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MAGNETIZATION SWITCHING ON SMALL FERROMAGNETIC
ELLIPSOIDAL SAMPLES

François Alouges1 and Karine Beauchard2

Abstract. The study of small magnetic particles has become a very important topic, in particular
for the development of technological devices such as those used for magnetic recording. In this field,
switching the magnetization inside the magnetic sample is of particular relevance. We here investi-
gate mathematically this problem by considering the full partial differential model of Landau-Lifschitz
equations triggered by a uniform (in space) external magnetic field.
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1. Introduction

Ferromagnetic materials nowadays are used in numerous technological devices (magnetic recording, cellular
phones, etc). Among these applications, magnetic storage is probably one of the most important areas. Devices
such as hard-disks, or magnetic RAM are composed of several small ferromagnetic particles capable of being
magnetized in two opposite directions, allowing for the storage of one bit of information.

Being able to switch the magnetization in a quick and sure way into this sample is therefore of prime interest.
Not surprisingly, the switching of the magnetization in small elongated particles has received a lot of attention
(see for instance [2,16] or [3] and references therein) after the pioneering work of Kikuchi [14] where an analytical
solution is given in the case of a spherical particle uniformly magnetized.

However, if physicists have worked a lot on such problems by giving strategies to switch the magnetization
with the help of an external magnetic field inside nanoscale ferromagnetic particles, the dynamics of the mag-
netization is usually modelized with a monodomain particle for which the Landau-Lifschitz equation takes the
particular form of an ordinary differential equation. This is probably due to the fact that for particles in which
the magnetization is not constant, the Landau-Lifschitz equation becomes a non-linear and non local partial
differential equation. This equation remains largely badly understood since in all generality, strong solutions
are only known to exist locally in time [5] and whenever weak solutions are considered [1,18] although they
are defined for all time, such solutions are likely to be nonunique. In this article, we address the question
of studying mathematically the possibility of switching the magnetization inside an elongated particle with
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external magnetic fields that are uniform in space (but may be variable in time). As we shall see, although we
will restrict to small ellipsoidal ferromagnetic particles, we will consider the full PDE problem, and both weak
and strong solutions.

The magnetization m inside a ferromagnetic body, located in a space domain Ω, is a three dimensional
vector field, defined on Ω and constrained to be of constant magnitude through the sample. After a suitable
renormalization, we consider this magnitude to be equal to 1. The evolution of the magnetization inside a
ferromagnetic body is modelized by the Landau-Lifschitz equation,

∂m

∂t
= α[H(m) − 〈H(m), m〉m] − m ∧ H(m), in Ω. (1.1)

Here, H(m) is the total magnetic field induced by several physical phenomena (exchange, stray-field, anisotropy,
exterior field), α > 0 is a damping coefficient which depends on the material (we refer the reader to [4] or [12]
for a more complete description of the physical model). In this equation, 〈., .〉 denotes the Euclidean scalar
product on R

3 and ∧ is the vectorial product. Equivalently, at least for smooth solutions, the equation (1.1)
may be written under the so-called Gilbert form

∂m

∂t
− α

(
m ∧ ∂m

∂t

)
= −(1 + α2) (m ∧ H(m)) , (1.2)

and under the form,

α
∂m

∂t
+
(

m ∧ ∂m

∂t

)
= (1 + α2)[H(m) − 〈H(m), m〉m]. (1.3)

For a ferromagnetic body without anisotropy, the magnetic field H(m) can be expressed, in order to emphasize
the dependence on the (non-constant in time) external magnetic field, as

H(m) = − ∂E
∂m

+ Hext,

where E(m) is the micromagnetic energy associated to a given magnetization m,

E(m) :=
A

2

∫
Ω

|∇m|2 − 1
2

∫
Ω

〈Hd(m), m〉. (1.4)

This leads to
H(m) := AΔm + Hd(m) + Hext, (1.5)

where Hext is the uniform in space external magnetic field applied to the sample, A is the so-called exchange
constant [4], and Hd(m) is the stray field generated by the magnetization m itself via the following dimensionless
Maxwell equations ⎧⎨⎩

Hd(m) = ∇φ, in R
3,

Δφ = −div(m), in R
3,

Hd(m) vanishes at infinity,
(1.6)

where

m =
{

m in Ω,
0 in R

3 \ Ω.
(1.7)

It is well known that Hd(m) is the L2(R3)-orthogonal projection of −m on gradients from which we deduce

‖Hd(m)‖L2(R3) � ‖m‖L2(R3).

We will frequently use the following consequence

∀m ∈ L2(Ω), ‖Hd(m)‖L2(Ω) � ‖m‖L2(Ω). (1.8)
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The natural boundary conditions are of Neumann type, thus, we will work on the following Cauchy problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂m

∂t
= α[H(m) − 〈H(m), m〉m] − m ∧ H(m), x ∈ Ω, t ∈ (0, T )

∂m

∂ν
(t, x) = 0, x ∈ ∂Ω, t ∈ (0, T ),

m(0, x) = m0(x), x ∈ Ω.

(1.9)

It is a non linear control system in which
• the state is the magnetization m, with m(t) : Ω → S2, for every t;
• the control is the external magnetic field Hext : t ∈ R+ 
→ R

3.
This means that we seek the possibility of using a time dependent magnetic field Hext in order to control the
magnetization m. In this article, we are interested in the existence and the properties of a such control Hext that
steers m from m(0) = u to m(T ) = −u where u and −u are global minimizers of the micromagnetic energy E .
To further simplify the presentation, we will furthermore assume that the exchange constant A in (1.5) is equal
to 1. Let us also quote the paper by Carbou et al. [6] which also treats a control problem in micromagnetics,
but in the completely different context of moving a wall in a nano-wire. We will also give a couple of results
in the problem similar to (1.9) but posed in 2D. By this, we mean that the domain is bidimensional, but the
magnetization still takes values into S2. However, the stray field satisfies (1.6) and (1.7) but in R

2. This models
an infinite ferromagnetic cylindrical rod along the axis of which the solution is invariant. As a consequence
of (1.6) and (1.7) the component of the stray field parallel to the axis of the cylinder vanishes.

This article is organized as follows.
In Section 2, we consider a ferromagnetic body having an ellipsoidal shape. Then, the stray field of uniform

magnetizations is uniform, thus, a subclass of solutions of (1.9) are uniform magnetizations that solve an ordinary
differential equation (ODE) presented in Section 2.1. The goal of Section 2 is the study of the switching for
those uniform magnetizations. We may assume that ± e1 are global minimizers of the micromagnetic energy. In
Section 2.2, we prove the existence of external magnetic fields Hext that produce the switching from m(0) = +e1

to m(T ) = −e1 for every T > 0. Then, we justify the existence of optimal magnetic fields realizing this switching,
and we show that the associated solutions m are not 2-dimensional, excepted when Ω is a sphere. In Section 2.3,
we study the cost of the optimal control as T → +∞. We prove that this cost converges to zero if and only if
there exists two orthogonal global minimizers of the micromagnetic energy.

The Section 3 is dedicated to weak solutions for the partial differential equation (PDE) (1.9). In Section 3.1,
we prove the existence of weak solutions of (1.9). In Section 3.2, we study their convergence to uniform
magnetizations when the size of the domain Ω goes to zero. This already shows that the external field found in
Section 2 allows an approximate switching on any sufficiently small domain in the very general sense of weak
solutions. To go further, we need more regularity and strong solutions. This imposes restrictions on either the
shape of the domain or the regularity and smallness of the initial condition. Namely, Section 4 is dedicated
to smooth solutions of (1.9). In Section 4.1, we present preliminary results useful for the proof done in the
next section. In Section 4.2, we prove the existence and uniqueness of local (in time) smooth solutions when
Ω is a bounded domain of R

2 or R
3. Then, in Section 4.3, we prove that such local solutions indeed provide

global solutions when Ω is a 2D bounded domain and when the initial condition is in a H1-neighborhood of
constant magnetizations. In Section 4.4, we prove the existence of global smooth solutions when Ω is a small 3D
ellipsoid domain and when the initial condition is in a H2-neighborhood of constant magnetizations. Contrarily
to the preceding results where we follow the strategy developed by [5], the latter result involves ideas completely
different.

In Section 5, we work with small 2D or 3D ellipsoid domains Ω. We propose explicit external fields that
exponentially stabilize the uniform stationary solutions.

In Section 6, we propose a way to realize the approximate switching of PDE solutions on small 2D or 3D
ellipsoidal domains.
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In all this article we will use the following notations. The family (e1, e2, e3) is the canonical basis of R
3, if

x ∈ R
3, we write its components x(1), x(2) and x(3). The same letter C denotes different constants that can

change from one line to another. Whenever possible, we have explicited the parameters on which those constants
depend. When Ω is an open bounded subset of R

2 or R
3 and T > 0, QT denotes (0, T ) × Ω. Eventually, for

every map f : Ω → R
3, we denote by f� its space average

f� :=
1
|Ω|

∫
Ω

f(x)dx.

2. Magnetization switching on ellipsoidal domains: ODE study

2.1. A simplified Landau-Lifschitz equation

It is well known that, when Ω is a 3D ellipsoidal domain over which the magnetization is constant, the stray
field is also constant on Ω and therefore satisfies

Hd(m) = −Dm on Ω

where D is a symmetric positive matrix. Up to an orthonormal change of coordinates, we may take

D :=

⎛⎝ α1 0 0
0 α2 0
0 0 α3

⎞⎠ ,

where 0 � α1 � α2 � α3 � 1 depend on the size of the three axis of the ellipsoid (the last inequality comes
from (1.8)).

In this case, the Landau-Lifschitz equations becomes the ordinary differential system⎧⎪⎪⎪⎨⎪⎪⎪⎩
dm

dt
= α[H0(m) − 〈H0(m), m〉m] − m ∧ H0(m),

m(0) = m0,

m : R+ → S2,

(2.1)

where
H0(m) = −Dm + Hext. (2.2)

The existence of solutions is a classical matter.

Proposition 2.1. For every Hext ∈ L1
loc(R+, R3), for every m0 ∈ S2, there exist T > 0 and a unique function

m ∈ C0([0, T ), R3), such that,

m(t) = m0 +
∫ t

0

{α[H0(m) − 〈H0(m), m〉m] − m ∧ H0(m)} dτ, (2.3)

for every t ∈ [0, T ).
Moreover, if Hext ∈ L2

loc(R+, R3), then, m ∈ H1((0, T ), R3), the first equation of (2.1) holds in L2((0, T ), R3)
and |m| ≡ 1.

If Hext ∈ C0(R+, R3), then m ∈ C1([0, +∞), S2), and the first equation of (2.1) holds for every t ∈ [0, +∞).

2.2. Optimal control

Viewing Hext as a control parameter, (2.1) turns out to be a flat system i.e. for every reference path
mref ∈ H1((0, T ), S2) (for some T > 0), there exists an external field Hext[mref(t)] ∈ L2((0, T ), R3) such that
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the unique solution m of (2.1) with initial condition m0 = mref(0), and external field Hext(mref) coincides
with mref

m(t) = mref(t), ∀t ∈ (0, T ).
Indeed, (2.1) rewrites as

α
dm

dt
+ m ∧ dm

dt
= (1 + α2)[−Dm + Hext + 〈Dm − Hext, m〉m], (2.4)

thus, for every path m ∈ H1((0, T ), S2), the magnetic field

Hext(m) :=
1

1 + α2

{
α

dm

dt
+ m ∧ dm

dt

}
+ Dm − 〈Dm, m〉m (2.5)

belongs to L2((0, T ), R3) and, since 〈Hext(m), m〉 = 0, allows to follow m. The other solutions are such that
H̃ext − 〈H̃ext, m〉m = Hext(m), and therefore Hext(m) has the minimal L2((0, T ), R3)-norm, among all possible
solutions.

For T > 0, we introduce the set

VT := {m ∈ H1((0, T ), S2); m(0) = e1, m(T ) = −e1},

and the functional JT : VT → R+,

JT (m) :=
∫ T

0

|Hext(m)(t)|2dt.

Proposition 2.2. Let T > 0. There exists a solution mopt,T ∈ VT of the minimization problem

JT (mopt,T ) = min{JT (ξ), ξ ∈ VT }. (2.6)

This solution is not unique and satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

1 + α2

{
−d2m

dt2
+

d
dt

[m ∧ Dm] +
dm

dt
∧ Dm + D

(
m ∧ dm

dt

)}
+ 2D2m − 4〈Dm, m〉Dm = λm,

m(0) = e1, m(T ) = −e1,

(2.7)

where λ : [0, T ] → R.
If α1 = α2 = α3, then any 2 dimensional path

mθ(t) := cos
(

πt

T

)
e1 + sin

(
πt

T

)
[cos(θ)e2 + sin(θ)e3], θ ∈ (0, 2π), (2.8)

is optimal, otherwise, no optimal solution can be only 2 dimensional.

Proof of Proposition 2.2. Let T > 0. We have, for every m ∈ VT ,

JT (m) =
∫ T

0

1
1 + α2

∣∣∣dm

dt

∣∣∣2 +
2

1 + α2
〈m ∧ dm

dt
, Dm〉 + |Dm − 〈Dm, m〉m|2. (2.9)

The existence of an optimal path is a consequence of the direct method of calculus of variations.
For m = (m(1), m(2), m(3))t ∈ VT , we define

m̃ = (m(1),−m(2),−m(3))t. (2.10)
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An easy calculation gives JT (m) = JT (m̃), showing that the solution to (2.6) cannot be unique.
The equation (2.7) is the Euler-Lagrange equation of the optimization problem (2.6).
Moreover, any function m ∈ VT solution of (2.7) satisfies at time 0

2
1 + α2

d2m

dt2
(0) =

2
1 + α2

(2α1 − α2 − α3)
dm

dt
(0) ∧ e1 − (λ + 2α2

1)e1. (2.11)

Let m be an optimal path from e1 to −e1 on [0, T ]. It is clear from (2.7) that m ∈ C1([0, T ], S2) and we have

∀t ∈ [0, T ],
dm

dt
(t) ⊥ m(t).

Now, since m is not constant, the Cauchy-Lipschitz theorem ensures that

dm

dt
(0) �= 0

and this vector is orthogonal to m(0) = e1 because |m| ≡ 1. Hence,

d2m

dt2
(0) ∧ e1 = −(2α1 − α2 − α3)

dm

dt
(0).

Therefore, in the case 2α1 − α2 − α3 �= 0, the optimal path can not be 2-dimensional.
Now, let us assume that α1 = α2 = α3. The Euler equation (2.7) reduces to

− 2
1 + α2

d2m

dt2
= (λ + 2α2

1)m, (2.12)

which is the equation of geodesics on the sphere. Those geodesics are bi-dimensional. �

Remark 2.1. When α1 < α2 = α3, for every m = (m(1), m(2), m(3))t ∈ H1((0, T ), R3), the function m̃ :=
(m(1),−m(3), m(2)) satisfies JT (m) = JT (m̃). Thus, the optimal path is not unique, even up to the symmetry
defined by (2.10).

However, when α1 < α2 < α3, the uniqueness of the optimal path, up to the symmetry defined in (2.10), is
an open problem.

As a sake of example, we provide hereafter the solution obtained by a numerical method based on a shooting
strategy, when one solves the boundary value problem (2.7) with D = diag(0.02, 0.5, 1). The three components
of the magnetization are shown in Figure 1 where it is clear that the solution is not bidimensional only.

Remark 2.2. Of course, minimizing JT over VT leads to discontinuous external fields, which, in practice might
be undesirable. Other functionals can be chosen ensuring more regular Hext, for instance, minimizing

J̃T (m) :=
∫ T

0

∣∣∣∣ d
dt

Hext(m)
∣∣∣∣2 dt

over

ṼT :=
{

m ∈ H2((0, T ), S2); m(0) = e1, m(T ) = −e1,
dm

dt
(0) =

dm

dt
(T ) = 0

}
leads to optimal external fields in H1

0 ((0, T ), R3) (Hext(0) = Hext(T ) = 0 corresponds to a switch off for the
magnetic source).
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Figure 1. The three components of the optimal magnetization with respect to time.

2.3. Behavior of the optimal cost as T → +∞
The asymptotic behavior, when T → +∞, of the optimal cost

f(T ) := JT (mopt,T )

is given by the following proposition.

Proposition 2.3. If α1 = α2 � α3, then f(T ) → 0, when T → +∞. Otherwise,

f(T ) � 4
(

1
1 + α2

− 1
(1 + α2)3/2

)
(α2 − α1), (2.13)

thus f(T ) does not converge to zero when T → +∞.

Proof of Proposition 2.3. When α1 = α2 � α3, computing explicitly the energy of the path (2.8), for θ = 0,
we get

f(T ) � JT (m0) =
1

1 + α2

π2

T

proving that f(T ) → 0 when T → +∞.
Now, let us assume that α1 < α2 � α3. Let T > 0 and m ∈ VT . We have∫ T

0

2
1 + α2

〈m ∧ dm

dt
, Dm〉 =

∫ T

0

2
1 + α2

〈m ∧ dm

dt
, Dm − 〈Dm, m〉m〉

�
∫ T

0

1
(1 + α2)3/2

∣∣∣∣dm

dt

∣∣∣∣2 +
1

(1 + α2)1/2
|Dm ∧ m|2. (2.14)

We introduce the notations

C(α) :=
1

1 + α2
− 1

(1 + α2)3/2
,

T1 := sup{t > 0; m(1)(τ) > 0, ∀τ ∈ (0, t)},
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then m(T1) ∈ Span(e2, e3). We deduce from (2.9) and the last inequality that

JT (m) � C(α)
∫ T

0

∣∣∣∣dm

dt

∣∣∣∣2 + |Dm ∧ m|2

� 2C(α)
∫ T

0

∣∣∣∣〈dm

dt
, Dm − 〈Dm, m〉m

〉∣∣∣∣
= 2C(α)

(∫ T1

0

∣∣∣∣〈dm

dt
, Dm

〉∣∣∣∣+ ∫ T

T1

∣∣∣∣〈dm

dt
, Dm

〉∣∣∣∣
)

� 2C(α)

(∣∣∣∣∣
∫ T1

0

〈
dm

dt
, Dm

〉∣∣∣∣∣+
∣∣∣∣∣
∫ T

T1

〈
dm

dt
, Dm

〉∣∣∣∣∣
)

= 4C(α) [〈Dm(T1), m(T1〉 − α1]
� 4C(α)(α2 − α1).

This holds for every m ∈ VT , which justifies (2.13). �

3. PDE weak solutions

3.1. Existence of 3D global weak solutions

Weak solutions for Landau-Lifschitz equations have been proven to exist in [1,15,18] although either without
a possibly variable in time external field or without the stray-field. We here follow the strategy of [1], and show
necessary adaptations to our case.

Definition 3.1. Let m0 ∈ H1(Ω, S2) and Hext ∈ L1
loc(R, R3). A function m is a weak solution of (1.9) if

• for every T > 0, m ∈ H1(QT , S2);
• for every T > 0, for every Φ ∈ H1(QT , R3), there holds∫

QT

〈
∂m

∂t
, Φ
〉
− α

〈
m ∧ ∂m

∂t
, Φ
〉

dxdt =

−(1 + α2)
∫

QT

−
3∑

j=1

〈
m ∧ ∂m

∂xj
,

∂Φ
∂xj

〉
+ 〈m ∧ (Hd(m) + Hext), Φ〉 dxdt; (3.1)

• m(0, x) = m0(x) in the trace sense;
• for almost every T > 0,

E(m(T )) +
α

1 + α2

∫ T

0

∥∥∥∂m

∂t
(t)
∥∥∥2

L2(Ω)
dt � E(m0) +

∫ T

0

∫
Ω

〈
Hext,

∂m

∂t

〉
, (3.2)

where E(m) is the micromagnetic energy defined by

E(m) :=
1
2

∫
Ω

|∇m|2 +
1
2

∫
R3

|Hd(m)|2.

Let us now state the main result of this section.

Theorem 3.1. Let m0 ∈ H1(Ω, S2) and Hext ∈ L2
loc(R+, R3). There exists a weak solution of (1.9).

Remark 3.1. Notice that such weak solutions may not be unique (see [1], Thm. 1.6).
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The proof of Theorem 3.1 readily follows the arguments of [1], Theorem 1.5. We write a complete proof in
order to precise the necessary adaptations, due to the presence of Hd(m) and Hext in (1.9).

Proof of Theorem 3.1. First, following [1], we construct, through a Galerkin method, weak solutions to the
penalized system

(P k)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α

∂mk

∂t
+ mk ∧ ∂mk

∂t
= (1 + α2)

[
Δmk + Hd(mk) + Hext − k(|mk|2 − 1)mk

]
in Ω,

mk(0) = m0,

∂mk

∂ν
(t, x) = 0, x ∈ ∂Ω,

for k ∈ R
∗
+, where the constraint |m| = 1 is relaxed.

Let (ϕj)j∈N be an orthonormal basis of L2(Ω, R) consisting of eigenvectors of the Laplace operator with
Neumann boundary conditions, { −Δϕj = λjϕj , in Ω,

∂ϕj

∂ν
= 0, on ∂Ω,

(3.3)

where (λj)j∈N is a non decreasing sequence. Let n ∈ N
∗. We are looking for approximate solutions

mn(t, x) =
n−1∑
j=0

yj(t)ϕj(x)

where
• for every T > 0, yj ∈ H1((0, T ), R3);
• for almost every t ∈ (0, +∞), for every l ∈ {0, . . . , n − 1},⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
Ω

{
1

α2 + 1

(
α

∂mn

∂t
+ mn ∧ ∂mn

∂t

)
−
[
Δmn + Hd(mn) + Hext − k(|mn|2 − 1)mn

]}
(t, x)ϕl(x)dx = 0,∫

Ω

[
mn(0, x) − m0(x)

]
ϕl(x)dx = 0.

(3.4)

These relations produce a differential system that can be written as⎧⎨⎩
∂Y

∂t
− A(Y )

∂Y

∂t
= F (Y ) + B(t), for almost every t ∈ (0, +∞),

Y (0) = Y0,
(3.5)

where Y (t) := ((y0(t), . . . , yn−1(t))τ ∈ R
3n), A(Y ) is a 3n×3n skew-symmetric matrix (thus I −A(Y ) is always

invertible), F : R
3n → R

3n is a locally Lipschitz nonlinear map and B(t) := (B0(t), . . . , Bn−1(t))τ ∈ R
3n has

components

Bj :=
(1 + α2)

α
Hext(t)δj,0.

A fixed point argument gives the existence of T̃n > 0 and the existence and uniqueness of Y ∈ C0((0, T̃n), R3n)
such that, for every t ∈ (0, T̃n),

Y (t) = Y0 +
∫ t

0

(I − A(Y (s)))−1[F (Y (s)) + B(s)]ds,

moreover, Y ∈ H1((0, T̃n), R3n) and (3.5) is satisfied. �
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Remark 3.2. If Hext ∈ C0(R+, R3) then Y ∈ C1((0, Tn), R3n), the first equality of (3.5) holds for every
t ∈ (0, Tn) and the proof may be finished exactly as in [1]. When Hext ∈ L2

loc(R+, R3), the first equality of (3.5)
may only hold a.e., this changes a few details at the end of the proof.

Let Tn ∈ (0, +∞] and Y ∈ C0((0, Tn), R3n) be a maximal solution. In order to prove that Tn = +∞, we
proceed by contradiction, assuming that Tn < +∞ and Y (t) is not bounded when t → Tn. Noticing that

‖Y (t)‖2 =
∫

Ω

|mn(t, x)|2dx,

we provide estimates on mn showing that mn ∈ L∞((0, Tn), L2(Ω)), which gives the contradiction.

Multiplying the first equation of (3.4) by
dyl

dt
(t) (which is finite for almost every t ∈ (0, Tn)) and summing

for l = 0, ..., n − 1, we find, for almost every t ∈ (0, Tn),

α

α2 + 1

∫
Ω

∣∣∣∣∂mn

∂t

∣∣∣∣2 = − d
dt

[
1
2

∫
Ω

(
|∇mn|2 +

k

2
(|mn|2 − 1)2

)
+

1
2

∫
R3

|Hd(mn)|2
]

+
〈

Hext,

∫
Ω

∂mn

∂t

〉
.

(3.6)

Integrating this relation between 0 and t leads to

Ek(mn(t)) +
α

α2 + 1

∫ t

0

∫
Ω

∣∣∣∣∂mn

∂t

∣∣∣∣2 � Ek(mn0) +
∫ t

0

〈
Hext,

∫
Ω

∂mn

∂t

〉
(3.7)

for almost every t ∈ (0, Tn), where mn0(x) := mn(0, x), and

Ek(m) :=
1
2

∫
Ω

(
|∇m|2 +

k

2
(|m|2 − 1)2

)
+

1
2

∫
R3

|Hd(m)|2.

Using the inequality 〈
Hext,

∂mn

∂t

〉
� α2 + 1

2α
|Hext|2 +

α

2(α2 + 1)

∣∣∣∂mn

∂t

∣∣∣2,
we deduce that

Ek(mn(t)) +
α

2(α2 + 1)

∫ t

0

∫
Ω

∣∣∣∣∂mn

∂t

∣∣∣∣2 � Ek(mn0) + |Ω|α
2 + 1
2α

∫ t

0

|Hext|2 . (3.8)

Moreover, since for every t ∈ (0, Tn),

∫
Ω

|mn(t, x)|2dx �
(
|Ω|

∫
Ω

(|mn(t, x)|2 − 1)2
)1/2

+ |Ω|, (3.9)

then (3.8) provides a bound of the right-hand side, and we get that mn ∈ L∞((0, Tn), L2(Ω)), which gives
the contradiction. Finally, the maximal solution Y (t) is defined for every t ∈ (0, +∞), and for every T > 0,
mn ∈ H1(QT ).
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Let T > 0. Since H1(Ω) is embedded into L4(Ω), the right hand side of (3.8), is bounded uniformly with
respect to n ∈ N

∗ and t ∈ [0, T ] by

Rk := Ck‖m0‖H1(Ω) + |Ω|α
2 + 1
2α

∫ T

0

|Hext|2

where Ck = C(Ω, k).

The inequality (3.8) shows that (|mn|2 − 1),
∂mn

∂t
and ∇mn are bounded in L2(QT , R3), indeed,

∫ T

0

Ek(mn(t)) dt � TRk,

α

2(α2 + 1)

∫ T

0

∫
Ω

∣∣∣∣∂mn

∂t
(t, x)

∣∣∣∣2 dxdt � Rk.

(3.10)

Thus mn is also bounded in H1(QT ) (the uniform L2 bound is given by (3.9)) and there exists mk ∈ H1(QT )
such that, up to the extraction of a subsequence,

mn → mk weakly in H1(QT ),
mn → mk strongly in L2(QT ),
|mn|2 − 1 → |mk|2 − 1 weakly in L2(QT ).

Passing to the limit (n → +∞) in (3.7) gives (since Ek(m0) = E0(m0))

Ek(mk(t)) +
α

α2 + 1

∫ t

0

∫
Ω

∣∣∣∣∂mk

∂t

∣∣∣∣2 � E0(m0) +
∫ t

0

〈
Hext,

∫
Ω

∂mk

∂t

〉
(3.11)

for almost every t ∈ [0, T ].
Now, let N ∈ N

∗ and ϕ =
∑N−1

j=0 αj(t)ϕj , where ∀j ∈ {0, ..., N − 1}, αj ∈ C∞([0, T ], R3). For every n ∈ N
∗

with n � N , we have∫
QT

〈
α

∂mn

∂t
+ mn ∧ ∂mn

∂t
, ϕ

〉
= − (α2 + 1)

∫
QT

〈∇mn,∇ϕ〉

+ (α2 + 1)
∫

QT

〈Hd(mn) + Hext − k(|mn|2 − 1)mn, ϕ〉,

which gives, passing to the limit n → +∞∫
QT

〈
α

∂mk

∂t
+ mk ∧ ∂mk

∂t
, ϕ

〉
= − (α2 + 1)

∫
QT

〈∇mk,∇ϕ〉

+ (α2 + 1)
∫

QT

〈Hd(mk) + Hext − k(|mk|2 − 1)mk, ϕ〉. (3.12)

Indeed, thanks to (1.8), we have

‖Hd(mn − mk)‖L2(QT ) � ‖mn − mk‖L2(QT )

→ 0 when n → +∞.

By density, (3.12) also holds for every ϕ ∈ H1(QT , R3).
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From (3.11), we get that ∇mk, Hd(mk),
√

k(|mk|2 − 1),
∂mk

∂t
are bounded in L2(QT ), and therefore, there

exists m ∈ H1(QT ) such that, up to the extraction of a suitable subsequence,

mk → m weakly in H1(QT ),
mk → m strongly in L2(QT ),
|mk|2 − 1 → 0 strongly in L2(QT ).

(3.13)

We hence first obtain, |m| = 1 a.e. on QT , and in order to pass to the limit k → +∞ in (3.12), we take
Φ ∈ C∞(QT ), and test (3.12) with ϕ(t, x) := mk ∧ Φ ∈ H1(QT ). We get

∫
QT

α

〈
∂mk

∂t
∧ mk, Φ

〉
−
〈

mk,
∂mk

∂t

〉
〈mk, Φ〉 + |mk|2

〈
∂mk

∂t
, Φ
〉

=

(α2 + 1)
∫

QT

−〈∇mk ∧ mk,∇Φ〉 + 〈(Hd(mk) + Hext) ∧ mk, Φ〉.
(3.14)

All the terms pass to the limit easily but two, namely,
∫

QT

〈
mk,

∂mk

∂t

〉〈
mk, Φ

〉
and

∫
QT

|mk|2
〈

∂mk

∂t
, Φ
〉

. We

decompose this latter term as

∫
QT

|mk|2
〈

∂mk

∂t
, Φ
〉

=
∫

QT

(|mk|2 − 1)
〈

∂mk

∂t
, Φ
〉

+
∫

QT

〈
∂mk

∂t
, Φ
〉

→
∫

QT

〈
∂m

∂t
, Φ
〉

when k tends to infinity, from (3.13).
For the other term, we perform an integration by parts

−
∫

QT

〈
mk,

∂mk

∂t

〉
〈mk, Φ〉 = −

∫
QT

1
2

d
dt

[|mk|2 − 1]〈mk, Φ〉

=
1
2

∫
QT

[|mk|2 − 1]
d
dt

[〈mk, Φ〉]
→ 0 as k → +∞.

Remark 3.3. This step is different from [1]: we do not need here that |mk| � 1 a.e. which was proved with a
Stampacchia argument in [1].

Eventually, in order to show that m satisfies the energy inequality (3.2), we just pass to the weak H1(QT )
limit in (3.11).

3.2. Convergence of weak solutions to ODE solutions when the size of the domain goes
to zero

Let Ω be a bounded open subset of R
2 or R

3 such that |Ω| = 1. In this section, we consider the weak
solutions of the Landau-Lifschitz PDE on the domain Ωλ :=

√
λΩ, when λ → 0, λ > 0. A change of space and

time variables shows that it is equivalent to study the weak solutions of the following Landau-Lifschitz PDE
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on the fixed domain Ω,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂m

∂t
= α[Hλ(m) − 〈Hλ(m), m〉m] − m ∧ Hλ(m), x ∈ Ω, t ∈ (0, T )

∂m

∂ν
(t, x) = 0, x ∈ ∂Ω, t ∈ (0, T ),

m(0, x) = m0(x), x ∈ Ω,

(3.15)

with an effective magnetic field

Hλ(m) :=
Δm

λ
+ Hd(m) + Hext (3.16)

associated to the micromagnetic energy

Eλ(m) :=
∫

Ω

1
2λ

|∇m|2 +
1
2

∫
R3

|Hd(m)|2. (3.17)

When the domain is small (λ << 1), non constant in space magnetizations are penalized. Therefore it is
expected that solutions of (3.15), (3.16) should tend to the solutions of the ODE (2.1) with D defined by

Dm̃ := − 1
|Ω|

∫
Ω

Hd(m̃χΩ), ∀m̃ ∈ S2,

where χΩ is the characteristic function of Ω. This is precisely the purpose of this section. We also quote the
paper by DeSimone [10] in which the same kind of result is shown but for static problems, using Γ-convergence
theory.

The convergence result proved in this section shows that the external magnetic field found in Section 2 allows
an approximate switching for the PDE solutions, on any sufficiently small domain, in the very general sense of
weak solutions.

Proposition 3.1. Let Ω be a bounded open subset of R
2 or R

3, α > 0, Hext ∈ L2
loc(R+, R3), m ∈ S2. Let

(mλ0)λ>0 be a sequence of H2(Ω, S2) such that
∂mλ0

∂ν
≡ 0 on ∂Ω for every λ > 0,

mλ0� → m and
∫

Ω

|∇mλ0|2 = o
(√

λ
)

when λ → 0. (3.18)

Let mλ be a weak solution of (3.15) such that mλ(0) = mλ0 and mref be the solution of (2.1) with initial data
m0 = m. Then, for every T > 0,

‖mλ − mref‖C0([0,T ],H1(Ω)) → 0 when λ → 0.

Remark 3.4. The assumption (3.18) is not restrictive as the minimizers of Eλ do satisfy it.

Proof of Proposition 3.1. The proof follows 3 steps.

First step: Bounds on ∇mλ and
∂mλ

∂t
. We know (from the definition of ‘weak solution’) that

Eλ(mλ(t)) +
α

2(α2 + 1)

∫ t

0

∥∥∥∂mλ

∂t

∥∥∥2

L2
� Eλ(mλ(0)) + |Ω| (α

2 + 1)
2α

∫ t

0

|Hext|2

with Eλ defined by (3.17). Thus, we have the following bounds

‖∇mλ‖2
C0([0,T ],L2) � 2λ

(
Eλ(mλ(0)) + |Ω|α

2 + 1
2α

∫ T

0

|Hext|2
)

, (3.19)
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and ∫ T

0

∥∥∥∂mλ

∂t

∥∥∥2

L2
� 2(α2 + 1)

α

(
Eλ(mλ(0)) + |Ω|α

2 + 1
2α

∫ T

0

|Hext|2
)

. (3.20)

Second step: Study of m�. Taking in (3.1) a test function Φ constant in space (but not in time) leads to an
equation for mλ�

dmλ�

dt
− αmλ� ∧ dmλ�

dt
= −(1 + α2)mλ� ∧ H0(mλ�) + fλ(t), (3.21)

where from the definition (2.2) of H0

fλ(t) :=
1
|Ω|

∫
Ω

α(mλ − mλ�) ∧ ∂mλ

∂t
− (1 + α2)

|Ω|
∫

Ω

mλ ∧ (Hd(mλ) + Dmλ�) .

Now, since Dmλ�χΩ = − 1
|Ω|

∫
Ω

Hd(mλ�), we may write the latter term as

∫
Ω

mλ ∧ (Hd(mλ) + Dmλ�) =
∫

Ω

mλ ∧ Hd(mλ − mλ�χΩ) + (mλ − mλ�) ∧ (Hd(mλ�χΩ) + Dmλ�)

from which we can bound

|fλ(t)| ≤ α

|Ω| ‖mλ − mλ�‖L2

∥∥∥∂mλ

∂t

∥∥∥
L2

+
(1 + α2)√|Ω| (‖Hd(mλ − mλ�χΩ)‖L2 + 2‖mλ − mλ�‖L2) .

This implies, thanks to (3.19), (3.20) and Poincaré inequality that there exists C2 = C2(Ω, α, T ) > 0 such that∫ T

0

|fλ(t)|dt � C2[B(λ) +
√

B(λ)]
√

λ, (3.22)

where

B(λ) := Eλ(mλ(0)) + |Ω|α
2 + 1
2α

∫ T

0

|Hext|2.
We notice that from (3.21) we can deduce〈

mλ�,
dmλ�

dt

〉
= 〈mλ�, fλ(t)〉

from which we get

dmλ�

dt
= F (mλ�) +

1
1 + α2|mλ�|2

(
α2 〈mλ�, fλ(t)〉mλ� + fλ(t) + αmλ� ∧ fλ(t)

)
,

dmref

dt
= F (mref),

where

F : R
3 → R

3

m 
→ − 1 + α2

1 + α2|m|2 (m ∧ H0(m) + αm ∧ (m ∧ H0(m)))

satisfies
∀m1, m2 ∈ BR3(0, 1), |F (m1) − F (m2)| � C3(1 + |Hext(t)|)|m1 − m2|,
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for some constant C3 = C3(α, D). Using Gronwall lemma and (3.22), we get

|mλ� − mref |C0([0,T ],R3) �
(
|mλ0� − m| + C2

√
λ[B +

√
B]
)

eC3(T+
∫

T
0 |Hext|).

Third step: Conclusion. Noticing that

‖mλ − mrefχΩ‖2
L2 = 2|Ω|(1 − 〈mλ�, mref〉) = 2|Ω|〈mref , mref − mλ�〉,

we get

‖mλ − mref χΩ‖2
C0([0,T ],H1) � 2λB + 2|Ω|

(
|mλ0� − m| + C2

√
λ[B +

√
B]
)

eC3(T+
∫ T
0 |Hext|)

and the conclusion comes from (3.18). �
It is well known (see [1] for examples) that, for λ > 0 fixed, there may not be uniqueness for the weak solutions

of (3.15), (3.16). However, all these weak solutions converge in C0([0, T ], H1(Ω)) to the same function mref ,
when λ → 0.

Although restricted to approximate controllability, the preceding result is very general in the sense that it
applies to a wide class of solutions to Landau-Lifschitz equations. To go further and obtain stronger results
(like stabilization and convergence to minimizers), we need stronger solutions. This is precisely the aim of the
following sections.

4. Global PDE smooth solutions

In this section, we investigate the existence and uniqueness of global smooth solutions of the Landau-Lifschitz
equation (1.9) on the domain Ωλ :=

√
λΩ, with λ > 0. As already explained, it is equivalent to study (3.15)

and (3.16). First, we show existence and uniqueness of local (in time) smooth solutions.

Theorem 4.1. Let Ω be a bounded regular open subset of R
2 or R

3, α > 0, λ > 0, Hext ∈ C0(R+, R3) and

m0 ∈ H2(Ω, S2) be such that
∂m0

∂ν
= 0 on ∂Ω. There exist a time T ∗ = T ∗(Ω, α, λ, ‖m0‖H2(Ω), ‖Hext‖L∞) and

a unique
m ∈ C0([0, T ], H2(Ω, S2)) ∩ H1((0, T ), H1(Ω, S2)) ∩ L2((0, T ), H3(Ω, S2)),

for all T ∈ (0, T ∗), satisfying (3.15) and (3.16). Moreover, such regular solutions depend continuously on m0

for the topology C0([0, T ], H2(Ω, S2)).

In the 2D case, this result can be improved since global existence holds for small λ (i.e. small domains
Ωλ =

√
λΩ), with initial conditions m0 in a H1-neighborhood of constants, and for all (bounded and regular)

domains Ω.

Theorem 4.2. Let Ω be a bounded open subset of R
2, α > 0, λ > 0, Hext ∈ L∞(R+, R3) with Ḣext ∈ L1(R+, R3)

and C∗(Ω) be the smallest constant C such that (4.13) holds. For every m0 ∈ H2(Ω, S2) such that
∂m0

∂ν
= 0

on ∂Ω and ∫
Ω

|∇m0|2 + λ

(∫
Ω

|Hd(m0)|2 + 4‖Hext‖L∞(R+,R3) + 2‖Ḣext‖L1(R+,R3)

)
<

1
C∗(Ω)

, (4.1)

the smooth solution of (3.15) exists on R+.

In the 3D case, the result of Theorem 4.1 can also be improved, when Ω is an ellipsoidal domain. We get
in that case global existence of smooth solutions for small λ (i.e. small ellipsoids Ωλ =

√
λΩ), and for initial

conditions m0 in a H2-neighborhood of constants.
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Theorem 4.3. Let Ω be a 3D ellipsoid domain. There exists C∗∗(Ω) > 0 such that, for every α > 0, for every

λ ∈ (0, 1), for every Hext ∈ C0 ∩ L∞(R+, R3), for every m0 ∈ H2(Ω, S2) with
∂m0

∂ν
= 0 on ∂Ω that satisfy

C∗∗(α + 1)(1 + ‖Hext‖L∞(R+)) � α

λ
, (4.2)

C∗∗(α + 1)[‖Δm0‖L2 + ‖Δm0‖2
L2 ] < α, (4.3)

the smooth solution of (3.15) exists on R+ and verifies, for every T > 0

‖Δm(T )‖2
L2 +

α − N(T )
λ

∫ T

0

‖∇Δm(t)‖2
L2 dt � ‖Δm0‖2

L2 , (4.4)

where
N(T ) := sup

{
C∗∗(α + 1)[‖Δm(t)‖L2 + ‖Δm(t)‖2

L2 ]; t ∈ [0, T ]
}

. (4.5)
In particular, we have

‖Δm(t)‖L2 � ‖Δm0‖L2 , ∀t > 0. (4.6)

Remark 4.1. As a corollary of Theorem 4.2, we have the existence of 2D global smooth solutions for (3.15)
when λ is small enough, namely

λ
(
1 + 4‖Hext‖L∞(R+,R3) + 2‖Ḣext‖L1(R+,R3)

)
<

1
2C∗(Ω)

,

and for every initial data m0 ∈ H2(Ω, R3) which satisfies
∂m0

∂ν
= 0 on ∂Ω and∫

Ω

|∇m0|2 <
1

2C∗(Ω)
·

This defines an H1-neighborhood of uniform magnetizations of fixed size. Similarly, a corollary of Theorem 4.3
is the existence of 3D global smooth solutions (3.15) when λ is small enough, namely

λ � α

C∗∗(α + 1)(1 + ‖Hext‖L∞(R+))
,

and for every m0 ∈ H2(Ω, R3) which satisfies
∂m0

∂ν
= 0 on ∂Ω and

‖Δm0‖L2 < min
{

1,
α

2C∗∗(α + 1)

}
.

This defines an H2-neighborhood of uniform magnetizations of fixed size.

Remark 4.2. Theorem 4.2 provides the existence of global smooth solutions of (3.15) when λ is small enough
and for initial conditions in a H1-neighborhood of any minimizer m∗

λ of the micromagnetic energy Eλ, defined
by (3.17), when λ > 0 is small enough. Indeed,

‖∇m∗
λ‖2

L2(Ω) � 2λEλ(m∗
λ) � 2λEλ(e1χΩ) = 2λ‖Hd(e1χΩ)‖2

L2(Ω) � 2λ|Ω|,

thus (4.1) holds when

‖∇(m0 − m∗
λ)‖2

L2(Ω) + 2λ[1 + 2‖Hext‖L∞(R+,R3) + ‖ ˙Hext‖L1(R+,R3)] <
1

C∗(Ω)
·
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Therefore, Theorem 4.2 provides the existence of global smooth solutions of (3.15) when λ is small enough,
namely

2λ[1 + 2‖Hext‖L∞(R+,R3) + ‖Ḣext‖L1(R+,R3)] <
1

2C∗(Ω)
,

and for initial conditions in a H1-neighborhood of m∗
λ, namely

‖∇(m0 − m∗
λ)‖2

L2(Ω) � 1
2C∗(Ω)

·

Theorem 4.2 also provides the existence of global smooth solutions of (3.15) for initial conditions in an
H2-neighborhood of any minimizer of the micromagnetic energy Eλ, defined by (3.17), when λ > 0 is small
enough. Indeed, on a 3D ellipsoidal domain, for λ small enough, the minimizers of the micromagnetic energy Eλ

are constant in space (see Prop. 5.1 below).

Remark 4.3. In 3D, the existence of global solutions is only proven on ellipsoidal domains on which the stray
field has a particular structure. Indeed, on such domains, one has

Hd(m) = Hd(m�χΩ) + Hd(m − m�χΩ)

where Hd(m�χΩ) is constant over Ω. In particular, we have the following inequality that will be crucial in the
proof

‖∇Hd(m)‖L2 � C‖∇m‖L2 ,

where C = C(Ω) > 0, which is a consequence of Proposition 4.2 below and Poincaré inequality.

These results are more general than [5], Theorems 1.1–1.4:
• in Theorem 4.1, we take into account an external field Hext which is not considered in [5], Theorems 1.1

and 1.2;
• in Theorem 4.2, we take into account the stray field Hd(m) and the external field Hext which are not

considered in [5], Theorems 1.3 and 1.4;
• Theorem 4.3 deals with global solutions in a 3D case, this situation is not investigated in [5].

The proofs of Theorems 4.1 and 4.2 follow the ones of [5]. We detail them in order to justify the necessary
adaptations due to the presence of Hd and Hext. The proof of Theorem 4.3, instead, involves new arguments.

This section is organized as follows. First, in Section 4.1, we recall Sobolev inequalities and some classical
properties of the operator Hd, that will be useful. Then, we prove Theorems 4.1, 4.2 and 4.3 in Sections 4.2,
4.3 and 4.4 respectively.

4.1. Preliminaries

Proposition 4.1. Let Ω be a bounded regular open subset of R
2 or R

3. There exists C = C(Ω) > 0 such that,

for every u ∈ H2(Ω, S2) with
∂u

∂ν
= 0 on ∂Ω,

‖u‖H2(Ω) � C
(
‖u‖2

L2(Ω) + ‖Δu‖2
L2(Ω)

)1/2

, (4.7)

‖u‖L∞(Ω) � C
(
‖u‖2

L2(Ω) + ‖Δu‖2
L2(Ω)

)1/2

, (4.8)

‖∇u‖Lp � C‖Δu‖L2, ∀p ∈ [1, 6], (4.9)

‖D2u‖L2 � C‖Δu‖L2 (4.10)
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and for every u ∈ H3(Ω, S2) with
∂Δu

∂ν
=

∂u

∂ν
= 0 on ∂Ω,

‖Δu‖L2 � C‖∇Δu‖L2 , (4.11)

‖D2u‖L3 � C‖Δu‖1/2
L2 ‖∇Δu‖1/2

L2 . (4.12)
Let Ω be a bounded regular open subset of R

2. There exists C = C(Ω) > 0 such that, for every u ∈ H2(Ω, S2)

with
∂u

∂ν
= 0 on ∂Ω,

‖∇u‖L4(Ω) � C‖∇u‖1/2
L2(Ω)‖Δu‖1/2

L2(Ω), (4.13)

‖∇u‖L6(Ω) � C‖∇u‖1/3
L2(Ω)‖Δu‖2/3

L2(Ω) (4.14)

and for every u ∈ H3(Ω, S2) with
∂Δu

∂ν
=

∂u

∂ν
= 0 on ∂Ω,

‖∇u‖L∞(Ω) � C‖∇u‖1/2
L2(Ω)‖∇Δu‖1/2

L2(Ω). (4.15)

Proof of Proposition 4.1. The inequality (4.7) results from the regularity of the operator A = −Δ + I with
domain

D(A) :=
{

u ∈ H2(Ω);
∂u

∂ν
≡ 0 on ∂Ω

}
,

and (4.8) follows from (4.7) and the classical embedding H2(Ω) → L∞(Ω). The inequality (4.9) with p = 2 is a
consequence of the spectral decomposition

‖∇u‖2
L2 =

∞∑
n=0

λn|〈u, ϕn〉|2 � C

∞∑
n=0

λ2
n|〈u, ϕn〉|2 = C‖Δu‖2

L2,

where (ϕn)n∈N is defined by (3.3). Thanks to the embedding H1(Ω) → Lp(Ω), with 1 ≤ p ≤ 6, the Poincaré
inequality and (4.7), we get

‖∇u‖Lp = ‖∇(u − u�)‖Lp

� C‖u − u�‖H2

� C(‖∇u‖2
L2 + ‖Δu‖2

L2)1/2,

which leads to (4.9). The inequality (4.10) follows from the regularity of Laplace operator on regular do-
mains, while (4.11) results from a spectral decomposition, in the same way as (4.9). Thanks to the embedding
H1/2(Ω) → L3(Ω), we have

‖D2u‖L3 � C
(
(‖u‖2

L2 + ‖Δu‖2
L2)1/2 + (‖u‖2

L2 + ‖Δu‖2
L2)1/4‖∇Δu‖1/2

L2

)
.

Applying the previous inequality with u replaced by u − u�, using Poincaré inequality and (4.9) we get

‖D2u‖L3 � C
(
(‖∇u‖2

L2 + ‖Δu‖2
L2)1/2 + (‖∇u‖2

L2 + ‖Δu‖2
L2)1/4‖∇Δu‖1/2

L2

)
� C

(
‖Δu‖L2 + ‖Δu‖1/2

L2 ‖∇Δu‖1/2
L2

)
,

which gives (4.12) thanks to (4.11). Inequalities (4.13), (4.14), (4.15) are consequences of Galiardo Nirenberg
inequalities. �

We will also need the following proposition.
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Proposition 4.2 ([5], Lem. 2.3). If m ∈ H1(Ω), the restriction of Hd(m) to Ω belongs to H1(Ω), and there
exists C = C(Ω) > 0 such that,

‖Hd(m)‖H1(Ω) � C‖m‖H1(Ω).

4.2. Local smooth solutions: proof of Theorem 4.1

This section is dedicated to the proof of Theorem 4.1, following the strategy of [5], Theorem 1.1. This proof
is in six steps.

First step: Approximate problem

We denote by Vn the finite dimensional space built on the n first eigen-functions of −Δ on Ω with Neumann
conditions, and by Pn the orthogonal projection from L2(Ω, R) on Vn. We seek a solution mn ∈ C1([0, Tn),Vn),
with Tn > 0 of⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂mn

∂t
= α

{ 1
λ

Δmn + Hext +
1
λ

Pn[|∇mn|2mn] − Pn[〈Hext, mn〉mn]

−Pn[mn ∧ (mn ∧ Hd(mn))]
}
− Pn

[
mn ∧

(
1
λ

Δmn + Hd(mn) + Hext

)]
,

mn(0) = Pn(m0).

(4.16)

Thanks to Cauchy-Lipschitz theorem, there exists a unique maximal solution of (4.16) defined on [0, Tn) where
Tn ∈ (0, +∞].

Second step: L2 estimate

Taking the inner product in L2(Ω) of (4.16) by mn, and using (4.7) and (4.8), we get C = C(Ω, α, λ) > 0
such that

1
2

d
dt

[‖mn‖2
L2

]
+

α

λ
‖∇mn‖2

L2 =
∫

Ω

α

λ
|∇mn|2|mn|2 + α〈Hext, mn〉(1 − |mn|2)

� C(1 + |Hext|)[1 + (‖mn‖2
L2 + ‖Δmn‖2

L2)2].
(4.17)

Thus, for every T ∈ (0, Tn), for every t ∈ [0, T ], we have

‖mn(t)‖2
L2 +

2α

λ

∫ t

0

‖∇mn‖2
L2 � ‖m0‖2

L2 + C[1 + ‖Hext‖L∞(0,T )]
∫ t

0

[1 + (‖mn‖2
L2 + ‖Δmn‖2

L2)2]. (4.18)

Third step: H2 estimate

Multiplying (4.16) by Δ2mn and using integrations by parts, we get

1
2

d
dt

[
‖Δmn‖2

L2(Ω)

]
+

α

λ
‖∇Δmn‖2

L2(Ω) = I1 + I2 + I3 + I4, (4.19)

where

I1 := −α

λ

∫
Ω

〈∇(|∇mn|2mn),∇Δmn〉,

I2 :=
1
λ

∫
Ω

〈∇mn ∧ Δmn,∇Δmn〉,

I3 :=
∫

Ω

α〈∇ (mn ∧ (mn ∧ Hd(mn))) ,∇Δmn〉 + 〈∇(mn ∧ Hd(mn)),∇Δmn〉,

I4 :=
∫

Ω

α〈Hext,∇mn〉〈mn,∇Δmn〉 + α〈Hext, mn〉〈∇mn,∇Δmn〉 + 〈∇mn ∧ Hext,∇Δmn〉.
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Working as in [5], third step of the proof of Theorem 1.1, we get C = C(Ω, α, λ) > 0 such that we can estimate
the first three terms as

|I1 + I2 + I3| � C[1 + (‖mn‖2
L2 + ‖Δmn‖2

L2)5/4]‖∇Δmn‖3/2
L2 .

For the fourth term, we have, thanks to Cauchy-Schwarz inequality,

|I4| =
∫

Ω

(2α|mn| + 1)|Hext||∇mn||∇Δmn|
� (2α‖mn‖L∞ + 1)|Hext|‖∇mn‖L2‖∇Δmn‖L2.

Using (4.7) and (4.8), we get C = C(Ω, α) such that

|I4| � C|Hext|(1 + ‖mn‖2
L2 + ‖Δmn‖2

L2)‖∇Δmn‖L2.

Thus, there exists C = C(Ω, α, λ) > 0 such that

1
2

d
dt

[‖Δmn‖2
L2

]
+

α

λ
‖∇Δmn‖2

L2 � C
(
1 + (‖mn‖2

L2 + ‖Δmn‖2
L2)5/4

)
‖∇Δmn‖3/2

L2

+ C|Hext|
(
1 + ‖mn‖2

L2 + ‖Δmn‖2
L2

) ‖∇Δmn‖L2

� α

4λ
‖∇Δm‖2

L2 + C

(
4λ

α

)3 [
1 + (‖mn‖2

L2 + ‖Δmn‖2
L2)5

]
+

α

4λ
‖∇Δm‖2

L2 + C
4λ

α
|Hext|2

[
1 + (‖mn‖2

L2 + ‖Δmn‖2
L2)2

]
.

Simplifying the terms containing ‖∇Δmn‖L2, and summing with (4.18), we get, for every T ∈ (0, Tn), for every
t ∈ [0, T ],

d
dt

[
‖mn‖2

L2(Ω) + ‖Δmn‖2
L2(Ω)

]
+

α

λ

[
‖∇mn‖2

L2(Ω) + ‖∇Δmn‖2
L2(Ω)

]
�

C(1 + ‖Hext‖2
L∞(0,T ))

(
1 + (‖mn‖2

L2(Ω) + ‖Δmn‖2
L2(Ω))

5
)

, (4.20)

where C = C(Ω, α, λ). Thus, there exists T ∗ > 0 such that:
• for every n, the solution of the approximate problem (4.16) is defined (at least) on (0, T ∗) (see [5],

Lem. 2.4);
• for every T ∈ (0, T ∗), (mn)n∈N∗ is bounded in

L2((0, T ), H3(Ω)) ∩ L∞((0, T ), H2(Ω)) ∩ H1((0, T ), H1(Ω, R3)).

Fourth step: Convergence
As in [5], these bounds allow to extract converging subsequences and pass to the limit n → +∞. In particular

the terms with Hext do not pose any difficulty. The proof of the conservation of the punctual norm of m is
identical to [5].

Fifth step: L2-stability
Let m1, m2 be two solutions of (3.15), T ∗ := min{T ∗

1 , T ∗
2 }, v := m1−m2. We prove that, for every T ∈ (0, T ∗),

there exists C > 0 such that
sup

t∈[0,T ]

‖v(t)‖L2(Ω) � C‖v(0)‖L2(Ω). (4.21)
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One has

∂v

∂t
= α

[ 1
λ

Δv +
1
λ
|∇m1|2v +

1
λ

(|∇m1|2 − |∇m2|2
)
m2

− v ∧ (m1 ∧ Hd(m1)) − m2 ∧ (v ∧ Hd(m1)) − m2 ∧ (m2 ∧ Hd(v))

− 〈Hext, v〉m1 − 〈Hext, m2〉v
]

+ v ∧
(

1
λ

Δm1 + Hd(m1)
)

+ m2 ∧
(

1
λ

Δv + Hd(v)
)

+ v ∧ Hext.

Multiplying this equation by v, integrating over Ω, using the fact that m1, m2 ∈ L∞((0, T ), H2)∩L2((0, T ), H3),
we get f ∈ L1(0, T ) such that, for every t ∈ [0, T ],

d
dt

‖v‖2
L2 +

α

λ
‖∇v‖2

L2 � f(t)‖v‖2
L2.

We conclude (4.21) thanks to Gronwall Lemma.

Sixth step: H2-stability

With the same notations as in the previous step, we prove that, for every T ∈ (0, T ∗), there exists C =
C(Ω, α, λ) > 0 such that

sup
t∈[0,T ]

‖v(t)‖H2(Ω) � C‖v(0)‖H2(Ω). (4.22)

We go back to the Galerkin approximations. Taking the inner product of the equation on mn with Δ2mn,
integrating by parts on Ω, integrating in time between 0 and t and taking the limit when n tends to infinity
gives the following inequality (thanks to the lower semi continuity of the norms under the weak topology)

1
2
‖Δv(t)‖2

L2(Ω) +
α

λ

∫ t

0

‖∇Δv‖2
L2(Ω) � 1

2
‖Δv0‖2

L2(Ω +
∫ t

0

9∑
j=1

Jj(τ)dτ, (4.23)

where J1, . . . , J9 respectively stand for the following expressions

J1 :=
∣∣∣∣∫

Ω

∇(v ∧ Δm1)∇Δv

∣∣∣∣ ,
J2 :=

∣∣∣∣∫
Ω

∇(v ∧ Hd(m1))∇Δv

∣∣∣∣ ,
J3 :=

∣∣∣∣∫
Ω

∇(m2 ∧ Δv)∇Δv

∣∣∣∣ ,
J4 :=

∣∣∣∣∫
Ω

∇(m2 ∧ Hd(v))∇Δv

∣∣∣∣ ,
J5 :=

∣∣∣∣∫
Ω

∇(|∇m1|2v)∇Δv

∣∣∣∣ ,
J6 :=

∣∣∣∣∫
Ω

∇((|∇m1|2 − |∇m2|2)m2)∇Δv

∣∣∣∣ ,
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J7 :=
∣∣∣∣∫

Ω

∇(v ∧ (m1 ∧ Hd(m1)))∇Δv

∣∣∣∣ ,
J8 :=

∣∣∣∣∫
Ω

∇(m2 ∧ (v ∧ Hd(m1) + m2 ∧ Hd(v)))∇Δv

∣∣∣∣ ,
J9 :=

∣∣∣∣∫
Ω

α〈∇[〈Hext, v〉m1],∇Δv〉 − α〈∇[〈Hext, m2〉v],∇Δv〉 − 〈∇v ∧ Hext,∇Δv〉
∣∣∣∣ .

Working as in [5], pp. 12–13, there exists f1 ∈ L1(0, T ) such that∣∣∣∣∣∣
8∑

j=1

Jj

∣∣∣∣∣∣ � α

4λ
‖∇Δv‖2

L2 + f1(t)
(‖v(t)‖2

L2 + ‖Δv(t)‖2
L2

)
. (4.24)

For the last term J9, we get from Cauchy-Schwarz inequality that

|J9| �
∫

Ω

[
α(|m1| + |m2|) + 1

]
|∇v||∇Δv||Hext| + α

[
|∇m1| + |∇m2|

]
|v||∇Δv||Hext|

�
[
α(‖m1‖L∞ + ‖m2‖L∞) + 1

]
‖∇v‖L2‖∇Δv‖L2|Hext|

+ α
[
‖∇m1‖L∞ + ‖∇m2‖L∞

]
‖v‖L2‖∇Δv‖L2|Hext|.

Using the embeddings H3(Ω) → W 1,∞(Ω), H2(Ω) → H1(Ω) and (4.7), there exists C = C(Ω, α) > 0 such that

|J9| � C
[
1 + ‖m1‖H3 + ‖m2‖H3

]
|Hext|(‖v‖2

L2 + ‖Δv‖2
L2)1/2‖∇Δv‖L2.

Since Hext ∈ L∞(0, T ) and m1, m2 ∈ L2((0, T ), H3), this proves the existence of f2 ∈ L1(0, T ) such that

|J9| � α

4λ
‖∇Δv‖2

L2 + f2(t)
(‖v‖2

L2 + ‖∇Δv‖2
L2

)
. (4.25)

Therefore, using (4.23), (4.24), (4.25) we get f ∈ L1(0, T ) such that

‖Δv(t)‖2
L2 +

α

λ

∫ t

0

‖∇Δv‖2
L2 � ‖Δv0‖2

L2 +
∫ t

0

f(τ)
[
‖v(τ)‖2

L2 + ‖Δv(τ)‖2
L2

]
dτ.

We conclude (4.22) by applying Gronwall Lemma. �

4.3. 2D global solutions: proof of Theorem 4.2

In this section, we give the proof of Theorem 4.2. We follow the strategy of [5], Theorem 1.2, in three steps.
Namely, let m be a local solution of (3.15). We prove that, under the assumption (4.1), m is bounded in
L∞((0, T ), H2(Ω)) for every T > 0, which gives the conclusion.

First step: Estimate on ∇m

Multiplying the first equation in (3.15) by
∂m

∂t
, we get

∫
Ω

∣∣∣∂m

∂t

∣∣∣2 = −α
d
dt

[Eλ(m)] +
∫

Ω

α

〈
Hext,

∂m

∂t

〉
+
〈

m ∧ Hλ(m),
∂m

∂t

〉
.
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Moreover, the first equation in (3.15) provides

∣∣∣∂m

∂t

∣∣∣2 = (1 + α2)|m ∧ H(m)|2,

and thus,

Eλ(m(t)) +
1
α

(
1 − 1√

1 + α2

)∫ t

0

∥∥∥∂m

∂t

∥∥∥2

L2(Ω)
� Eλ(m0) +

∫ t

0

〈
Hext,

dm�

dt

〉
.

Thanks to an integration by parts in the last integral and the property |m�| � 1, we get

Eλ(m(t)) � Eλ(m0) + 2‖Hext‖L∞ + ‖Ḣext‖L1. (4.26)

Second step: Estimate on Δm

Multiplying the first equation of (3.15) by Δm we get

1
2

d
dt

‖∇m‖2
L2 +

α

λ
‖Δm‖2

L2 =
α

λ
‖∇m‖4

L4 + K1 + K2,

where

K1 :=
∫

Ω

−α〈Hd(m) − 〈Hd(m), m〉m, Δm〉 + 〈m ∧ Hd(m), Δm〉,

K2 := α

∫
Ω

|∇m|2〈Hext, m〉.

The inequalities (4.13) and (4.26) give

‖∇m‖4
L4(Ω) � C∗B1‖Δm‖2

L2(Ω), (4.27)

where B1 is the left hand side of (4.1). Thanks to (4.1), there exists ε > 0 such that 1 − ε − C∗B1 > 0. Using
Proposition 4.2, we can bound K1 and K2 by

|K1| � (α + 1)‖Hd(m)‖L2‖Δm‖L2

� εα

λ
‖Δm‖2

L2 +
λ

εα
(α + 1)2,

|K2| � α|Hext|‖∇m‖2
L2.

Thus, we get
1
2

d
dt

‖∇m(t)‖2
L2 +

α

λ
(1 − ε − C∗B1)‖Δm‖2

L2 � λ

εα
(α + 1)2 + α|Hext|B1.

Integrating in time, we get the existence of a constant B2 = B2(Ω, α, λ, ε, ‖∇m0‖L2 , ‖Hext‖L∞ , ‖Ḣext‖L1) > 0
such that ∫ t

0

‖Δm‖2
L2 � B2

[
‖∇m0‖2

L2 + t
]
. (4.28)
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Third step: Estimate on ∇Δmn

Let us consider the solutions of (4.16). In the 2D case, it is possible to give better bounds for the right-hand
side of (4.19).

Namely, thanks to Cauchy-Schwarz inequality, we have

|I1| � α

λ

∫
Ω

2|D2mn||∇mn||mn||∇Δmn| + |∇mn|3|∇Δmn|

� α

λ

[
2‖mn‖L∞‖∇mn‖L∞‖D2mn‖L2‖∇Δmn‖L2 + ‖∇mn‖3

L6‖∇Δmn‖L2

]
.

Using (4.10), (4.14) and (4.15), we get C = C(Ω) > 0 such that

|I1| � Cα

λ

[
‖mn‖L∞‖∇mn‖1/2

L2 ‖Δmn‖L2‖∇Δmn‖3/2
L2 + ‖∇mn‖L2‖Δmn‖2

L2‖∇Δmn‖L2

]
.

Thus, there exists C1 = C1(Ω, α, λ) > 0 such that

|I1| � α

8λ
‖∇Δmn‖2

L2 + C1

[
‖mn‖4

L∞‖∇mn‖2
L2‖Δmn‖4

L2 + ‖∇mn‖2
L2‖Δmn‖4

L2

]
. (4.29)

For I2, we have thanks to Cauchy-Schwarz inequality,

|I2| � 1
λ

∫
Ω

|∇mn||Δmn||∇Δmn|

� 1
λ
‖∇mn‖L∞‖Δmn‖L2‖∇Δmn‖L2 ,

and using (4.15), we get C2 = C2(Ω, α, λ) > 0 such that

|I2| � C

λ
‖∇mn‖1/2

L2 ‖Δmn‖L2‖∇Δmn‖3/2
L2

� α

4λ
‖∇Δmn‖2

L2 + C2‖∇mn‖2
L2‖Δmn‖4

L2 . (4.30)

Thanks to Cauchy-Schwarz inequality, we have

|I3| �
∫

Ω

[
2α|mn| + 1

]
|∇mn||Hd(mn)||∇Δmn| +

[
α|mn| + 1

]
|mn||∇Hd(mn)||∇Δmn|

�
[
2α‖mn‖L∞ + 1

][
‖∇mn‖L∞‖Hd(mn)‖L2‖∇Δmn‖L2 + ‖mn‖L∞‖∇Hd(mn)‖L2‖∇Δmn‖L2

]
which, using (4.15) and Proposition 4.2, gives a constant C = C(Ω) > 0 such that

|I3| � C
[
2α‖mn‖L∞ + 1

][
‖∇mn‖1/2

L2 ‖mn‖L2‖∇Δmn‖3/2
L2 + ‖mn‖L∞‖mn‖H1‖∇Δmn‖L2

]
.

Therefore, there exists C3 = C3(Ω, α, λ) > 0 such that

|I3| � α

8λ
‖∇Δmn‖2

L2 + C3

[
‖mn‖4

L∞ + 1
][
‖∇mn‖2

L2‖mn‖4
L2 + ‖mn‖2

L∞‖mn‖2
H1

]
. (4.31)

The last term is estimated thanks to Cauchy-Schwarz inequality. Indeed, one has

|I4| �
∫

Ω

[
2α|mn| + 1

]
|Hext||∇mn||∇Δmn|

�
[
2α‖mn‖L∞ + 1

]
|Hext|‖∇mn‖L2‖∇Δmn‖L2,
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and thus, there exists C4 = C4(Ω, α, λ) > 0 such that

|I4| � α

8λ
‖∇Δmn‖2

L2 + C4[‖mn‖2
L∞ + 1]|Hext|2‖∇mn‖2

L2. (4.32)

Putting together (4.19), (4.29), (4.30), (4.31) and (4.32), we get the inequality

‖Δmn(t)‖2
L2 +

α

λ

∫ t

0

‖∇Δmn‖2
L2 � ‖Δm0‖2

L2 +
∫ t

0

F (‖mn‖L2 , ‖mn‖L∞ , ‖∇mn‖L2 , ‖Δmn‖L2).

Considering the liminf when n → +∞ in both sides (the norms are lower semi continuous for the weak topology),
and using (4.26), we get C = C(Ω, α, λ, ‖Hext‖L∞ , ‖Ḣext‖L1 , m0) > 0 such that

‖Δm(t)‖2
L2 +

α

λ

∫ t

0

‖∇Δm(τ)‖2
L2dτ � ‖Δm0‖2

L2 + C

∫ t

0

(1 + ‖Δm(τ)‖4
L2)dτ. (4.33)

Finally, under assumption (4.1), inequality (4.28) holds, thus, Gronwall Lemma applied to (4.33) proves that,
for every T > 0, ‖Δmn(t)‖L2 is bounded uniformly with respect to t ∈ [0, T ]. �

4.4. 3D Global smooth solutions on ellipsoidal domains: proof of Theorem 4.3

This section is dedicated to the proof of Theorem 4.3. This proof involves ideas quite different from those
in [5].

Let m be a local solution of (3.15). We prove that, under the assumptions (4.2) and (4.3), m belongs to
L∞((0, T ), H2) for every T > 0, which gives the conclusion.

Let us first notice that it is sufficient to justify (4.4) for every T > 0. Indeed, let us assume that (4.4) holds
for every T > 0. Under the assumption (4.3), by continuity, we have N(T ) < α for T small enough. Let

T ∗ := sup{T > 0; N(T ) < α}.

We assume T ∗ < +∞. Then, by continuity N(T ∗) = α, thus (4.4) proves that

‖Δm(t)‖L2 � ‖Δm0‖L2 , ∀t ∈ [0, T ∗].

Then, thanks to (4.3) and the definition of N(T ∗), we have N(T ∗) < α. This is in contradiction with the
definition of T ∗. Therefore, T ∗ = +∞ and m ∈ L∞((0, +∞), H2(Ω)).

Now, in order to prove (4.4), we go back to the equality (4.19) for the approximate solutions, and as in the
preceding section, we improve the bounds on I1, I2, I3, I4 in order to get the conclusion.

Thanks to Holder inequality, we have

|I1| � α

λ

∫
Ω

2|D2mn||∇mn||mn||∇Δmn| + |∇mn|3|∇Δmn|

� Cα

λ

[
‖D2mn‖L3‖∇mn‖L6‖mn‖L∞‖∇Δmn‖L2 + ‖∇mn‖3

L6‖∇Δmn‖L2

]
.

Using (4.12) and (4.9), we get a constant C = C(Ω) such that

|I1| � Cα

λ
[‖mn‖L∞‖Δmn‖3/2

L2 ‖∇Δmn‖3/2
L2 + ‖Δmn‖3

L2‖∇Δmn‖L2 ],

which, using (4.11), gives the existence of C1 = C1(Ω) > 0 such that

|I1| � C1α

λ
‖∇Δmn‖2

L2

(
‖mn‖L∞‖Δmn‖L2 + ‖Δmn‖2

L2

)
. (4.34)
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As far as I2 is concerned, using Holder inequality, we can estimate

|I2| � 1
λ

∫
Ω

|∇mn||Δmn||∇Δmn|

� 1
λ
‖∇mn‖L6‖Δmn‖L3‖∇Δmn‖L2

� C

λ
‖Δmn‖3/2

L2 ‖∇Δmn‖3/2
L2

using (4.9) and (4.12), with a constant C = C(Ω). Thanks to (4.11), we get C2 = C2(Ω) such that

|I2| � C2

λ
‖Δmn‖L2‖∇Δmn‖2

L2 . (4.35)

For I3, Holder inequality leads to

|I3| �
∫

Ω

(2α|mn| + 1)
(
|∇mn||Hd(mn)||∇Δmn| + |mn||∇Hd(mn)||∇Δmn|

)
� (2α‖mn‖L∞ + 1)‖∇Δmn‖L2

(
‖∇mn‖L6‖Hd(mn)‖L3 + ‖mn‖L∞‖∇Hd(mn)‖L2

)
. (4.36)

Thanks to the embedding H1(Ω) → L3(Ω) and Proposition 4.2, there exists C = C(Ω) > 0 such that

‖Hd(mn)‖L3 � C‖Hd(mn)‖H1 � C‖mn‖H1 . (4.37)

The second part is more subtle. As emphasized in the Remark 4.3, the proof takes advantage of the particular
structure of the stray field on an ellipsoid. Indeed, we have

Hd(m) = Hd(m�) + Hd(m − m�)

where Hd(m�) is constant over Ω, thus thanks to Proposition 4.2 and Poincaré inequality, there exists C =
C(Ω) > 0 such that

‖∇Hd(m)‖L2 = ‖∇Hd(m − m�)‖L2 � C‖m − m�‖H1 � C‖∇m‖L2 . (4.38)

Using (4.36), (4.37) and (4.38), we get a constant C = C(Ω) > 0 such that

|I3| � C(2α‖mn‖L∞ + 1)‖∇Δmn‖L2

(
‖Δmn‖L2‖mn‖H1 + ‖mn‖L∞‖∇mn‖L2

)
� C3(2α‖mn‖L∞ + 1)(‖mn‖H1 + ‖mn‖L∞)‖∇Δmn‖2

L2 (4.39)

using (4.9) and (4.11), and for a constant C3 = C3(Ω) > 0. Eventually, the last term is treated as follows

|I4| �
∫

Ω

(2α|mn| + 1)|Hext||∇mn||∇Δmn| (4.40)

� (2α‖mn‖L∞ + 1)|Hext|‖∇mn‖L2‖∇Δmn‖L2 (4.41)
� C4(2α‖mn‖L∞ + 1)|Hext|‖∇Δmn‖2

L2 (4.42)

thanks to (4.9) and (4.11) and where C4 = C4(Ω).
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Finally, integrating (4.19) between t = 0 and t = T , using (4.34), (4.35), (4.39), (4.42), letting n → +∞ and
using |m| ≡ 1, we get C� = C�(Ω) > 0 such that

‖Δm(T )‖2
L2 +

2α

λ

∫ T

0

‖∇Δm(t)‖2
L2dt � ‖Δm0‖2

L2

+
∫ T

0

C�(α + 1)‖∇Δm‖2
L2

( 1
λ

[‖Δm‖L2 + ‖Δm‖2
L2] + ‖∇m‖L2 + 1 + |Hext|

)
.

Let us assume that λ ∈ (0, 1) is sufficiently small so that

C�(Ω)(α + 1)(1 + ‖Hext‖L∞) <
α

λ
,

which is a consequence of (4.3) if C∗∗ is chosen so that C∗∗ > C�. Then, we have

‖Δm(T )‖2
L2 +

α

λ

∫ T

0

‖∇Δm(t)‖2
L2dt � ‖Δm0‖2

L2

+
∫ T

0

C�(α + 1)‖∇Δm‖2
L2

( 1
λ

[
‖Δm‖L2 + ‖Δm‖2

L2

]
+ ‖∇m‖L2

)
.

Since λ ∈ (0, 1), thanks to (4.9) with p = 2, there exists C = C(Ω) > 0 such that

‖∇m‖L2 � C

λ
‖Δm‖L2,

and thus, there exists C∗∗ = C∗∗(Ω) > C�(Ω) such that

‖Δm(T )‖2
L2 +

α

λ

∫ T

0

‖∇Δm(t)‖2
L2dt � ‖Δm0‖2

L2

+
∫ T

0

C∗∗ (α + 1)
λ

‖∇Δm‖2
L2

[
‖Δm‖L2 + ‖Δm‖2

L2

]
dt.

This last estimation leads to (4.4). �
Remark 4.4. The same result holds with the same proof, when Ω is a 2D ellipsoid, instead of a 3D one.
However, the result is weaker that the one of Theorem 4.2 because the initial condition needs to be close to
constants in H2(Ω). In Theorem 4.2 instead, one only needs an initial condition close to constants in H1(Ω).

5. Exponential stabilization of uniform magnetizations on ellipsoidal domains

The goal of this subsection is to propose external magnetic fields Hext that produce exponential convergence
to global minimizers of the energy Eλ. We consider an ellipsoidal domain Ω of R

3 with |Ω| = 1, α > 0 and we
study (3.15) and (3.16) with λ > 0. On Ω, the stray field generated by a uniform magnetization is constant,
thus, up to a change of coordinates, we may assume that

∀x ∈ Ω, ∀m̃ ∈ S2, Hd(m̃χΩ)(x) = −Dm̃, (5.1)

where

D =

⎛⎝ α1 0 0
0 α2 0
0 0 α3

⎞⎠ , 0 � α1 � α2 � α3. (5.2)
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Therefore, for non uniform magnetizations the stray field is given by

Hd(m) = −Dm� + H̃d(m), (5.3)

where
H̃d(m) := Hd(m − m�χΩ). (5.4)

Thus, in view of (1.8), we have
‖H̃d(m)‖L2 � ‖m− m�‖L2 (5.5)

and Poincaré inequality shows the existence of Cd = Cd(Ω) > 0 such that

‖H̃d(m)‖L2 � Cd‖∇m‖L2, ∀m ∈ H1(Ω). (5.6)

We are now in a position to state the results. We begin with the description of the minimizers.

Proposition 5.1. Let Ω be a 3D ellipsoid. There exists λ∗ = λ∗(Ω) > 0 such that, for every λ ∈ (0, λ∗), the
micromagnetic energy Eλ has exactly two global minimizers: m ≡ e1 and m ≡ −e1.

Physically speaking, it is clear that taking Hext parallel to e1 should force the magnetization to converge
to e1. This is indeed the case, and we even show a slightly stronger result. More precisely, we prove that,
for λ small enough (i.e. for small domains Ωλ =

√
λΩ), the constant external field Hext = βej forces, locally

around ej , the exponential convergence of the PDE solutions to ej , when the parameter β > 0 is large enough.
When j = 1, we therefore get the exponential stabilization of the global minimizers of the energy.

In that aim, let us introduce the modified energy Eβ,j defined by

Eβ,j(m) :=
∫

Ω

1
2λ

|∇m|2 + β(1 − m
(j)
� ) +

1
2

∫
R3

|Hd(m)|2 (5.7)

that measures the H1-distance between m and ej since we have∫
Ω

|m − ej |2 = 2(1 − m
(j)
� ). (5.8)

Proposition 5.2. Let j ∈ {1, 2, 3}. When Hext(t) ≡ βej for t ∈ [0, T ], the energy Eβ,j(m) is not increasing
on [0, T ] along the trajectories of (3.15), and we have the estimate on a smooth solution m of (3.15)

dEβ,j

dt
� − 1

α

(
1 − 1√

1 + α2

)∫
Ω

∣∣∣∣∂m

∂t

∣∣∣∣2 on (0, T ). (5.9)

We now state the main result of this section.

Theorem 5.1. Let Ω be a 3D ellipsoid and α > 0. Let α1, α2, α3, β
∗
1 , β∗

2 , β∗
3 be the real numbers defined by (5.1),

(5.2) and

β∗
1 := α1 +

α3 − α2

2α
, β∗

2 := α2 +
α3 − α1

2α
, β∗

3 := α3 +
α2 − α1

2α
· (5.10)

Let j ∈ {1, 2, 3} and β > β∗
j . There exists λ∗ = λ∗(Ω, α, β) > 0, η = η(Ω, α) > 0, ν = ν(Ω, α, β, λ) > 0,

K(Ω, α, β, λ) > 0 such that, for every m0 ∈ H2(Ω, S2) with
∂m0

∂ν
≡ 0 on ∂Ω, Eβ,j(m0) � β and

‖Δm0‖L2 < η (5.11)

there exists a unique global solution of (3.15) and (3.16) with Hext ≡ βej which satisfies

‖m(t) − ej‖H1(Ω) � K‖m0 − ej‖H1(Ω)e−νt. (5.12)
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Remark 5.1. The same result holds in 2D when Ω is an ellipse and with (5.11) replaced by

‖∇m0‖L2 < η.

Remark 5.2. The constants λ∗ = λ∗(Ω, α, β) > 0, η = η(Ω, α) > 0, ν = ν(α, β, λ) > 0, will be explicit in the
proof.

Remark 5.3. In view of (4.6), when Ω is a 3D ellipsoid, λ small enough, β large enough and m0 close enough
to a constant in H2 then the solution m(t) of (3.15), (3.16) with Hext = βej converges exponentially to ej

in Hs(Ω) for every s < 2. Indeed, by interpolation, we have for every θ ∈ (0, 1],

‖m(t) − ej‖Hθ+2(1−θ) � ‖m(t) − ej‖θ
H1‖m(t) − ej‖1−θ

H2

� C(Ω, α, β, λ)‖m0‖H2‖m(t) − ej‖θ
H1 .

Remark 5.4. When Ω is a 3D ellipsoid, λ small enough, β large enough, m0 ∈ H4(Ω, S2) is in a
H2-neighborhood of constant magnetizations, and when Hext ≡ βej , then, it can be shown with arguments
similar to those used in this article, that smooth solutions belong to

C1([0, +∞), H2) ∩ C0([0, +∞), H4)

and satisfy

∀t > 0, ‖Δ2m(t)‖L2 � ‖Δ2m0‖L2,

∀t > 0,
d
dt

‖Δm(t)‖2
L2 +

α

λ
‖∇Δm(t)‖2

L2 � 0.

Thus, thanks to interpolation theory, the exponential convergence of m(t) to ej holds in Hs(Ω), for every s < 4.
Generalizing the method, one can prove that the convergence in Theorem 5.1 may hold in any Hs(Ω) for s > 0
provided the initial condition is close enough to constant magnetizations in a space Hs′

(Ω) where s′ > s is well
chosen.

The rest of this section, devoted to the proof of Theorem 5.1, is organized as follows. In Section 5.1, we
prove Propositions 5.1 and 5.2. In Section 5.2, we prove the exponential convergence to zero of ‖∇m(t)‖L2 .
In Section 5.3, we deduce from the previous result the exponential convergence to zero of |m�(t) − ej | (or
‖m(t) − ej‖L2 in view of (5.8)). Finally, in Section 5.4, we prove Theorem 5.1 and give explicitly the different
constants.

5.1. Proof of Propositions 5.1 and 5.2

We give here the proofs of Propositions 5.1 and 5.2.

Proof of Proposition 5.1. From (5.3) and (5.4), one has

‖Hd(m)‖2
L2 = 〈Dm�, m�〉 + ‖Hd(m − m�χΩ)‖2

L2 − 2
∫

Ω

〈Hd(m�χΩ), Hd(m − m�χΩ)〉.

In the previous equality, the last integral vanishes, since it coincides with∫
Ω

〈Hd(m�χΩ), m − m�〉
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which is zero because Hd(m�χΩ) is constant on Ω. Therefore, we have

Eλ(m) =
∫

Ω

1
2λ

‖∇m‖2
L2 +

1
2

∫
R3

‖Hd(m)‖2
L2

� 1
2λ

‖∇m‖2
L2 +

〈Dm�, m�〉
2

·

Noticing that |m�|2 + 1
|Ω|‖m − m�‖2

L2 = 1, and using Poincare inequality, we get a constant CP = CP (Ω) > 0
such that

Eλ(m) � 1
2

(
CP

λ
− α1

|Ω|
)
‖m − m�‖2

L2 +
1
2
(〈Dm�, m�〉 − α1|m�|2

)
+

α1

2
·

For λ < λ∗ =
CP |Ω|

α1
this is always greater than Eλ(e1χΩ) =

α1

2
, with equality if and only if m = m� = e1. �

Proof of Proposition 5.2. Taking the scalar product in L2(Ω) of the first equation of (3.15) with
∂m

∂t
, we get

∫
Ω

∣∣∣∂m

∂t

∣∣∣2 = −α
dEβ,j

dt
+
∫

Ω

〈
m ∧ Hλ(m),

∂m

∂t

〉
.

This gives (5.9) because ∣∣∣∂m

∂t

∣∣∣2 = (1 + α2)|m ∧ H(m)|2. �

5.2. Exponential convergence of ‖∇m‖L2

We now pass to exponential convergence results.

Proposition 5.3. (1) Let Ω be a 2D ellipsoid with |Ω| = 1, α > 0, Hext ∈ L∞(R+, R3) with Ḣext ∈ L1(R+, R3),
and c = c(Ω) > 0 be the largest constant such that

c‖∇u‖L2(Ω) � ‖Δu‖L2(Ω), ∀u ∈ H2(Ω) with
∂u

∂ν
≡ 0 on ∂Ω. (5.13)

There exists C∗ = C∗(Ω) > 0 such that, for every λ > 0 with

0 < λ <
αc2

4[‖Hext‖L∞ + C∗(α + 1)]
, (5.14)

for every m0 ∈ H2(Ω, S2) with
∂m0

∂ν
≡ 0 on ∂Ω, and

‖∇m0‖2
L2 + λ(‖Hd(m0)‖2

L2 + 4‖Hext‖L∞ + 2‖Ḣext‖L1) <
1
C∗ , (5.15)

there exists a global solution of (3.15) with initial condition m(0) = m0 and this solution satisfies

‖∇m(t)‖L2 � ‖∇m0‖L2e−
αc2
2λ t, ∀t > 0. (5.16)

(2) Let Ω be a 3D ellipsoidal domain with |Ω| = 1, α > 0, Hext ∈ C0 ∩ L∞(R+, R3) and c = c(Ω) > 0 be the
largest constant such that (5.13) holds. There exists C∗∗ = C∗∗(Ω, α) > 0 such that, for every λ ∈ (0, 1) with

C∗∗(1 + ‖Hext‖L∞) <
α

λ
, (5.17)
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for every m0 ∈ H2(Ω, S2) with
∂m0

∂ν
≡ 0 on ∂Ω, and

C∗∗[‖Δm0‖L2 + ‖Δm0‖2
L2 ] < α, (5.18)

there exists a global solution of (3.15) with initial condition m(0) = m0 and this solution satisfies (5.16).

Remark 5.5. The constants C∗ = C∗(Ω) and C∗∗ = C∗∗(Ω, α) will be given explicitly.

Remark 5.6. Let us notice that the exponential convergence of ‖∇m(t)‖L2 to zero holds with any Hext =
Hext(t) in the suitable functional space. One does not need Hext ≡ βej here.

Proof of Proposition 5.3. First, notice that if C∗ > C∗4 where C∗ is as in Theorem 4.2 (resp. C∗∗ > C∗∗(α + 1),
where C∗∗ is as in Thm. 4.3), then, under the assumption (5.15) (resp. (5.17) and (5.18)), then Theorem 4.2
(resp. Thm. 4.3) ensures the existence of global solutions.

The beginning of the proof is the same in the 2D and 3D situations. We estimate the behavior of the energy

Ẽ(m) :=
1
2

∫
Ω

|∇m|2

by taking the scalar product in L2(Ω) of the first equation of (3.15) with Δm. We get

dẼ

dt
= −α

λ
‖Δm‖2

L2 +
α

λ
‖∇m‖4

L4 −
∫

Ω

|∇m|2〈Hext, m〉

+
∫

Ω

−α〈Δm, Hd(m)〉 − α|∇m|2〈Hd(m), m〉 + 〈Δm, m ∧ Hd(m)〉. (5.19)

Using |m| ≡ 1, we have

−
∫

Ω

|∇m|2〈Hext, m〉 � |Hext|‖∇m‖2
L2

� |Hext|
c2

‖Δm‖2
L2. (5.20)

Next, thanks to an integration by part, the property
∂m

∂ν
≡ 0 on ∂Ω leads to

∫
Ω

α〈Δm, Hd(m)〉 + 〈Δm, m ∧ Hd(m)〉 =
∫

Ω

α〈Δm, H̃d(m)〉 + 〈Δm, m ∧ H̃d(m)〉,

and using (5.6), (5.13) and |m| ≡ 1, we deduce that∫
Ω

α〈Δm, Hd(m)〉 + 〈Δm, m ∧ Hd(m)〉 � (α + 1)Cd‖Δm‖L2‖∇m‖L2

� (α + 1)Cd

c
‖Δm‖2

L2. (5.21)

Eventually, Cauchy-Schwarz inequality, (1.8) and (4.9) implies that there exists C1 = C1(Ω) > 0 such that

α

∫
Ω

|∇m|2〈Hd(m), m〉 � α

∫
Ω

|∇m|2|Hd(m)|

� α‖∇m‖2
L4‖Hd(m)‖L2

� αC1‖Δm‖2
L2. (5.22)
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First case: Ω is a 2D ellipse

In the same way as in the first step of the proof of Theorem 4.2, we get

Eλ(m(t)) � Eλ(m0) + 2‖Hext‖L∞ + ‖Ḣext‖L1. (5.23)

Thanks to (4.13) and (5.23), we have

α

λ
‖∇m‖4

L4 � αC∗4

λ
‖∇m‖2

L2‖Δm‖2
L2

� αC∗4
(
2Eλ(m0) + 4‖Hext‖L∞ + 2‖Ḣext‖L1

)
‖Δm‖2

L2 . (5.24)

Finally, using (5.19) and (5.20), (5.21), (5.22), (5.24), we get

d
dt

Ẽ(m) � −
[α

λ
− αC∗4

(
2Eλ(m0) + 4‖Hext‖L∞ + 2‖Ḣext‖L1

)
− |Hext|

c2
− (α + 1)Cd

c
− αC1

]
‖Δm‖2

L2.

Let us assume that (5.14) and (5.15) hold with the constant C∗ defined by

C∗ := max
{

4C∗4; Cdc + C1c
2
}
.

Then, we have

dẼ

dt
� −αc2

λ
Ẽ, (5.25)

which gives the conclusion.

Second case: Ω is a 3D ellipsoid

Thanks to (4.9) and (4.6), we get C2 = C2(Ω) > 0 such that

α

λ
‖∇m‖4

L4 � αC2

λ
‖Δm‖4

L2

� αC2

λ
‖Δm0‖2

L2‖Δm‖2
L2 . (5.26)

Finally, using (5.19) and (5.20), (5.21), (5.22), (5.26), we get

d
dt

Ẽ(m) � −
[α

λ
− α

λ
C2‖Δm0‖2

L2 − |Hext|
c2

− (α + 1)Cd

c
− αC1

]
‖Δm‖2

L2 .

Let us assume that (5.17) and (5.18) hold with the constant C∗∗ such that

C∗∗ := max
{
C∗∗(α + 1), 4αC2,

4
c2

,
4(α + 1)Cd

c
+ 4αC1

}
.

Then, we have (5.25) which gives the conclusion. �

5.3. Exponential convergence of m�

Now we study the solutions of (3.15) with the external magnetic field Hext ≡ βej , j ∈ {1, 2, 3}.
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Proposition 5.4. Let β∗
k, k = 1, 2, 3 be defined by (5.10). Let j ∈ {1, 2, 3} and β > β∗

j . Let m be a global
smooth solution of (3.15) with Hext ≡ βej such that

• Eβ,j(m0) � β;
• there exists δ > 0 such that

‖∇m(t)‖L2 � ‖∇m0‖L2e−δt, ∀t > 0.

Then, there exists C > 0 (that does not depend on m) such that

|m�(t) − ej | � C
(
|m�(0) − ej | + ‖∇m0‖L2

)
e−νt

where ν := min{α(β − βj), δ}.
Proof of Proposition 5.4. We define

fj(t) :=
∫

Ω

−α

λ
|∇m|2m(j) + αβm(j)(m(j) − m

(j)
� ) + α〈Dm�, m� − m〉m(j)

−α
[
H̃d(m)(j) − 〈H̃d(m), m〉m(j)

]
+ (m ∧ H̃d(m))(j).

First case: j = 1
Integrating over Ω the first component of the first equality of (3.15) with Hext ≡ βe1, we get

d
dt

[1 − m
(1)
� ] = −αβ(1 − (m(1)

� )2) − (α3 − α2)m
(2)
� m

(3)
� + α(α1 − 〈Dm�, m�〉)m(1)

� + f1(t).

Since Eβ,1(m0) � β and t 
→ Eβ,1[m(t)] is not increasing (see Prop. 5.2), we have m
(1)
� (t) � 0, ∀t � 0. Thanks

to that inequality and |m�(t)| � 1, we get

α(α1 − 〈Dm�, m�〉)m(1)
� � αα1(1 − |m(1)

� |2)m(1)
�

� αα1[1 − (m(1)
� )2].

Using |m�| � 1, we get

(α3 − α2)|m(2)
� m

(3)
� | � α3 − α2

2
[(m(2)

� )2 + (m(3)
� )2]

� α3 − α2

2
(1 − (m(1)

� )2).

Thanks to the two previous inequalities, we get

d
dt

[1 − m
(1)
� ] � −αβ1[1 − m

(1)
� ] + f1(t), where β1 := β − β∗

1 .

Thanks to (5.5) and Poincaré formula, there exists CP = CP (Ω) > 0 such that

α〈Dm�, m − m�〉m(1) � αα3CP ‖∇m‖L2 ,∫
Ω

−α[H̃d(m) − 〈H̃d(m), m〉m] + (m ∧ H̃d(m))(1) � (α + 1)Cd‖∇m‖L2(Ω),

αβ

∫
Ω

m(1)[m(1) − m
(1)
� ] � αβCP ‖∇m‖L2(Ω),
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thus
|f1(t)| � F1e−δt, ∀t > 0,

where
F1 := (αα3 + α + 1 + αβ)CP ‖∇m0‖L2 +

α

λ
‖∇m0‖2

L2 .

Finally, we get

(1 − m
(1)
� )(t) � (1 − m

(1)
� )(0)e−αβ1t +

F1

|αβ1 − δ| |e
−αβ1t − e−δt|,

which gives the conclusion.

Second case: j = 2
As in the first case, we have

d
dt

[1 − m
(2)
� ] = −αβ(1 − (m(2)

� )2) + (α3 − α1)m
(1)
� m

(3)
� + α(α2 − 〈Dm�, m�〉)m(2)

� + f2(t).

We have

α(α2 − 〈Dm�, m�〉)m(2)
� � αα2[1 − (m(2)

� )2],

(α3 − α1)|m(2)
� m

(3)
� | � α3 − α1

2
(1 − (m(2)

� )2),

thus
d
dt

[1 − m
(2)
� ] � αβ2[1 − m

(2)
� ] + f2(t) where β2 := β − β∗

2 .

We conclude in the same way as in the first case.

Third case: j = 3
We have

d
dt

[1 − m
(3)
� ] = −αβ(1 − (m(3)

� )2) + (α1 − α2)m
(1)
� m

(2)
� + α(α3 − 〈Dm�, m�〉)m(3)

� + f3(t).

We have

α(α3 − 〈Dm�, m�〉)m(3)
� � αα3[1 − (m(3)

� )2]

(α2 − α1)|m(1)
� m

(2)
� | � α2 − α1

2
(1 − (m(3)

� )2),

thus
d
dt

[1 − m
(3)
� ] � αβ3[1 − m

(3)
� ] + f3(t) where β3 := β − β∗

3 .

We conclude in the same way as in the first case. �

5.4. Conclusion: proof of Theorem 5.1

In this section, we deduce from Propositions 5.3 and 5.4 the values of the constants in Theorem 5.1.

2D case:
Let Ω be a 2D ellipsoid domain, α > 0, λ > 0, j ∈ {1, 2, 3}, β > β∗

j , m0 ∈ H2(Ω, S2) with ∂m0/∂ν ≡ 0 on ∂Ω
and Eβ,j(m0) � β. Let C∗ = C∗(Ω) and c = c(Ω) be as in Proposition 5.3. We assume

λ < λ∗(Ω, α, β) := min
{ αc2

4[β + C∗(α + 1)]
,

1
2C∗[1 + 4β]

}
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and
‖∇m0‖L2 � η(Ω, α) :=

1√
2C∗ ·

Then, (5.14) and (5.15) hold, thus (5.16) is satisfied. Applying Proposition 5.4, and using (5.8), we get (5.12)
with

ν = ν(Ω, α, β, λ) := min
{αc2

2λ
, α(β − β∗

j )
}
. (5.27)

3D case:
Let Ω be a 3D ellipsoid, α > 0, λ ∈ (0, 1), j ∈ {1, 2, 3}, β > β∗

j , m0 ∈ H2(Ω, S2) with ∂m0/∂ν ≡ 0 on ∂Ω
and Eβ,j(m0) � β. Let C∗∗ = C∗∗(Ω, α) and c = c(Ω) be as in Proposition 5.3. We assume

λ < λ∗(Ω, α, β) :=
α

C∗[1 + β]

and
‖Δm0‖L2 < η(Ω, α) := min

{
1,

α

2C∗∗
}
.

Then, (5.17) and (5.18) hold, thus (5.16) is satisfied. Applying Proposition 5.4, and using (5.8), we get (5.12)
with (5.27).

6. Magnetization switching on ellipsoidal domains: PDE study

We use the notation β∗
1 defined in (5.10), Hext(m) defined by (2.5).

Proposition 6.1. Let Ω be a 2D (resp. 3D) ellipsoid domain, α > 0, β > β∗
1 , λ∗ = λ∗(Ω, α, β) be as in The-

orem 5.1, T > 0, mref ∈ H2((0, T ), S2) be such that −mref(0) = mref(T ) = e1. We define Hext ∈ L∞(R+, R3)
by

Hext(t) :=
{

Hext(mref(t)) if 0 � t � T,
βe1 if t > T,

where Hext(mref) is defined by (2.5). There exists η > 0 such that, for every m0 ∈ H2(Ω, S2) (resp. m0 ∈
H3(Ω, S2)) with

∂m0

∂ν
≡ 0 on ∂Ω and ‖m0 + e1‖H1(Ω) < η (resp. ‖m0 + e1‖H2(Ω) < η), the solution of (3.15)

converges exponentially to e1 in H1(Ω).

Proof. We use the continuity with respect to initial conditions for the C0([0, T ], H2)-topology and we apply
Theorem 5.1 on (T, +∞). �

7. Conclusion

In this paper, we have given a first contribution to the mathematical study of the switching of the magne-
tization inside a three dimensional small particle. This opens improvements in several directions. First, our
results are still restricted to ellipsoidal particles and should be generalized to different shapes. It turns out
to be not a simple technical difficulty and we plan to investigate this problem in the near future. Also, the
case, particularly relevant in practice of an array of particles should be investigated. Indeed, it is absolutely
crucial that the particles behave independently, and switching one particle must not perturb the other ones.
Eventually, we plan to consider other types of control like the one that models the spin injection technique.

Let us finish by pointing out several differences between Landau-Lifschitz equations and the harmonic maps
heat flow into spheres. Although the equations look quite similar, the gyromagnetic term in the magnetic model
make them very different from the point of view of mathematical analysis. Indeed, a lot more results are known
in the more geometrical case of the harmonic maps equation, like explicit blow-up solutions in finite time [7,9],
global regular solutions if the energy is small [17] or if the energy is non-increasing in time [11], or if the initial
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condition takes values in a open half-sphere [13], etc. Non-uniqueness results are known for the heat flow of
harmonic maps [8] or for Landau-Lifschitz equations but only when the effective magnetic field consists of the
exchange term [1]. Such results are still not known for Landau-Lifschitz equations in full generality and seem
very challenging.

Acknowledgements. The authors would like to thank J.-M. Coron for very valuable discussions.
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