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STRUCTURE OF APPROXIMATE SOLUTIONS OF VARIATIONAL PROBLEMS
WITH EXTENDED-VALUED CONVEX INTEGRANDS

Alexander J. Zaslavski1

Abstract. In this work we study the structure of approximate solutions of autonomous variational
problems with a lower semicontinuous strictly convex integrand f : Rn × Rn → R1 ∪ {∞}, where Rn

is the n-dimensional Euclidean space. We obtain a full description of the structure of the approximate
solutions which is independent of the length of the interval, for all sufficiently large intervals.
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1. Introduction

In this paper we study the structure of approximate solutions of the following variational problem

∫ T

0

f(v(t), v′(t))dt → min, (P)

v : [0, T ] → Rn is an absolutely continuous (a.c.) function such that v(0) = x,

where x ∈ Rn and T > 0. Here Rn is the n-dimensional Euclidean space with the Euclidean norm | · | and
f : Rn ×Rn → R1 ∪ {∞} is an extended-valued integrand.

We are interested in a turnpike property of the approximate solutions of the problem (P) which is independent
of the length of the interval T , for all sufficiently large intervals. To have this property means, roughly speaking,
that the approximate solutions of the variational problems are determined mainly by the integrand f , and are
essentially independent of T and x.

Turnpike properties are well known in mathematical economics. The term was first coined by Samuelson in
1948 (see [13]) where he showed that an efficient expanding economy would spend most of the time in the vicinity
of a balanced equilibrium path (also called a von Neumann path). This property was further investigated for
optimal trajectories of models of economic dynamics (see, for example, [1,3,8,14,17] and the references mentioned
there). In the classical turnpike theory the function f has the turnpike property (TP) if there exists x̄ ∈ Rn

(a turnpike) which satisfies the following condition:
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For each M, ε > 0 there is a natural number L such that for each number T ≥ 2L, each x ∈ Rn satisfying
|x| ≤ M and each solution v : [0, T ] → Rn of the problem (P) the inequality |v(t) − x̄| ≤ ε holds for all
t ∈ [L, T − L].

Note that L depends neither on T nor on x.
In the classical turnpike theory [1,3,8,14] the cost function f is strictly convex. Under this assumption the

turnpike property can be established and the turnpike x̄ is a unique solution of the minimization problem
f(x, 0) → min, x ∈ Rn. In this situation it is shown that for each a.c. function v : [0,∞) → Rn either the
function

T →
∫ T

0

f(v(t), v′(t))dt− Tf(x̄, 0), T ∈ (0,∞)

is bounded (in this case the function v is called (f)-good) or it diverges to ∞ as T → ∞. Moreover, it is also
established that any (f)-good function converges to the turnpike x̄. In the sequel this property is called the
asymptotic turnpike property.

Recently it was shown that the turnpike property is a general phenomenon which holds for large classes
of variational and optimal control problems without convexity assumptions. (See, for example, [7,15–17] and
the references mentioned therein.) For these classes of problems a turnpike is not necessarily a singleton
but may instead be a nonstationary trajectory (in the discrete time nonautonomous case) or an absolutely
continuous function on the interval [0,∞) (in the continuous time nonautonomous case) or a compact subset
of the space Rn (in the autonomous case). Note that all of these recent results were obtained for finite-valued
integrands f (in other words, for unconstrained variational problems). In this paper we study the problems (P)
with an extended-valued integrand f : Rn×Rn → R1∪{∞} (in other words, constrained variational problems).
Clearly, these constrained problems with extended-valued integrands are more difficult and less understood than
their unconstrained prototypes in [15–18]. They are also more realistic from the point of view of applications.
As we have mentioned before in general a turnpike is not necessarily a singleton. Nevertheless problems of the
type (P) for which the turnpike is a singleton are of great importance because of the following reasons: there
are many models for which a turnpike is a singleton; if a turnpike is a singleton, then approximate solutions of
(P) have very simple structure and this is very important for applications; if a turnpike is a singleton, then it
can be easily calculated as a solution of the problem f(x, 0) → min, x ∈ Rn.

In our recent paper [19] the goal is to understand when the turnpike property holds with the turnpike being
a singleton. We show there that the turnpike property follows from the asymptotic turnpike property. More
precisely, we assume that any (f)-good function converges to a unique solution x̄ of the problem f(x, 0) → min,
x ∈ Rn and show that the turnpike property holds and x̄ is the turnpike (see [19], Thm. 1.1). Note that in [19]
we do not use convexity assumptions. It should be mentioned that analogous results which show that turnpike
properties follow from asymptotic turnpike properties for unconstrained variational problems with finite-valued
integrands were obtained in [7,17].

The goal of the present paper is to study the structure of approximate solutions of the problems (P) in the
regions [0, L] and [T − L, T ] (see the definition of the turnpike property). We will show (see Thm. 3.2) that if
v : [0, T ] → Rn is an approximate solution of the problem (P), then for all t ∈ [0, L] the state v(t) is arbitrary
close to X(t) where X : [0,∞) → Rn is a unique solution of a certain infinite horizon optimal control problem
satisfying X(0) = x. We will also show (see Thm. 3.3) that if v : [0, T ] → Rn is an approximate solution of the
problem (P), then for all t ∈ [0, L] the state v(T−t) is arbitrary close to Λ(t), where Λ : [0,∞) → Rn is a unique
solution of a certain infinite horizon optimal control problem which does not depend on x. These results are
established when the function f is strictly convex. In this case combining Theorem 1.1 of [19] and Theorems 3.2
and 3.3 of the present paper we obtain the full description of the structure of approximate solutions of the
problems (P). Note that the structure of approximate solutions of the problems (P) in the region [0, L] depends
on x while their structure in the region [T −L, T ] does not depend on x. Actually it depends only on f and we
have here a new kind of the turnpike property.



874 A.J. ZASLAVSKI

2. Preliminaries

In this paper we denote by mes(E) the Lebesgue measure of a Lebesgue measurable set E ⊂ R1, denote by
| · | the Euclidean norm of the n-dimensional space Rn and by 〈·, ·〉 the inner product of Rn. For each function
h : X → R1 ∪ {∞}, where X is nonempty, set dom(h) = {x ∈ X : h(x) <∞}.

Let a > 0, ψ : [0,∞) → [0,∞) be an increasing function which satisfies

lim
t→∞ψ(t) = ∞ (2.1)

and let f : Rn × Rn → R1 ∪ {∞} be a convex lower semicontinuous function such that the set dom(f) is
nonempty and closed and that

f(x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for each x, y ∈ Rn. (2.2)

We suppose that there exists x̄ ∈ Rn such that the following assumption holds:
(A1) (x̄, 0) is an interior point of the set dom(f) and

f(x̄, 0) ≤ f(x, 0) for all x ∈ Rn. (2.3)

Remark 2.1. Note that the existence of x̄ ∈ Rn satisfying (2.3) follows from (2.1) and (2.2). In this paper we
also assume that (x̄, 0) is an interior point of the set dom(f).

They are well-known facts from convex analysis [12] that the function f is continuous at the point (x̄, 0) and
that there is l ∈ Rn such that

f(x, y) ≥ f(x̄, 0) + 〈l, y〉 for each x, y ∈ Rn. (2.4)

We also assume that for each pair (x1, y1), (x2, y2) ∈ dom(f) such that (x1, y1) �= (x2, y2) and each α ∈ (0, 1)
the inequality

f(α(x1, y1) + (1 − α)(x2, y2)) < αf(x1, y1) + (1 − α)f(x2, y2) (2.5)

holds. This means that the function f is strictly convex. The integrand f was considered in [19], Example 2.
It was shown there that all the results of [19] hold for the integrand f .

In our study we will use an integrand L defined by

L(x, y) = f(x, y) − f(x̄, 0) − 〈l, y〉 for all x, y ∈ Rn. (2.6)

We consider the following variational problem

∫ T

0

f(v(t), v′(t))dt → min,

v : [0, T ] → Rn is an a.c. function such that v(0) = x,

where x ∈ Rn and T > 0.
For each x ∈ Rn and each number T > 0 set

σ(f, T, x) = inf

{∫ T

0

f(v(t), v′(t))dt : v : [0, T ] → Rn is an a.c. function satisfying v(0) = x

}
, (2.7)

σ(f, T ) = inf

{∫ T

0

f(v(t), v′(t))dt : v : [0, T ] → Rn is an a.c. function

}
.
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For each T1 ∈ R1, T2 > T1 and each a.c. function v : [T1, T2] → Rn set

If (T1, T2, v) =
∫ T2

T1

f(v(t), v′(t))dt. (2.8)

In [19] we study a class of integrands which contains the integrand f and obtain the following useful results.

Proposition 2.1 ([19], Prop. 7.1). For each M > 0 there exists cM > 0 such that

σ(f, T, x) ≥ Tf(x̄, 0) − cM

for each x ∈ Rn satisfying |x| ≤M and each T > 0.

By Proposition 2.1 for each a.c. function v : [0,∞) → Rn the function

T →
∫ T

0

f(v(t), v′(t))dt− Tf(x̄, 0), T ∈ (0,∞)

is bounded from below.
We say that an a.c. function v : [0,∞) → Rn is called (f)-good [3,5,17] if

sup

{∣∣∣∣∣
∫ T

0

f(v(t), v′(t))dt− Tf(x̄, 0)

∣∣∣∣∣ : T ∈ (0,∞)

}
<∞. (2.9)

It should be mentioned that our study of the structure of solutions of variational problems on intervals [0, T ]
with sufficiently large length T is strongly based on asymptotic behavior of (f)-good functions [17].

Proposition 2.2 ([19], Prop. 1.1). Let v : [0,∞) → Rn be an a.c. function. Then either v is (f)-good or

∫ T

0

f(v(t), v′(t))dt− Tf(x̄, 0) → ∞ as T → ∞.

Moreover, if v is (f)-good, then sup{|v(t)| : t ∈ [0,∞)} <∞.

Proposition 2.3 ([19], Prop. 7.2). Let v : [0,∞) → Rn be an (f)-good function. Then

lim
t→∞ |v(t) − x̄| = 0.

For each M > 0 denote by XM the set of all x ∈ Rn such that |x| ≤M and that there exists an a.c. function
v : [0,∞) → Rn which satisfies

v(0) = x, If (0, T, v) − Tf(x̄, 0) ≤M for each T ∈ (0,∞). (2.10)

The following turnpike result was established in [19], Theorem 1.1.

Theorem 2.1. Let ε,M > 0. Then there exist a natural number L and a positive number δ such that for each
real T > 2L and each a.c. function v : [0, T ] → Rn which satisfies

v(0) ∈ XM and If (0, T, v) ≤ σ(f, T, v(0)) + δ

there exist τ1 ∈ [0, L] and τ2 ∈ [T − L, T ] such that

|v(t) − x̄| ≤ ε for all t ∈ [τ1, τ2]

and if |v(0) − x̄| ≤ δ, then τ1 = 0.
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In the sequel we use a notion of an overtaking optimal function introduced in [1,3,14].
An a.c. function v : [0,∞) → Rn is called (f)-overtaking optimal if for each a.c. function u : [0,∞) → Rn

satisfying u(0) = v(0),
lim sup
T→∞

[If (0, T, v) − If (0, T, u)] ≤ 0.

The following result obtained in [19], Theorem 1.2, establishes the existence of an overtaking optimal function.

Theorem 2.2. Assume that x ∈ Rn and that there exists an (f)-good function v : [0,∞) → Rn satisfying
v(0) = x. Then there exists an (f)-overtaking optimal function u∗ : [0,∞) → Rn such that u∗(0) = x.

The following optimality notion is also used in the study of infinite horizon variational problems (see
[4,6,7,9–11] and the references mentioned there).

An a.c. function v : [0,∞) → Rn is called (f)-minimal if for each T1 ≥ 0, each T2 > T1 and each a.c. function
u : [T1, T2] → Rn satisfying u(Ti) = v(Ti), i = 1, 2 the inequality

∫ T2

T1

f(v(t), v′(t))dt ≤
∫ T2

T1

f(u(t), u′(t))dt

holds.
We will show in our forthcoming paper that an a.c. function v : [0,∞) → Rn is (f)-overtaking optimal if

and only if v is (f)-minimal and (f)-good.

3. Main results

In this section we state our main results which describe the structure of approximate solutions of variational
problems in the regions containing end points. We consider the variational problems with the integrand f
introduced in Section 2. We suppose that all the assumptions posed in Section 2 hold. In addition we suppose
that the following assumption holds.

(A2) For each M, ε > 0 there exists γ > 0 such that for each pair of points (ξ1, ξ2), (η1, η2) ∈ dom (f) which
satisfies |ξi|, |ηi| ≤M , i = 1, 2 and |ξ1 − ξ2| ≥ ε the following inequality holds:

2−1f(ξ1, η1) + 2−1f(ξ2, η2) − f(2−1(ξ1 + ξ2), 2−1(η1 + η2)) ≥ γ.

Remark 3.1. Note that (A2) follows from (2.5) if the restriction of f to dom(f) is continuous.

Since the restriction of f to dom(f) is strictly convex (see (A2)) Theorem 2.2 implies the following result.

Theorem 3.1. Assume that x ∈ Rn and that there exists an (f)-good function v : [0,∞) → Rn satisfying
v(0) = x. Then there exists a unique (f)-overtaking optimal function v∗ : [0,∞) → Rn such that v∗(0) = x.

Let z ∈ Rn and let there exist an (f)-good function v : [0,∞) → Rn such that v(0) = z. Denote by Y (f,z) :
[0,∞) → Rn a unique (f)-overtaking optimal function satisfying Y (f,z)(0) = z which exists by Theorem 3.1.

In the following theorem (as in the whole section) we suppose that assumptions (A1) and (A2) hold. This
theorem which will be proved in Section 5 describes the structure of approximate solutions of variational
problems in the regions containing the left end point.

Theorem 3.2. Let M, ε be positive numbers and let L0 be a natural number. Then there exist δ > 0 and a
natural number L1 > L0 such that for each number T ≥ L1, each z ∈ XM and each a.c. function v : [0, T ] → Rn

which satisfies
v(0) = z, If (0, T, v) ≤ σ(f, T, z) + δ

the following inequality holds:
|v(t) − Y (f,z)(t)| ≤ ε, t ∈ [0, L0].
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Now we intend to describe the structure of approximate solutions of variational problems in the regions
containing the right end point. In order to meet this goal define the functions f̄ , L̄ : Rn ×Rn → R1 ∪ {∞} by

f̄(x, y) = f(x,−y), L̄(x, y) = L(x,−y) for all x, y ∈ Rn. (3.1)

It is clear that
dom(f̄) = {(x, y) ∈ Rn ×Rn : (x,−y) ∈ dom(f)}, (3.2)

dom(f̄) is nonempty closed convex subset of Rn ×Rn,

f̄(x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for each x, y ∈ Rn ×Rn, (3.3)

(x̄, 0) is an interior point of the set dom(f̄) and the function f̄ is convex and lower semicontinuous.
By (3.1), (2.4) and (2.6) for each x, y ∈ Rn

f̄(x, y) = f(x,−y) ≥ f(x̄, 0) + 〈l,−y〉 = f̄(x̄, 0) + 〈−l, y〉 , (3.4)

L̄(x, y) = L(x,−y) = f(x,−y) − f(x̄, 0) − 〈l,−y〉 = f̄(x, y) − f̄(x̄, 0) − 〈−l, y〉 . (3.5)

In view of (3.1), (3.2) and (2.5) for each (x1, y1), (x2, y2) ∈ dom(f̄) such that (x1, y1) �= (x2, y2) and each
α ∈ (0, 1)

f̄(α(x1, y1) + (1 − α)(x2, y2)) < αf̄(x1, y1) + (1 − α)f̄(x2, y2). (3.6)

Therefore all the assumptions posed in Section 2 for the function f also hold for the function f̄ . Also all the
results of Section 2 stated for the function f are valid for the function f̄ . In particular Theorems 2.1 and 2.2
hold for the integrand f̄ .

Assumption (A2) and (3.1) imply that the following assumption holds.
(A3) For each pair of positive numbers M, ε there exists γ > 0 such that for each pair (ξ1, ξ2), (η1, η2) ∈

dom(f̄) which satisfies
|ξi|, |ηi| ≤M, i = 1, 2 and |ξ1 − ξ2| ≥ ε

the inequality
2−1f̄(ξ1, η1) + 2−1f̄(ξ2, η2) − f̄(2−1(ξ1 + ξ2), 2−1(η1 + η2)) ≥ γ0.

It is clear now that Theorems 3.1 and 3.2 hold for the integrand f̄ .
For each M > 0 denote by X̄M the set of all x ∈ Rn such that |x| ≤M and that there exists an a.c. function

v : [0,∞) → Rn which satisfies

I f̄ (0, T, v) − T f̄(x̄, 0) ≤M for each T ∈ (0,∞). (3.7)

Set
X̄∗ = ∪{X̄M : M ∈ (0,∞)}. (3.8)

Since the function f̄ is convex we obtain that the set X̄M is convex for all M > 0. In view of Proposition 2.2
of [19] (see also Prop. 4.1) for each M > 0 the set X̄M is closed.

It follows from Theorem 3.1 applied to the integrand f̄ that for each x ∈ X̄∗ there exists a unique (f̄)-
overtaking optimal function Λ(x) : [0,∞) → Rn such that Λ(x)(0) = x. In view of Proposition 2.2 Λ(x) is
(f̄)-good for any x ∈ X̄∗. Proposition 2.3 implies that for each x ∈ X̄∗

lim
t→∞ |Λ(x)(t) − x̄| = 0. (3.9)

For each x ∈ X̄∗ put
π(x) = lim

T→∞
[I f̄ (0, T,Λ(x)) − Tf (̄x, 0)]. (3.10)
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Let x ∈ X̄∗. We show that π(x) is well-defined and finite. By (3.5), (3.9) and (3.10)

π(x) = lim
T→∞

[∫ T

0

L̄(Λ(x)(t), (Λ(x))′(t))dt −
∫ T

0

〈
l, (Λ(x))′(t)

〉
dt

]

= lim
T→∞

∫ T

0

L̄(Λ(x)(t), (Λ(x))′(t))dt− lim
T→∞

〈
l,Λ(x)(T ) − x

〉

=
∫ ∞

0

L̄(Λ(x)(t), (Λ(x))′(t))dt− 〈l, x̄− x〉 . (3.11)

Thus π(x) is well-defined. Since Λ(x) is (f̄)-good Proposition 2.2 implies that π(x) is finite for each x ∈ X̄∗.
The function π plays an important role in our study of the structure of approximate solutions of variational

problems in the regions containing the right end point. We will show that approximate solutions of the prob-
lem (P) are arbitrary close to the function Λ(x∗)(T − t) in a region which contains the right end point T , where
x∗ is a unique point of minimum of the function π.

In Section 6 we will prove the following result.

Proposition 3.1.
1. For each M > 0 the function π : X̄M → R1 is lower semicontinuous.
2. For all y, z ∈ X̄∗ satisfying y �= z and each α ∈ (0, 1),

π(αy + (1 − α)z) < απ(y) + (1 − α)π(z).

3. π(x̄) = 0.
4. There is M̃ > |x̄| such that π(x) ≥ 2 for each x ∈ X̄∗ \ X̄M̃ .

Let M̃ > 0 be as guaranteed by Proposition 3.1. It follows from Proposition 3.1 that there exists a unique
x∗ ∈ X̄M̃ such that

π(x∗) < π(x) for all x ∈ X̄M̃ \ {x∗}. (3.12)

In view of Proposition 3.1 if x ∈ X̄∗ \ X̄M̃ , then

π(x) ≥ 2 > π(x̄) ≥ π(x∗). (3.13)

In the following theorem (as in the whole section) we suppose that assumptions (A1) and (A2) hold. This
theorem describes the structure of approximate solutions of variational problems in the regions containing the
right end point.

Theorem 3.3. Let M, ε be positive numbers and let L1 be a natural number. Then there exist δ > 0 and a
natural number L2 > L1 such that if a real number T > 2L2 and if an a.c. function v : [0, T ] → Rn satisfies

v(0) ∈ XM and If (0, T, v) ≤ σ(f, T, v(0)) + δ,

then
|v(T − t) − Λ(x∗)(t)| ≤ ε for all t ∈ [0, L1].

Theorem 3.3 will be proved in Section 7.
Note that one can easily construct a broad class of integrands satisfying the assumptions posed in the paper

and for which our results hold. For example, assume that K is a closed convex subset of Rn × Rn with a
nonempty interior and f : K → R1 is a strictly convex continuous function for which the minimization problem
f(x, 0) → min subject to (x, 0) ∈ K has a solution x̄ such that (x̄, 0) is an interior point of K and such that
f(x, y) ≥ c1|x| + c2|y|p − c3 for all (x, y) ∈ Rn × Rn, where c1, c2, c3 > 0 and p > 1 are constants. We set
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f(x, y) = ∞ for all (x, y) ∈ R2n \K. It is not difficult to see that the integrand f satisfies all the assumptions
posed in Sections 1 and 2 and Theorems 3.1–3.3 hold for f .

The characterization of approximate solutions in the initial and final periods is implicit: it is in terms of
unique (f)-overtaking functions satisfying certain boundary conditions. In order to obtain approximations of
these (f)-overtaking functions we need to find a finite number of approximate solutions of the problem (P) with
the same boundary condition x and with different large enough real numbers T . This information can be useful
if we need to find an approximate solution of the problem (P) with the boundary condition x and with a new
interval [0, T ] where T is large enough. This approximate solution is the concatenation of the approximation of
Y (f,x)(t), the turnpike x̄ and the approximation of Λ(x∗)(T − t).

4. Auxiliary results for the proof of Theorem 3.2

Proposition 4.1 ([2], Chap. 10, [19], Prop. 2.2). Let T > 0 and let vk : [0, T ] → Rn, k = 1, 2, . . . be a
sequence of a.c. functions such that the sequence {If(0, T, vk)}∞k=1 is bounded and that the sequence {vk(0)}∞k=1

is bounded. Then there exist a strictly increasing sequence of natural numbers {ki}∞i=1 and an a.c. function
v : [0, T ] → Rn such that

vki(t) → v(t) as i→ ∞ uniformly on [0, T ],
If (0, T, v) ≤ lim inf

i→∞
If (0, T, vki).

Proposition 4.2 ([19], Prop. 2.1). Let M0,M1 be positive numbers. Then there exists M2 > 0 such that for
each T > 0 and each a.c. function v : [0, T ] → Rn which satisfies

|v(0)| ≤M0, I
f (0, T, v) ≤ Tf(x̄, 0) +M1

the following inequality holds:
|v(t)| ≤M2 for all t ∈ [0, T ].

Proposition 4.3 ([19], Prop. 2.3). Let ε > 0. Then there exists δ > 0 such that if an a.c. function v : [0, 1] → Rn

satisfies |v(0) − x̄|, |v(1) − x̄| ≤ δ, then

If (0, 1, v) ≥ f(x̄, 0) − ε.

5. Proof of Theorem 3.2

For simplicity we use the notation Y (z) = Y (f,z) for each z ∈ ∪{XM : M ∈ (0,∞)}.
Assume that the assertion of the theorem does not hold. Therefore for each integer k there exists

Tk ≥ L0 + 4k (5.1)

and an a.c. function vk : [0, Tk] → Rn such that

vk(0) ∈ XM , If (0, Tk, vk) ≤ σ(f, Tk, vk(0)) + k−1, (5.2)

sup{|vk(t) − Y (vk(0))(t)| : t ∈ [0, L0]} > ε. (5.3)
In the first step of the proof we obtain some useful estimates for |vk(t)|, t ∈ [0, Tk] and |Y (vk(0))(t)|, t ∈ [0,∞)
and for the integral functional with the integrand f and the functions |vk| and |Y (vk(0))|, k = 1, 2, . . .

It follows from (5.2) and the definition of XM (see (2.9)) that for each integer k ≥ 1

If (0, Tk, vk) ≤ σ(f, Tk, vk(0)) + k−1 ≤M + Tkf(x̄, 0) + k−1, (5.4)

|vk(0)| ≤M. (5.5)
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By (5.4), (5.5) and Proposition 4.2 there exists M0 > 0 such that for each integer k ≥ 1

|vk(t)| ≤M0 for all t ∈ [0, Tk]. (5.6)

In view of (5.2) and the definition of XM (see (2.9)) for each natural number k

If (0, T, Y (vk(0))) ≤ Tf(x̄, 0) +M + 1 for all large enough T. (5.7)

Together with Proposition 4.2 and (5.5) this implies that there exists M1 > M0 such that for each natural
number k

|Y (vk(0))(t)| ≤M1 for all t ∈ [0,∞). (5.8)

By Proposition 2.1, there exists c1 > 0 such that

σ(f, T, x) ≥ Tf(x̄, 0) − c1 for each T > 0 and each x ∈ Rn satisfying |x| ≤M1. (5.9)

In our second step of the proof we show the existence of a subsequence {vki}∞i=1 and an interval [a0, b0] ⊂
(0, L0] such that |vki(t) − Y (vki

(0))(t)| ≥ ε/4 for all t ∈ [a0, b0] and all large enough integers i. Moreover, we
show that vki (respectively, Y (vki

(0))) converges to ṽ (respectively, ỹ) as i → ∞ uniformly on any bounded
subinterval of [0,∞).

Fix an integer j ≥ 1. In view of (5.1), (5.4), (5.6), (5.9) and the relation M1 > M0 for each integer k ≥ j

If (0, j, vk) = If (0, Tk, vk) − If (j, Tk, vk) ≤M + k−1 + Tkf(x̄, 0) − σ(f, Tk − j, vk(j))

≤M + k−1 + Tkf(x̄, 0) − (Tk − j)f(x̄, 0) + c1 ≤M + k−1 + jf(x̄, 0) + c1. (5.10)

Let k be a natural number. In view of (5.7) there is Sk > 2j + 2 such that

If (0, Sk, Y
(vk(0))) ≤ Skf(x̄, 0) +M + 1. (5.11)

It follows from (5.11), (5.8) and (5.9) that

If (0, j, Y (vk(0))) = If (0, Sk, Y
(vk(0))) − If (j, Sk, Y

(vk(0)))

≤ Skf(x̄, 0) +M + 1 − σ(f, Sk − j, Y (vk(0))(j))

≤ Skf(x̄, 0) +M + 1 − (Sk − j)f(x̄, 0) + c1 = jf(x̄, 0) +M + 1 + c1. (5.12)

By Proposition 4.1, (5.11), (5.12) and (5.5) extracting a subsequence and re-indexing we may assume without
loss of generality that there exist a strictly increasing sequence of natural numbers {ki}∞i=1 and a.c. functions
ṽ : [0,∞) → Rn and ỹ : [0,∞) → Rn such that for each integer j ≥ 1,

vki(t) → ṽ(t) as i→ ∞ uniformly on [0, j], (5.13)

Y (vki
(0))(t) → ỹ(t) as i→ ∞ uniformly on [0, j],

If (0, j, ṽ) ≤ lim inf
i→∞

If (0, j, vki),

If (0, j, ỹ) ≤ lim inf
i→∞

If (0, j, Y (vki
(0))).

Relations (5.10), (5.12) and (5.13) imply that for each integer j ≥ 1

If (0, j, ṽ) ≤M + jf(x̄, 0) + c1, I
f (0, j, ỹ) ≤ jf(x̄, 0) +M + 1 + c1. (5.14)
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In view of (5.14) and Proposition 2.2, ṽ and ỹ are (f)-good functions. Combined with Proposition 2.3 this
implies that

ṽ(t) → x̄, ỹ(t) → x̄ as t→ ∞. (5.15)

By (5.3) and (5.13),
sup{|ṽ(t) − ỹ(t)| : t ∈ [0, L0]} ≥ ε/2. (5.16)

Relation (5.16) implies that there exist a0, b0 ∈ (0, L0] such that

0 < b0 − a0 < 1 and |ṽ(t) − ỹ(t)| ≥ ε/3 for all t ∈ [a0, b0]. (5.17)

In view of (5.13) and (5.17) there is an integer i0 ≥ 4 + L0 such that for each integer i ≥ i0,

|vki(t) − Y (vki
(0))(t)| ≥ ε/4 for all t ∈ [a0, b0]. (5.18)

In our third step we show that the values of the integral functional with the integrand f and with the
functions |vki | and |Y (vki

(0))|, i = 1, 2, . . . are bounded by a constant which does not depend on i.
Assume that an integer i satisfies i ≥ i0. By (5.5), (5.6), (5.9) and the relation M1 > M0

If (a0, b0, vki) = If (0, Tki , vki) − If (0, a0, vki) − If (b0, Tki , vki)

≤M + Tkif(x̄, 0) + 1 − σ(f, a0, vki(0)) − σ(f, Tki − b0, vki(b0))

≤M + Tkif(x̄, 0) + 1 − a0f(x̄, 0) + c1 − (Tki − b0)f(x̄, 0) + c1

≤M + (b0 − a0)f(x̄, 0) + 2c1 + 1. (5.19)

In view of (5.7) there is Si > 4b0 + 4 such that

If (0, Si, Y
(vki

(0))) ≤ Sif(x̄, 0) +M + 1. (5.20)

It follows from (5.8), (5.9) and (5.20) that

If (a0, b0, Y
(vki

(0))) = If (0, Si, Y
(vki

(0))) − If (0, a0, Y
(vki

(0))) − If (b0, Si, Y
(vki

(0)))

≤ Sif(x̄, 0) +M + 1 − σ(f, a0, Y
(vki

(0))(0)) − σ(f, Si − b0, Y
(vki

(0))(b0))

≤ Sif(x̄, 0) +M + 1 − a0f(x̄, 0) + c1 − (Si − b0)f(x̄, 0) + c1

= (b0 − a0)f(x̄, 0) + 2c1 +M + 1. (5.21)

By (5.19) and (5.20) for each integer i ≥ i0,

If (a0, b0, vki), I
f (a0, b0, Y

(vki
(0)))

≤M + 2c1 + 1 + (b0 − a0)f(x̄, 0). (5.22)

In the fourth step of the proof we show that there is a constant γ0 > 0 such that for each integer i ≥ i0 and
each S ∈ [L0, Tki ],

If (0, S, 2−1(vki + Y (vki
(0))) ≤ 2−1If (0, S, vki) + 2−1If (0, S, Y (vki

(0))) − γ0(3/4)(b0 − a0).

In view of (2.1) there exists a number M2 > M1 + 1 such that

ψ(M2) > 4[2a+ 2(M + 2c1 + 1)(b0 − a0)−1 + |f(x̄, 0)|]. (5.23)



882 A.J. ZASLAVSKI

For each integer i ≥ i0 set

Ei = {t ∈ [a0, b0] : |v′ki
(t)|, |(Y (vki

(0)))′(t)| ≤M2}
∩ {t ∈ [a0, b0] : f(vki(t), v

′
ki

(t)), f(Y (vki
(0))(t), (Y (vki

(0)))′(t)) <∞}. (5.24)
Assume that an integer i ≥ i0. It follows from (5.22), (2.2), (5.24) and the monotonicity of ψ that

2(M + 2c1 + 1 + (b0 − a0)f(x̄, 0)) ≥ If (a0, b0, vki) + If (a0, b0, Y
(vki

(0)))

≥
∫ b0

a0

(ψ(|v′ki
(t)|)|v′ik

(t)| − a)dt+
∫ b0

a0

(ψ(|(Y (vki
(0)))′(t)|)|(Y (vik

(0)))′(t)| − a)dt

≥ −2(b0 − a0)a+ mes([a0, b0] \ Ei)ψ(M2)M2. (5.25)

Together with (5.23) and the inequality M2 > M1 + 1 this relation implies that

mes([a0, b0] \ Ei) ≤ (ψ(M2)M2)−1[2(b0 − a0)a+ 2(M + 2c1 + 1 + (b0 − a0)|f(x̄, 0)|)]
≤ (ψ(M2))−1[2(b0 − a0)a+ 2(M + 2c1 + 1 + (b0 − a0)|f(x̄, 0)|] ≤ (b0 − a0)/4. (5.26)

Relations (5.24) and (5.26) imply that

mes(Ei) ≥ (3/4)(b0 − a0) for each integer i ≥ i0. (5.27)

By (A2) there exists γ0 ∈ (0, 1) such that for each (ξ1, ξ2), (η1, η2) ∈ dom(f) which satisfy

|ξi|, |ηi| ≤M2, i = 1, 2, |ξ1 − ξ2| ≥ ε/8 (5.28)

the following inequality holds:

− f(2−1(ξ1 + ξ2), 2−1(η1 + η2)) + 2−1f(ξ1, η1) + 2−1f(ξ2, η2) ≥ γ0. (5.29)

For each integer i ≥ i0 define

ui(t) = 2−1(vki(t) + Y (vki
(0))(t)), t ∈ [0, Tki ]. (5.30)

Let an integer i ≥ i0. By (5.30) for almost every t ∈ [0, Tki],

f(ui(t), u′i(t)) ≤ 2−1f(vki(t), v
′
ki

(t)) + 2−1f(Y (vki
(0))(t), (Y (vki

(0)))′(t)). (5.31)

In view of (5.24), the relation M2 > M1 + 1 > M0, (5.8), (5.6), (5.18), the choice of γ0 (see (5.28) and (5.29))
and (5.30) for almost every t ∈ Ei,

f(ui(t), u′i(t)) ≤ 2−1f(vik
(t), v′ki

(t)) + 2−1f(Y (vki
(0))(t), (Y (vki

(0)))′(t)) − γ0. (5.32)

It follows from (5.24), (5.27), (5.31), (5.32) and the inclusions a0, b0 ∈ [0, L0] that for each S ∈ [L0, Tki ],

If (0, S, ui) ≤ 2−1If (0, S, vki) + 2−1If (0, S, Y (vki
(0))) − γ0mes(Ei)

≤ 2−1If (0, S, vki) + 2−1If (0, S, Y (vki
(0))) − γ0(3/4)(b0 − a0). (5.33)

Now we turn to the fifth step of our proof. Here we first need to choose certain constants.
Set

Δ = γ0(b0 − a0)/16. (5.34)
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By (A1), the continuity of f at (x̄, 0) and Proposition 4.3 there exists r ∈ (0, 1) such that:

{(ξ1, ξ2) ∈ Rn ×Rn : |ξ1 − x̄| ≤ 4r and |ξ2| ≤ 4r} ⊂ dom(f); (5.35)

|f(ξ1, ξ2) − f(x̄, 0)| ≤ 32−1Δ (5.36)

for each ξ1, ξ2 ∈ Rn satisfying |ξ1 − x̄| ≤ 4r, |ξ2| ≤ 4r;
if an a.c. function h : [0, 1] → Rn satisfies |h(0) − x̄|, |h(1) − x̄| ≤ 4r, then

If (0, 1, h) ≥ f(x̄, 0) − Δ/16. (5.37)

In view of (5.15) there exists a natural number L2 such that

|ṽ(t) − x̄|, |ỹ(t) − x̄| ≤ r/8 for all t ≥ L2. (5.38)

By (5.13) there exists an integer j ≥ i0 + 4L2 + 4 such that

k−1
j < 16−1Δ, (5.39)

|vkj (t) − ṽ(t)|, |Y (vkj
(0))(t) − ỹ(t)| ≤ r/32 for all t ∈ [0, 4L2 + 4L0 + 4]. (5.40)

We consider the function uj defined by (5.30) and define a.c. functions u(1)
j , u(2)

j : [0, 4L0 + 4L2 + 4] → Rn as
follows:

u
(1)
j (t) = uj(t), t ∈ [0, 4L0 + 4L2 + 3], (5.41)

u
(1)
j (t) = uj(4L0 + 4L2 + 3)

+ (t− (4L0 + 4L2 + 3))[vkj (4L0 + 4L2 + 4) − uj(4L0 + 4L2 + 3)],

t ∈ [4L0 + 4L2 + 3, 4L0 + 4L2 + 4],

u
(2)
j (t) = uj(t), t ∈ [0, 4L0 + 4L2 + 3], (5.42)

u
(2)
j (t) = (t− (4L0 + 4L2 + 3))[Y (vkj

(0))(4L0 + 4L2 + 4) − uj(4L0 + 4L2 + 3)]

+ uj(4L0 + 4L2 + 3), t ∈ [4L0 + 4L2 + 3, 4L0 + 4L2 + 4].
It is clear that

u
(2)
j (0) = u

(1)
j (0) = uj(0) = vkj (0) = Y (vkj

(0))(0), (5.43)

u
(1)
j (4L0 + 4L2 + 4) = vkj (4L0 + 4L2 + 4),

u
(2)
j (4L0 + 4L2 + 4) = Y (vkj

(0))(4L0 + 4L2 + 4).

Since the function Y (vkj
(0)) is (f)-overtaking optimal (5.43) implies that

If (0, 4L0 + 4L2 + 4, u(2)
j ) ≥ If (0, 4L0 + 4L2 + 4, Y (vkj

(0))). (5.44)

In view of (5.2) and (5.43)

If (0, 4L0 + 4L2 + 4, u(1)
j ) ≥ If (0, 4L0 + 4L2 + 4, vkj ) − k−1

j . (5.45)

Relations (5.38) and (5.40) imply that for all t ∈ [L2, 4L2 + 4L0 + 4],

|vkj (t) − x̄| ≤ r/32 + r/8, |Y (vkj
(0))(t) − x̄| ≤ r/32 + r/8. (5.46)
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By (5.46) and the choice of r (see (5.37))

If (4L2 + 4L0 + 3, 4L2 + 4L0 + 4, vkj ) ≥ f(x̄, 0) − Δ/16, (5.47)

If (4L2 + 4L0 + 3, 4L2 + 4L0 + 4, Y (vkj
(0))) ≥ f(x̄, 0) − Δ/16.

Let t ∈ [4L2 +4L0 +3, 4L2 +4L0 +4]. We evaluate f(u(p)
j (t), (u(p)

j )′(t)) for p = 1, 2. Relations (5.30), (5.41)
and (5.46) imply that

|u(1)
j (t) − x̄| ≤ max{|uj(4L0 + 4L2 + 3) − x̄|, |vkj (4L0 + 4L2 + 4) − x̄|}

≤ max{|vkj (4L0 + 4L2 + 3) − x̄|, |Y (vkj
(0))(4L0 + 4L2 + 3) − x̄|, |vkj (4L0 + 4L2 + 4) − x̄|}

≤ r/32 + r/8. (5.48)

It follows from (5.41) and (5.46) that

|(u(1)
j )′(t)| ≤ |vkj (4L0 + 4L2 + 4) − uj(4L0 + 4L0 + 3)|

≤ |vkj (4L0 + 4L2 + 4) − x̄| + |x̄− uj(4L0 + 4L2 + 3)| ≤ 2(r/32 + r/8). (5.49)

By (5.30), (5.42) and (5.46)

|u(2)
j (t) − x̄| ≤ max{|Y (vkj

(0))(4L0 + 4L2 + 4) − x̄|, |uj(4L0 + 4L2 + 3) − x̄|}
≤ max{|Y (vkj

(0))(4L0 + 4L2 + 4) − x̄|, |Y (vkj
(0))(4L0 + 4L2 + 3) − x̄|,

|vkj (4L0 + 4L2 + 3) − x̄|} ≤ r/32 + r/8. (5.50)
In view of (5.42) and (5.46)

|(u(2)
j )′(t)| ≤ |Y (vkj

(0))(4L0 + 4L2 + 4) − uj(4L0 + 4L2 + 3)| (5.51)

≤ |Y (vkj
(0))(4L0 + 4L2 + 4) − x̄| + |x̄− uj(4L0 + 4L2 + 3)| ≤ 2(r/32 + r/8).

Relations (5.36), (5.48)–(5.51) imply that

|f(u(p)
j (t), (u(p)

j )′(t)) − f(x̄, 0)| ≤ 32−1Δ
for p = 1, 2 and all t ∈ [4L2 + 4L0 + 3, 4L2 + 4L0 + 4]. (5.52)

It follows from (5.41), (5.42), (5.52), (5.45), (5.44), (5.39) and (5.47) that

2If(0, 4L0 + 4L2 + 3, uj) = If (0, 4L0 + 4L2 + 4, u(1)
j ) + If (0, 4L0 + 4L2 + 4, u(2)

j )

− If (4L0 + 4L2 + 3, 4L0 + 4L2 + 4, u(1)
j ) − If (4L0 + 4L2 + 3, 4L0 + 4L2 + 4, u(2)

j )

≥ If (0, 4L0 + 4L2 + 4, u(1)
j ) + If (0, 4L0 + 4L2 + 4, u(2)

j ) − 16−1Δ − 2f(x̄, 0)

≥ If (0, 4L0 + 4L2 + 4, vkj ) − k−1
j + If (0, 4L0 + 4L2 + 4, Y (vkj

(0))) − 16−1Δ − 2f(x̄, 0)

≥ If (0, 4L0 + 4L2 + 4, vkj ) + If (0, 4L0+4L2+4, Y (vkj
(0))) − 8−1Δ − 2f(x̄, 0)

≥ If (0, 4L0 + 4L2 + 3, vkj ) + If (0, 4L0+4L2+3, Y (vkj
(0)))+2f(x̄, 0) − Δ/4 − 2f(x̄, 0)

≥ 2If(0, 4L0 + 4L2 + 3, uj) + γ0(b0 − a0) − Δ/4

≥ 2If(0, 4L0 + 4L2 + 3, uj) + γ0(b0 − a0)/2.

The contradiction we have reached proves Theorem 3.2.
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6. Proof of Proposition 3.1

By (3.3) and (3.5) there exists a0 > a such that for each x, y ∈ Rn,

L̄(x, y) ≥ (3/4)max{ψ(|x|), ψ(|y|)|y|} − a0. (6.1)

Lemma 6.1. Let g ∈ {L̄, f̄} and let M > 0. Then there exists M0 > 0 such that for each a.c. function
v : [0, 1] → Rn satisfying

∫ 1

0 g(v(t), v
′(t))dt ≤M the inequality |v(t)| ≤M0 holds for all t ∈ [0, 1].

Proof. In view of (2.1) there exists M1 > 0 such that

ψ(M1) > (M + a0)4 (6.2)

and there is a1 > 0 such that
4−1ψ(t)t ≥ t− a1 for all t ≥ 0. (6.3)

Choose a number
M0 > a0 + a1 +M +M1. (6.4)

Assume that an a.c. function v : [0, 1] → Rn satisfies

∫ 1

0

g(v(t), v′(t))dt ≤M. (6.5)

We will show that
|v(t)| ≤M0 for all t ∈ [0, 1].

Let us assume the contrary. Then there exists t0 ∈ [0, 1] such that

|v(t0)| > M0. (6.6)

If |v(t)| ≥M1 for all ∈ [0, 1], then relations (3.3), (6.1) and (6.2) imply that

M ≥
∫ 1

0

g(v(t), v′(t))dt ≥ (3/4)ψ(M1) − a0.

This contradicts (6.2). The contradiction we have reached proves that there is t1 ∈ [0, 1] such that

|v(t1)| < M1.

Clearly, t1 �= t0. By (6.6), the inequality |v(t1)| < M1, (3.3), (6.1), (6.3) and (6.5),

M0 −M1 ≤ |v(t0)| − |v(t1)| ≤
∣∣∣∣
∫ t0

t1

|v′(t)|dt
∣∣∣∣ ≤

∣∣∣∣
∫ t0

t1

[a1 + 4−1ψ(|v′(t)|)|v′(t)|]dt
∣∣∣∣

≤ a1 +
∣∣∣∣
∫ t0

t1

[g(v(t), v′(t)) + a0]dt
∣∣∣∣ ≤ a1 + a0 +

∫ 1

0

g(v(t), v′(t))dt ≤ a0 + a1 +M.

This contradicts (6.4). The contradiction we have reached proves Lemma 6.1. �

Proposition 6.1. An a.c. function v : [0,∞) → Rn is (f̄)-good if and only if

∫ ∞

0

L̄(v(t), v′(t))dt := lim
T→∞

∫ T

0

L̄(v(t), v′(t))dt <∞.
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Proof. Let v : [0,∞) → Rn be an a.c. function. Then in view of (3.5) for each T > 0,

∫ T

0

f̄(v(t), v′(t))dt =
∫ T

0

L̄(v(t), v′(t))dt+ T f̄(x̄, 0) −
∫ T

0

〈l, v′(t)〉dt

=
∫ T

0

L̄(v(t), v′(t))dt+ T f̄(x̄, 0) − 〈l, v(T )− v(0)〉 . (6.7)

If v is (f̄)-good, then by Proposition 2.2 the function v is bounded and
∫ ∞

0

L̄(v(t), v′(t))dt <∞. (6.8)

If (6.8) holds, then by Lemma 6.1 the function v is bounded on [0,∞) and (6.7) and Proposition 2.2 imply that
v is (f̄)-good. Proposition 6.1 is proved. �
Proposition 6.2. Let x ∈ X̄ and let an (f̄)-good function v : [0,∞) → Rn satisfies v(0) = x. Then

∫ ∞

0

L̄(v(t), v′(t))dt− 〈l, x̄− x〉 ≥ π(x).

Proof. Since the function Λ(x) is (f̄)-overtaking optimal it is also (f̄)-good and in view of (3.5), Propositions 6.1
and 2.3,

0 ≤ lim sup
T→∞

[∫ T

0

f̄(Λ(x)(t), (Λ(x))′(t))dt−
∫ T

0

f̄(v(t), v′(t))dt

]

= lim sup
T→∞

[∫ T

0

L̄(Λ(x)(t), (Λ(x))′(t))dt−
∫ T

0

L̄(v(t), v′(t))dt−
〈
l,−x+ Λ(x)(T )

〉
+ 〈l, v(T ) − x〉

]

=
∫ ∞

0

L̄(Λ(x)(t), (Λ(x))′(t))dt− 〈l, x̄− x〉 −
∫ ∞

0

L̄(v(t), v′(t))dt+ 〈l, x̄− x〉 .

Together with (3.11) this implies that
∫ ∞

0

L̄(v(t), v′(t))dt − 〈l, x̄− x〉 ≥
∫ ∞

0

L̄(Λ(x)(t), (Λ(x))′(t))dt− 〈l, x̄− x〉 = π(x).

This completes the proof of Proposition 6.2. �
Corollary 6.1. π(x̄) = 0.

Proposition 6.3. There is M∗ > 0 such that for each x ∈ X̄∗ satisfying |x| > M∗ the inequality π(x) ≥ 2
holds.

Proof. By (2.1) there exists M1 > 0 such that

ψ(M1) > a+ |f̄(x̄, 0)| + 4. (6.9)

In view of Lemma 6.1 there exists M∗ > 0 such that if an a.c. function v : [0, 1] → Rn satisfies

∫ 1

0

f̄(v(t), v′(t))dt ≤ (|l| + 1)(|x̄| +M1 + 1) + |f̄(x̄, 0)| + 4,
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then
|v(t)| ≤M∗ for all t ∈ [0, 1]. (6.10)

Let
x ∈ X̄∗ and |x| > M∗. (6.11)

Consider an (f̄)-overtaking optimal function Λ(x) : [0,∞) → Rn which is also (f̄)-good. It follows from (6.11)
and the choice of M∗ (see (6.10)) that

∫ 1

0

f̄(Λ(x)(t), (Λ(x))′(t))dt > (|l| + 1)(|x̄| +M1 + 1) + |f̄(x̄, 0)| + 4. (6.12)

If |Λ(x)(t)| > M1 for each t ≥ 1, then relations (3.3) and (6.9) imply that for each t ≥ 1

f̄(Λ(x)(t), (Λ(x))′(t)) − f̄(x̄, 0) ≥ ψ(|Λ(x)(t)|) − a− f̄(x̄, 0) ≥ 4

and ∫ T

0

f̄(Λ(x)(t), (Λ(x))′(t))dt− T f̄(x̄, 0) → ∞ as T → ∞,

a contradiction.
Therefore there is S0 ≥ 1 such that

|Λ(x)(S0)| ≤M1, |Λ(x)(t)| > M1 for each t satisfying 1 ≤ t < S0. (6.13)

It follows from (3.3), (6.9) and (6.13) that

f̄(Λ(x)(t), (Λ(x))′(t)) ≥ |f̄(x̄, 0)| for each t such that 1 ≤ t < S0. (6.14)

Then by (3.11), (3.10), (6.14), (3.5), (6.13), (6.12) and Proposition 2.3,

π(x) =
∫ ∞

0

L̄(Λ(x)(t), (Λ(x))′(t))dt− 〈l, x̄− x〉

= lim
T→∞

∫ T

0

[f̄(Λ(x)(t), (Λ(x))′(t)) − f̄(x̄, 0)]dt

=
∫ 1

0

[f̄(Λ(x)(t), (Λ(x))′(t))]dt − f̄(x̄, 0) +
∫ S0

1

[f̄(Λ(x)(t), (Λ(x))′(t)) − f̄(x̄, 0)]dt

+ lim
T→∞

∫ T

S0

[f̄(Λ(x)(t), (Λ(x))′(t)) − f̄(x̄, 0)]dt

≥
∫ 1

0

f̄(Λ(x)(t), (Λ(x))′(t))dt− f̄(x̄, 0) + lim
T→∞

∫ T

S0

L̄(Λ(x)(t), (Λ(x))′(t))dt

− lim
T→∞

〈
l,Λ(x)(T ) − Λ(x)(S0)

〉

≥
∫ 1

0

f̄(Λ(x)(t), (Λ(x))′(t))dt− f̄(x̄, 0) − |l|(|x̄| +M1) > 4.

This completes the proof of Proposition 6.3. �
Let M∗ > 4 be as guaranteed by Proposition 6.3. Namely

π(x) ≥ 2 for each x ∈ X̄∗ satisfying |x| ≥M∗. (6.15)
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Proposition 6.4. There is M̃ > M∗ such that for each x ∈ X̄∗ \ X̄M̃ the inequality π(x) ≥ 2 holds.

Proof. By Proposition 4.2 there exists M̄ > M∗ such that for each T > 0 and each a.c. function v : [0, T ] → Rn

which satisfies
|v(0)| ≤M∗ + 1, I f̄ (0, T, v) ≤ T f̄(x̄, 0) + 4 (6.16)

the following inequality holds:
|v(t)| ≤ M̄ for all t ∈ [0, T ]. (6.17)

Choose a number
M̃ > M∗ + M̄ + 2 + |l|(|x̄| +M∗)2M̄. (6.18)

Let x ∈ X̄∗ \ X̄M̃ . If |x| > M∗, then in view of (6.15) π(x) ≥ 2. Assume that

|x| ≤M∗. (6.19)

In order to complete the proof of the Proposition it is sufficient to show that π(x) ≥ 2. Let us assume that

π(x) < 2. (6.20)

Relations (3.10) and (3.11) imply that

π(x) =
∫ ∞

0

L̄(Λ(x)(t), (Λ(x))′(t))dt− 〈l, x̄− x〉 = lim
T→∞

[I f̄ (0, T,Λ(x)) − Tf(x̄, 0)]. (6.21)

By (6.20) and (6.21) for all large enough T , I f̄ (0, T,Λ(x)) ≤ Tf(x̄, 0) + 2. Combined with (6.19) and the choice
of M̄ (see (6.16) and (6.17)) this implies that

|Λ(x)(t)| ≤ M̄ for all t ∈ [0,∞). (6.22)

It follows from (6.19)–(6.21) that

∫ ∞

0

L̄(Λ(x)(t), (Λ(x))′(t))dt < 2 + |l|(|x̄| +M∗).

Together with (3.5), (6.22) and (6.18) this inequality implies that for each T > 0

I f̄ (0, T,Λ(x)) − Tf(x̄, 0) =
∫ T

0

L̄(Λ(x)(t), (Λ(x))′(t))dt −
〈
l,Λ(x)(T ) − x

〉
< 2 + |l|(|x̄| +M∗) + |l|2M̄ < M̃.

By this inequality and (6.18) and (6.19) x ∈ X̄M̃ , a contradiction. The contradiction we have reached proves
that π(x) ≥ 2. Proposition 6.5 is proved. �

Proposition 6.5. For any M > 0 the function π : X̄M → R1 is lower semicontinuous.

Proof. Let M > 0, {xk}∞k=1 ⊂ X̄M , x ∈ X̄M and limk→∞ xk = x. We will show that π(x) ≤ lim infk→∞ π(xk).
We may assume that there exists a finite limk→∞ π(xk). By (3.10) and (3.11) for each integer k ≥ 1

π(xk) =
∫ ∞

0

L̄(Λ(xk)(t), (Λ(xk))′(t))dt − 〈l, x̄− xk〉

= lim
T→∞

[I f̄ (0, T,Λ(xk)) − Tf(x̄, 0)]. (6.23)
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We have
|x| ≤M and |xk| ≤M for all integers k ≥ 1. (6.24)

Let k ≥ 1 be an integer. Since xk ∈ X̄M there exists an a.c. function v : [0,∞) → Rn such that

v(0) = xk, I
f̄ (0, T, v) − Tf(x̄, 0) ≤M for all T > 0. (6.25)

Since the function Λ(xk) is (f̄)-overtaking optimal (6.25) implies that

lim
T→∞

[I f̄ (0, T,Λ(xk)) − Tf(x̄, 0)] −M ≤ lim sup
T→∞

[I f̄ (0, T,Λ(xk)) − Tf(x̄, 0) − (If (0, T, v) − Tf(x̄, 0))] ≤ 0.

Thus
lim

T→∞
(I f̄ (0, T,Λ(xk)) − Tf(x̄, 0)) ≤M for all integers k ≥ 1. (6.26)

In view of Proposition 4.2, (6.24) and (6.26) there exists M0 > 0 such that

|Λ(xk)(t)| ≤M0 for all t ∈ [0,∞) and all integers k ≥ 1. (6.27)

It follows from (6.26), (6.27) and Proposition 2.1 that there exists M1 > 0 such that for each integer k ≥ 1 and
each T > 0,

I f̄ (0, T,Λ(xk)) ≤ Tf(x̄, 0) +M1. (6.28)

By (6.27), (6.28) and Proposition 4.1 there exists a strictly increasing sequence of natural numbers {ki}∞i=1 and
an a.c. function u : [0,∞) → Rn such that for each integer m ≥ 1,

Λ(xki
)(t) → u(t) as i→ ∞ uniformly on [0,m], (6.29)

I f̄ (0,m, u) ≤ lim inf
i→∞

I f̄ (0,m,Λ(xki
)).

Relation (6.29) implies that

u(0) = lim
i→∞

Λ(xki
)(0) = lim

i→∞
xki = x. (6.30)

In view of (3.5), (3.11) and (6.29) for each integer m ≥ 1

∫ m

0

L̄(u(t), u′(t))dt =
∫ m

0

f̄(u(t), u′(t))dt−mf̄(x̄, 0) + 〈l, u(m) − u(0)〉

≤ lim inf
i→∞

[
I f̄ (0,m,Λ(xki

)) −mf̄(x̄, 0) +
〈
l,Λ(xki

)(m) − Λ(xki
)(0)

〉]
= lim inf

i→∞

∫ m

0

L̄(Λ(xki
)(t), (Λ(xki

))′(t))dt ≤ lim inf
i→∞

∫ ∞

0

L̄(Λ(xki
)(t), (Λ(xki

))′(t))dt

≤ lim inf
i→∞

[π(xki) + 〈l, x̄− xki〉] = lim inf
i→∞

π(xki ) + 〈l, x̄− x〉 .

This implies that ∫ ∞

0

L̄(u(t), u′(t))dt − 〈l, x̄− x〉 ≤ lim inf
i→∞

π(xki ).

Combined with Proposition 6.2 this implies that π(x) ≤ lim infi→∞ π(xki). Proposition 6.6 is proved. �

Proposition 6.6. Let y, z ∈ X̄∗, y �= z and let α ∈ (0, 1). Then π(αy + (1 − α)z) < απ(y) + (1 − α)π(z).
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Proof. Since y, z ∈ X̄∗ the functions Λ(y) and Λ(z) are (f̄)-good. In view of Proposition 2.2 the function
αΛ(y) + (1 − α)Λ(z) is also f̄ -good. Since the integrand L̄ is convex we have that for all t ≥ 0

L̄(αΛ(y)(t) + (1 − α)Λ(z)(t), α(Λ(y))′(t) + (1 − α)(Λ(z))′(t)) ≤
αL̄(Λ(y)(t), (Λ(y))′(t)) + (1 − α)L̄(Λ(z)(t), (Λ(z))′(t)).

The relation y �= z implies that for all positive t which are close enough to zero, Λ(y)(t) �= Λ(z)(t) and

L̄(αΛ(y)(t) + (1 − α)Λ(z)(t), α(Λ(y))′(t) + (1 − α)(Λ(z))′(t)) <

αL̄(Λ(y)(t), (Λ(y))′(t)) + (1 − α)L̄(Λ(z)(t), (Λ(z))′(t)).

The inequalities above imply that

∫ ∞

0

L̄(αΛ(y)(t) + (1 − α)Λ(z)(t)), α(Λ(y))′(t) + (1 − α)(Λ(z))′(t))dt <

α

∫ ∞

0

L̄(Λ(y)(t), (Λ(y))′(t))dt + (1 − α)
∫ ∞

0

L̄(Λ(z)(t), (Λ(z))′(t))dt. (6.31)

By (6.31), Proposition 6.2 and (3.11)

π(αy + (1 − α)z) ≤
∫ ∞

0

L̄(αΛ(y)(t) + (1 − α)Λ(z)(t), α(Λ(y))′(t) + (1 − α)(Λ(z))′(t))dt

− 〈l, x̄− αy − (1 − α)z〉 < α

[∫ ∞

0

L̄(Λ(y)(t), (Λ(y))′(t))dt − 〈l, x̄− y〉
]

+ (1 − α)
[∫ ∞

0

L̄(Λ(z)(t), (Λ(z))′(t))dt − 〈l, x̄− z〉
]

= απ(y) + (1 − α)π(z).

Proposition 6.6 is proved. �

Now Proposition 3.1 follows from Propositions 6.4–6.6 and Corollary 4.1.

7. Proof of Theorem 3.3

Let v : [0, T ] → Rn be an a.c. function. Put

v̄(t) = v(T − t), t ∈ [0, T ].

It is clear that

∫ T

0

f̄(v̄(t), v̄′(t))dt =
∫ T

0

f(v̄(t),−v̄′(t))dt

=
∫ T

0

f(v(T − t), v′(T − t))dt =
∫ T

0

f(v(t), v′(t))dt.

The following lemma is an important ingredient in the proof of Theorem 3.3.
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Lemma 7.1. Let ε,M be a pair of positive numbers and let L1 be a natural number. Then there exist a natural
number L2 and δ > 0 such that for each T ≥ L2 and each a.c. function v : [0, T ] → Rn which satisfies

|v(0)| ≤M,

∫ T

0

L̄(v(t), v′(t))dt+ 〈l,−x̄+ v(0)〉 ≤ π(x∗) + δ (7.1)

the inequality |v(t) − Λ(x∗)(t)| ≤ ε holds for all t ∈ [0, L1].

Proof. Let us assume the contrary. Then for each natural number k there exist Tk ≥ k and an a.c. function
vk : [0, Tk] → Rn such that

M ≥ |vk(0)|,
∫ Tk

0

L̄(vk(t), v′k(t))dt− 〈l, x̄− vk(0)〉 ≤ π(x∗) + k−1, (7.2)

sup{|vk(t) − Λ(x∗)(t)| : t ∈ [0, L1]} > ε. (7.3)
We will show that there exists a subsequence {vki}∞i=1 which converges uniformly on any bounded subinterval

of [0,∞) to an (f̄)-overtaking optimal function v satisfying v(0) = x∗.
By Proposition 4.2 (with f = L̄) and (7.2) there is M0 > 0 such that

|vk(t)| ≤M0 for all t ∈ [0, Tk] and all integers k ≥ 1. (7.4)

In view of Proposition 4.2 (with f = L̄), (7.2) and (7.4) there exist a strictly increasing sequence of natural
numbers {ki}∞i=1 and an a.c. function v : [0,∞) → Rn such that for each integer m ≥ 1

vki(t) → v(t) as i→ ∞ uniformly on [0,m], (7.5)∫ m

0

L̄(v(t), v′(t))dt ≤ lim inf
i→∞

∫ m

0

L̄(vki(t), v
′
ki

(t))dt.

Relations (7.2) and (7.5) imply that
|v(0)| ≤M. (7.6)

It follows from (7.2) and (7.5) that for each integer m ≥ 1,

∫ m

0

L̄(v(t), v′(t))dt ≤ lim inf
i→∞

∫ Tki

0

L̄(vki(t), v
′
ki

(t))dt

≤ lim inf
i→∞

[π(x∗) + k−1
i + 〈l, x̄− vki(0)〉] = π(x∗) + 〈l, x̄− v(0)〉 .

This implies that ∫ ∞

0

L̄(v(t), v′(t))dt+ 〈l, v(0) − x̄〉 ≤ π(x∗). (7.7)

By (7.7) and Proposition 6.1, v is an (f̄)-good function. Proposition 6.2 and (7.7) imply that

π(v(0)) ≤
∫ ∞

0

L̄(v(t), v′(t))dt − 〈l, x̄− v(0)〉 ≤ π(x∗).

In view of the choice of x∗ (see (3.12) and (3.13)), (3.5) and Proposition 2.3

v(0) = x∗,

π(x∗) =
∫ ∞

0

L̄(v(t), v′(t))dt − 〈l, x̄− x∗〉 = lim
T→∞

[I f̄ (0, T, v) − Tf(x̄, 0)]. (7.8)
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It follows from (7.8), (3.10) and (3.11) that v is an (f̄)-overtaking optimal function. Together with Theorem 3.1
this implies that

v(t) = Λ(x∗)(t) for all t ∈ [0,∞). (7.9)
By (7.5) and (7.9) for each sufficiently large integers i ≥ 1,

sup{|vki(t) − Λ(x∗)(t)| : t ∈ [0, L1]} < ε/2.

This contradicts (7.3). The contradiction we have reached proves Lemma 7.1. �

Proof of Theorem 3.3. We will choose the constants δ and L2. First we choose r̄ ∈ (0, 4−1) such that

{(x, y) ∈ Rn ×Rn : |x− x̄| ≤ 4r̄, |y| ≤ 4r̄} ⊂ dom(f). (7.10)

By Proposition 4.2 there is M0 > M such that for each T > 0 and each a.c. function u : [0, T ] → Rn which
satisfies

|u(0)| ≤M, If (0, T, u) ≤ Tf(x̄, 0) +M + 2 (7.11)
the following inequality holds:

|u(t)| ≤M0, t ∈ [0, T ]. (7.12)
Lemma 7.1 implies that there exist a natural number L12 > L1 and δ0 > 0 such that the following property
holds:

(P1) For each T ≥ L12 and each a.c. function u : [0, T ] → Rn satisfying

|u(0)| ≤M0,

∫ T

0

L̄(u(t), u′(t))dt+ 〈l,−x̄+ u(0)〉 ≤ π(x∗) + δ0

the inequality |u(t) − Λ(x∗)(t)| ≤ ε holds for all t ∈ [0, L1].
In view of Proposition 4.3 there exists δ1 ∈ (0, 1) such that for each a.c. function u : [0, 1] → Rn satisfying

|u(0) − x̄|, |u(1) − x̄| ≤ δ1

the inequality
If (0, 1, u) ≥ f(x̄, 0) − δ0/16 (7.13)

holds. Since f is continuous at (x̄, 0) there exists a positive number δ2 such that:

|f(ξ1, ξ2) − f(x̄, 0)| ≤ δ0/16 for all (ξ1, ξ2) ∈ Rn ×Rn satisfying

|ξ1 − x̄| ≤ 2δ2, |ξ2| ≤ 2δ2; (7.14)

2(|l| + 1)δ2 < δ0/16 and δ2 < min{r̄, δ1}. (7.15)
By Theorem 2.2 there exist an integer L13 > L12 and a positive number δ < δ2 such that the following property
holds:

(P2) If a number T > 2L13 and if an a.c. function u : [0, T ] → Rn satisfies

u(0) ∈ XM , If (0, T, u) ≤ σ(f, T, u(0)) + δ,

then
|u(t) − x̄| ≤ δ2, t ∈ [L13, T − L13].

In view of Proposition 2.3 there is a natural number L2 > L13 such that

|Λ(x∗)(t) − x̄| ≤ δ2 for all numbers t ≥ L2. (7.16)
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Thus we have chosen the constants L2 and δ.
Let T > 2L2 and let an a.c. function v : [0, T ] → Rn satisfies

v(0) ∈ XM , If (0, T, v) ≤ σ(f, T, v(0)) + δ. (7.17)

We will show that
|v(T − t) − Λ(∗)(t)| ≤ ε for all t ∈ [0, L1]. (7.18)

It follows from (7.17) and the definition of XM that there is an a.c. function u : [0,∞) → Rn such that

u(0) = v(0) and If (0, T, u)− Tf(x̄, 0) ≤M for all T > 0. (7.19)

Relations (7.17) and (7.19) imply that

If (0, T, v) ≤ If (0, T, u) + δ ≤ Tf(x̄, 0) +M + 1. (7.20)

Together with the choice of M0 (see (7.11) and (7.12)) and (7.17) this implies that

|v(t)| ≤M0 for all t ∈ [0, T ]. (7.21)

By the property (P2) and (7.17),

|v(t) − x̄| ≤ δ2 for all t ∈ [L13, T − L13]. (7.22)

Define
y(t) = v(t), t ∈ [0, T − L2 − 1], y(t) = Λ(x∗)(T − t), t ∈ [T − L2, T ], (7.23)

y(t) = v(T − L2 − 1) + (t− (T − L2 − 1))[Λ(x∗)(L2) − v(T − L2 − 1)],

t ∈ (T − L2 − 1, T − L2).
Relations (7.16), (7.22) and (7.23) imply that for all t ∈ [T − L2 − 1, T − L2],

|y(t) − x̄| ≤ max{|v(T − L2 − 1) − x̄|, |Λ(x∗)(L2) − x̄|} ≤ δ2, |y′(t)| ≤ 2δ2. (7.24)

By (7.24) and the choice of δ2 (see (7.14)) for all t ∈ [T − L2 − 1, T − L2],

|f(y(t), y′(t)) − f(x̄, 0)| ≤ δ0/16, (7.25)

|If (T − L2 − 1, T − L2, y) − f(x̄, 0)| ≤ δ0/16.
In view of (7.22) and the choice of δ1 (see (7.13)) If (T − L2 − 1, T − L2, v) ≥ f(x̄, 0) − δ0/16. It follows from
this inequality, (7.17) and (7.23) that

δ ≥ If (0, T, v) − If (0, T, y)

= If (0, T − L2 − 1, v) + If (T − L2 − 1, T − L2, v) + If (T − L2, T, v)

− If (0, T − L2 − 1, y) − If (T − L2 − 1, T − L2, y) − If (T − L2, T, y)

≥ f(x̄, 0) − δ0/16 − (f(x̄, 0) + δ0/16)

+ If (T − L2, T, v) − If (T − L2, T, y)

≥ − δ0/8 +
∫ T

T−L2

f(v(t), v′(t))dt −
∫ L2

0

f̄(Λ(x∗)(t), (Λ(x∗))′(t))dt. (7.26)
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Set
v̄(t) = v(T − t), t ∈ [0, L2]. (7.27)

By (7.15), (7.26), (3.5), (7.16) and (7.22),

δ0/4 ≥ δ + δ0/8 ≥
∫ L2

0

f̄(v̄(t), v̄′(t))dt−
∫ L2

0

f̄(Λ(x∗)(t), (Λ(x∗))′(t))dt

=
∫ L2

0

L̄(v̄(t), v̄′(t))dt− 〈l, v̄(L2) − v̄(0)〉

−
[∫ L2

0

L̄(Λ(x∗)(t), (Λ(x∗))′(t))dt−
〈
l,Λ(x∗)(L2) − Λ(x∗)(0)

〉]

≥
∫ L2

0

L̄(v̄(t), v̄′(t))dt− 〈l, x̄− v̄(0)〉

−
[∫ L2

0

L̄(Λ(x∗)(t), (Λ(x∗))′(t))dt −
〈
l, x̄− Λ(x∗)(0)

〉]
− 2δ2|l|.

Together with (7.15) and (3.11) this implies that

∫ L2

0

L̄(v̄(t), v̄′(t))dt − 〈l, x̄− v̄(0)〉 ≤ δ0/4 + δ0/8 +
∫ ∞

0

L̄(Λ(x∗)(t), (Λ(x∗))′(t))dt −
〈
l, x̄− Λ(x∗)(0)

〉]

≤ δ0/2 + π(x∗). (7.28)
It follows from (P1), (7.21), (7.27) and (7.28) that |v̄(t)−Λ(x∗)(t)| ≤ ε for all t ∈ [0, L1] and |v(T−t)−Λ(x∗)(t)| ≤ ε
for all t ∈ [0, L1]. This completes the proof of Theorem 3.3. �
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21 (2004) 673–688.

[11] P.H. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert. II. Adv. Nonlinear Stud. 4 (2004) 377–396.
[12] R.T. Rockafellar, Convex analysis. Princeton University Press, Princeton, USA (1970).
[13] P.A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule. Am. Econ. Rev. 55 (1965) 486–496.
[14] C.C. von Weizsacker, Existence of optimal programs of accumulation for an infinite horizon. Rev. Econ. Studies 32 (1965)

85–104.
[15] A.J. Zaslavski, Optimal programs on infinite horizon 1. SIAM J. Contr. Opt. 33 (1995) 1643–1660.
[16] A.J. Zaslavski, Optimal programs on infinite horizon 2. SIAM J. Contr. Opt. 33 (1995) 1661–1686.
[17] A.J. Zaslavski, Turnpike properties in the calculus of variations and optimal control. Springer, New York (2006).

[18] A.J. Zaslavski, Structure of extremals of autonomous convex variational problems. Nonlinear Anal. Real World Appl. 8 (2007)
1186–1207.

[19] A.J. Zaslavski, A turnpike result for a class of problems of the calculus of variations with extended-valued integrands. J.
Convex Analysis (to appear).


	Introduction
	Preliminaries
	Main results
	Auxiliary results for the proof of Theorem 3.2
	Proof of Theorem 3.2
	Proof of Proposition 3.1
	Proof of Theorem 3.3
	References

