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A CONVERSE TO THE LIONS-STAMPACCHIA THEOREM ∗
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Abstract. In this paper we show that a linear variational inequality over an infinite dimensional real
Hilbert space admits solutions for every nonempty bounded closed and convex set, if and only if the
linear operator involved in the variational inequality is pseudo-monotone in the sense of Brezis.
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1. Introduction and notation

Let us consider an infinite dimensional real Hilbert space X with scalar product 〈·, ·〉 and associated norm ‖·‖.
We assume given a linear and continuous operator A : X → X , (in short, A ∈ L(X)), a closed and convex
subset K of X and a fixed element f ∈ X . We begin by recalling some preliminary definitions. By a variational
inequality we mean the problem V(A, K, f) of finding u ∈ K such that 〈Au−f, v−u〉 ≥ 0 for each v ∈ K. This
concept was introduced by Fichera [3] in his analysis of Signorini’s problem. In their celebrated 1967 paper,
Lions and Stampacchia [5] used variational inequalities associated to bilinear forms which are coercive or simply
non negative in real Hilbert spaces as a tool for the study of partial differential elliptic and parabolic equations.
They had in view applications to problems with unilateral constraints in mechanics (we refer to Duvaut and
Lions [2] for details). The theory has since been expanded to include various applications in different areas such
as economics, finance, optimization and game theory.

Precisely, the Lions-Stampacchia Theorem says that the linear variational inequality V(A, K, f) admits at
least one solution for every closed and convex set K which is also nonempty and bounded, and every f ∈ X
provided that A is coercive, that is

〈Au, u〉 ≥ a‖u‖2 for every u ∈ X and some a > 0.

This landmark result has given rise to a rapidly growing new field. For an up-to-date overview of this topic, we
recommend the papers by Lions, Magenes, Mancino and Mazzone published in the Proceedings of the School of
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Mathematics “Stampacchia” held in the memory of Lions and Stampacchia in Erice [6], as well as the monograph
by Goeleven and Motreanu [4].

An important notion in the study of variational inequalities was provided by Brezis [1], who proved [1],
Theorem 24, that the Lions-Stampacchia Theorem actually holds within the setting of reflexive Banach spaces,
and for a very large class of (non-linear) operators, called pseudo-monotone operators. Precisely, let X be a
reflexive Banach space with continuous dual X�. Let us denote by 〈·, ·〉 the duality product between X and X�,
and by the symbol ⇀ the weak convergence on X . We say that the operator A : X → X� is pseudo-monotone,
if it is bounded and if {un}n∈N� is a sequence in X such that

un ⇀ u and lim sup
n

〈Aun, un − u〉 ≤ 0,

then
〈Au, u − v〉 ≤ lim inf

n
〈Aun, un − v〉 ∀v ∈ X. (1.1)

The class of pseudo-monotone operators contains monotone operators which are hemicontinuous, compact op-
erators, as well as various combinations of these two classes.

It is well known that, as long as non-linear operators are concerned, problem V(A, K, f) may admit solu-
tions for every nonempty bounded closed and convex set K, even if the operator A is not pseudo-monotone
(Example A.1 in the Appendix provides such an operator which is continuous and positively homogeneous).
The aim of this note is to establish that, in the original linear setting of the Lions-Stampacchia Theorem, the
pseudo-monotonicity of the operator A, which, in general, is only a sufficient condition for the existence of
solutions for every bounded convex set K, becomes also a necessary one.

More precisely, we prove (Thm. 3.1, Sect. 3) that, given an infinite dimensional real Hilbert space X and
A ∈ L(X), the variational inequality V(A, K, f) has solutions for every nonempty bounded closed and convex
set K and f ∈ X if and only if A is pseudo-monotone in the sense of Brezis.

The validity of a similar statement when X is a reflexive Banach space remains an open problem.

2. A technical proposition

Our main result hardly relies on the following technical result.

Proposition 2.1. Let X be a real Hilbert space and suppose that A ∈ L(X) is an operator which is not pseudo-
monotone. Then we can construct an infinite-dimensional and separable closed subspace H of X such that the
restriction of A to H is both symmetric,

〈Au, v〉 = 〈Av, u〉 ∀u, v ∈ H, (2.1)

and negatively defined,
〈Au, u〉 ≤ −α‖u‖2, (2.2)

for some α > 0.

Proof. As A is not pseudo-monotone it is well known (see for instance Lem. A.2 in the Appendix) that there is
a sequence {xn}n∈N� such that xn ⇀ 0 and a real a > 0 satisfying the relation:

〈Axn, xn〉 < −a ∀n ∈ N
�.

Throughout the proof we denote by ‖A‖ = sup
u∈X,‖u‖=1

‖Au‖ the norm of A and by m = sup
n∈N�

‖xn‖. In order to de-

fine the desired subspace H , let us first recursively construct two sequences {yn}n∈N� ⊂ X , and {kn}n∈N� ⊂ N
�,
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such that, for every j ∈ N
�, the following relations hold:

〈Ayi, yj〉 = 〈Ayj , yi〉 = 〈yi, yj〉 = 0 if 1 ≤ i < j, (2.3)

ki ≤ kj if 1 ≤ i < j, (2.4)

∥∥yj − xkj

∥∥ ≤ min
(

1
2

√
a

‖A‖ ,
a

8m‖A‖
)
· (2.5)

We start by setting y1 = x1 and k1 = 1, and we suppose that we have already defined the elements yj , kj

fulfilling relations (2.3)–(2.5) for 1 ≤ j < n.
In order to define yn and kn, recall that if as usual we denote by d(x, S) = inf

y∈s
‖x − y‖ the distance between

an element x and a set S, then for any sequence {zi}i∈N� and any closed subspace S of X of finite co-dimension
we have

[zi ⇀ 0] =⇒ [d(zi, S) → 0].

Applying this observation to the sequence {xi}i∈N� and to the subspace

Tn = {y ∈ X : 〈y, yj〉 = 〈y, Ayj〉 = 〈y, A�yj〉 = 0, 1 ≤ j < n},

it results that the distance between the elements of the sequence {xi}i∈N� and Tn goes to zero. Hence it is
possible to pick kn ∈ N

�, such that both kn > kn−1 (which ensure us that the element kn fulfills relation (2.4))
and

d (xkn , Tn) ≤ min
(

1
2

√
a

‖A‖ ,
a

8m‖A‖
)
·

Let us now define yn, as being the projection of xkn on the closed linear subspace Tn. Then, yn ∈ Tn, and
therefore satisfies relation (2.3) as well as

‖yn − xkn‖ ≤ min
(

1
2

√
a

‖A‖ ,
a

8m‖A‖
)
·

Since the newly defined elements yn ∈ X and kn ∈ N
� fulfill relations (2.3)–(2.5), this completes our recursive

construction.
Define now H as the closure of the linear span of the sequence {yi}i∈N� . Recall that 〈Axn, xn〉 < −a, to

deduce that
a < |〈Axn, xn〉| ≤ ‖A‖‖xn‖2 ∀n ∈ N

�,

and therefore that ‖xn‖ ≥
√

a
‖A‖ . By using relation (2.5) and the previous inequality, we prove that

‖yn‖ ≥ ‖xkn‖ − ‖yn − xkn‖ ≥
√

a

‖A‖ − 1
2

√
a

‖A‖ =
1
2

√
a

‖A‖ ∀n ∈ N
�.

Thus all the elements yn are non-null; by taking into account also the fact that 〈yi, yj〉 = 0 ∀i �= j (see rela-
tion (2.3)), it follows that the sequence {yn}n∈N� is composed from linearly independent vectors. Accordingly,
H is an infinite-dimensional and separable subspace of X and moreover, if we set bn =

yn

‖yn‖ we obtain a Hilbert

basis of H .
Using once more relation (2.3) we observe that

〈Abi, bj〉 =
〈Ayi, yj〉
‖yi‖2

= 0 ∀i �= j ∈ N
�. (2.6)
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This relation yields 〈Au, v〉 = 〈Av, u〉 ∀u, v ∈ H (that is relation (2.1) holds), as well as

sup
u∈H,‖u‖=1

〈Au, u〉 = sup
n∈N�

〈Abn, bn〉. (2.7)

In order to prove relation (2.2), remark that obviously,

〈Ayn, yn〉 = 〈Axkn , xkn〉 + 〈Axkn , (yn − xkn)〉
+ 〈A (yn − xkn) , xkn〉 + 〈A (yn − xkn) , A (yn − xkn)〉.

So

〈Ayn, yn〉 ≤ 〈Axkn , xkn〉 (2.8)

+ 2‖A‖ ‖xkn‖ ‖yn − xkn‖ + ‖A‖ ‖yn − xkn‖2
.

Recall that
〈Axkn , xkn〉 < −a. (2.9)

As ‖yn − xkn‖ ≤ a

8m‖A‖ and ‖xn‖ ≤ m, it results that

2‖A‖ ‖xkn‖ ‖yn − xkn‖ ≤ a

4
· (2.10)

Finally, since ‖yn − xkn‖ ≤ 1
2

√
a

‖A‖ , it holds

‖A‖ ‖yn − xkn‖2 ≤ a

4
· (2.11)

Combining relations (2.8)–(2.11) we deduce that

〈Ayn, yn〉 < −a

2
∀n ∈ N

�. (2.12)

In a similar manner we deduce that

‖yn‖2 = ‖xkn‖2 + ‖yn − xkn‖2 + 2 〈xkn , yn − xkn〉
≤ ‖xkn‖2 + ‖yn − xkn‖2 + 2‖xkn‖‖yn − xkn‖.

Recall that ‖xkn‖2 ≤ m2; relation ‖xkn − yn‖ ≤ 1
2

√
a

‖A‖ , implies that ‖xkn − yn‖2 ≤ a

4‖A‖ , while combining

the facts that ‖xkn‖ ≤ m and that ‖xkn − yn‖ ≤ a

8m‖A‖ , we deduce that 2 ‖xkn‖ ‖xkn − yn‖ ≤ a

4‖A‖ . Finally,

we obtain
‖yn‖2 ≤ m2 +

a

2‖A‖ ∀n ∈ N
�. (2.13)

From relations (2.12) and (2.13) we infer that

〈Abn, bn〉 ≤ − a‖A‖
a + 2m2‖A‖ · (2.14)

Relation (2.2) yields from relations (2.7) and (2.14). �
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3. The main result

We can now establish the main result of this note:

Theorem 3.1. Let X be an infinite dimensional real Hilbert space and A a linear and continuous operator.
The following statements are equivalent.

(i) A is pseudo-monotone.
(ii) The variational inequality V(A, K, f) admits at least a solution for every nonempty bounded closed and

convex set K and f ∈ X.

Proof. (i) ⇒ (ii). [1], Theorem 24.
(ii) ⇒ (i). Let A ∈ L(X) be an operator which is not pseudo-monotone. We prove that the variational

inequality V(A, K, f) does not admit a solution for some bounded convex set K and some f . Indeed, according
to Proposition 2.1 the bilinear and continuous form Θ : H × H → R, Θ(x, y) = −〈Ax, y〉 is symmetric and
positively defined on some infinite-dimensional separable closed subspace H of X .

Endow the vector space H with the inner product [x, y] = Θ(x, y), and consider B = {bi : i ∈ N
�} a Hilbert

basis of (H, [·, ·]). As usually, if x ∈ H , let xi denote the i-th coordinate of x with respect to B, xi = [x, bi] for
every x ∈ H , i ∈ N

�.
We claim that the set K

K =

{
x ∈ H : xi ≥ 1

2i
and

∞∑
i=1

(
1 +

1
2i

)
x2

i ≤ 2

}
,

is a bounded closed and convex subset of X such that the variational inequality V(A, K, 0) does not have
solutions.

We observe first that K is a nonempty convex set, which is closed and bounded in (H, [·, ·]). As the image
of H through the injection ι : (H, [·, ·]) → (X, 〈·, ·〉) is closed, it follows that ι is bounded; hence, we conclude
that K is closed and bounded also with respect to (X, 〈·, ·〉).

Remark that, for every x, y ∈ H it holds that

〈Ax, y − x〉 = [x, y − x].

Accordingly, in order to show that V(A, K, 0) does not have solutions, it suffices to prove that, for any element
x ∈ K, there is some yx ∈ K such that

[x, yx − x] > 0. (3.1)

For x =
∑∞

i=1

1
2i

bi, this is an easy task, since yx = 2x obviously does the job. Consider now x ∈ K,

x �= ∑∞
i=1

1
2i

bi and set

i(x) = min
{

j ∈ N
� : xj >

1
2i

}
·

Define

yx(ε) = x +

⎛
⎝

√
x2

i(x) −
2i(x)ε

2i(x) + 1
− xi(x)

⎞
⎠ bi(x)

+

⎛
⎝

√
x2

i(x)+1 +
2i(x)+1ε

2i(x)+1 + 1
− xi(x)+1

⎞
⎠ bi(x)+1;
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in other words,

yx(ε) =
i=i(x)−1∑

i=1

xibi +

⎛
⎝

√
x2

i(x) −
2i(x)ε

2i(x) + 1

⎞
⎠ bi(x)

+

⎛
⎝

√
x2

i(x)+1 +
2i(x)+1ε

2i(x)+1 + 1

⎞
⎠ bi(x)+1 +

∞∑
i=i(x)+2

xibi.

It is straightforward to prove that

∞∑
i=1

(
1 +

1
2i

)
(yx(ε))2i =

∞∑
i=1

(
1 +

1
2i

)
x2

i .

Since for every ε greater than or equal to zero and less than or equal to
(
1 + 1

2i(x)

) (
x2

i(x) − 1
22i(x)

)
, it holds that

√
x2

i(x) −
2i(x)ε

2i(x) + 1
≥ 1

2i(x)
,

we obtain that yx(ε) ∈ K.
Let us set

fx(ε) = [x, yx(ε)] = 〈x, x〉 + xi(x)

⎛
⎝

√
x2

i(x) −
2i(x)ε

2i(x) + 1
− xi(x)

⎞
⎠

+ xi(x)+1

⎛
⎝

√
x2

i(x)+1 +
2i(x)+1ε

2i(x)+1 + 1
− xi(x)+1

⎞
⎠;

we easily deduce that fx(0) = [x, x] and that

f ′
x(0) =

2i(x)

(2i(x)+1 + 1)(2i(x) + 1)
> 0.

Accordingly, fx(ε) > fx(0) for some value ε greater than zero and less than or equal to the real number(
1 + 1

2i(x)

) (
x2

i(x) − 1
22i(x)

)
:

[x, x] = fx(0) < fx(ε) = [x, yx(ε)]

and relation (3.1) is fulfilled, when x �= ∑∞
i=1

1
2i

bi, by setting yx = yx(ε). The proof of Theorem 3.1 is thus
completed. �

Since the pseudo-monotonicity of A ∈ L(X) is equivalent to the pseudo-monotonicity of its adjoint A� ∈
L(X), the following consequence of Theorem 3.1 holds true.

Corollary 3.2. Let A be a linear and continuous operator defined on an infinite dimensional Hilbert space X.
The variational inequality V I(A, K, f) has solutions for every nonempty bounded closed and convex set K and
every f ∈ X, if and only if the same holds for V I(A�, K, f).
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A. Appendix

In the first part of this section we observe that in a real Hilbert setting, there exists a continuous and positively
homogeneous operator which is not pseudo-monotone but for which the variational inequality V(A, K, f) has
solutions provided that K is a nonempty closed and convex bounded set.

Example A.1. Let X be a separable Hilbert space with basis {bi : i ∈ N
�}. As customary, for every real

number a, let us set a+ = max(a, 0) for the positive part of a. For every i ∈ N
�, let us define

Ai : X → X, Ai(x) = − (3 〈x, bi〉 − 2‖x‖)+ bi,

and set A(x) = Σ∞
i=1Ai(x). Then A is a continuous and positively homogeneous mapping which fails to be

pseudo-monotone, while the variational inequality V(A, K, 0) admits solutions for every bounded closed and
convex set K.

Indeed, remark that any two sets from the family of open convex cones

Ki = {x ∈ X : 3 〈x, bi〉 > 2‖x‖} , i ∈ N
�

are disjoints. This fact proves that the definition of the operator A is meaningful, as at any point x, at most
one among the values Ai(x), i ∈ N

�, may be non-null.
On one hand, it is easy to see that this operator is continuous and positively homogeneous, as is each of the

the operators Ai. On the other, A(bi) = −bi, so

0 = 〈A0, 0 − 0〉 > lim inf
i

〈Abi, bi − 0〉 = −1;

this inequality proves that relation (1.1) does not hold for bi instead of ui, and 0 instead of u and v. Finally
remark that

bi ⇀ 0 and lim sup
i

〈Abi, bi − 0〉 = −1 ≤ 0,

to infer that the operator A is not pseudo-monotone.
We need now to prove that the variational inequality V(A, K, 0) has solutions for every bounded closed and

convex set K. Let us consider first the case when the domain K of the variational inequality is not entirely
contained within one of the cones Ki. As every convex set is also a connected set, and since {Ki : i ∈ N

�}
form a family of disjoint open sets, it follows that K contains some point x which does not belong to any of the
cones Ki. Accordingly, A(x) = 0, fact which means that x is a solution of the problem V(A, K, 0).

Consider now the case of a bounded closed and convex set K contained in the cone Kp for some p ∈ N
�.

Remarking that the operators A and Ap coincide on the cone Kp, and thus on K, we deduce that A is pseudo-
monotone. Accordingly, the existence of a solution to problem V(A, K, 0) is guaranteed in this case by Brezis’s
theorem [1], Theorem 24.

Let us conclude this Appendix by proving the following standard characterization of the class of L(X)-
pseudo-monotone operators, needed in proving our main result.

Lemma A.2. Let X be a real Hilbert space and A ∈ L(X). Then A is pseudo-monotone if and only if

[un ⇀ 0] =⇒
[
lim inf

n
〈Aun, un〉 ≥ 0

]
. (A.1)

Proof. Let A be a L(X)-pseudo-monotone operator, and {un}i∈N� be a sequence such that un ⇀ 0. We only need
to prove relation (A.1) when lim infn〈Aun, un〉 ≤ 0. In this case we may also suppose, by taking, if necessary,
a sub-sequence, that lim supn〈Aun, un〉 ≤ 0.Apply definition (1.1) of pseudo-monotonicity to the mapping A,
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and to the sequence {un}i∈N� , weakly converging to 0 in order to deduce (by taking v = 0) that

0 = 〈A0, 0 − 0〉 ≤ lim inf
n

〈Aun, un〉,

that is 0 = lim infn〈Aun, un〉. Relation (A.1) holds accordingly for every L(X)-pseudo-monotone operator.
Let us now consider A ∈ L(X) such that relation (A.1) is verified. Pick a sequence {un}i∈N� which converges

weakly to u such that
lim sup

n
〈Aun, un − u〉 ≤ 0.

On one hand, as
lim
n

〈Au, un − u〉 = 0, (A.2)

the previous relation implies that
lim sup

n
〈A(un − u), (un − u)〉 ≤ 0. (A.3)

On the other hand, applying relation (A.1) to the sequence {un − u}i∈N� (which obviously weakly converges
to 0) yields

lim inf
n

〈A(un − u), (un − u)〉 ≥ 0. (A.4)

Combining relations (A.2)–(A.4) we deduce that

lim
n

〈Aun, un − u〉 = 0, (A.5)

whenever un ⇀ u and lim supn 〈Aun, un − u〉 ≤ 0.
Recall that any L(X)-operator is also continuous with respect to the weak topology on X ([7], Lem. 1.2,

p. 36). As {un}i∈N� weakly goes to u, we deduce that

lim
n

〈Aun, w〉 = 〈Au, w〉 .

When applied for w = u − v, the previous relation shows that

〈Au, u − v〉 = lim
n

〈Aun, u − v〉 = lim inf
n

〈Aun, u − v〉, (A.6)

for every sequence un ⇀ u.
Summing up relations (A.5) and (A.6), we deduce that relation (1.1) holds whenever un ⇀ u and

lim sup
n

〈Aun, un − u〉 ≤ 0; in other words, the operator A is pseudo-monotone, establishing the proof. �
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[2] G. Duvaut and J.L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972).
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