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Abstract. In the XML standard, data are represented as unranked
labeled ordered trees. Regular unranked tree automata provide a use-
ful formalism for the validation of schemas enforcing regular structural
constraints on XML documents. However some concrete application
contexts need the expression of more general constraints than the reg-
ular ones. In this paper we propose a new framework in which context-
free style structural constraints can be expressed and validated. This
framework is characterized by: (i) the introduction of a new notion of
trees, the so-called typed unranked labeled trees (tulab trees for short) in
which each node receives one of three possible types (up, down or fix),
and (ii) the definition of a new notion of tree automata, the so-called
nested sibling tulab tree automata, able to enforce context-free style
structural constraints on tulab tree languages. During their structural
control process, such automata are using visibly pushdown languages
of words [R. Alur and P. Madhusudan, Visibly pushdown languages,
36th ACM symposium on Theory of Computing, Chicago, USA (2004)
202–211] on their alphabet of states. We show that the resulting class
NSTL of tulab tree languages recognized by nested sibling tulab tree
automata is robust, i.e. closed under Boolean operations and with deci-
sion procedures for the classical membership, emptiness and inclusion
problems. We then give three characterizations of NSTL: a logical
characterization by defining an adequate logic in which NSTL happens
to coincide with the models of monadic second order sentences; the
two other characterizations are using adequate encodings and map to-
gether languages of NSTL with some regular sets of 3-ary trees or with
particular sets of binary trees.
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Introduction

The XML standard data exchange format for the Web [6] gave rise to a new
interest for tree automata theory. Tree automata provide indeed a useful formalism
for validating regular structural constraints against XML documents. They can
be used as a toolbox to solve classical decision problems for schemas like the
membership problem or the containment and equivalence problems. This explains
the actual full expansion of research on tree automata in the XML research area.
XML documents are unranked trees, that is, the number of children of a node
labeled with a given symbol is not a priori bounded [1]. Therefore classical tree
automata dealing with ranked labeled trees (in which each node has a fixed number
of children) have been extended to deal with the representation of XML data.
Research on the corresponding class of automata, the so called unranked tree
automata, has been initiated in [7]. Most of known results for ranked labeled
tree automata, carries over the class of unranked labeled tree automata [5,12,14].
Indeed the class of regular unranked tree languages, that is, the class of unranked
tree languages recognizable by a bottom-up tree automaton, is a robust class:
it is closed under boolean operations; membership, emptiness, containment and
equivalence problems are decidable for bottom-up tree automata, and solvable in
PTIME for the deterministic ones [15].

At the same time several attempts have been proposed to express on XML
documents more complex structural constraints than the regular ones in order to
fulfill concrete requirements. For example one may want to express a constraint
like ‘as many nodes with label a than nodes with label b must occur as children of
a node with label c’. Such a constraint cannot be captured by an unranked tree
automaton and is a particular case of the so-called counting constraints studied in
[11,16] where specific automata are defined to deal with them. The resulting class
of tree automata is a robust class in the above mentioned sense. However, when
counting and regular constraints are mixed together, it has been shown that the
resulting class of valid documents lacks some closure properties like the closure
under complement.

In this paper, we propose a new framework in which such context-free style
structural constraints can be expressed and validated. The idea is to define tree
automata in which the structure control process at the tree nodes is performed
using a class C of languages more expressive than the class of rational languages
used for regular unranked tree automata. However to obtain a robust class of
recognized tree languages the robustness of C is essential. The class of visibly
pushdown languages recently introduced in [4] has been shown to be a robust
subclass of the class of context-free languages. This class is also used in [13] to
model the streaming process of XML documents. Visibly pushdown languages are
languages of words over pushdown alphabets whose letters receive one of three
available types {up, down, fix}. Roughly speaking these languages are recognized
by pushdown automata whose stack can perform three kinds of moves (push a
symbol, pop a symbol or do nothing) according to the type of the currently read
letter. In this paper we show how the class of visibly pushdown languages can be
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fruitfully used to achieve our goal of defining a framework in which context-free
style structural constraints can be expressed and validated. This framework is
characterized by two main features:

(i) it introduces and deals with a new notion of trees, the so-called typed
unranked labeled trees (tulab trees): these trees are defined on typed tree
domains in which each node receives one of three possible types;

(ii) it allows to express context-free style structural constraints through spe-
cific tree automata, the so-called nested sibling tulab tree automata. Such
automata recognize a class of tulab tree languages that is a robust class,
i.e. closed under Boolean operations and with decision procedures for the
classical membership, emptiness and inclusion problems. They can be
therefore used to express complex schemas for XML data and provide a
toolbox to solve their associated decision problems.

Related work. In addition to [11,16] already mentioned above, our work can be
related with others in the literature. Let us first notice that the kind of context-
free constraints our nested sibling tree automata are able to express are structural
horizontal constraints. Therefore in general these automata are expressively in-
comparable with classical pushdown tree automata on trees that enforce pushdown
constraints along tree paths. Secondly our approach introducing type information
on the tree domain can also be related to those of [3] and [2]: in these works the
authors study languages of nested trees in which the nesting structure is moved
from the alphabet to the underlying input shape as in our work. These languages
are a class of graphs that naturally abstract branching behaviors of structured
programs so that the problem of branching-time model checking can be phrased
as a membership question for such languages. In [3] a class of automata running
on such nested trees is defined and has nice closure properties (under union inter-
section and complement) as well as a decidable model-checking problem although
the emptiness problem is undecidable. However these automata are still expres-
sively incomparable to our nested sibling tree automata because they also express
pushdown constraints along tree paths instead of across horizontal sibling paths.
Furthermore they deal with unordered directed acyclic graphs instead of unranked
ordered labeled trees.

In [8], an extension of pushdown-stack automata has been proposed, namely tree
automata with one memory. This extension is twofold: the automata proceed on a
tree instead of a word and the (word) stack has been replaced by a memory which
is a tree. Although emptiness can be decided for these automata, they are neither
closed under intersection, nor under union. A strict subclass of tree automata with
one memory is tailored in [10] by adopting a visible-style discipline to manipulate
the memory; under this restriction, this class of visibly tree automata with memory
is (effectively) closed under Boolean operations. This class can not be directly
compared with nested sibling tree automata as it deals with ranked trees. However,
we will see how the two notions of automata are connected when visibly tree
automata with memory run on firstChild-nextSibling encodings of tulab trees.
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Organization of the paper. The paper is organized as follows: Section 2 is de-
voted to the introduction of typed unranked labeled trees while the definition of
nested sibling tulab tree automata is given in Section 3 and illustrated by exam-
ples in Section 4. In Section 5 we show that the resulting class NSTL of tulab
tree languages recognized by such automata is closed under Boolean operations
and has decision procedures for the classical membership, emptiness and inclusion
problems. In Section 6 three characterizations of NSTL are given. The first one is
a logical characterization in the terms of the Thatcher and Wright theorem [17]:
languages of NSTL happen to coincide with the models of monadic second order
(MSO) sentences written in an adequate logic. The second one shows that, through
an encoding of tulab trees into 3-ary trees, languages of NSTL and regular sets
of 3-ary encoding trees are mapped together. The third one shows that, through
a standard firstChild-nextSibling encoding of tulab trees into binary trees, there
is a correspondence between languages of NSTL and languages of binary trees
accepted by a particular subclass of visibly tree automata with memory. We con-
clude in Section 7. For sake of place some technical parts of proofs are given in
the appendix.

1. Typed unranked labeled trees

Typed tree domain. A typed tree domain is a finite subset D of N∗ (where N∗

is the set of finite words over the alphabet N of positive integers) such that:
• D is a tree domain: the empty word ε belongs to D and if wi ∈ D with
i ∈ N and w ∈ N∗ then both w and wj belong to D for all j, 1 ≤ j < i;

• each element of D has a type up, down or fix, denoted respectively by u,
d and f .

As usual, ε of the tree domain D denotes the root of D while wi denotes the ith
child of the node w.

Typed unranked labeled trees. A typed unranked labeled tree (tulab tree for
short) T over an alphabet Σ, is a pair T = (D,λ) where D is a typed tree domain
and λ is a labeling mapping from D to Σ. We denote by TTree(Σ), the set of tulab
trees over Σ. So a tulab tree can be viewed as a standard unranked labeled tree
with additional type information stored within the domain nodes.

Example 1.1. Let n be a positive integer and let Tn = (Dn, λn) be the following
tulab tree where Dn = {ε} ∪ {i | 1 ≤ i ≤ 2n+ 1}, the type of nodes ε and n + 1
is f , the type of each node i is u for 1 ≤ i ≤ n, and d for n + 2 ≤ i ≤ 2n + 1,
λn(ε) = λn(n+ 1) = a, λn(i) = b for all nodes i �= n+ 1 with 1 ≤ i ≤ 2n+ 1. A
representation of Tn with n = 3 is given below in Figure 1 where three colors are
used to represent the three possible node types: black for type u, white for type
f and gray for type d.

Let us remark that any tulab tree T over Σ can easily be translated into a
standard labeled tree T ′ over another alphabet Σ′ = {xc, c ∈ {u, d, f} and x ∈ Σ}
where the upper-script c of a label xc explicitly gives the type of the corresponding
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Figure 1. The tulab tree T3.

Figure 2. The labeled tree T
′
3.

underlying node in T (see Fig. 2). Note that the main difference between T and
T ′ is that, in T , the type information is directly stored within the domain nodes
and therefore a same letter x can label nodes with different types (like b in Ex. 1.1)
whereas in T ′, nodes of the domain are untyped and the type information is stored
within the label symbol.

A language of tulab trees over Σ is a subset of TTree(Σ). In this paper we
define and study a class of tulab tree automata (the nested sibling tree automata)
that recognize a class of tulab tree languages (the nested sibling tulab tree lan-
guages) satisfying structural constraints much more general than the regular ones
expressed, for example, by DTDs in the XML context.

2. Nested sibling tree automata

In this section we introduce a class of automata running on tulab trees. Roughly
speaking, such automata will control a particular structural constraint at a given
node of the input tulab tree using a visibly pushdown language of words over the
alphabet of states. The class of visibly pushdown languages has been introduced
in [4] and is a robust subclass of context-free languages. Its use in our framework
is motivated, firstly by its expressivity allowing to express complex structural
constraints on tulab trees, and secondly by its closure properties assuring to get,
as we will see later, a robust class of recognized tulab tree languages. We first
recall the main features of the class of visibly pushdown languages of words.

Visibly pushdown (word) languages. Visibly pushdown languages are languages
of words over pushdown alphabets. A pushdown alphabet X̃ is defined as a classical
alphabet X together with a partition of X giving a type to each letter; formally,
a pushdown alphabet is a pair X̃ = (X, (Xup, Xdown, Xfix)) where X is a finite
alphabet, (Xup, Xdown, Xfix) is a partition of X , Xup being a set of up letters,
Xdown a set of down letters and Xfix a set of fix letters, respectively. For each
letter x in X , we say that x is of type τ in X̃ when x ∈ Xτ . This type information
can be used to restrict the behavior of a classical pushdown automaton running
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on a word of X∗: intuitively, the automaton will push onto the stack only when
reading an up letter, pop the stack for a down letter and do not use the stack
for a fix letter. Such restricted pushdown automata are called visibly pushdown
automata (vpa) over X̃ and have been studied in [4]. We refer the reader to [4] for
a complete description of the class VPA of visibly pushdown automata. The class
of languages over the alphabet X that are recognized by some visibly pushdown
automaton over X̃ is the class of visibly pushdown languages over X̃ and is denoted
by VPL(X̃). For example the language {ancbn | n ∈ N} belongs to VPL(X̃) with
X̃ = ({a, b, c}, ({a}, {b}, {c})). More generally VPL denotes the class of visibly
pushdown languages of words over any pushdown alphabet. In [4] it is proved
that VPL is a robust subclass of context-free languages of words. We recall below
the main properties of VPL that we will use later. The term renaming mapping
between two pushdown alphabets X̃ and Ũ refers to a mapping from X to U that
is type-preserving i.e. that maps each letter of X to a letter of U with the same
type in X̃ and Ũ respectively. A renaming mapping can be extended in the usual
way to words over X∗

• VPL(X̃) is closed under union, intersection and complement;
• VPL is closed under direct and inverse renaming mappings;
• the emptiness problem for VPA can be decided in polynomial time;
• the inclusion problem for VPA is EXPTIME-complete.

As explained above we will use visibly pushdown languages to enforce particular
structural constraints on tulab trees. Let us recall that tulab trees are labeled
over a classical alphabet but have typed nodes. The control processes of complex
structural constraints will be defined through so-called nested sibling tree automata
whose sets of state symbols are pushdown alphabets and whose runs will use the
type information stored within the nodes of tulab trees.

Nested sibling tree automata (nsta). A nested sibling tree automaton (nsta for
short) A over an alphabet Σ is a quadruple A = (Σ, Q̃, δ, F ) where

• Q̃ = (Q, (Qup, Qdown, Qfix)) is a pushdown alphabet and Q is the set of
state symbols;

• δ ⊆ (Σ ×Q×Q∗) is the transition relation;
• for each (σ, q) in Σ × Q, the set LA(σ, q) = {w ∈ Q∗ | (σ, q, w) ∈ δ} is a

visibly pushdown language over Q̃;
• F ⊆ Q is the set of final states.

Let us remark that the above definition involves a possibly infinite transition re-
lation. To be effectively given, this transition relation can be given, for instance,
through the list of the vpa’s recognizing the languages LA(σ, q) for all (σ, q) in
Σ ×Q.

So, a nested sibling tree automaton can be viewed as an unranked tree au-
tomaton (or hedge automaton, see [7]) with some specific features: (i) it uses a
pushdown alphabet Q̃ and (ii) while regular unranked tree automata require the
LA(σ, q) languages to be regular languages over Q, nested sibling tree automata
require the LA(σ, q) languages to be visibly pushdown languages over Q̃. Running
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on a tulab tree T , a nsta A will be able to take into account the information type
of T ’s nodes thanks to its pushdown alphabet Q̃. We describe next precisely this
feature of nsta’s runs.

Nsta’s run on tulab trees. A run r of a nsta A on a tulab tree T = (D,λ) is
a mapping, r : D → Q, from the typed domain D to Q, such that: (i) r is type
preserving i.e. r maps each node w ofD to a state q ofQ with the same type in Q̃ as
w in D and (ii) ∀w ∈ D, if (w1, w2, . . . , wk) is the (possibly empty) sequence of w’s
children nodes and λ(w) = σ then the (possibly empty) word r(w1)r(w2) . . . r(wk)
of Q∗ must belong to the visibly pushdown language LA(σ, r(w)) of VPL(Q̃). A
run r is a successful run of A on T if r(ε) ∈ F . A tulab tree T is recognized by
A if there exists a successful run of A on T . We denote by L(A) the language of
tulab trees recognized by A. We say that a language L of tulab trees is recognized
by a nsta A if L = L(A). It is then called a nested sibling tulab tree language. We
denote by NSTL the class of nested sibling tulab tree languages.

Deterministic and complete nested sibling automata. A nsta A is called deter-
ministic (respectively complete) if for each (σ,w) of Σ×Q∗ and for each type τ of
{up, down,fix}, there is at most (respectively at least) one state q of Qτ such that
w ∈ LA(σ, q). Notice that this definition of determinism for nstas slightly differs
from the one for regular unranked tree automata, as it takes into account how
nstas run on tulab trees: a local run description at a node n is given by the word
w built with the sequence of n’s children states, the label σ of n, and the type τ of
n in D. Therefore two states q and q′ can satisfy w ∈ LA(σ, q) and w ∈ LA(σ, q′)
if they have different types in Q̃ because they cannot be assigned to the same node
n of the typed domain D. Clearly, if A is deterministic (respectively complete,
complete and deterministic), there exists at most (respectively at least, exactly)
one run of A on any tulab tree T .

We denote by NSTA(Σ) (respectively DNSTA(Σ), CDNSTA(Σ)) the family of
nstas (respectively deterministic, complete and deterministic nstas) over Σ. Sim-
ilarly we denote by NSTL(Σ) (respectively DNSTL(Σ), CDNSTL(Σ)) the class of
languages of tulab trees that are recognized by some nsta of NSTA(Σ) (respectively
DNSTA(Σ), CDNSTA(Σ)).

3. Examples

In this section we give some examples of nested sibling tulab tree languages
illustrating how this class of languages can capture complex structural constraints.

Example 3.1. Let us define L1 = {Tn = (Dn, μn)|n ∈ N}, where Dn is as in
Example 1.1 and μn is defined by: μn(ε) = μn(n+1) = a, μn(i) = b for each node
i with 1 ≤ i < n and μn(i) = c for each node i with n + 2 ≤ i ≤ 2n + 1. It is
easy to show that L1 is a nested sibling tulab tree language because it is trivial
to define a nested sibling tree automaton A recognizing it by using the pushdown
alphabet Q̃ = ({q0, q1, q2}, (Qup = {q1}, Qdown = {q2}, Qfix = {q0})) as alphabet
of states and the fact that the language {qn

1 q0q
n
2 | n ∈ N} is a visibly pushdown
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Figure 3. A tulab tree of L1.

Figure 4. Left panel: the tulab tree Tn. Right panel: the tulab
tree Un,p.

Figure 5.

language over Q̃. L1 is a simple language of tulab trees requiring context-free style
structural constraints. Figure 3 shows a representation of a tulab tree of L1.

Example 3.2. Let us define the languages of tulab trees: L2 = {Tn | n ∈ N}
and L3 = {Un,p | n, p ∈ N}, where Tn and Un,p are the tulab trees represented in
Figure 4. As in Example 3.1, it is easy to show that L2 and L3 are nested sibling
tulab tree languages requiring context-free structural constraints. It is interesting
to notice here that a same label can appear at nodes having different types: in Tn,
as already pointed out in Example 1.1, the label b appears at sibling nodes with
different types up and down, and in Un,p the same observation can be made about
the label c (or d) that can appear at nodes with different types without sibling
relationship but with fathers labeled with the same symbol b.

Example 3.3. The language L4 = {Tp,−→n ,−→s |p ∈ N,−→n ,−→s ∈ Np} where Tp,−→n ,−→s is
represented in Figure 5 with −→n = {n1, . . . , np} and −→s = {s1, . . . , sp}, is a nested
sibling tulab tree language requiring complex context-free constraints at different
levels in the tulab tree.

Remark 3.4. Let us notice that, as pointed in Example 1.1, tulab trees can
be translated into standard unranked labeled trees labeled with symbols from a
pushdown alphabet. Therefore instead of introducing this new notion of tulab



NESTED SIBLING TREE AUTOMATA 387

trees one might think to define runs of nested sibling tree automata on standard
unranked trees labeled with a pushdown alphabet of symbols. Such runs would
then associate with some node ν a state having the same type as ν’s label. However
it is easy to see that such a definition would lead to a class of recognized tree
languages that would lack some closure properties like the closure under mappings.
Let us for example consider the translated version T

′
n of Tn of Example 3.1. It is

not difficult to see that the language {T ′
n |n ∈ N} would then be recognized by a

nested sibling tree automaton. However if we consider the mapping μ that maps
the letters bu and cd on the same letter bu and keeps the letter af unchanged, it is
clear that the language {μ(T

′
n) |n ∈ N} would no longer be recognized by a nested

sibling tree automaton. The closure under mappings would be only obtained
under renaming (i.e. type-preserving) mappings. Because the type information in
a tulab tree is stored within the nodes instead of within the labels, this drawback
disappears for the class NSTL. The next section shows that the definitions given
in Section 2 ensure NSTL to be a robust class of tulab tree languages.

4. Robustness results

4.1. Closure properties of nested sibling tree languages

In this section we review the closure properties of the class NSTL under Boolean
operations as well as under direct and inverse mappings. The proof of those
properties is based on a simple adaptation of constructions for unranked tree
automata, using additionally the closure properties of VPL.

Proposition 4.1 (Closure under union and intersection). NSTL(Σ) is closed un-
der union and intersection.

Proof. Let L1 and L2 be two tulab trees languages of NSTL(Σ): L1 = L(A1)
with A1 = (Σ, Q̃1, δ1, F 1), Q̃1 = (Q1, (Q1

up, Q
1
down, Q

1
fix)), and L2 = L(A2) with

A2 = (Σ, Q̃2, δ2, F 2), Q̃2 = (Q2, (Q2
up, Q

2
down, Q

2
fix)).

Closure under union: it is straightforward to check that the automaton ob-
tained by the union of, respectively, sets of states, transition relations and sets of
final states, accepts precisely the union of L1 and L2 (assuming without loss of
generality that Q1 and Q2 are disjoint).

Closure under intersection: we define the nsta automaton A = (Σ, Q̃, δ, F ) by
Q̃ = (Q, (Q1

up×Q2
up, Q

1
down×Q2

down, Q
1
fix×Q2

fix)) where Q =
⋃

τ∈{up,down,fix}Q
1
τ ×

Q2
τ , δ = {(σ, (q, t), (q1, t1) . . . (qn, tn)) |(σ, q, q1 . . . qn) ∈ δ1 and (σ, t, t1 · · · tn) ∈ δ2}

and F = (F 1 × F 2) ∩Q.
For all (σ, (q, t)) in Σ × Q, LA(σ, (q, t)) coincides with π−1

1 (LA1(σ, q)) ∩
π−1

2 (LA2(σ, t)), where π1 and π2 are the first and the second projection from
Q to Q1 and Q2 respectively. But π1 and π2 are renaming mappings from Q̃ to Q̃1

and Q̃2. Therefore using the closure properties of VPL we deduce that LA(σ, q)
belongs to VPL(Q̃). Now clearly: L(A) = L1 ∩ L2. �
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Proposition 4.2 (Closure under direct and inverse mapping). Let Σ, Ω be two
alphabets, f be a mapping from Σ to Ω, L and H be languages of NSTL(Σ) and
NSTL(Ω) respectively. Then the tulab trees languages f(L) = {f(T ) | T ∈ L}
and f−1(H) = {T ∈ TTree(Σ) |f(T ) ∈ H} belong to NSTL(Ω) and NSTL(Σ)
respectively.

Proof. Closure under direct mapping: we assume L = L(A) with A = (Σ, Q̃, δ, F ).
We define B = (Ω, Q̃, η, F ) with (ω, q, w) ∈ η if there is σ in Σ such that ω = f(σ)
and (σ, q, w) ∈ δ. For each (ω, q) of Ω×Q, we have LB(ω, q) =

⋃
σ∈f−1(ω) LA(σ, q).

Using the closure of VPL(Q̃) under union, we deduce that LB(ω, q) belongs to
VPL(Q̃) and therefore that B is a nsta over Ω. Now clearly L(B) = f(L(A)) as
any successful run of B on a tulab tree T directly simulates a successful run of A
on some tree S of L(A) such that f(S) = T .

Closure under inverse mapping: we assume H = L(A) with A = (Ω, Q̃, δ, F ).
We define B = (Σ, Q̃, η, F ) with (σ, q, w) ∈ η if (f(σ), q, w) ∈ δ. For each (σ, q)
of Σ × Q, we have LB(σ, q) = LA(f(σ), q). So LB(σ, q) belongs to VPL(Q̃)
and therefore B is a nsta over Σ. Because any successful run of B on a tulab
tree T directly simulates a successful run of A on f(T ) we deduce that L(B) =
f−1(L(A)). �

To investigate the closure under complementation of NSTL(Σ) we first focus on
the equivalence between complete deterministic and non deterministic nstas, the
closure under complementation of NSTL(Σ) being closely related to this equiva-
lence. Actually for each complete and deterministic nsta A and each tulab tree T
there is exactly one run of A over T and TTree(Σ)\L(A) is recognized by the nsta
deduced from A by changing the set of final states F into Q\F . It turns out that
complete deterministic and non deterministic nested sibling tree automata can be
proved to be equivalent.

Proposition 4.3 (Equivalence between nstas and complete deterministic nstas).
For each nsta A of NSTA(Σ) there is a complete deterministic nsta B such that
L(A) = L(B). Therefore, NSTL(Σ) = CDNSTL(Σ).

Proof. Let A = (Σ, Q̃, δ, F ) be a nsta over Σ. We build the following complete
deterministic nsta B by simulating as usual in a deterministic way all possible runs
of A on a given tulab tree. Such a construction is used in [7] in the framework of
regular unranked tree automata. In the later we use the notation P (E) to denote
the set of the subsets of a set E. So B is given by (Σ, R̃,Δ,Φ) where:

(1) the pushdown alphabet R̃ = (R, (Rup, Rdown, Rfix)) with Rup = P (Qup),
Rdown = P (Qdown), Rfix = P (Qfix) and R = Rup ∪Rdown ∪Rfix;
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(2) Δ is the set of transitions : if S is in Rτ (where τ is up, down or fix ),
S1, . . . , Sn are in R and σ is in Σ, (σ, S, S1 . . . Sn) ∈ Δ if and only if
S = {q ∈ Qτ | ∃q1 ∈ S1, . . . ,∃qn ∈ Sn such that (σ, q, q1 . . . qn) ∈ δ};

(3) Φ is the set of final states : Φ = {S ∈ R | S ∩ F �= ∅}.
B is complete and deterministic, because given a type τ and (σ, S1S2 . . . Sn) in
Σ × R∗, there is exactly one S of Rτ such that (S, σ, S1S2 . . . Sn) ∈ Δ, that is
S = {q ∈ Qτ | ∃q1 ∈ S1, ∃q2 ∈ S2, . . . ,∃qn ∈ Sn such that (σ, q, q1q2 . . . qn) ∈ δ}.

Moreover, as in the standard case, there is a successful run of B on a tulab tree
T if and only if there is a successful run of A on T . So L(A) = L(B). It remains to
prove that B is a nsta: so given σ ∈ Σ and S ∈ Rτ , we show below that LB(σ, S)
belongs to VPL(R̃).
LB(σ, S) = {S1S2 . . . Sn ∈ R∗ | (σ, S, S1S2 . . . Sn) ∈ Δ}. Therefore, S1 . . . Sn

belongs to LB(σ, S) if and only if the two following conditions (i) and (ii) hold:
(i) for each q ∈ S, there are q1 ∈ S1, . . . , qn ∈ Sn such that (σ, q, q1 . . . qn) ∈ δ;
(ii) if there are q1 ∈ S1, . . . , qn ∈ Sn such that (σ, q, q1 . . . qn) ∈ δ for some

state q in QT , then q is in S.
We denote by L(i) (resp. by L(ii)) the language of words S1 . . . Sn of R∗ satisfying
(i) (resp. (ii)), we define the pushdown alphabet Ũ = (U, (Uup, Udown, Ufix)) with
Uτ = {(q, T ) ∈ Qτ ×Rτ | q ∈ T } for any type τ of {up, down,fix}, and we denote
by π1 (resp. π2) the first (resp. second) projection from U to Q (resp. to R). Let
us remark that π1 and π2 are renaming mappings.

If we define L′
σ,q = {(q1, S1)(q2, S2) . . . (qn, Sn) ∈ U∗ | (σ, q, q1q2 . . . qn) ∈ δ}, we

can write: L(i) =
⋂

q∈S π2(L′
σ,q) and L′

σ,q = π−1
1 (LA(σ, q)).

So finally, L(i) =
⋂

q∈S π2(π−1
1 (LA(σ, q))). Because each LA(σ, q) belongs to

VPL(Q̃) we deduce from the closure properties of the family of visibly pushdown
languages that L(i) belongs to VPL(R̃).

Now a word S1 . . . Sn satisfies (ii) if and only if there is no q ∈ Qτ\S such that
S1 · · ·Sn ∈ π2(π−1

1 (LA(σ, q))). Therefore, L(ii) = R∗\⋃q∈Qτ\S π2(π−1
1 (LA(σ, q))).

Using again the closure properties of the family of visibly pushdown languages we
deduce that L(ii) and therefore LB(σ, S) are languages of VPL(R̃). Finally B is a
complete and deterministic nsta such that L(A) = L(B). �

We immediately deduce Corollary 4.4

Corollary 4.4 (Closure under complementation). NSTL(Σ) is closed under com-
plementation.

4.2. Decision problems for nested sibling tree automata

We focus now on decision problems for nested sibling tree automata. The next
propositions are devoted to the membership and emptiness problems respectively.
Their proofs generalize decision algorithms that are well-known for regular tree
automata.

Each nested sibling tree automaton (Σ, Q̃, δ, F ) considered in this section is
supposed to be effectively given: in particular the set δ of transitions is effectively
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given for example through the list of the vpa’s recognizing the languages LA(σ, q)
for (σ, q) ∈ (Σ ×Q).

Proposition 4.5 (Emptiness problem). Let A = (Σ, Q̃, δ, F ) be a nested sibling
tree automaton over Σ. Deciding whether L(A) is empty is in PTIME.

Proof. The proof is standard and amounts to saturate a subset Acc of Q̃ until
a fix-point is reached. Starting from Acc = ∅, we consider each transition rule,
that is, each vpa V(σ,q) for any pair (σ, q), adding q to Acc if L(V(σ,q)) ∩ Acc∗ is
non-empty. Eventually, L(A) is empty iff Acc ∩ F = ∅.

Using the fact that intersection of two vpa’s can be done in polynomial time
and that emptiness of vpa’s is in PTIME [4], the complexity bound follows. �

Proposition 4.6 (Membership problem). Let A = (Σ, Q̃, δ, F ) be a nested sibling
tree automaton over Σ and t be a tulab tree of TTree(Σ). Deciding whether t
belongs to L(A) can be done in linear time for the non-uniform problem and in
PTIME for the uniform problem.

Proof. For the non-uniform complexity (meaning that the automata A is not part
of the input), we may assume that A is deterministic and for each of its transitions
each vpa V(σ,q) (for any pair (σ, q)) is a deterministic vpa. Therefore, one can
decorate in a bottom-up way the tree with states in linear time using the fact
that only one rule can be applied at a position in the tree and that picking this
rule amounts to test the membership of a word to the language defined by some
deterministic vpa which can be done in linear time in the size of the word.

For the uniform complexity, we rely on the generic algorithm proposed in [9]
for hedge automata. This algorithm computes (possibly in a bottom way) a set
of states for each position in the tree. A node is labeled by a set containing q
if its children are labeled by sets S1 . . . Sk containing respectively q1, . . . , qk and
the word q1 . . . qk belongs to LA(σ, q). Testing whether a word built from the
sets S1 . . . Sk belongs to LA(σ, q) is therefore the crucial point of the membership
test. Obviously, this can be solved by building a trivial word automaton for the
language S1 . . . Sk with k states and at most k · |Q̃| transitions. It suffices then to
test the emptiness of the intersection of this automaton and the vpa defining the
transitions which can be done in PTIME. �

From Propositions 4.1 and 4.5, and from Corollary 4.4 we obtain:

Corollary 4.7 (Inclusion problem). Let A and B be two nested sibling tree au-
tomata over Σ. Deciding whether L(A) is included in L(B) is in EXPTIME.

Proof. The inclusion test “L(A) ⊆? L(B)” is equivalent to test the emptiness of
L(A)∩ (TTree(Σ)\L(B)). So the complexity of the inclusion problem directly fol-
lows from the constructions proving Propositions 4.1 and 4.5 and Corollary 4.4. �
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5. Different characterizations of NSTL

5.1. Logical characterization of NSTL

In this section, we give a logical characterisation of nested sibling tulab tree
languages. We propose an extension of monadic second order logic (MSO) for
unranked trees using the matching relation from [4] and call this logic MSOμ.

The logic MSO is the extension of the first-order logic FO with quantification
over unary relations, i.e. over sets. Additionally, we consider the matching relation
μ which holds between two elements of the tree domain if they are the matching
pair of up and down positions.

Let ζ be the signature {laba |a ∈ Σ} ∪ {child, sibling, μ} where the laba’s are
unary predicates. and child, sibling, μ are binary ones. We associate with a tulab
tree T = (D,λ) a finite ζ-structure ST whose domain is D and for the relations:
for all d, d′ in D, (i) laba(d) holds in ST if λ(d) = a, (ii) child(d, d′) holds in ST if
d′ = d.i for some i in N, (iii) sibling(d, d′) holds in ST if there exists d′′ in D and
i in N such that d = d′′.i, d′ = d′′.(i+ 1) and, (iv) μ(d, d′) holds in ST if

• there exists d′′ in D and i, j in N such that i < j, d = d′′ · i and d′ = d′′ · j;
• d is of type up and d′ of type down;
• |{d′′ · k | i < k < j}|up = |{d′′ · k | i < k < j}|down;
• for all i < l < j, |{d′′ · k | i ≤ k ≤ l}|down < |{d′′ · k | i ≤ k ≤ l}|up

where |S|τ is the number of positions of type τ in the set S.

We assume a countable set of first-order variables ranging over by x, y, z, . . .
and a countable set of second-order variables ranging over by X,Y, Z, . . .. MSOμ

formulas are given by the following syntax:

ψ ::= laba(x) |child(x, y) |sibling(x, y) |x ∈ X |ψ ∨ ψ |¬ψ |∃x · ψ |∃X · ψ | μ(x, y).

Let S be a ζ-structure with domain D. Let ρ be a valuation mapping first-order
variables to elements from D and second-order variables to subsets of D. We write
S |=ρ ψ when the structure S is a model of the formula ψ under the valuation
ρ; this is defined in the usual Tarskian manner and we have in particular, (i)
S |=ρ laba(x) if laba(ρ(x)) holds in S, (ii) S |=ρ child(x, y) if child(ρ(x), ρ(y)) holds
in S, (iii) S |=ρ sibling(x, y) if sibling(ρ(x), ρ(y)) holds in S and, (iv) S |=ρ μ(x, y)
if μ(ρ(x), ρ(y)) holds in S.

An MSOμ-sentence is an MSOμ formula without free variables. A set of tulab
trees L is MSOμ-definable if and only if there exists an MSOμ sentence ψ such
that L = {T |T |= ψ}.

It is well-known that a language of unranked trees is accepted by some unranked
tree automaton iff it is MSO-definable. We prove a similar result for nested sibling
tulab tree languages.

Proposition 5.1. A set of tulab trees is recognized by a nested sibling tree au-
tomaton iff it is MSOμ-definable.
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Proof. To show that any language of NSTL is definable by some MSOμ sentence,
we simply prove that for any nsta A, there exists an MSOμ sentence φA which
states the existence of some accepting run on tulab trees.

We consider the visibly pushdown alphabet X̃ = (X, (Xup, Xfix, Xdown)) and a
visibly pushdown word automaton M = (X̃, P, Pin,Γ, δ, F ) where P is a finite set
of states, Pin, F ⊆ P = {p1, . . . , pn} are respectively the set of initial and final
states, Γ = {γ1, . . . , γm} ∪ {⊥} is a finite stack alphabet (⊥ is the symbol used at
the bottom of the stack) and δ contains three kinds of transitions:

• [push] (q, a, q′, γ) with q, q′ in Q, a in Xup, γ in Γ\{⊥};
• [pop] (q, a, γ, q′) with q, q′ in Q, a in Xdown, γ in Γ\{⊥};
• [internal] (q, a, q′) with q, q′ in Q, a in Xfix.

We assume Xup = {u1, . . . , umu}, Xfix = {f1, . . . , fmf
}, Xdown = {d1, . . . , dmd

}.
Let us denote ≤ the reflexive-transitive closure of sibling. If S is a set of

positions totally ordered by the relation ≤ and labeled with elements from X ,
and Ui for 1 ≤ i ≤ mu (respectively Fi for 1 ≤ i ≤ mf , Di for 1 ≤ i ≤
md) is the set of S’s positions labeled with ui (respectively fi, di), there ex-
ists a MSOμ formula φM (S,U1, . . . , Umu , F1, . . . , Fmf

, D1, . . . , Dmd
) that holds

iff the word S is accepted by the visibly pushdown word automaton M over
the pushdown alphabet (X, (Xup, Xfix, Xdown)). Details of the construction of
φM (S,U1, . . . , Umu , F1, . . . , Fmf

, D1, . . . , Dmd
) are given in the appendix.

Now, let us define a MSOμ formula stating the existence of an accepting run
for a nested sibling tree automaton A. The construction is in fact similar to the
one for formula φM . Let A = (Σ, Q̃, δ, F ) and Q = Qup ∪ Qdown ∪ Qfix where
Qup = {u1, . . . , umu}, Qfix = {f1, . . . , fmf

} and Qdown = {d1, . . . , dmd
}, δ is the

transition relation and F the set of final states.

∃U1 . . . Umu∃F1 . . . Fmf
∃D1 . . .Dmd

∀x (
∨

1≤i≤mu
x ∈ Ui ∨ ∨

1≤i≤mf
x ∈ Fi ∨ ∨

1≤i≤md
x ∈ Di) ∧

(
∧

1≤i,j≤n, i�=j x ∈ Ui ⇒ ¬(x ∈ Uj)∧
(
∧

1≤i,j≤n, i�=j x ∈ Fi ⇒ ¬(x ∈ Fj)∧
(
∧

1≤i,j≤n, i�=j x ∈ Di ⇒ ¬(x ∈ Dj)∧
(
∨

1≤i≤mu
x ∈ Ui ⇒ ¬(

∨
1≤i≤mf

x ∈ Fi ∨ ∨
1≤i≤md

x ∈ Di)) ∧
(
∨

1≤i≤mf
x ∈ Fi ⇒ ¬(

∨
1≤i≤mu

x ∈ Ui ∨ ∨
1≤i≤md

x ∈ Di)) ∧
(
∨

1≤i≤md
x ∈ Di ⇒ ¬(

∨
1≤i≤mu

x ∈ Ui ∨ ∨
1≤i≤mf

x ∈ Fi)) ∧

∀x, y μ(x, y) ⇒ ∨
1≤i≤mu

x ∈ Ui ∧ ∨
1≤i≤md

y ∈ Di ∧

∀x (∃Z (∀y child(x, y) ⇔ y ∈ Z) ∧ ∨
(a,q,L)∈δ laba(x)

∧ x ∈ Xq ∧ φML(Z,U1, . . . , Umu , F1, . . . , Fmf
, D1, . . . , Dmd

)) ∧

∀x(∀y¬child(y, x)) ⇒ ∨
q∈F x ∈ Xq.

The first part of the formulas says that each position in the tree is uniquely labeled
with a symbol from Q̃. The second part states that this labelling is compatible
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with the relation μ. The next part checks that the labelling corresponds locally
to a transition rule where ML is an automaton such that L = L(ML). The final
part states that the run is an accepting one.

Now let us prove that the set of tulab trees that are models of some MSOμ

sentence is the language accepted by a nested sibling tree automaton.
The proof goes by induction over the structure of the formula: the models of a

formula φ with free variables x1 . . . xnX1 . . .Xm are tulab trees over the alphabet
Σ × {0, 1}n+m. For a tree t, the idea is to represent a valuation xi �→ n (n being
a node in t) within the tree by setting to 1 the ith component of the label only at
the node n; this idea generalizes to sets of positions by setting to 1 the component
corresponding to the variable X at each node belonging to the set associated with
X by the valuation.

The induction uses closure by union, complementation, renaming to compute
automata for disjunction, negation, existential quantifications of formulas. Thus,
it suffices to build automata for atomic formulas. The construction for x ∈ X ,
laba(x), child(x, y), sibling(x, y) are similar to the one for (regular) automata for
unranked trees. The construction for μ(x, y) is given in the appendix. �

5.2. Nested sibling tree languages and regular sets of 3-ary trees

In this section we describe a mapping from TTree(Σ), the set of tulab trees,
into a particular class of 3-ary labeled trees, called 3-stacktrees. This encoding
will proceed in the same way that VPLs are encoded into sets of binary trees in [4]
and maps together languages of NSTL with regular sets of 3-stacktrees. The 3-ary
encoding trees are labeled over the typed alphabet Σ̃ = {xc | c ∈ {u, d, f} and x ∈
Σ} ∪ {#} in which a letter xc is of type c and # of type f . A 3-ary tree over Σ̃
is a structure (Δ, θ) where Δ is a 3-ary tree domain (i.e. Δ contains the empty
word, for i = 0, 1, 2, wi ∈ Δ implies w ∈ Δ and ∀j < i, wj ∈ Δ) and θ is a labeling
mapping from Δ to Σ̃. The set of all 3-ary trees over Σ̃ is denoted by 3Tree(Σ̃).

Actually the encoding Enc maps a possibly empty sequence (t1, t2, . . . , tn) of
tulab trees into a 3-ary tree over Σ̃. The idea is rather simple. Let us use the
notation ti = [xi, ci](σi) to denote that ti’s root has the label xi and the type ci
and that σi is the sequence of subtrees rooted at the children of ti’s root. We
denote ε the empty sequence.

For the sequence of tulab trees σ, the mapping Enc(σ) is defined recursively as
follows:

• Enc(ε) = #;
• Enc([x1, c1](σ1), t2, . . . , tn) is the 3-ary tree whose root is labeled with xc1

1 ,
its 2-child is a tree isomorphic to Enc(σ1) and depending on c1:

– c1 = u and depending on σ:
∗ there exists an i such that [xi, ci] is the matching position of

[x1, c1] in the word [x1, c1] . . . [xn, cn], then its 0-child is iso-
morphic to Enc(t2, . . . , ti−1) and its 1-child is isomorphic to
Enc(ti, . . . , tn);
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Figure 6. The tulab tree T4.

Figure 7. The T4’s encoding 3-stacktree.

∗ otherwise, its 0-child is isomorphic to Enc(t2, . . . , tn) and its
1-child is #.

– c1 ∈ {f, d}: its 0-child is # and its 1-child is isomorphic to
Enc(t2, . . . , tn).

A tree of Enc(TTree(Σ)) is called a 3-stacktree. We denote by 3STree(Σ̃) the
set of 3-stacktrees over Σ̃. Let us remark that 3STree(Σ̃) is a strict subset of
3Tree(Σ̃) because Enc is not a bijection. The tree encoding Enc is illustrated by
Figures 6 and 7.

In [4] a mapping is provided between Σ̃∗ and the set 2STree(Σ̃) of particular
binary trees over Σ̃ called 2-stacktrees. Through this mapping, languages of VPL
are mapped onto regular languages of 2-stacktrees. We prove a similar result for
nested sibling tulab tree languages.

Proposition 5.2. Let G be a tulab tree language. Then G is a language of NSTL
iff Enc(G) is a regular language.

Proof. Let G be in NSTL, we denote L = Enc(G). Then G = L(A) for a nsta
automaton A = (Σ, Q̃, δ, F ) with Q̃ = (Q, (Qup, Qdown, Qfix)). For each run r of
the automaton A over a tree t of G we build the tulab tree tr over the typed
alphabet Σ̃ ×Q = {(σc, q) |σ ∈ Σ, q ∈ Qc} deduced from t by replacing each label
σ of a node w with type c by the label (σc, r(w)) with type c. Let us denote
Gdec the set of all such decorated trees tr built from trees of G and successful
runs of A over these trees. We have the following equalities: L = Enc(G) and
Enc(G) = π1(Enc(Gdec)), π1 denoting the first projection from Σ̃ ×Q to Σ̃. We
prove that L is regular by proving that Enc(Gdec) is regular.
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Gdec is in NSTL because Gdec = L(B) where B = (Σ̃ ×Q, Σ̃ ×Q,Δ, Σ̃ × F )
with Δ given by: ∀(σc, q) ∈ Σ̃ ×Q, LB((σc, q), (σc, q)) = π−1

2 (LA(σ, q)) (π2 de-
noting the second projection from Σ̃ ×Q to Q̃). From B, we construct a finite
tree automaton C = (Σ̃ ×Q,U, γ, V ) recognizing Enc(Gdec). Let us denote by η

the mapping from Σ̃ ×Q
∗

to 2STree(Σ̃×Q) that differs from the mapping of
[4] only by the image of ε: η(ε) = # instead of the empty tree as in [4]. For
each (σ, q) of Σ̃ ×Q, LB((σ, q), (σ, q)) is a language of VPL and therefore by [4],
η(LB((σ, q), (σ, q))) is a regular language of 2-stacktrees recognized by some finite
tree automaton A(σ,q) = (Σ̃ ×Q,Q(σ,q), δ(σ,q), F(σ,q)).

Then C is as follows:

• the set of states is U =
⋃

(σ,q)∈ ˜Σ×Q
Q(σ,q);

• the transitions γ: ((σ, q), t, t1t2t3) ∈ γ if and only if t3 ∈ F(σ,q) and
((σ, q), t, t1t2) ∈ δ(σ′,q′) if t ∈ Q(σ′,q′);

• the set of final states: V =
⋃

(σ,q)∈ ˜Σ×Q
F(σ,q).

One can verify that Enc(Gdec) = L(C). Intuitively, during a computation of C on
Enc(τ) where τ ∈ Gdec, the states t, t1 and t2 of a transition ((σ, q), t, t1t2t3) of γ
are used to simulate the verification in τ of the position of a node ν labeled with
(σ, q) with respect to its brothers, while state t3 is used to verify the correctness
of the sequence of ν’s children.

Conversely let L be a regular language of 3-stacktrees recognized by some finite
tree automaton A = (Σ̃, Q, δ, F ) where Σ̃ is a typed alphabet containing one 0-ary
symbol # with type f . For some subset G of TTree(Σ), L = Enc(G). Let Ldec be
the set of all decorated trees tr built from trees t of L and successful runs r of A on
t by replacing each label a of a node w by the pair (a, r(w)). Ldec is a language of
3-stacktrees over the typed alphabet Σ̃×Q (where each (σ, q) has the type of σ in
Σ̃). Ldec is regular as well because Ldec = L(B) where B = (Σ̃×Q, Σ̃×Q,Δ, Σ̃×F )
with Δ = {((σ, t), (σ, t), (σ1 , t1)(σ2, t2)(σ3, t3)) | (σ, t, t1t2t3) ∈ δ}.

We construct from B a nsta C recognizing G. If P3to2 is the mapping from
3-ary trees to 2-ary trees transforming each 3-ary tree into a 2-ary one by for-
getting each 2-child, then for each state (σ, q), P3to2(L(B, (σ, q))) is a regular
language of 2-stacktrees over Σ̃ × Q where L(B, (σ, q)) is the set of 3-stacktrees
whose root is associated with (σ, q) by at least a run of B. Therefore by [4],
η−1(P3to2(L(B, (σ, q)))) is a language of VPL that we denote VPL((σ, q)). Then
we set C = (Σ, Σ̃×Q, γ, Σ̃×F ) with γ defined by: ∀(a, q) ∈ Σ×Q and ∀c ∈ {u, d, f},
LC(a, (ac, q)) = VPL((ac, q)) and LC(a, (σ, q)) = ∅ if σ �= ac for each c ∈ {u, d, f}.

One verifies that G = L(C). In fact, because the definition of LC(a, (ac, q)) as
VPL((ac, q)) and the inductive definition of Enc there is a one to one correspon-
dence through Enc between decorated trees τρ representing successful runs ρ of C
on tulab trees τ and 3-ary trees accepted by B. Therefore there is a one to one
correspondence between successful runs of C on a tulab tree τ and successful runs
of A on t = Enc(τ). Hence τ belongs to L(C) iff Enc(τ) belongs to L. �
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Let us remark that the robustness results of NSTL given in Section 4.1 can be
directly deduced from Proposition 5.2.

• NSTL’s closures under intersection and complementation follow from
Proposition 5.2, from the equalities Enc−1(L1)∩Enc−1(L2) = Enc−1(L1 ∩
L2), Enc−1(L) = Enc−1(L) = Enc−1(L ∩ 3STree(Σ̃)) and from the fact
that L1 ∩ L2 and L ∩ 3STree(Σ̃) are regular sets of 3-stacktrees if so are
L1, L2 and L.

• Equivalence between nstas and complete deterministic nstas can also be de-
duced from proposition 5.2 and the remark that the nsta C built from the
automaton A recognizing a regular language of 3-stacktrees L is complete
and deterministic if so is A.

However the use of the encoding Enc does not lead to the direct automata construc-
tions given in the previous sections, but to indirect algorithms including encoding
and decoding phases.

5.3. NSTL and visibly tree automata with memory

In this section we give a relationship between nstas and a subclass of visibly
tree automata with memory (vtam for short) introduced in [10].

vtams defined in [10] are running on binary trees labeled over a typed alphabet.
We show, using the standard firstChild-nextSibling encoding from tulab trees into
binary labeled trees, that encodings of NSTL languages coincide with languages
of binary trees that are recognized by particular vtams that we call visibly tree
automata with right stack (vtars for short).

Roughly speaking, a vtars is a vtam that (i) only uses (word) stack memories
and (ii) works only with right son memories during its runs. For sake of place,
we omit the general definition of a vtam and directly give the formal definition of
a vtars that is self containing. Given a ranked typed alphabet Σ̃ whose symbols
have arity 2 except a particular symbol # with arity 0, a vtars A on Σ̃ is a tuple
(Γ, Q,Qf ,Δ) where Γ is a stack alphabet with a special bottom-of-stack symbol
⊥, Q is a finite set of state symbols, disjoint from Σ̃ ∪ Γ, Qf ⊆ Q is the subset of
final states and Δ is a set of rewrite rules of one of the following forms:

(i) f(q1(w1), q2(w2)) −→ q(γw2), if f ’s type is up;
(ii) f(q1(w1), q2(γw2)) −→ q(w2) or f(q1(w1), q2(⊥)) −→ q(⊥), if f ’s type is

down;
(iii) f(q1(w1), q2(w2)) −→ q(w2), if f ’s type is fix;
(iv) # −→ q(⊥),

where f ∈ Σ̃, q1, q2 and q ∈ Q, w1 and w2 ∈ (Γ \ {⊥})∗{⊥} and γ ∈ Γ \ {⊥}.
Identifying a binary tree t labeled over Σ̃ with its corresponding term over Σ̃,

we say that t is accepted by A in state q ∈ Q and with memorym ∈ (Γ \ {⊥})∗{⊥}
if and only if t −→∗ q(m) and we define L(A, q) = {t | t −→∗ q(m),
m ∈ (Γ \ {⊥})∗{⊥}}. The language of binary trees recognized by A is the union
of languages of A recognized in its final states L(A) =

⋃
q∈Qf

L(A, q).
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We now define the standard firstChild-nextSibling encoding Enc from possibly
empty sequences of tulab trees over Σ into binary trees labeled over the typed
alphabet Σ̃ = {xc |c ∈ {u, d, f} and x ∈ Σ} ∪ {#} in which a letter xc is of arity 2
and type c and # of arity 0 and type f . Using the notation t = [x, c](σ) introduced
in Section 5.2 to denote a tulab tree t, Enc is defined as follows:

• Enc(ε) = #;
• Enc([x1, c1](σ1), t2, . . . , tn) = xc1

1 (Enc(σ1),Enc(t2, . . . , tn)).
The following result gives the relationship between NSTL languages and languages
recognized by a vtars.

Proposition 5.3. Let L be a language of tulab trees. Then L is a nested sibling
tulab tree language iff Enc(L) = L(A) for some vtars A.

Proof. Let L = L(A) be a nested sibling tulab tree language where A is a nsta
A = (Σ, Q̃, δ, F ) with Q̃ = (Q, (Qup, Qdown, Qfix)). The construction of a vtars
B recognizing Enc(L) is guided by the following intuition: given a tulab tree t,
maximal right branches in Enc(t) (i.e. paths with maximal length only using right
child relationship) are in bijection with child node sequences σ in t. Therefore B’s
runs on Enc(t) will simulate on such branches, using only right stack memories,
runs of a vpa over strings of Q∗ verifying that the sequence of states associated
with σ’s nodes during A’s runs on t is correct.

Formally, for each (x, q) ∈ Σ× Q̃, let B(x,q) = (Γ(x,q), T(x,q), T
in
(x,q), T

f
(x,q),Δ(x,q))

be a vpa automaton over strings of Q∗ recognizing the visibly pushdown language
˜LA(x, q) = {w̃ |w ∈ LA(x, q)} where w̃ denotes the mirror image of w. T(x,q)

(resp. T in
(x,q), T

f
(x,q)) is the set of (resp. initial, final) states while Γ(x,q) is the stack

alphabet containing a special bottom-of-stack symbol ⊥.
We define T =

⋃
(x,q)∈Σ×Q̃ T(x,q), Γ =

⋃
(x,q)∈Σ×Q̃ Γ(x,q) and consider a new

stack symbol U and two new state symbols q⊥ and t⊥.
Then B = (Γ ∪ {U}, (Q∪ {q⊥})× (T ∪ {t⊥}), F × {t⊥},Δ) where rewrite rules

of Δ have one of the following forms:
• form (a) deals with leaves of Enc(t): # −→ (q⊥, t)(⊥) where t is in {t⊥}∪⋃

(y,s)∈Σ×Q̃ T
in
(y,s);

• form (b) deals with internal nodes of Enc(t):
xc((q1, t1)(w1), (q2, t2)(w2)) −→ (q, t)(w) with (i) q ∈ Qc, (ii) t2, t ∈ T(y,s),
w2, w ∈ Γ∗

(y,s) and (q, t2, w2) −→ (t, w) ∈ Δ(y,s) for some (y, s) ∈ Σ × Q̃

and (iii) t1 ∈ T f
(x,q).

Because B(y,s) is a vpa, moves of the stack described by rules of Δ(y,s)

such as (q, t2, w2) −→ (t, w) are respecting q’s type that coincides with
xc’s type. Therefore rewrite rules of Δ have the form required for a vtars.
Condition (iii) ensures that the child node sequence of a t’s node n with
type c and label x is associated with a word of states of LA(x, q) and
therefore that n can be associated with state q;

• form (c) deals with the root: xc((q1, t1)(w1), (q⊥, t⊥)(⊥)) −→ (q, t⊥)(w)
with (i) q ∈ Qc, (ii) t1 ∈ T f

(x,q) and (iii) if c = up then w = U else w = ⊥.
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Conversely let us suppose that Enc(L) = L(B) for some vtars B = (Γ, Q,Qf ,Δ).
Following the same intuition as above, we construct a nsta A = (Σ, T̃ , η, F ) with
T̃ = (T, (Tup, Tdown, Tfix)) recognizing L as follows:

• T = Σ̃ ×Q with Tc = Σc ×Q for c ∈ {up, down, fix}. Given a tulab tree
t, the simulation by A of a B’s run r on Enc(t) will associate with a node
n of t, with type c and label x, a state (xc, q) iff the corresponding node
in Enc(t) labeled with xc is associated with state q during the B’s run r;

• F = Σ̃ ×Qf ;
• the set of transitions η is defined as follows: for each (x, t) ∈ Σ×T , LA(x, t)

is non empty iff t = (xc, q) for some q ∈ Q and LA(x, (xc, q)) = L(B(x,c,q))
where B(x,c,q) is a vpa over strings of T ∗. Roughly speaking L(B(x,c,q)) is
the language of strings (xc1

1 , q1) . . . (x
cn
n , qn) built with labels encountered

(from top to down) on particular paths of Enc(t), each label xci

i being
coupled with the state qi associated with the corresponding node during
a B’s run. Such paths have to be maximal right branches of Enc(t) whose
top node (labeled with xc1

1 and associated with q1) has to be the left
son of a node labeled with xc and associated with q. More formally,
B(x,c,q) = (Γ, T, T(x,c,q), δ). So B(x,c,q) uses, as state alphabet, its input
alphabet T itself and, as stack alphabet, B’s stack alphabet. Furthermore:

– the set δ of rewrite rules is obtained by translating each rule of
Δ with the form xc(q1(w1), q2(w2)) −→ q(w) into the set of rules
{((xc, q), (xc2

2 , q2), w2) −→ (xc, q)(w)|xc2
2 ∈ Σ̃}; δ’s transitions per-

form Δ’s transitions by forgetting the left parts of these transitions,
simulating a pushdown automaton over strings of T ∗. Because the
relationship between stack words w2 and w is respecting xc’s type in
Δ’s rules, it is also respecting (xc, q)’s type in δ’s rules. Therefore
B(x,c,q) is a vpa.

– T(x,c,q) is defined from states associated during a B’s run with nodes
that are left sons of nodes labeled with xc and associated with q
(such left sons are therefore tops of maximal right branches).
Formally: T(x,c,q) = {(xc1

1 , q1)|xc1
1 ∈ Σ̃, ∃w1, w2, w ∈ Γ∗, q2 ∈ Q,

xc(q1(w1), q2(w2)) −→ q(w) ∈ Δ}.
By construction A is clearly a nested sibling tree automaton. One verifies with-
out major difficulties that A’s runs on t effectively simulate B’s runs on Enc(t).
Therefore L is a language of NSTL(Σ). �

Proposition 5.3 shows the equivalence (up to the firstChild-nextSibling encod-
ing) between the two classes of tree languages recognized, on the one hand by a
nsta, and on the other hand by a vtars.

This equivalence delivers more precise results about robustness properties of
vtars languages. Indeed it is shown in [10] that the class of vtam languages is
closed under boolean operations and that the emptiness and inclusion problems
are decidable for vtams. Because a vtars automaton is a particular case of a vtam
automaton, the decidability of the emptiness and inclusion problems for vtars
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automata directly follows from [10] but it is not the case for the closure properties
of this strict subclass of the vtam languages. Therefore Proposition 5.3 delivers
(a) the closure under boolean operations of the class of vtars languages and (b)
better complexities of the emptiness and inclusion problems for vtars automata:
the emptiness problem is decidable in PTIME for vtars automata while, in [10] it
is proved decidable in EXPTIME for vtam languages, and the inclusion problem
is decidable in EXPTIME for vtars automata while, in [10] it is proved decidable
in 2-EXPTIME for vtam languages.

6. Conclusion

In this paper we have proposed a new framework to express and validate some
context-free style structural constraints on unranked labeled trees. More precisely
this framework introduces (i) typed unranked labeled trees that are trees defined
on a typed tree domain and (ii) nested sibling tulab tree automata (nsta) to deal
with them. Nstas are defined by replacing regular constraints on sibling nodes of
regular unranked labeled trees languages by visibly pushdown constraints. This
leads to a new class of labeled trees languages, NSTL, that:

• is strictly more expressive that the regular languages class;
• is closed under boolean operations;
• has decision procedures for the classical decision problems;
• has a characterization in terms of expressed logic properties;
• can be related, through adequate encodings, with the class of regular sets of

3-ary trees and with the class of sets of binary trees accepted by particular
visibly tree automata with memory.

To our knowledge, no such class of unranked labeled trees possessing all these good
properties has been exhibited beyond the class of regular ones. Therefore we think
that NSTL is a quite interesting class as well as nstas that provide efficient tools
to validate structural constraints beyond regular ones.

7. Appendix. Proposition 5.1 (Equivalence with MSOµ)

Formula φM (S,U1, . . . , Umu , F1, . . . , Fmf
, D1, . . . , Dmd

))
Recall that M is a visibly pushdown word automaton M = (X̃, P, Pin, ,Γ, δ, F )

where P is a finite set of states and Pin, F ⊆ P = {p1, . . . , pn} being respectively
the set of initial and final states, and Γ = {γ1, . . . , γm} ∪ {⊥} is a finite stack
alphabet. Formula φM (S,U1, . . . , Umu, F1, . . . , Fmf

, D1, . . . , Dmd
)) is as follows:
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∃Xp1 . . . Xpn ∃Xγ1 . . .Xγm

∀x ∈ S, (
∨

1≤i≤n x ∈ Xpi) ∧ (
∧

1≤i,j≤n, i�=j x ∈ Xpi ⇒ ¬(x ∈ Xpj )) ∧

∀x ∈ S, (∃y ∈ S, μ(x, y)) ⇒
((

∨
1≤i≤m x ∈ Xγi) ∧ (

∧
1≤i,j≤m, i�=j x ∈ Xγi ⇒ ¬(x ∈ Xγj ))) ∧

∀x ∈ S, (
∨

1≤i≤mf
x ∈ Fi) ⇒

(
∨

(pi,fj ,pk)∈δ x ∈ Fj ∧ x ∈ Xpi ∧ ∃y sibling(x, y) ∧ y ∈ Xpk
) ∧

∀x ∈ S, (
∨

1≤i≤mu
x ∈ Ui) ⇒

(
∨

(pi,uj ,pk,γl)∈δ x ∈ Uj ∧ x ∈ Xpi ∧ ∃y sibling(x, y) ∧ y ∈ Xpk
∧ x ∈ Xγl

) ∧

∀x ∈ S, (
∨

1≤i≤md
x ∈ Di) ⇒ (

∨
(pi,dj,γl,pk)∈δ x ∈ Dj ∧ x ∈ Xpi∧

∃y sibling(x, y) ∧ y ∈ Xpk
∧ ∃z μ(z, x) ∧ z ∈ Xγl

) ∧
∀x ∈ S(∀y ∈ S,¬(sibling(y, x)) ⇒ ∨

p∈Pin
x ∈ Xp) ∧ (∀y ∈ S,¬(sibling(x, y)) ⇒∨

p∈F x ∈ Xp).

The first part of the formula says that each position is labeled by exactly one
state; the second one that positions of type up (with a matching position of type
down) are labeled with a symbol push on the stack at this position. The following
three parts state the existence of some transition between each position and its
successor (in ≤). Finally, the last part states that the first position is labeled with
some initial state and the last one by a final state.

Construction of an automaton accepting models of μ(x, y)
We recall that the bottom of the stack contains a special symbol ⊥ that cannot

be pop out of the stack. The automaton accepting trees that model this formula
is A = (Σ × {0, 1}n+m, Q̃, δ, F ) where

• Q̃ = ({qu
o , q

f
o , q

d
o , qx, qy, q

u
e , q

f
e , q

d
e}, ({qu

o , qx, q
u
e }, {qf

o , q
f
e }, {qd

o , qy, q
d
e}));

• F = {qu
e , q

f
e , q

d
e};

• δ satisfies:
– (α, qu

o , L0), (α, qf
o , L0), (α, qd

o , L0) ∈ δ with α has its positions x and y
set to 0;

– (α, qu
e , L1), (α, qf

e , L1), (α, qd
e , L1) ∈ δ with α has its positions x and y

set to 0;
– (α, qx, L0) ∈ δ with α has its position x set to 1 and its positions y

set to 0;
– (α, qy , L0) ∈ δ with α has its position y set to 1 and its positions x

set to 0;
– (α, qu

e , Lt), (α, qf
e , Lt), (α, qd

e , Lt) ∈ δ with α has its positions x and y
set to 0.
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The three visibly pushdown word languages L0, L1 and Lt are defined
respectively by:

– for L0: (qu
0 , p, p, γ), (qf

0 , p, p), (qd
0 , p, γ, p), (qd

0 , p,⊥, p) where p is the
unique state, initial and final;

– for L1: (qu
0 , p, p, γ), (qf

0 , p, p), (qd
0 , p, γ, p), (qd

0 , p,⊥, p), (qu
e , p, p

′, γ),
(qf

e , p, p
′), (qd

e , p, γ, p
′), (qd

e , p,⊥, p′), (qu
0 , p

′, p′, γ), (qf
0 , p

′, p′), (qd
0 , p

′,
γ, p′), (qd

0 , p
′,⊥, p′) where the states are {p, p′}, p being initial and p′

final and γ is the unique stack symbol;
– for Lt:

(qu
0 , p, p, γ), (qf

0 , p, p), (qd
0 , p, γ, p), (qd

0 , p,⊥, p), (qx, p, p′, γx), (qu
0 , p

′,
p′, γ), (qf

0 , p
′, p′), (qd

0 , p
′, γ, p′), (qd

0 , p
′,⊥, p′), (qy, p′, γx, p

′′), (qu
0 , p

′′,
p′′, γ), (qf

0 , p
′′, p′′), (qd

0 , p
′′, γ, p′′), (qd

0 , p
′′,⊥, p′′) where the states are

{p, p′, p′′}, p being initial and p′′ final and γ, γx are the stack symbols.
Note first that x and y have to be sibling nodes. With the nodes corresponding
to x (resp. y) will be associated the state qx (resp. qy). The path from the father
node of x,y to the root is labeled with qe (in fact, with qu

e , qf
e , qd

e depending on
the type of the node). The other nodes will be labeled with qo (in fact, with qu

o ,
qf
o , qd

o depending on the type of the node).
The language Lo contains only words of q0 (qu

o , qf
o , qd

o): the x and y are below
none of these nodes. The language L1 contains words made of the sequence of qo,
followed by a qe and terminated by an another sequence of qo. The nodes x, y are
below the nodes labeled by qe. Finally, the language Lt contains words made of a
sequence of qo, followed by a qx, then a sequence of qo, then qy and is terminated
by an another sequence of qo. The stack symbol γx is used to ensure the matching
between the node labeled by qx and the node labeled by qy.
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