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UNAMBIGUOUS ERASING MORPHISMS
IN FREE MONOIDS ∗

Johannes C. Schneider1

Abstract. This paper discusses the fundamental combinatorial ques-
tion of whether or not, for a given string α, there exists a morphism
σ such that σ is unambiguous with respect to α, i.e. there exists no
other morphism τ satisfying τ (α) = σ(α). While Freydenberger et al.
[Int. J. Found. Comput. Sci. 17 (2006) 601–628] characterise those
strings for which there exists an unambiguous nonerasing morphism σ,
little is known about the unambiguity of erasing morphisms, i.e. mor-
phisms that map symbols onto the empty string. The present paper
demonstrates that, in contrast to the main result by Freydenberger
et al., the existence of an unambiguous erasing morphism for a given
string can essentially depend on the size of the target alphabet of the
morphism. In addition to this, those strings for which there exists an
erasing morphism over an infinite target alphabet are characterised,
complexity issues are discussed and some sufficient conditions for the
(non-)existence of unambiguous erasing morphisms are given.

Mathematics Subject Classification. 68R15, 68Q25.

1. Introduction

The examination of the unambiguity of morphisms arises from the research on
pattern languages. In contrast to the rather common setting of dealing with one
single morphism applied to all strings in a set, a pattern language is the set of
all morphic images of one fixed string – then called pattern (for more information
on pattern languages see, e.g., Mateescu and Salomaa [8]). In the field of pattern
languages, we might be confronted with the situation that two different morphisms,
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applied to a given pattern, generate the same morphic image. If, for a given pattern
and a morphism h, there exists no other morphism that, applied to the pattern,
generates the same image, we call this morphism h unambiguous, otherwise, it is
called ambiguous. Ambiguity of morphisms has great impact on the learnability
of pattern languages (cf. Reidenbach [9,10]).

The explicit detailed examination of the unambiguity of morphisms, as initiated
by Freydenberger et al. [4] and continued by Freydenberger and Reidenbach [3],
offers a combinatorially rich theory and shows various cross-references to other
topics in combinatorics on words, such as fixed points of morphisms, equality sets
and the Post correspondence problem. This paper takes up some of the open
problems in Freydenberger et al. [4] – first of all the question, for which string,
there exists an unambiguous erasing morphism. Some minor, preliminary results
concerning this question have already been given in [4].

We now introduce the definition of unambiguous morphisms a little more for-
mally: given an arbitrary alphabet Σ and a string1 α ∈ N

+, a morphism σ : N
∗ →

Σ∗ is called unambiguous with respect to α if and only if there exists no other
morphism τ : N

∗ → Σ∗ (i.e. τ(i) �= σ(i) for a symbol i occurring in α) such that
τ(α) = σ(α). If such a morphism τ exists, σ is called ambiguous with respect to
α. For instance, the morphism σ1 : N

∗ → {a, b}∗, σ1(i) := abi for every i ∈ N, is
ambiguous with respect to α1 := 1 · 2 · 2 · 3 · 1 · 3 since there exists another mor-
phism τ : N

∗ → {a, b}∗, given by τ(1) := a, τ(2) := bab, τ(3) := babbb, satisfying
τ(α1) = σ1(α1):

σ1(α1) =

σ1(1)︷ ︸︸ ︷
a b

σ1(2)︷︸︸︷
ab b

σ1(2)︷︸︸︷
ab b

σ1(3)︷ ︸︸ ︷
abbb

σ1(1)︷ ︸︸ ︷
a b

σ1(3)︷ ︸︸ ︷
abbb = τ(α1).= ︸︷︷︸

τ(1)

︸︷︷︸
τ(2)

︸︷︷︸
τ(2)

︸ ︷︷ ︸
τ(3)

︸︷︷︸
τ(1)

︸ ︷︷ ︸
τ(3)

In contrast to this, every morphism σ : N
∗ → Σ∗ is unambiguous with respect to,

e.g., α2 := 1 · 1.
In Freydenberger et al. [4], those strings α are characterised for which there

exists an unambiguous nonerasing morphism σ : N
∗ → Σ∗, i.e. |σ(i)| ≥ 1 for every

symbol i occurring in α. However, there are strings for which every nonerasing
morphism is ambiguous, but there exists an unambiguous erasing morphism, i.e.
a morphism that maps certain symbols of the string onto the empty string ε.
For instance, consider α3 := 1 · 2 · 2. Every nonerasing morphism σNE : N

∗ →
Σ∗ is ambiguous since there exists another morphism τ : N

∗ → Σ∗, defined by
τ(1) := σNE(1 · 2 · 2), τ(2) := ε, satisfying σNE(α3) = τ(α3). In contrast to
this, every erasing morphism σE : N

∗ → Σ∗ with |σE(1)| = 1 and σE(2) = ε is
unambiguous with respect to α3. Finally, there also exist strings for which every
(erasing or nonerasing) morphism is ambiguous, provided that this morphism does
not map all symbols in the pattern to the empty word. This is illustrated by, e.g.,
α4 := 1 · 2 · 1 · 2. Let σ : N

∗ → Σ∗ be an arbitrary morphism. If σ(1) �= ε, then the

1For the sake of convenience, we use N as an infinite alphabet and consider strings over N

such as the string 2 · 1 · 2 · 25 · 17, where · refers to the concatenation and is used to separate
between different symbols in the string.
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morphism τ(1) := ε, τ(2) := σ(1 · 2), satisfies τ(α4) = σ(α4) – the case σ(2) �= ε
is analogous. Hence, no such morphism σ is unambiguous with respect to α4.

The main question investigated in this work is: for which strings α ∈ N
+ does

there exist an unambiguous morphism σ : N
∗ → Σ∗? In contrast to Freydenberger

et al. [4], where this question is discussed primarily focussing on injective and,
hence, nonerasing morphisms, we explicitly study those morphisms that “erase”
symbols in α, i.e. map symbols onto the empty word. It turns out that the answer
to this question depends on the size of Σ, which establishes a new and unexpected
aspect in the research on the ambiguity of morphisms since, concerning nonerasing
morphisms, the size of Σ does not matter as long as |Σ| ≥ 2 (Freydenberger
et al. [4]). Additionally, we characterise those strings α ∈ N

∗ for which there exists
an unambiguous morphism with an infinite target alphabet, discuss the complexity
of the respective decision problem and, finally, give a sufficient condition for the
existence of an unambiguous morphism σ : N

∗ → Σ∗ with a finite alphabet Σ.

2. Definitions and basic results

In the present section we establish some basic definitions and notation. Parts of
the terminology are adapted from the research on pattern languages (cf. Mateescu
and Salomaa [8]). Additionally, for notation not explained explicitly, we refer
the reader to Choffrut and Karhumäki [1]. Concepts concerning decidability and
complexity are adopted from Garey and Johnson [5].

Let N := {1, 2, . . .} be the set of natural numbers. Let M, M1, M2, . . . , Mn be
sets, n ∈ N. (M1, M2, . . . , Mn) is called a partition of M if and only if M1 ∪M2 ∪
. . . ∪ Mn = M and Mi ∩ Mj = ∅ for all 1 ≤ i < j ≤ n.

An alphabet A is an enumerable set of symbols. A string (over A) is a finite
sequence of symbols taken from A. Using |X | we denote the cardinality of a set X
or the length of a string X . The empty string is the unique sequence of symbols
of length 0; we use ε for the empty string. For the concatenation of strings s, t we
write s ·t (or st for short). The string that results from the n-fold concatenation of
a string s is denoted by sn. The notation A∗ refers to the set of all strings over A,
i.e., more precisely, the free monoid generated by A; furthermore, A+ := A∗ \{ε}.
The number of occurrences of a symbol x ∈ A in a string s ∈ A∗ is written as
|s|x. With regard to arbitrary strings s, t ∈ A∗, we write s = . . . t if there exists
an u ∈ A∗ such that s = ut, we write s = t . . . if there exists an u ∈ A∗ such that
s = tu, and, finally, s = . . . t . . . if there exist u, v ∈ A∗ such that s = utv. In
contrast to this, if we wish to omit some parts of a canonically given string then
we henceforth use the symbol [. . .]. E.g. α = . . . 1 · 2 · [. . .] · 5 means that α ends
with the string 1 · 2 · 3 · 4 · 5.

We often use N as an infinite alphabet. In order to distinguish between strings
over N and strings over a (possibly finite) alphabet Σ, we call the former patterns.
We name patterns using lower case letters from the beginning of the Greek al-
phabet such as α, β, γ. Given a pattern α ∈ N

∗, we call symbols occurring in α
variables and denote the set of variables in α with var(α). Hence, var(α) ⊆ N.
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Considering strings over N, we use · to separate symbols in N in order to distinguish
between, for instance, the strings 1 · 1 · 2 and 11 · 2.

Given arbitrary alphabets A,B, a morphism is a mapping h : A∗ → B∗ that
is compatible with the concatenation, i.e., for all v, w ∈ A∗, h(vw) = h(v)h(w).
Hence, h is fully defined for all v ∈ A∗ as soon as it is defined for all symbols in
A. We call h erasing if and only if h(a) = ε for an a ∈ A, otherwise h is called
nonerasing. If we call a morphism h (non)erasing with a certain string s in mind,
we only demand h to be (non)erasing for the symbols of s.

A morphism h : N
∗ → N

∗ is said to be nontrivial if h(x) �= x for an x ∈ N.
Let V ⊆ N. We call h : N

∗ → N
∗ nontrivial for V if h(x) �= x for an x ∈ V .

We define a morphism πV : N
∗ → N

∗ by πV (x) := x if x ∈ V and πV (x) := ε if
x �∈ V . Hence, πV is the projection of a string onto its substring consisting only of
symbols in V . Moreover, a pattern α ∈ N

+ is called a fixed point of h if h(α) = α.
We write g ◦ h for the composition of arbitrary morphisms g, h : N

∗ → N
∗. Hence,

g ◦ h(w) = g(h(w)) for every w ∈ N
∗.

For any alphabet Σ, for any morphism σ : N
∗ → Σ∗ and for any pattern

α ∈ N
+ with σ(α) �= ε, we call σ unambiguous (with respect to α) if and only

if there is no morphism τ : N
∗ → Σ∗ satisfying τ(α) = σ(α) and, for some

x ∈ var(α), τ(x) �= σ(x). If σ is not unambiguous with respect to α, it is called
ambiguous (with respect to α). Furthermore, we define AMBΣ := {α ∈ N

+ |
there is no unambiguous morphism σ : N

∗ → Σ∗ with respect to α}.
We conclude the definitions in this section with a partition of the set of all

patterns subject to the following criterion.

Definition 2.1. Let α ∈ N
+. We call α prolix if and only if there exists a

factorisation α = β0 γ1 β1 γ2 β2 . . . γn βn with n ≥ 1, βi ∈ N
∗, 0 ≤ i ≤ n, and

γi ∈ N
+, 1 ≤ i ≤ n, such that

(1) for every i ∈ {1, 2, . . . , n}, |γi| ≥ 2;
(2) for every i ∈ {0, 1, . . . , n} and for every j ∈ {1, 2, . . . , n}, var(βi)∩ var(γj)

= ∅;
(3) for every i ∈ {1, 2, . . . , n}, there exists an yi ∈ var(γi) such that yi occurs

exactly once in γi and, for every i′ ∈ {1, 2, . . . , n}, if yi ∈ γi′ then γi = γi′ .

We call α ∈ N
+ succinct if and only if it is not prolix.

In the field of erasing pattern languages, a succinct pattern is the shortest gen-
erator of its respective pattern language. Furthermore, the set of prolix patterns
exactly corresponds to the class of finite fixed points of morphisms:

Theorem 2.2 (Head [6]). Let α ∈ N
+. α is prolix if and only if α is a fixed point

of a nontrivial morphism h : N
∗ → N

∗.

Hence, for every prolix pattern α, there exists a morphism h : N
∗ → N

∗ sat-
isfying h(α) = α and h(x) �= x for an x ∈ var(α). Note that the set of succinct
patterns is also equivalent to the set of morphically primitive words (as introduced
by Reidenbach and Schneider [11]).
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Regarding the unambiguity of nonerasing morphisms, the classification of pat-
terns into succinct and prolix patterns is crucial:

Theorem 2.3 (Freydenberger et al. [4]). Let α ∈ N
∗, let Σ be an alphabet, |Σ| ≥ 2.

There exists an unambiguous nonerasing morphism σ : N
∗ → Σ∗ with respect to α

if and only if α is succinct.

According to this result, for any prolix pattern α, every nonerasing morphism
is ambiguous. However, if we allow σ to be erasing, σ can still be unambiguous
with respect to prolix patterns, although there are other prolix patterns, for which
no morphism is unambiguous. This is demonstrated with help of the example
patterns α3, α4 from Section 1. In the next section we examine this phenomenon
in detail and, thus, primarily concentrate on prolix patterns and the question for
which of those patterns there exists an unambiguous morphism.

3. Ambiguity partitions

We begin this section with another example pattern: let α5 := 1·2·1·2·3·3·4·4·
4·4·5·5·5. This pattern is prolix since there exists a factorisation α5 = β0γ1β1γ2β2

with β0 := β1 := ε, γ1 := γ2 := 1 · 2 and β2 := 3 · 3 · 4 · 4 · 4 · 4 · 5 · 5 · 5, which
satisfies the conditions of Definition 2.1. Hence, we can conclude from Theorem 2.3
that every morphism which is unambiguous with respect to α5 must be erasing.
Indeed, we can use the same argumentation as for the example pattern α4 from
Section 1 to show that a possible unambiguous morphism σ : N

∗ → Σ∗ must satisfy
σ(1) = σ(2) = ε. Moreover, we show that σ must also map 3 onto the empty word
and argue by contradiction: assume that σ(3) �= ε. Then τ : N

∗ → Σ∗, defined by
τ(1) := σ(3), τ(2) := τ(3) := ε, τ(4) := σ(4), τ(5) := σ(5), satisfies τ(α5) = σ(α5),
which contradicts σ being unambiguous. With an analogous argument, we can
show that σ(4) = ε, too (with τ(1) := σ(4 · 4)). Thus, only variable 5 may be
mapped onto a nonempty word. In fact, every morphism σ : N

∗ → Σ∗ with
|σ(5)| = 1 and σ(x) = ε, x �= 5, is unambiguous with respect to α5. Informally
speaking, regarding pattern α5, the need to map 1 and 2 onto the empty word
provokes a type of “domino effect”, which is carried forward onto 3 and 4. To
formalise this observation, we need the following definition.

Definition 3.1. Let α ∈ N
+. We inductively define an ambiguity partition (with

respect to α):

(i) (∅, var(α)) is an ambiguity partition with respect to α.
(ii) If (E, N) is an ambiguity partition with respect to α and there exists a

morphism h : N
∗ → N

∗ that is nontrivial for N and satisfies h(α) = πN (α)
then (E′, N ′) is an ambiguity partition with

E′ := E ∪ {x ∈ N | h(x) = ε},
N ′ := {x ∈ N | h(x) �= ε}.
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Note that E contains those variables for which it is certain that an unambiguous
morphism σ : N

∗ → Σ∗ needs to map them to the empty word, whereas N consists
of those variables that can either be mapped by σ to a nonempty word or for which
this aspect is uncertain. This is formally shown below.

We now demonstrate how Definition 3.1 affects the above example pattern α5:
let E := ∅, N := var(α). According to (i), (E, N) is an ambiguity partition of
α5. Let h : N

∗ → N
∗ be defined by h(1) := ε, h(2) := 1 · 2 and h(x) := x for all

x �= 1, 2. Then h(α) = πN (α) = α and, thus, according to (ii), ({1}, {2, 3, 4, 5})
is an ambiguity partition with respect to α5. Furthermore, h : N

∗ → N
∗, defined

by h(1) := 2, h(2) := ε and h(x) := x for all x �= 1, 2, leads to the ambiguity
partition ({1, 2}, {3, 4, 5}). In a similar manner, we can show that ({1, 2, 3}, {4, 5})
and ({1, 2, 3, 4}, {5}) are ambiguity partitions with respect to α5. In the latter
ambiguity partition (E, N) = ({1, 2, 3, 4}, {5}), the set E is of maximal size. We
name those ambiguity partitions in the following technical definition that is useful
in some of the subsequent proofs.

Definition 3.2. Let α ∈ N
+. An ambiguity partition (E, N) with respect to α

is called maximal if and only if every (other) ambiguity partition (E′, N ′) with
respect to α satisfies |E′| ≤ |E| and |N ′| ≥ |N |.

Some simple observations on ambiguity partitions are made in the following
proposition.

Proposition 3.3. Let α ∈ N
+.

(1) An ambiguity partition (E, N) with respect to α is a partition of var(α).
(2) If (E′, N ′) is an ambiguity partition with respect to α derived from an

ambiguity partition (E, N) by the rules of condition (ii) of Definition 3.1,
then |E′| > |E| (and, thus, |N ′| < |N |).

(3) α is prolix if and only if there exists an ambiguity partition (E, N) with
respect to α such that E �= ∅.

Proof. (1): Directly from Definition 3.1.
(2): Let α ∈ N

+, (E, N) be an ambiguity partition with respect to α and h :
N

∗ → N
∗ be a morphism that is nontrivial for N and satisfies h(α) = πN (α). We

show that {x ∈ N | h(x) = ε} is nonempty, which proves the statement. Assume
to the contrary that, for every x ∈ N , h(x) �= ε. Hence, (	) |h(πN (α))| ≥ |πN (α)|.
Furthermore, since h(α) = πN (α), it follows that |h(α)| = |πN (α)| and, thus,
|h(πN (α))| ≤ |πN (α)|. Consequently, with (	) we can conclude that |h(πN (α))| =
|πN (α)| and, hence, h(e) = ε for every e ∈ E. Thus, h(πN (α)) = πN (α). But
then either h is nonerasing and, thus, trivial for N or there exists an x ∈ N with
h(x) = ε; both of these lead to a contradiction.

(3): We first show the only if direction. Hence, let α be prolix. Furthermore, let
E = ∅ and N = var(α). Then according to condition (i) of Definition 3.1, (E, N) is
an ambiguity partition with respect to α. Since α is prolix, there exists a nontrivial
morphism h : N

∗ → N
∗ satisfying h(α) = α = πN (α). Consequently, (E′, N ′),

E′, N ′ defined as in condition (ii) of Definition 3.1, is an ambiguity partition of α,
and, according to statement (2) of the proposition, E′ �= ∅.
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We proceed with the if direction. Let (E, N) be an ambiguity partition with
respect to α and let E �= ∅. Since E �= ∅, the rule of condition (ii) of Definition 3.1
must be applied at least once to derive (E, N). Consequently, there must be an
ambiguity partition (E′, N ′) which is derived from the partition (∅, var(α)) by
applying the rule of condition (ii). But this means that there exists a nontrivial
morphism h : N

∗ → N
∗ satisfying h(α) = πvar(α)(α) = α. Hence, we can conclude

from Theorem 2.2 that α is prolix. �

Finally, we state our main result on ambiguity partitions, which substantiates
the usefulness of Definition 3.1 regarding the (un)ambiguity of morphisms.

Theorem 3.4. Let Σ be an alphabet. Let α ∈ N
+ and let (E, N) be an ambiguity

partition with respect to α. Then every morphism σ : N
∗ → Σ∗ satisfying σ(x) �= ε

for an x ∈ E is ambiguous with respect to α.

Proof. For (E, N) = (∅, var(α)), there is no such morphism since E = ∅. Thus,
the statement is true.

Now, let (E′, N ′) be an ambiguity partition derived from condition (ii) of Defi-
nition 3.1. Then there exists an ambiguity partition (E, N) and a nontrivial mor-
phism h : N

∗ → N
∗ satisfying (	)h(α) = πN (α). Furthermore, E′ = E ∪ {x ∈ N |

h(x) = ε} and N ′ = {x ∈ N | h(x) �= ε}. We consider a morphism σ : N
∗ → Σ∗

satisfying σ(x) �= ε for an x ∈ E′. At first, we assume that (		)σ(x) = ε for
all x ∈ E and σ(n) �= ε for an n ∈ N with h(n) = ε. Let τ : N

∗ → Σ∗ be the
morphism defined by τ(x) := σ(h(x)) for all x ∈ var(α). Due to (	) and (		),
τ(α) = σ(h(α)) = σ(πN (α)) = σ(α), but τ(n) = ε �= σ(n). Consequently, σ is
ambiguous with respect to α. If σ(x) �= ε for an x ∈ E, it follows by induction
that σ is ambiguous. �

Hence, in order to find an unambiguous morphism for a pattern α ∈ N
∗, we

can initially investigate if α is succinct (cf. Def. 2.1). In this case, there exists
an unambiguous morphism σ with respect to α (cf. Theorem 2.3 – the explicit
definition of σ is given by Freydenberger et al. [4]). If α is prolix, according
to Proposition 3.3, point (3), there exists an ambiguity partition (E, N) with
respect to α. Moreover, Theorem 3.4 states a necessary condition for unambiguous
morphisms with respect to α: such a morphism must “erase” all variables in E.
Consequently, we do not only know that σ must be erasing – which is already
implied by Theorem 2.3 – but we even receive concrete evidence which variables
at least must be mapped onto ε.

Additionally, as an immediate consequence of Theorem 3.4, we can state the
following sufficient condition for what patterns there exists no unambiguous mor-
phism:

Corollary 3.5. Let Σ be an alphabet. Let α ∈ N
+. If (var(α), ∅) is an ambiguity

partition with respect to α, no morphism σ : N
∗ → Σ∗ is unambiguous with respect

to α.

Proof. Directly from Theorem 3.4. �
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This corollary covers, e.g., our example pattern α4 from Section 1.
In the following, we study whether or not the condition of Corollary 3.5 is

necessary. It turns out that this depends on the size of the target alphabet of the
morphism under consideration.

4. Morphisms with an infinite target alphabet

If we consider an infinite target alphabet, the condition of Corollary 3.5 becomes
characteristic:

Theorem 4.1. Let Σ∞ be an infinite alphabet and let α ∈ N
+. There is an

unambiguous morphism σ : N
∗ → Σ∗

∞ with respect to α if and only if (var(α), ∅)
is not an ambiguity partition with respect to α.

Proof. We show the only if direction by contraposition: if (var(α), ∅) is an ambi-
guity partition with respect to α, it follows from Corollary 3.5 that no morphism
is unambiguous with respect to α.

To show the if part, assume that N �= ∅ for every ambiguity partition (E, N)
with respect to α. Let (E, N) be a maximal ambiguity partition with respect to α.
W. l. o. g. let Σ∞ := N. Furthermore, let the morphism σ : N

∗ → Σ∗∞ be defined
by σ := πN . We show by contradiction that σ is unambiguous with respect to α.
Assume that there exists a morphism τ : N

∗ → Σ∗
∞ satisfying τ(α) = σ(α) and

τ(x) �= σ(x) for an x ∈ var(α). Then, τ(α) = σ(α) = πN (α) and, additionally, τ
is nontrivial for N . But, according to condition (ii) of Definition 3.1, with h := τ ,
(E′, N ′) as defined in this condition is an ambiguity partition, too, satisfying
|E′| > |E| and |N ′| < |N | (cf. Prop. 3.3, point 2). This contradicts (E, N) being
maximal (cf. Def. 3.2). Thus, such a morphism τ cannot exist, and, hence, σ is
unambiguous with respect to α. �

Theorem 4.1 allows us to draw some conclusions on the decidability of the
question of whether or not there exists an unambiguous morphism σ : N

∗ → Σ∗∞
for an arbitrary pattern α ∈ N

+.

Corollary 4.2. Let Σ∞ be an infinite alphabet. Then AMBΣ∞ is decidable.

Proof. Given a pattern α ∈ N
+, we can enumerate all (finitely many) ambiguity

partitions with respect to α since the existence of a morphism h as requested by
condition (ii) of Definition 3.1 can be checked effectively. Finally, α ∈ AMBΣ∞ if
and only if (var(α), ∅) is an ambiguity partition with respect to α (cf. Thm. 4.1).

�

Unfortunately, however, this decision problem is NP-complete.

Theorem 4.3. Let Σ∞ be an infinite alphabet. The problem of deciding AMBΣ∞
is NP-complete.
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Proof. We first show that AMBΣ∞ is in NP. For this purpose, we describe a nonde-
terministic Turing machine M that accepts AMBΣ∞ : first, M writes nondetermin-
istically a sequence S := (E1, N1, h1), (E2, N2, h2), . . . , (Ek, Nk, hk) for a nonde-
terministically chosen k ∈ {1, 2, . . . , |var(α)| + 1} and Ei, Ni ⊆ var(α), 1 ≤ i ≤ k.
The hi correspond to morphisms hi : N

∗ → N
∗ and can each be given as a list

[x1, h(x1), x2, h(x2), . . . , x|var(α)|, h(x|var(α)|)]. Clearly, the length of the sequence S
is polynomial in |α|. Afterwards, we check if S is “compatible” with the definition
of the ambiguity partition, which means that (E1, N1) := (∅, var(α)) as well as,
for every i, 2 ≤ i ≤ k, (Ei, Ni) is a partition of var(α) and (E, N) := (Ei−1, Ni−1),
h = hi and (E′, N ′) := (Ei, Ni) satisfy condition (ii) of Definition 3.1. It can
be verified with little effort that this check can be done in polynomial time.
We let M go into the accepting state if and only if this check is successful and
(Ek, Nk) = (var(α), ∅). Due to Proposition 3.3 (ii), if the check is successful,
|Ei| > |Ei+1| holds for every i ∈ {1, 2, . . . , k − 1}. Thus, if (var(α), ∅) is an ambi-
guity partition with respect to α, it can be “reached” by a sequence S of maximal
length |var(α)|+ 1. Consequently, M accepts exactly those patterns α (in polyno-
mial time) such that (var(α), ∅) is an ambiguity partition with respect to α. Due
to Theorem 4.1, these are exactly the patterns in AMBΣ∞ .

In order to show that AMBΣ∞ is NP-hard, we reduce the following problem to
AMBΣ∞ .

Morphism Problem/Match Test: the problem of deciding MATCH{a,b} := {(α,
w) | there exists a morphism σ : N

∗ → {a, b}∗ such that σ(α) = w} is NP-
complete (cf. Ehrenfeucht and Rozenberg [2]).

We define a function f for which we shall prove the following:
(a) f is computable in polynomial time;
(b) (α, w) ∈ MATCH{a,b} if and only if f(α, w) ∈ AMBΣ∞ .

In order to define f(α, w), we need the following auxiliary definitions: let α ∈ N
∗

and w ∈ Σ∗. W. l. o. g. let var(α) ⊆ {3, 5, 7, . . .}. Furthermore, let d : N
∗ → N

∗

and σinv : Σ∗ → N
∗ be morphisms, defined as follows: let

d(x) := x · (x + 1),

where · refers to the concatenation, and

σinv(c) :=
{

1, c = a,
2, c = b.

If σinv(w) is succinct, we set β := σinv(w), otherwise (if σinv(w) is prolix), according
to Theorem 2.2, there exists a morphism g : N

∗ → N
∗ such that g(σinv(w)) =

σinv(w) and g(i) �= i for an i ∈ {1, 2}. It particularly follows that g(x) �= ε and
g(y) = ε for {x, y} = {1, 2}. In this case, let β := π{x}(σinv(w)).

Finally, let f(α, w) := d(α)β β d(α).

Proof of (a). It is clear that d(α) and σinv(α) can be constructed in polynomial
time. It remains to show that we can also efficiently check if σinv(w) is prolix.
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It can be verified with a little effort that σinv(w) is prolix if and only if, for
{x, y} = {1, 2}, σinv(w) = (ylxyr)s, l + r ≥ 1, s ≥ 1. This can be checked in
polynomial time (by scanning σinv(w) from left to right, once assuming x = 1,
y = 2, once vice versa).

Proof of (b). We first show the only if part. Let (α, w) ∈ MATCH{a,b}. Hence,
there exists a morphism h′ : N

∗ → Σ∗ such that h′(α) = w. Without loss of
generality, let h′(x) := ε for every x ∈ {1, 2} ∪ {4, 6, 8, . . .}. Thus, h′(β) = ε
and h′(d(α)) = h′(α) = w. Because of the structure of f(α, w) and the fact that
d(α) is a pattern with the ambiguity partition (var(d(α)), ∅), we can verify that
(E, N) := (var(d(α)), var(β)) is an ambiguity partition with respect to f(α, w).
We consider two disjoint cases.

Case 1: σinv(w) is succinct. Then (E, N) and h := σinv ◦h′ satisfy condition (ii)
of Definition 3.1 since

h(f(α, w)) = h(d(α)) · h(ββ) · h(d(α))
= σinv(h′(d(α))) · ε · σinv(h′(d(α)))
= σinv(w) · σinv(w) = β · β = πN (f(α, w)).

Moreover, h is nontrivial for N .
Case 2: σinv(w) is prolix. Then (E, N) and h := π{x} ◦ σinv ◦ h′ satisfy condi-

tion (ii) of Definition 3.1 since

h(f(α, w)) = h(d(α)) · h(ββ) · h(d(α))
= π{x}(σinv(h′(d(α)))) · ε · π{x}(σinv(h′(d(α))))
= π{x}(σinv(w)) · π{x}(σinv(w)) = β · β = πN (f(α, w)).

Moreover, h is nontrivial for N .
In both cases, h(x) = ε for every x ∈ var(β). Thus (var(f(α, w)), ∅) is an

ambiguity partition with respect to f(α, w). Hence, according to Theorem 4.1,
there is no unambiguous morphism with respect to f(α, w). This proves the only
if part.

We now show the if part by contraposition. Let (α, w) �∈ MATCH{a,b}. Without
loss of generality, let {a, b} ⊆ Σ∞. We shall prove that the morphism σ : N

∗ →
Σ∗

∞, defined by σ(1) := a, σ(2) := b, σ(x) := ε, x ∈ N\{1, 2}, is unambiguous with
respect to f(α, w). Assume to the contrary that there exists a morphism τ : N

∗ →
Σ∗

∞ satisfying σ(f(α, w)) = τ(f(α, w)) and σ(i) �= τ(i) for an i ∈ var(f(α, w)).
We consider the following cases:

Case 1: var(β) = {x}. Hence, either |var(σinv(w))| = 1 or σinv(w) is prolix. In
the former case, let g be the identity morphism, in the latter case, let g be the
morphism as defined above (below the definition of σinv).

Case 1.1: τ(x) �= ε. Thus, either τ(f(α, w)) �= σ(f(α, w)) or τ(f(α, w)) =
σ(f(α, w)), τ(x) = σ(x) and, hence, τ(i) = σ(i) for every i ∈ var(f(α, w)), which
contradicts the assumption.
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Case 1.2: τ(x) = ε. Then τ(d(α)) = σ(β) and, hence, σ ◦ g ◦ σinv ◦ τ ◦ d(α) =
σ ◦ g ◦ σinv ◦ σ(β) = w since σinv(σ(β)) = β, g(β) = σinv(w) and σ(σinv(w)) = w.
Thus, (α, w) ∈ MATCH{a,b}, which is a contradiction.

Case 2: var(β) = {x, y}. Hence, β = σinv(w) is succinct.
Case 2.1: τ(i) = ε for all i ∈ var(d(α)). Then, σinv(τ(β)) = β and σinv ◦ τ is

nontrivial for var(β) since τ(i) �= σ(i) for an i ∈ var(f(α, w)) is required. Thus, β
is prolix, which contradicts β being succinct.

Case 2.2: τ(i) �= ε for an i ∈ var(d(α)). Let τ(i) = . . .a . . . (the case τ(i) =
. . . b . . . is analogous). Then, τ(1) = ε since otherwise |τ(f(α, w)|a > |σ(f(α, w)|a.
Assume that τ(2) �= ε. With |τ(f(α, w))|a = |σ(f(α, w))|a and |τ(f(α, w))|b =
|σ(f(α, w))|b, it follows that τ(2) = b. Due to the structure of f(α, w), we have
τ(f(α, w)) = . . . σ(π{2}(β))2 . . ., but σ(π2(β))2 is not a factor of σ(f(α, w)). This
contradicts the existence of a morphism τ with τ(j1) �= ε and τ(j2) = ε, {j1, j2} =
{1, 2}. Consequently, τ(1) = τ(2) = ε. Thus, τ(d(α)) = σ(β) = w and, hence,
(α, w) ∈ MATCH{a,b}, which is again a contradiction.

Consequently, such a morphism τ cannot exist. Hence, σ is unambiguous with
respect to α, and this implies (α, w) �∈ AMBΣ∞ . �

The proof of Theorem 4.3 allows us to receive a result on the minimal complexity
of the AMBΣ decision problem for a finite alphabet Σ, although it is still open if
in this case AMBΣ is decidable at all.

Corollary 4.4. Let Σ be an finite alphabet, |Σ| ≥ 2. The problem of deciding
AMBΣ is NP-hard.

Proof. We can use the same reduction function f as in the proof of Theorem 4.3 as
it is sufficient to have {a, b} ⊆ Σ, which we can assume without loss of generality.

�

In the next section, we continue to study morphisms with a finite target alpha-
bet.

5. Morphisms with a finite target alphabet

Although the ambiguity of morphisms with an infinite target alphabet regarding
prolix patterns and, thus, erasing morphisms, offers a wider spectrum of results
than regarding succinct patterns for which the identity morphism is unambiguous
(as a consequence of Thm. 2.2), the much more interesting question reads as
follows: for which patterns α do there exist unambiguous morphisms mapping
to words over a finite target alphabet Σ, especially if |Σ| < |var(α)|, e.g. |Σ| =
2? Unfortunately, as to be shown below, Theorem 4.1 does not hold for finite
alphabets. In order to find an explanation for this situation, we take a closer
look at those other morphisms τ which exist if σ is ambiguous (cf. example
pattern α5 from the beginning of Sect. 3): if there is an ambiguity partition
(E, N) with respect to α and σ(e) �= ε for an e ∈ E, another morphism τ with
τ(α) = σ(α) can generate the whole image of e under σ with another variable
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e′ �= e, i.e. τ(e′) = . . . σ(e) . . . and τ(e) = ε. However, this is not the only “type”
of ambiguity that can occur: referring to example pattern α1 from the introduction,
we observe that in this case τ only generates partial images of variables by σ. This
phenomenon must be taken into account whenever we look for an unambiguous
morphism σ : N

∗ → Σ∗ with respect to a pattern α, provided that Σ is finite and
|Σ| < |var(α)|, since not every variable can be mapped to a different letter in Σ.

The following theorem states some fundamental insights into the ambiguity of
morphisms with a finite target alphabet and, in particular, shows that Theorem 4.1
does not hold for finite alphabets.

Theorem 5.1. Let k ∈ N and Σk, Σk+1 be finite alphabets with k and k+1 letters,
respectively. There exists a pattern α ∈ N

+ such that
(i) (var(α), ∅) is not an ambiguity partition with respect to α;
(ii) no morphism σ : N

∗ → Σ∗
k is unambiguous with respect to α; and

(iii) there exists an unambiguous morphism σ′ : N
∗ → Σ∗

k+1 with respect to α.

Proof. We give a pattern αk ∈ N
+ that satisfies the conditions (i)–(iii). For every

i, i′, j, j′ ∈ {1, 2, . . . , k + 1}, i �= j, i′ �= j′, let x{i,j} ∈ N \ {1, 2, . . . , k + 1} and
x{i,j} �= x{i′,j′} if and only if {i, j} �= {i′, j′}. We define αk as follows:

αk := β1 β2 [. . .] βk+1 βk+1 βk [. . .] β1, with

βi := i ·
∏

1≤j≤k+1,
j �=i

x{i,j}.

For instance,

α2 = 1 · x{1,2} · x{1,3} · 2 · x{2,1} · x{2,3} · 3 · x{3,1} · x{3,2} ·
3 · x{3,1} · x{3,2} · 2 · x{2,1} · x{2,3} · 1 · x{1,2} · x{1,3}.

Note that, e.g., x{1,2} = x{2,1} since {1, 2} = {2, 1}. Hence, |var(α2)| = 6. Thus,
α2 could equal 1 · 4 · 5 · 2 · 4 · 6 · 3 · 5 · 6 · 3 · 5 · 6 · 2 · 4 · 6 · 1 · 4 · 5. This pattern
may be consulted for a better understanding of the proof although the subsequent
argumentation deals with the general pattern αk.

Proof of (i): Let I := {1, 2, . . . , k + 1}. We show that, for every ambiguity
partition (E, N) with respect to αk and every i ∈ I, i �∈ E. Assume to the
contrary that there exists an ambiguity partition (E′, A′) with respect to αk such
that i ∈ E′ for an i ∈ I. Then, there exist ambiguity partitions (E1, N1) and
(E2, N2) such that

(1) for every i ∈ I, i �∈ E1;
(2) there exists a j ∈ I with j ∈ E2; and
(3) there exists a morphism h : N

∗ → N
∗ that is nontrivial for N1 and satisfies

h(αk) = πN1(αk) and h(j) = ε, according to condition (ii) of Definition 3.1.
Thus, following the inductive conception of Definition 3.1, the “step” from (E1, N1)
to (E2, N2) is the first one where an i ∈ I is included into the E-set of an am-
biguity partition. Let h′ : N

∗ → N
∗ be defined by h′ := πI ◦ h. We can verify
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h′(πI(αk)) = πI(αk) as follows: the above condition (1) implies I ⊆ N1. Further-
more, since every x{l,m}, 1 ≤ l, m ≤ k + 1, l �= m occurs four times in αk while
every l ∈ I occurs only twice, every occurrence of an l ∈ I in h(αk) must be gener-
ated by h applied to an m ∈ I. Additionally, h′(j) = ε and, thus, πI(αk) is a fixed
point of the nontrivial morphism h′. Consequently, πI(αk) is prolix (cf. Thm. 2.2),
which is a contradiction since there exists no factorisation of πI(αk) as required
by Definition 2.1. Thus, for every ambiguity partition (E, N) with respect to αk

and every i ∈ I, i �∈ E and, hence, (var(αk), ∅) is not an ambiguity partition with
respect to αk.

Proof of (ii): Assume to the contrary that there exists an unambiguous mor-
phism σ : N

∗ → Σ∗
k with respect to α. Let N := {1, 2, . . . , k+1}, E := var(αk)\N .

Since the morphism h : N
∗ → N

∗ defined by

h(i) :=
{

βi, if 1 ≤ i ≤ k + 1,
ε, else,

is nontrivial for N and satisfies h(αk) = αk, (E, N) is an ambiguity partition
with respect to α (according to Def. 3.1). Thus, it follows from Theorem 3.4 that
σ(e) = ε for every e ∈ E. Hence, exactly one of the following cases must occur.

Case 1. σ(n) = ε for an n ∈ N . If n = 1 then the morphism τ : N
∗ → Σ∗

k,
defined by τ(1) := σ(2), τ(2) := ε, τ(x) := σ(x) for all x ∈ N \ {1, 2}, τ(y) = ε for
all y ∈ E, satisfies τ(αk) = σ(αk) and, thus, contradicts σ being unambiguous with
respect to αk. If n > 1 then the morphism τ : N

∗ → Σ∗
k, defined by τ(n) = σ(n−1),

τ(n−1) = ε, τ(x) = σ(x) for all x ∈ N \{n−1, n}, τ(y) = ε for all y ∈ E, satisfies
τ(αk) = σ(αk) and, thus, contradicts σ being unambiguous with respect to αk.

Case 2. σ(n) �= ε for every n ∈ N . Since |N | = k + 1 > |Σk|, the image of
two variables under σ must end with the same letter, i.e. there exist i, j ∈ N ,
wi, wj ∈ Σ∗

k and a letter c ∈ Σk such that σ(i) = wic and σ(j) = wjc. We define
a morphism τ : N

∗ → Σ∗
k as τ(i) := wi, τ(j) := wj , τ(x{i,j}) := c, τ(x) := σ(x)

for all x ∈ N \ {i, j}, τ(y) := ε for all y ∈ E \ {x{i,j}}. This morphism satisfies
τ(αk) = σ(αk) and, thus, contradicts σ being unambiguous with respect to αk.

Consequently, there exists no unambiguous morphism σ : N
∗ → Σ∗

k with respect
to αk.

Proof of (iii). Let Σk+1 = N := {1, 2, . . . , k + 1} and E := var(αk) \ N . We
show that the morphism σ′ : N

∗ → Σ∗
k+1, defined by σ′(n) := n for every n ∈ N ,

σ′(e) := ε for every e ∈ E, is unambiguous with respect to αk. Assume to the
contrary that there exists a morphism τ : N

∗ → Σ∗
k+1 satisfying τ(αk) = σ′(αk)

and τ(i) �= σ′(i) for an i ∈ var(αk). Since |σ′(αk)|n = 2 for every n ∈ N but
|αk|e = 4 for every e ∈ E, τ(e) = ε for every e ∈ E. Hence, τ(πN (αk)) = τ(αk) =
σ′(αk) = πN (αk) and, thus, πN (αk) is a fixed point of τ . Due to τ(i) �= σ(i) = i,
τ is nontrivial. Consequently, πN (αk) is prolix (cf. Thm. 2.2). But there exists
no factorisation of πN (αk) as required by Definition 2.1. Hence, πN (αk) is not
prolix, which contradicts the existence of τ . Thus, σ′ is unambiguous with respect
to αk. �
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Theorem 5.1 allows us to compare the sets of patterns for which there exist no
unambiguous morphisms when different target alphabets are chosen.

Corollary 5.2. Let Σ, Σ′ be finite alphabets, |Σ| < |Σ′|. Then AMBΣ ⊃ AMBΣ′ .

Proof. Referring to the definition of AMBΣ, we can verify AMBΣ ⊇ AMBΣ′ .
AMBΣ �= AMBΣ′ follows from Theorem 5.1 (iii). �

This establishes a novel and rather unexpected aspect in the research on the
ambiguity of morphisms. While, for a pattern α, there exists an unambiguous
nonerasing morphism if and only if α is succinct – no matter which Σ with |Σ| ≥ 2
is chosen (cf. Thm. 2.3), concerning erasing morphisms, this question strongly
depends on the size of Σ. This also means that the techniques introduced in
Freydenberger et al. [4] are of limited use when exploring the ambiguity of erasing
morphisms.

In addition to this, the approach studied by previous literature of first defining
Σ and then examining AMBΣ could also be reversed as follows: given an arbitrary
pattern α, which is the minimal size of Σ such that there exists an unambiguous
morphism σ : N

∗ → Σ∗ if such a morphism exists at all?
We conclude this section with a result that adds some restrictions to the class

of patterns considered in order to make the criterion of Theorem 4.1 characteristic
for any finite alphabet with at least two letters.

Theorem 5.3. Let Σ be an alphabet, |Σ| ≥ 2. Let α ∈ N
+, let (E, N) be a maximal

ambiguity partition with respect to α and let, for every i ∈ N , α = . . . i i . . ..
There exists an unambiguous morphism σ : N

∗ → Σ∗ with respect to α if and
only if N �= ∅.
Proof. Let n := |α|.

We first prove the only if part by contraposition: if N = ∅ then (var(α), ∅) is
an ambiguity partition with respect to α and, thus, according to Corollary 3.5,
there exists no unambiguous morphism with respect to α.

To show the if part, let N �= ∅. Furthermore, let σ : N
∗ → {a, b}∗ be a

morphism defined by

σ(i) :=
{

abni+1aabni+2a . . .abn(i+1)a, if i ∈ N,
ε, else.

Note that, for variables in N , σ corresponds to the morphism τk,a,b as introduced
by Jiang et al. [7].

We now prove that σ is unambiguous with respect to α: assume to the contrary
that there exists a morphism τ : N

∗ → {a, b}∗ such that (	) τ(α) = σ(α) and
τ(j) �= σ(j) for a j ∈ var(α).

Case 1. For all i ∈ N , there exists an xi ∈ {ni+1, ni+2, . . . , n(i+1)} such that
τ(i) = . . .abxia . . . Assume that τ(i) = σ(i) for all i ∈ N . Then either τ(α) �= σ(α)
or τ(j) = σ(j) for all j ∈ var(α), which both contradicts (	). Thus, τ(i) �= σ(i) for
an i ∈ N . Since α = . . . i i . . ., τ(i i) is a factor of τ(α). But – due to τ(i) �= σ(i) –
it can be verified that τ(i i) is not a factor of σ(α), which contradicts τ(α) = σ(α).
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Case 2. There exists a j ∈ N such that, for all xj ∈ {nj+1, nj+2, . . . , n(j+1)},
τ(j) �= . . . abxja . . . The following reasoning is directly taken from Jiang et al. [7]:
because, for every i ∈ N , σ(i) contains n = |α| “segments” of the form abma,
m ∈ N, it follows that, for all i ∈ N , there exist xi ∈ {ni + 1, ni + 2, . . . , n(i + 1)}
and y ∈ var(α) such that τ(y) = . . .abxia . . . For every i ∈ N , we choose such an
xi and define a morphism h : N

∗ → N
∗ for every y ∈ var(α) as follows:

h(y) :=

⎧⎪⎪⎨
⎪⎪⎩

i1i2 . . . ik, if τ(y) = w0 abxi1aw1 abxi2aw2 . . .abxik wk, k ∈ N,
satisfying wi ∈ Σ∗ and wi �= . . .abxja . . .
for all i ∈ {0, 1, . . . , k} and all j ∈ N,

ε, else.

h is nontrivial for N because h is nontrivial for {j}. Furthermore, h(α) = πN (α)
since, for every i ∈ N , there exists exactly one corresponding xi. But, according to
condition (ii) of Definition 3.1, (E′, N ′) as defined in this condition, is an ambiguity
partition, too, satisfying |E′| > |E| and |N ′| < |N | (cf. Prop. 3.3, point 2). This
contradicts the assumption that (E, N) is maximal (cf. Def. 3.2).

Consequently, such a morphism τ cannot exist since exactly one of the two cases
must occur. Thus, σ is unambiguous with respect to α. �

Note that, with the proof technique of Theorem 5.3, conditions similar to α =
. . . i i . . . for every i ∈ N can certainly be found since it is sufficient for any such
condition to let case 1 in the proof lead to a contradiction.

6. Conclusions

In the present paper, we have initiated the systematic research on the ambiguity
of erasing morphisms. We have shown that a certain structure of a pattern, namely
the existence of an ambiguity partition with respect to this pattern, strongly con-
tributes to the ambiguity of morphisms applied to the pattern. In the case of
infinite target alphabets, this structure even characterises the ambiguity of eras-
ing morphisms and allows conclusions on the complexity of algorithms that decide
AMBΣ∞ to be drawn. Concerning finite target alphabets, the rather intricate sit-
uation has been identified that the ambiguity of morphisms is dependent on the
size of the target alphabet of the morphism. This makes it difficult, if not even
impossible, to achieve a simple characterisation of those strings for which there
exists an unambiguous erasing morphism with a certain finite target alphabet – in
particular, a characterisation that is nearly as simple as in the case of nonerasing
morphisms (cf. Thm. 2.3). In order to obtain further results on the ambiguity of
erasing morphisms, a profound knowledge of alphabet-specific ambiguity phenom-
ena needs to be developed.
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