an argument akin to that used in the proof of [3], Theo-
rem 3.1.7 and [9], Theorem 2D.5.

By weak∗-compactness of the unit ball in L∞([t0, ρ],Rm) (Alaoglu’s theorem), together with (A.8), the
sequence (żn) ⊂ L∞([t0, ρ],Rm) ⊂ L1([t0, ρ],Rm) has a subsequence (which we do not relabel) with weak∗-limit
v ∈ L∞([t0, ρ],Rm), that is,

lim
n→∞

∫ ρ

t0

〈p(t), żn(t)〉dt =
∫ ρ

t0

〈p(t), v(t)〉dt ∀ p ∈ L1([t0, ρ],Rm) (A.9)

and so, a fortiori, the sequence (żn) converges weakly in L1([t0, ρ],Rm) to v. Let {e1, ..., em} be a basis for Rm.
For k = 1, ...,m and t ∈ [t0, ρ], define pk,t ∈ L1([t0, ρ],Rm) by

pk,t(s) :=
{
ek, s ∈ [t0, t]
0, otherwise.

Setting p = pk,t (k = 1, ...,m and t ∈ [t0, ρ]) in (A.9) and integrating, we may now conclude that

z(t) = lim
n→∞ zn(t) = y0(t0) +

∫ t

t0

v(s)ds ∀ t ∈ [t0, ρ].

Therefore, z ∈ AC([t0, ρ],Rm) (the space of absolutely continuous functions [t0, ρ] → Rm) and ż(t) = v(t) for
almost all t ∈ [t0, ρ].

Let y ∈ C([−h, ρ],Rm) denote the concatenation of y0 and z, and write w := (Ty)|[t0,ρ]. Therefore, y|[−h,t0] =
y0, y|[t0,ρ] = z ∈ AC([t0, ρ],Rm) and, to conclude that y is a solution of the initial-value problem (5.1), it suffices
to show that ż(t) ∈ G(t, z(t), w(t)) for almost all t ∈ [t0, ρ].

By (A.5), we have

‖wn(t) − w(t)‖ ≤ c0 max
s∈[t0,ρ]

‖zn(s) − z(s)‖ for a.a. t ∈ [t0, ρ] and all n ∈ N. (A.10)

Therefore, for almost all t ∈ [t0, ρ], wn(t) → w(t) as n→ ∞. Moreover,
∫ ρ

t0

‖wn(t) − w(t)‖dt ≤ c0|ρ− t0| max
s∈[t0,ρ]

‖zn(s) − z(s)‖ → 0 as n→ ∞.

Therefore, (wn) converges (strongly) in L1([t0, ρ],Rm) to w.



CONTROLLED FUNCTIONAL DIFFERENTIAL EQUATIONS 761

Define the function σ : K1 × Rm → R by

σ(t, η, ξ, q) := max{〈q, ζ〉| ζ ∈ G(t, η, ξ)}.

Observe that, for each (t, η, ξ) ∈ K1, q �→ σ(t, η, ξ, q) is the support function for the compact and convex
set G(t, η, ξ) (and so is globally Lipschitz). Therefore, to establish that ż(t) ∈ G(t, z(t), w(t)) for almost all
t ∈ [t0, ρ], it suffices to show that

〈q, ż(t)〉 ≤ σ(t, z(t), w(t), q) for a.a. t ∈ [t0, ρ] and all q ∈ Rm. (A.11)

By continuity of the maps q �→ 〈q, ζ〉 and q �→ σ(t, η, ξ, q) for all ζ ∈ Rm and all (t, η, ξ) ∈ K1, (A.11) holds if,
any only if,

〈q, ż(t)〉 ≤ σ(t, z(t), w(t), q) for a.a. t ∈ [t0, ρ] and all q ∈ Qm, (A.12)
where Qm ⊂ Rm is the set of vectors in Rm with rational coordinates. We proceed to establish (A.12). First,
we show that, for each q ∈ Rm, the map (t, η, ξ) �→ σ(t, η, ξ, q) is upper semicontinuous on G. Let q ∈ Rm and
(t, η, ξ) ∈ K1 be arbitrary and define

σ∗ := lim sup
(t′,η′,ξ′)→(t,η,ξ)

σ(t′, η′, ξ′, q).

Let
(
(tk, ηk, ξk)

)
⊂ K1 be a sequence converging to (t, η, ξ) such that σ(tk, ηk, ξk, q) → σ∗ as k → ∞. For each

k ∈ N, by compactness of G(tk, ηk, ξk) there exists ζk ∈ G(tk, ηk, ξk) such that 〈q, ζk〉 = σ(tk, ηk, ξk, q). The
resulting sequence (ζk) is contained in the compact set K2 = G(K1) and so has a subsequence converging to
ζ ∈ K2. By property (A.1a), the graph of G is closed and so we may infer that ζ ∈ G(t, η, ξ). Therefore,

lim sup
(t′,η′,ξ′)→(t,η,ξ)

σ(t′, η′, ξ′, q) = lim
k→∞

σ(tk, ηk, ξk, q) = lim
k→∞

〈q, ζk〉 = 〈q, ζ〉 ≤ σ(t, η, ξ, q),

whence upper semicontinuity of σ(·, ·, ·, q).
For p ∈ L∞([t0, ρ],Rm),

|σ(t, zn(t), wn(t), p(t))| ≤ max
v∈K2

‖v‖‖p(t)‖ ≤ c3‖p(t)‖ for a.a. t ∈ [t0, ρ] and all n ∈ N.

Furthermore, in view of (A.4),

〈p(t), żn(t)〉 = 〈p(t), gn(t, zn(t), wn(t))〉
≤ σ(t, zn(t), wn(t), p(t)) + εn‖p(t)‖ for a.a. t ∈ [t0, ρ] and all n ∈ N,

and so ∫ ρ

t0

[
〈p(t), żn(t)〉 − εn‖p(t)‖

]
dt ≤

∫ ρ

t0

σ(t, zn(t), wn(t), p(t)) dt ∀ n ∈ N.

Taking the limit superior as n→ ∞, invoking Fatou’s lemma and upper semicontinuity of σ(·, ·, ·, q), we have∫ ρ

t0

〈p(t), ż(t)〉dt ≤
∫ ρ

t0

σ(t, z(t), w(t), p(t)) dt. (A.13)

Let q ∈ Qm and let t ∈ [t0, ρ) be a Lebesgue point for the integrable functions ż and t �→ σ(t, z(t), w(t), q). For
τ > 0, define p ∈ L∞([t0, ρ],Rm) by

p(s) :=
{
q/τ, s ∈ [t, t+ τ ] ∩ [t0, ρ],
0, otherwise.



762 E.P. RYAN ET AL.

By (A.13), we have
1
τ

∫ t+τ

t

[
σ(s, z(s), w(s), q) − 〈q, ż(s)〉

]
ds ≥ 0 ∀ τ > 0.

Passage to the limit as τ → 0 yields 〈q, ż(t)〉 ≤ σ(t, z(t), w(t), q), which is valid for all t ∈ [t0, ρ] \ N (q), where
N (q) is a set of measure zero which may depend on q ∈ Qm. Since Qm is countable, ∪q∈QmN (q) has measure
zero and so we may conclude that (A.12) (and hence (A.11)) holds. We have now shown that y : [−h, ρ] → Rm

is a solution of (5.1), whence assertion (i).
(ii) Let y ∈ C(Iy ,Rm) be a solution of (5.1). Define

A := {(I, z) | Iy ⊂ I, z ∈ C(I,Rm) is a solution of (5.1) with z|Iy = y
}
.

On this non-empty set define a partial order � by

(I1, z1) � (I2, z2) ⇐⇒ sup I1 ≤ sup I2 and z2|I1 = z1.

We proceed to show that A has a maximal element, that is, an element (I∗, z∗) ∈ A such that, for all (I, z) ∈ A,
(I∗, z∗) � (I, z) implies (I, z) = (I∗, z∗), in which case z∗ ∈ C(I∗,Rm) is a solution of (5.1) and is a maximal
extension of the solution y ∈ C(Iy ,Rm). Let O be a totally ordered subset of A. Let ω := sup{sup I|(I, z) ∈ O}
and let z∗ : [−h, ω) → Rm be defined by the property that, for every (I, z) ∈ O, z∗|I = z. Then (ω, z∗) is in A
and is an upper bound for O. By Zorn’s Lemma, it follows that A contains at least one maximal element. This
establishes assertion (ii).
(iii) Assume y ∈ C([−h, ω),Rm) is a maximal solution of (5.1) and that ω < ∞. Seeking a contradiction,
suppose there exist σ ∈ [t0, ω) and compact K ⊂ D such that (t, y(t)) ∈ K for all t ∈ [σ, ω). By boundedness
of y and property (iv) of Th, we conclude that Ty is bounded. Therefore, the function t �→ (t, y(t), (Ty)(t)) is
essentially bounded and so by property (A.1b) of G, it follows that ẏ is essentially bounded on [σ, ω). Therefore,
y is uniformly continuous on [−h, ω) and so extends to a function y∗ ∈ C([−h, ω],Rm). By compactness of K,
we have (ω, y∗(ω)) ∈ K ⊂ D. An application of Assertion (i) of the theorem (with ω and y∗ replacing t0 and
y0, respectively) yields the existence of a solution ye ∈ C([−h, ρ],Rm) for some ρ > ω, with ye|[−h,ω) = y. This
contradicts maximality of y. �
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