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GENERALIZATIONS OF PARIKH MAPPINGS

Anton Černý
1

Abstract. Parikh matrices have become a useful tool for investigation
of subword structure of words. Several generalizations of this concept
have been considered. Based on the concept of formal power series, we
describe a general framework covering most of these generalizations. In
addition, we provide a new characterization of binary amiable words –
words having a common Parikh matrix.
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Introduction

Parikh matrices [15–17] attracted remarkable attention in recent years. They
are a generalization of the notorious Parikh mapping [18], which assigns to a
given word a vector, expressing the number occurrences of each symbol in the
word. Parikh matrices proved to be a powerful tool for investigation of subword
occurrences in finite words [14,20–22]. Further matrix generalizations of the Parikh
mapping occurred in literature [8,10,11,23], however, some of them lacking the full
strength of the classical matrix algebra. Typically, they are able to express the
number of occurrences of some specific, very limited, set of subwords in a given
word. In this paper we propose a general framework, based on formal power series,
capable to express a wide range of Parikh mapping generalizations. It provides an
algebraic tool for investigation, capable to express the number of occurrences of
subwords from any factorial language.

After providing the basic definitions in Sections 1 and 2, we describe our frame-
work in Section 3 and we document in examples, how several particular generaliza-
tions of the Parikh mapping can be expressed within the framework. Theorem 3.5
is a generalization of the construction of the inverse Parikh matrix and inverse
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generalized Parikh matrix, while the simplicity of its proof illustrates the power
of our approach.

One of the widely investigated question in the literature is the problem of am-
biguity of expressing a word by its Parikh matrix [2,3,12,15]. We generalize this
question in Section 4 and provide a new characterization of ambiguity for binary
Parikh matrices.

1. Basic notions

We will use several terms and facts of abstract algebra. We will recall them
shortly, a more detailed explanation can be found, e.g., in [6] or at [24].

Throughout the text, if there is no danger of confusion, we will identify the
singleton set S = {a} with the element a. A binary operation ◦ : A × A → A on
a set A is commutative, if, for every a, b ∈ A, a ◦ b = b ◦ a. It is associative if, for
every a, b, c ∈ A, (a ◦ b) ◦ c = a ◦ (b ◦ c). If ≡ is an equivalence relation on a set
A, the factor set of A with respect to ≡ is the partition A/ ≡ of A corresponding
to ≡. If f : A → B is a mapping, the equivalence relation ≡f on A defined, for
a, b ∈ A, as a ≡f b iff f(a) = f(b) is called the kernel equivalence relation of f .

A (commutative, if ◦ is commutative) semigroup is a pair (A, ◦) where A is a
set and ◦ is an associative binary operation on A. An identity element of ◦ is an
element e ∈ A satisfying e◦a = a◦e = a for each a ∈ A. A monoid is a semigroup
possessing an identity element. In a monoid, an inverse element of a ∈ A is an
element a−1 satisfying a−1 ◦ a = a ◦ a−1 = e. A group is a monoid where each
element has an inverse element. A semigroup morphism is a mapping h : A → B,
for semigroups (A, ◦A), (B, ◦B) satisfying h(a◦Ab) = h(a)◦Bh(b) for every a, b ∈ A.
A left (resp. right) congruence on a semigroup (A, ◦) is an equivalence relation ∼
on A such that, for every a, b, c ∈ R, a ∼ b implies c◦a ∼ c◦ b, (resp. a◦ c ∼ b◦ c).

A ring is a quintuple (R, +, ·, 0, 1) where (R, +) is a commutative group with the
identity element 0, (R, ·) is a monoid with the identity element 1 and · distributes
over +, i.e., a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a for every
a, b, c ∈ R. For short, we will refer to the ring (R, +, ·, 0, 1) as R if the operations
and identity elements are understood from the context1. A ring morphism is a
mapping between two rings being a semigroup morphism with respect to both the
additive and the multiplicative operations. The ring operations can be extended to
subsets of R as follows. For B, C ⊆ R and ◦ ∈ {+, ·} we define B ◦C = {b◦c|b ∈ B
and c ∈ C}. A congruence on R is an equivalence relation ∼ on R such that, for
every a, b, c ∈ R, a ∼ b implies a + c ∼ b + c, c · a ∼ c · b, and a · c ∼ b · c. An
ideal of a ring R is a subset I ⊆ R satisfying I + I ⊆ I, R · I ⊆ I, and I · R ⊆ I.
If I is an ideal in R, then the set of sets R/I = {a + I|a ∈ R} together with +, ·
and the identity elements 0 + I = I and 1 + I is a ring. R/I can be equivalently

1In accordance with the common practice, we use the symbols + and · to denote ring oper-
ations of various different rings; the actual meaning is to be recognized from the context. We
introduce different notation only in the case when application of the operations in different rings
containing some common elements may result in different values.
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described as R/ ≡ where ≡ is the congruence relation defined, for a, b ∈ R, as
a ≡ b iff a− b ∈ I (here a− b stands for a + (−b) where −b is the additive inverse
of b).

The terms and results on combinatorics on words and formal power series are
taken from [13] (though we sometimes use a slightly different notation), where
more details can be found. Assume a fixed alphabet Σ = {s1, s2, . . . , sk} of size
|Σ| = k ≥ 1. Throughout the text, the notation Σ, si, and k will be used exclusively
with this meaning. The set of all words, the set of all words of length p ≥ 0, and
the set of all words of length at most p, over Σ, will be denoted as Σ∗, Σp, and Σp,
respectively. The empty word will be denoted as λ, the size of a finite language L as
|L|, and the mirror image of a word α (resp. of a language L) as αR (resp. as LR).
If not stated otherwise, all words and languages are over Σ. The structure (Σ, ·),
where · denotes the concatenation operation, is a (generally noncommutative)
monoid with the identity element λ. If a word α can be expressed as α = tuv
then t, u, v are called prefix, factor, suffix of α, respectively (any of them may be
empty).

The symbol decomposition of a word α is the concatenation α = a1a2 . . . an,
where ai ∈ Σ, i = 1, 2, . . . , n. Then [n] = {1, 2, . . . , n} is the set of positions in
α (positions are numbered starting from 1). The ordered set ι = {i1 < . . . <
im} ⊆ [n], m ≥ 0, is called subword occurrence in α. The (scattered) subword
occurring at ι in α is the word ai1ai2 . . . aim . We denote by |α|u the num-
ber of occurrences of the subword u in α. For example, the subword occurring
at {2, 3, 6, 7} in babbaba is abba, the set of all occurrences of abba in babbaba is
{{2, 3, 4, 5}, {2, 3, 4, 7}, {2, 3, 6, 7}, {2, 4, 6, 7}}, and |babbaba|abba = 4. The only
occurrence of λ in a word α is ∅, thus |α|λ = 1 for every α. An alternative
notation may be used (but will not be used here) – see, e.g., Section 6.3 in [13]
– denoting |α|u as the generalized combinatorial number

(
α
u

)
. This notation is

based on the fact that, in the case of a unary alphabet Σ = {a}, |ar|as =
(
r
s

)
, for

r ≥ s ≥ 0.
Since, for a, b ∈ Σ, a 	= b,

|α|ab + |α|ba = |α|a|α|b (1.1)

we have

Proposition 1.1. For a, b,∈ Σ, α1, α2 ∈ Σ∗, if |α1|a = |α2|a, |α1|b = |α2|b and
|α1|ab = |α2|ab then |α1|ba = |α2|ba.

A language L is factorial if it contains all factors of its words. The class of
all factorial languages is closed under union and intersection. For a language L,
we denote as F(L) the factorial closure of L, i.e., the smallest factorial language
containing L.

A formal power series (with integer coefficients) over Σ is a mapping x :Σ∗ → Z,
where Z is the ring of integers. Following the usual conventions, we denote the
value x(α) as 〈x, α〉 and express x as

∑
v∈Σ∗ 〈x, v〉 v. The support of x is the

set {v ∈ Σ∗| 〈x, v〉 	= 0}. The set of all power series over Σ, together with the
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sum and product operations defined as 〈x + y, α〉 = 〈x, α〉 + 〈y, α〉, 〈x · y, α〉 =∑
uv=α 〈x, u〉 〈y, v〉, respectively, forms a ring denoted as Z 〈〈Σ〉〉 . The elements of

Z 〈〈Σ〉〉 with finite support are called polynomials over Σ. They form the subring
Z 〈Σ〉 of Z 〈〈Σ〉〉. The elements with a singleton support are called monomials. We
identify a word v with the monomial 1v and, for m ∈ Z, the monomial mλ with
the number m (thus 〈m · x, v〉 = m 〈x, v〉). The monomial 0λ, being the additive
identity of Z 〈〈Σ〉〉 is thus identified with the number 0, and the monomial 1λ,
being the multiplicative identity of Z 〈〈Σ〉〉, can be written both as the word λ or
as the number 1.

2. The ring ZL

Parikh matrices allow to apply a strong mathematical tool of matrix algebra to
investigate the counts of subword occurrences in words. We will consider here, for
a language L ⊆ Σ∗, the set Z

(1)
L consisting of all formal power series from Z 〈〈Σ〉〉

with support being a subset of L and with the coefficient of λ being equal to 1. We
will show that, in the case when L is a factorial language, Z

(1)
L possesses several

nice algebraic properties induced by the structure of Z 〈〈Σ〉〉. Consequently, in
Section 3, we will show that the algebra Z

(1)
L can be used to deal with subword

counts in a similar way as the algebra matrices and we will provide a generalization
of the Parikh matrix mapping.

For a language L ⊆ Σ∗, we will consider the set ZL consisting of all series from
Z 〈〈Σ〉〉 with support being a subset of L. We first show that, in the case when L
is a factorial language, one can equip this set with a ring structure induced by the
structure of Z 〈〈Σ〉〉.
Definition 2.1. Let L be a language. The L-projection of a series x ∈ Z 〈〈Σ〉〉 is
the series πL(x) =

∑
v∈L 〈x, v〉 v. We denote XL = {x ∈ Z 〈〈Σ〉〉 |πL(x) = 0}.

Lemma 2.2. XL is an ideal in Z 〈〈Σ〉〉 iff L is a factorial language.

Proof. The assertion is true if L = ∅. Let L 	= ∅. Assume first that L is a
factorial language. Take x ∈ XL and y ∈ Z 〈〈Σ〉〉. Let z ∈ L. Then 〈x · y, z〉 =∑

u∈Σ∗−L,v∈Σ∗,uv=z 〈x, u〉 〈y, v〉 = 0 since no factor of z is in Σ∗ − L. Hence
x · y ∈ XL. A similar argument shows that y · x ∈ XL. Assume now that XL

is an ideal and there is a word z ∈ L containing a factor not being from L, i.e.,
there are words t, u, v, such that z = tuv, and u /∈ L. Then, clearly, u ∈ XL (as a
monomial), but t · u · v /∈ XL, yielding a contradiction. �

For a factorial language L ⊆ Σ∗, we will consider the quotient ring ZL =
Z 〈〈Σ〉〉 /XL. We will denote the operations of addition and multiplication in this
ring as +L and ·L and identify the set x+XL (being element of ZL) with the
element πL(x) of Z 〈〈Σ〉〉 (with support being a subset of L). In particular, the
ring ZΣ∗ can be identified with Z 〈〈Σ〉〉. Let us note that the set ZL can be
equivalently characterized as ZL = Z 〈〈Σ〉〉 / ≡L where ≡L is the equivalence
kernel of the mapping πL. The set Z 〈〈Σ〉〉 / ≡L can be constructed even if L is
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not a factorial language, however, in that case, the set ZL does not possess a ring
structure.

Proposition 2.3. πL : Z 〈〈Σ〉〉 → ZL is a ring morphism.

Definition 2.4. Let L1, L2 be two factorial languages. The series x1 ∈ ZL1 ,x2 ∈
ZL2 are compatible if πL1∩L2(x1) = πL1∩L2(x2). We then denote the series∑

v∈L1
〈x1, v〉 v +

∑
v∈L2−L1

〈x2, v〉 v from ZL1∪L2 as x1  x2.

An easy observation yields the following propositions.

Proposition 2.5. Let L1, L2, L3 be factorial languages and let x1 ∈ ZL1 ,x2 ∈
ZL2 ,x3 ∈ ZL3 .

(1) If x1,x2 are compatible then x1  x2 = x2  x1.
(2) Let x1,x2 be compatible. Then x1  x2 and x3 are compatible iff both

x1,x2 and x2,x3 are compatible. If it is the case then (x1  x2)  x3 =
x1  (x2  x3).

(3) If x1 ∈ ZL1 ,x2 ∈ ZL2 are compatible and y ∈ ZL1∪L2 then x1 ·L1 πL1(y)
and x2·L2πL2(y) are compatible and (x1 ·L1πL1(y))(x2 ·L2πL2(y)) =(x1
x2) ·L1∪L2 y.

Proposition 2.6. If x ∈ ZL1∪L2 for factorial languages L1, L2, then πL1(x) and
πL2(x) are compatible and πL1(x)  πL2(x) = x.

We will now restrict our focus to the set Z
(1)
L = {x ∈ ZL| 〈x, λ〉 = 1}. This

set is closed under multiplication. The semigroup (Z(1)
L , ·) is a group. This follows

from the fact, that each element x ∈ Z 〈〈Σ〉〉 with 〈x, λ〉 = 1 has a multiplicative
inverse. Indeed, if we assume x with these properties, then 〈1 − x, λ〉 = 0 and
the family of series {(1 − x)r}∞r=0 is locally finite, i.e., for each w ∈ Σ∗, just
finitely many of the values 〈(1 − x)r, w〉 , r = 1, 2, . . . are non-zero. Thus the sum
(1 − x)∗ =

∑∞
r=0(1 − x)r is a well-defined series. The proof of the following

proposition can be found in [13], Section 1.4:

Proposition 2.7. (1 − x)∗x = x(1 − x)∗ = 1.

We will denote, for x ∈ Z 〈〈Σ〉〉 satisfying 〈x, λ〉 = 1, the inverse series of x as
x−1, thus x−1 = (1 − x)∗. Some basic properties of x−1 may be summarized as
follows.

Proposition 2.8. Let x ∈ Z 〈〈Σ〉〉 such that 〈x, λ〉 = 1.
(1) For each w ∈ Σ∗,

〈
x−1, w

〉
= −∑

uv=w,v �=λ

〈
x−1, u

〉 〈x, v〉 for w 	= λ〈
x−1, λ

〉
= 1.

(2) For each w ∈ Σ∗,
〈
x−1, w

〉
=

〈∑|w|
r=0(1 − x)r, w

〉
.

(3) If L is a finite factorial language, s = max{|u||u ∈ L}, x ∈ Z
(1)
L , then

πL(x−1) = πL(
∑s

r=0(1 − x)r) is the multiplicative inverse of x in Z
(1)
L .
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Lemma 2.9. Let L be a factorial language, w ∈ L, w 	= λ and x ∈ Z
(1)
L . Then

〈
x−1, w

〉
=

∑
u1u2...ur=w,ui �=λ,r≥1(−1)r 〈x, u1〉 〈x, u2〉 . . . 〈x, ur〉 .

Proof. Induction on |w|. The assertion is trivially true for w = λ (where the only
term in the sum is the product of r = 0 factors equal to 1). Let |w| = n ≥ 1
and let the assertion be true for all words of length less than n. Then, from (1 )
of Proposition 2.8 we have

〈
x−1, w

〉
= −∑

uv=w,v �=λ

〈
x−1, u

〉 〈x, v〉. By applying
the inductive hypothesis and to the terms with u 	= λ and renaming v to ur+1 we
obtain
〈
x−1, w

〉
= − 〈

x−1, λ
〉 〈x, w〉

−∑
uv=w,v �=λ

∑
u1u2...ur=u,ui �=λ,r≥1(−1)r 〈x, u1〉 . . . 〈x, ur〉 〈x, v〉

=
∑

uv=w,v �=λ

∑
u1u2...ur=u,ui �=λ,r≥1(−1)r+1 〈x, u1〉 . . . 〈x, ur〉 〈x, v〉

= (−1)1 〈x, w〉
+

∑
u1u2...urur+1=w,ui �=λ,r≥1(−1)r+1 〈x, u1〉 . . . 〈x, ur〉 〈x, ur+1〉

=
∑

u1u2...ur=w,ui �=λ,r≥1(−1)r 〈x, u1〉 . . . 〈x, ur〉

since the only term possible for the case r = 1 is (−1)1 〈x, w〉. �

Example 2.10. Consider the binary alphabet Σ = {a, b} and the series x =
1 + a − 2ab ∈ Z 〈〈Σ〉〉. Since 〈x, λ〉 = 1, the inverse series x−1 exists. Denote
y = 1 − x = −a + 2ab. We can compute a few initial powers of y: y0 = 1,
y1 = −a + 2ab, y2 = aa − 2aab − 2aba + 4abab, y3 = −aaa + 2aaab + 2aaba −
4aabab + 2abaa − 4abaab − 4ababa + 8ababab. All non-zero terms in yi, i ≥ 4,
correspond to words of length at least 4. Hence the series z = y0 +y1 +y2 +y3 =
1−a+aa+2ab−aaa−2aab−2aba+2aaab+2aaba+2abaa+4abab−4aabab−4abaab−
4ababa + 8ababab fully determines the values

〈
x−1, w

〉
for |w| ≤ 3. Therefore

x−1 = 1 − a + aa + 2ab − aaa − 2aab − 2aba + . . . where the remaining terms
correspond to words of length at least 4. Using the formula from part (1 ) of
Proposition 2.8, we obtain

〈
x−1, aba

〉
= −(

〈
x−1, λ

〉 〈x, aba〉 +
〈
x−1, a

〉 〈x, ba〉 +
〈
x−1, ab

〉 〈x, a〉)
= −(0 + 0 + 2) = −2.

Using the formula from Lemma 2.9, we obtain

〈
x−1, aba

〉
= (−1)2 〈x, a〉 〈x, ba〉 + (−1)2 〈x, ab〉 〈x, a〉 + (−1)3 〈x, a〉 〈x, b〉 〈x, a〉
= 0 − 2 + 0 = −2.

Assume now the factorial language L = {λ, a, b, ab, ba, aba}. Then x ∈ Z
(1)
L and

one can easily verify that πL(x−1) = πL(z) = 1−a+2ab−2aba is the multiplicative
inverse of x in Z

(1)
L .
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3. The generalization of the Parikh mapping

In this section we describe a framework for defining extensions of the Parikh
mapping. The Parikh matrix [16] and its generalization from [23] contain infor-
mation on counts of subword occurrences in the given word for subwords being
factors of one fixed word only. Our idea is to associate with each word an element
of Z

(1)
L containing such counts for any word from a fixed finite language L. Such

association will be given by a mapping based on the Magnus morphism assigning
to each word α a formal power series, reflecting the number of subword occurrences
in α of each word from Σ∗. The mapping ΠL, described in the following text, re-
duces the formal series resulting from the Magnus morphism to a polynomial with
a fixed size support given by the language L, thus making it a tool more suitable
for practical computations, in particular if L is a factorial language. The Magnus
morphism is used in Section 6.3 of [13] to prove orthogonality properties of gener-
alized combinatorial numbers (the notation mentioned in Sect. 1) and identities of
shuffle and infiltration product operations. The wider algebraic importance of the
Magnus morphism is discussed there, as well. The results from Section 6.3 of [13],
though dealing with subword counts, are not directly related to our current paper.

The Magnus (monoid) morphism μ : Σ∗ → Z 〈〈Σ〉〉 is defined, for i = 1, . . . , k,
as μ(si) = 1 + si. It can be expressed, for any α ∈ Σ∗, as μ(α) =

∑
v |α|vv.

We define the extended Parikh mapping ΠL : Σ∗ → ZL as ΠL = πL ◦ μ. Hence
ΠL(α) =

∑
v∈L |α|vv. This mapping has been considered for the case of a finite

language L in [9]. If L is a factorial language then ΠL(Σ∗) ⊆ Z
(1)
L then ΠL is a

monoid morphism, since it is a composition of monoid morphisms (see Prop. 2.3).
We want to document by the following examples that the extended Parikh

mapping ΠL can be viewed as a generalization of any one of the following: the
original Parikh mapping, the Parikh matrix mapping, the extended Parikh matrix
mapping, and the p-matrix mapping, as shown in the following examples.

Example 3.1. The Parikh mapping [18] assigns to each word w the vector Π(w) =
(|w|s1 , |w|s2 , . . . , |w|sk

). The Parikh mapping corresponds to ΠF(Σ) = ΠΣ∪{λ}.

Example 3.2. The Parikh matrix mapping [16] assigns to each word w ∈ Σ∗ the
upper-triangular (k + 1) × (k + 1) matrix Ψ(w) where the main diagonal consists
of 1’s and, for 1 ≤ i ≤ j ≤ k, the (i, j + 1)-th element is |w|sisi+1...sj . The monoid
(Ψ(Σ∗), ·, 1k+1,k+1), where · is the usual matrix multiplication and 1k+1,k+1 is the
(k + 1) × (k + 1) identity matrix, is isomorphic to (ZL, ·L, 1) where L consists of
all factors of s1s2 . . . sk. The Parikh matrix mapping corresponds to ΠF(s1s2...sk).
For example, if Σ = {a, b, c} then F(abc) = {λ, a, b, c, ab, bc, abc},

Ψ(acbcbac) =

⎡
⎢⎢⎣

1 2 2 3
0 1 2 3
0 0 1 3
0 0 0 1

⎤
⎥⎥⎦
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and ΠF(abc)(acbcbac) = (1+a)·L(1+c)·L(1+b)·L(1+c)·L(1+b)·L(1+a)·L(1+c) =
1 + 2a + 2b + 3c + 2ab + 3bc + 3abc.

Example 3.3. Let a1 . . . am be the symbol decomposition of a nonempty word
u ∈ Σ∗. The generalized Parikh matrix mapping [23] assigns to each word w
the upper-triangular (m + 1) × (m + 1) matrix Ψu(w) where the main diagonal
consists of 1’s and, for 1 ≤ i ≤ j ≤ m, the (i, j + 1)-th elements is |w|aiai+1...aj .
The generalized Parikh matrix mapping corresponds to ΠF(u).

For example, if Σ = {a, b, }, u = abb, then F(abb) = {λ, a, b, ab, bb, abb},

Ψu(abbaabb) =

⎡
⎢⎢⎣

1 3 8 8
0 1 4 6
0 0 1 4
0 0 0 1

⎤
⎥⎥⎦

and ΠF(abb)(abbaabb) = (1+a)·L(1+b)·L(1+b)·L(1+a)·L(1+a)·L(1+b)·L(1+b) =
1 + 3a + 4b + 8ab + 6bb + 8abb.

Consider a further extension to the mapping ΠF(u). Let Mm+1 denote the set
of all upper-triangular (m + 1) × (m + 1) matrices with elements from Z, having
all elements on the main diagonal equal to 1. Mm+1 with the usual multiplication
is a group, since the determinant of every matrix is 1 (thus the inverse matrix
always exists and consists of integer elements). Denote, for 1 ≤ i ≤ j ≤ m, by
ui,j the factor ai . . . aj of u. We define the mapping φ : Z

(1)
F(u) → Mm+1 where

φ(x)i,j+1 = 〈x, ui,j〉, for x ∈ Z
(1)
F(u), 1 ≤ i ≤ j ≤ m. φ is a group morphism. It is an

isomorphism iff no factor occurs in u more than once. For a word α, φ(ΠF(u)(α))
is the generalized Parikh matrix.

Example 3.4. The p-matrix mapping [8,10] assigns to each word w the k × k
matrix P (w) where, for 1 ≤ i ≤ k, P (w)i,i = |w|si and, for 1 ≤ i < j ≤ k,
the (i, j)-th element is |w|sisj . The “p-product”operation ◦ of two k × k matrices
A, B is defined as (A ◦ B)i,i = Ai,i + Bi,i, for i = 1, . . . , k, and (A ◦ B)i,j =
Ai,j +Bi,j +Ai,iBj,j , for 1 ≤ i, j ≤ k, i 	= j. The p-matrix mapping corresponds to
ΠL where L = Σ2 − {a2|a ∈ Σ}. As follows from Proposition 1.1, in the case of a
binary alphabet, the monoid of p-matrices is isomorphic to the monoid of Parikh
matrices. For example, if Σ = {a, b, c} then L = {λ, a, b, c, ab, ac, ba, bc, ca, cb} and

P (acbcbac) =

⎡
⎣2 2 4

2 2 3
2 3 3

⎤
⎦

and ΠL(acbcbac) = (1+a) ·L (1+c) ·L (1+b) ·L (1+c) ·L (1+b) ·L (1+a) ·L (1+c) =
1 + 2a + 2b + 3c + 2ab + 4ac + 2ba + 3bc + 2ca + 3cb.

While the Parikh mapping (see Ex. 3.1) assigns the same vector to a word and
its mirror image, the matrix generalizations of the Parikh mapping do not have an
analogical property. Still, in the case of Parikh matrices and generalized Parikh
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matrices, equality of the inverse matrix of a word and the so-called alternate
matrix of the word’s mirror image can be proved (see Thm. 16 in [23], being a
generalization of a result from [16]). We will now show that a similar equality is
valid in the general case of extended Parikh mappings for factorial languages. In
the alternate matrix, the (i, j)th entry ai,j of the original matrix is replaced by
(−1)i+jai,j . This concept can be rephrased in formal power series as follows. The
alternate series of x ∈ Z 〈〈Σ〉〉 is defined as x =

∑
v(−1)|v| 〈x, v〉 v. It is easy to

check that the mapping x �→ x is a ring morphism. The proof of the theorem
within the framework of formal power series is shorter than those from [16] and [23]
and gives a clearer clue why aa is a forbidden factor.

Theorem 3.5. Let L be a factorial language, not containing any word aa, where
a ∈ Σ. Let w ∈ Σ∗. Then, in ZL,

ΠL(w)−1 = ΠL(wR).

Proof. The assertion is trivially true for w = λ and for w = a ∈ Σ − L. Let
w = a ∈ Σ∩L. Then ΠL(w) ·L ΠL(wR) = ΠL(a) ·L ΠL(a) = (1+a) ·L (1−a) = 1,
since aa /∈ L. Let us now assume that the assertion is true for some word w ∈ Σ∗

and let a ∈ Σ. Then ΠL(wa) ·L ΠL((wa)R) = ΠL(wa) ·L ΠL(awR) = ΠL(w) ·L
ΠL(a) ·L ΠL(a) ·L ΠL(wR)) = ΠL(w) ·L ΠL(wR)) = 1. �

Applying Lemma 2.9, (1 ) and (2 ) of Proposition 2.8, and (in the third descrip-
tion) Proposition 2.3, we obtain three equivalent descriptions of |wR|u.

Corollary 3.6. Let w ∈ Σ∗. If a word u ∈ Σ∗ does not contain any factor of the
form aa, where a ∈ Σ, then

(1) |wR|u = (−1)|u|
∑

u1u2...ur=u,ui �=λ(−1)r|w|u1 |w|u2 . . . |w|ur

(2) |wR|u = (−1)|u|
〈∑|u|

r=0(1 − ΠF(u)(w))r , u
〉

(3) |wR|u = (−1)|u|
〈∑|u|

r=0 πF(u)((1 − ΠF(u)(w))r), u
〉
.

Example 3.7. Let Σ = {a, b, c}, L = {λ, a, b, c, ab, ac}. Then ΠL(abbcab) =
1 + 2a + 3b + c + 4ab + ac, ΠL(wR) = 1 + 2a + 3b + c + 2ab + ac, ΠL(w)−1 =
1 − 2a − 3b − c + 2ab + ac. For w = abbcab,

|wR|acb = |bacbba|acb

= (−1)3((−1)3|w|a|w|c|w|b + (−1)2|w|a|w|cb + (−1)2|w|ac|w|b
+ (−1)1|w|acb)

= −(−2 · 1 · 3 + 2 · 1 + 1 · 3 − 1)
= 2

= (−1)3(0 − 1 + 5 − 6)
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since

πF(acb)(1 − ΠF(acb)(w))0 = 1

πF(acb)(1 − ΠF(acb)(w))1 = −2a − 3b − c − ac − cb − acb

πF(acb)(1 − ΠF(acb)(w))2 = 2ac + 3cb + 5acb

πF(acb)(1 − ΠF(acb)(w))3 = −6acb.

4. Amiable words

One of the principal questions on Parikh matrices (as described in Ex. 3.2),
widely studied in literature, is the problem of ambiguity of the Parikh matrix
mapping [2–4,12,15]. When does the Parikh matrix uniquely determine the original
word? Two words yielding the same Parikh matrix are called amiable [4]. We will
consider a more general concept of L-amiability for an arbitrary factorial language
L, based on our framework introduced in Section 3. In particular, we will focus
on the problem of Σp-amiability, p ≥ 2, which in the case p = 2 coincides with
the original Parikh-matrix amiability. The motivation for our research comes from
mid 19th century investigations of Eugène Prouhet [19]2 of a problem, currently
known as Prouhet-Tarry-Escott (PTE) problem (see, e.g., [7]). His solution can
be obtained observing positions of symbol occurrences in the building blocks of
the Thue-Morse sequence (therefore, this sequence is sometimes called Prouhet-
Thue-Morse sequence – see [1]). These blocks can be described by iteration of
the monoid morphism h : {a, b}∗ → {a, b}∗, h(a) = ab, h(b) = ba. The blocks
hp(a) and hp(b) are {a, b}p-amiable, for p ≥ 1. Our aim is to show that, in fact,
any pair of Σp-amiable words induces a solution the PTE-problem of order p.
(We will call a pair of words inducing such solution to be PTEp-equivalent.) We
proceed as follows. First we introduce the general concept of L-amiability and
its basic property in Proposition 4.1. Then we define PTEn-equivalence of words
(Def. 4.7) and list some of its properties in Proposition 4.8. The definition is
based on the mapping σ

(q)
a , which assigns to each word α the sum of the q-th

powers of all positions in α, where the particular symbol a occurs. Properties
of σ

(q)
a , provided in Lemma 4.3 – Lemmas 4.6, 4.10, and Proposition 4.11, are

used in later proofs. Our main result is expressed in two theorems. Theorem 4.12
states, that for a binary alphabet Σ, amiability in the original sense of Parikh
matrix mapping, which is easy seen to be equivalent to Σ2-amiability, is identical
to PTE2-equivalence. As illustrated in Example 4.13, PTEp-equivalence is not a
sufficient condition for Σp-amiability if |Σ| ≥ 3 or p ≥ 3. However, it is a necessary
condition for any |Σ| ≥ 2 and p ≥ 2, as stated in Theorem 4.19. The inductive
proof of Theorem 4.19 is based on the alphabetical morphism ha,b investigated in
Proposition 4.14, Lemmas 4.15 and 4.18. Lemmas 4.16 and 4.17 provide rather
technical combinatorial tools used to prove Lemma 4.18. One may wonder, which
condition, if added to the necessary condition of PTEp-equivalence, will make it

2More details can be found in [5].
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sufficient for Σp-amiability. Lemma 4.21 provides such a condition in the case |Σ| =
3. However, Example 4.22 shows, that there is no straightforward generalization
for larger alphabets. Renaming a symbol (as it happens by application of the
morphism ha,b) does not change positions of other symbols and does not influence
the values of σ

(q)
c for c 	= a, b. On the other hand, erasing all occurrences of

some symbol causes shifts in positions of other symbols and thus changes the
value of σ

(q)
c . Theorem 4.25 states, that PTEp-equivalence still remains valid, if

such arising is applied to a pair of Σp-amiable words. Our final Proposition 4.26
contains observation on PTE-equivalence and the values of σ

(q)
a for so-called fair

words.
Let L be a factorial language, such that Σ ⊆ L. Two words α, β ∈ Σ∗ are

called L-amiable (denoted as α ∼L β), if ΠL(α) = ΠL(β). Since ΠL is a monoid
morphism, we have

Proposition 4.1. The relation ∼L is an equivalence relation being both left and
right congruence with respect to concatenation.

For p ≥ 1, Σp is a factorial language. Our interest in investigation of Σp-
amiability, for values of p ≥ 2 and/or |Σ| ≥ 2, is based on the following fact.

Remark 4.2. Proposition 1.1 implies that two words are amiable (in the sense of
the original Parikh matrix mapping) iff they are Σ2-amiable.

We will consider PTE-equivalence of strings, based on the Prouhet-Tarry-Escott
(PTE) problem [7]): find, for a given degree p ≥ 1, two equally-sized sets of
integers A, B satisfying

∑
a∈A aq =

∑
b∈B bq for 0 ≤ q < p. Usually, the sets A, B

are required to be disjoint; we will relax this condition here. To each word and
each symbol, one can assign a PTE-like sum. Assume the symbol decomposition
α = a1 . . . an ∈ Σ∗. For a ∈ Σ, q ≥ 0 we denote σ

(q)
a (α) =

∑
ai=a iq. Observe that,

for p = 0, σ
(0)
a (α) = |α|a.

Lemma 4.3. Let α, β ∈ Σ∗, a ∈ Σ, q ≥ 0. Then

σ(q)
a (αβ) = σ(q)

a (α) +
q∑

r=0

(
q

r

)
|α|q−rσ(r)

a (β).

Proof. Let β = b1 . . . bn be the symbol decomposition of β. If symbol a occurs at
the i-th position in β then it occurs at position i + |α| in αβ. Therefore

σ(q)
a (αβ) = σ(q)

a (α) +
∑
bi=a

(i + |α|)q.
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Using the binomial theorem and changing the order of summation in the following
step yields

σ(q)
a (αβ) = σ(q)

a (α) +
∑
bi=a

q∑
r=0

(
q

r

)
|α|q−rir

= σ(q)
a (α) +

q∑
r=0

(
q

r

)
|α|q−r

∑
bi=a

ir

= σ(q)
a (α) +

q∑
r=0

(
q

r

)
|α|q−rσ(r)

a (β). �

Corollary 4.4. Let α, β ∈ Σ∗, a ∈ Σ. Then

σ(1)
a (αβ) = σ(1)

a (α) + σ(1)
a (β) + |α||β|a.

Lemma 4.5. Let α ∈ Σ∗, a ∈ Σ. Then σ
(1)
a (α) + σ

(1)
a (αR) = (|α| + 1)|α|a.

Proof. Assume the symbol decomposition α = a1 . . . an. Then σ
(1)
a (α)+σ

(1)
a (αR) =∑

ai=a i +
∑

ai=a(|α| + 1 − i) =
∑

ai=a(|α| + 1) = (|α| + 1)|α|a. �

Lemma 4.6. Let q ≥ 0, α, β ∈ {a, b}∗, |α| = |β|. Then σ
(q)
a (α) = σ

(q)
a (β) iff

σ
(q)
b (α) = σ

(q)
b (β).

Proof. If σ
(q)
a (α) = σ

(q)
a (β) then σ

(q)
b (α) =

∑|α|
i=1 iq−σ

(q)
a (α) =

∑|β|
i=1 iq−σ

(q)
a (β) =

σ
(q)
b (β). The role of a, b can be interchanged. �

Definition 4.7. Two words α, β ∈ Σ∗ are called PTEp-equivalent, p ≥ 1 (denoted
as α ≈p β), if σ

(q)
a (α) = σ

(q)
a (β) for each a ∈ Σ and each 0 ≤ q < p.

In the following proposition, we summarize some basic properties of the PTEp-
equivalence ≈p (Π denotes there the Parikh mapping, as described in Ex. 3.1).
The properties (1 ) and (2 ) are quite straightforward, property (3 ) follows from
Lemma 4.3 using the fact (from property (1 )) that two PTEp-equivalent words
are of the same length.

Proposition 4.8. Let α, β ∈ Σ∗, p ≥ 1.
(1) α ≈p β implies Π(α) = Π(β) and, consequently, |α| = |β|.
(2) α ≈1 β iff Π(α) = Π(β).
(3) ≈p is a left and right congruence with respect to concatenation.

Example 4.9. α = aaaabb, β = ababba are words with Π(α) 	= Π(β) satisfying
σ

(1)
a (α) = σ

(1)
a (β) = 10, σ

(1)
b (α) = σ

(1)
b (β) = 11. In this case, 15 = σa(aα) 	=

σa(aβ) = 14. Thus the equivalence based on σ(1) alone is not a congruence.

Lemma 4.10. Let α, β ∈ Σ∗, a ∈ Σ, p ≥ 1. Assume α ≈p β. If σ
(p)
a (αR) =

σ
(p)
a (βR) then σ

(p)
a (α) = σ

(p)
a (β).
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Proof. Assume the symbol decomposition α = a1 . . . an. If a symbol occurs at
position i in α then it occurs at position |α| + 1 − i in αR. Then σ

(p)
a (αR) =∑

ai=a(|α| + 1 − i)p. Using the binomial theorem and changing the order of sum-
mation in the following step yields

σ(p)
a (αR) =

∑
ai=a

p∑
j=0

(−1)j

(
p

j

)
(|α| + 1)p−jij

=
p∑

j=0

(−1)j

(
p

j

)
(|α| + 1)p−j

∑
ai=a

ij

=
p∑

j=0

(−1)j

(
p

j

)
(|α| + 1)p−jσ(j)

a (α).

From here we can express σ
(p)
a (α) being the term for j = p in the right-hand side

sum

σ(p)
a (α) = (−1)p

⎡
⎣σ(p)

a (αR) −
p−1∑
j=0

(−1)j

(
p

j

)
(|α| + 1)p−jσ(j)

a (α)

⎤
⎦ .

A similar equation is valid for σ
(p)
a (β). The equivalence α ≈p β implies σ

(j)
a (α) =

σ
(j)
a (β) for 0 ≤ j ≤ p− 1 and together with the additional assumption σ

(p)
a (αR) =

σ
(p)
a (βR) it implies σ

(p)
a (α) = σ

(p)
a (β) (since |α| = |β|) by (1 ) of Proposition 4.8. �

Proposition 4.11. Let α, β ∈ Σ∗, p ≥ 1. Then α ≈p β iff αR
≈p βR.

Proof. It is enough to prove the if-condition. We proceed by induction on p. The
assertion is true for p = 1 Assume it is true for some p − 1 ≥ 1. Let αR

≈p βR.
Then σ

(p−1)
a (αR) = σ

(p−1)
a (βR) for every a ∈ Σ, and, by the inductive hypothesis,

α ≈p−1 β. Lemma 4.10 implies α ≈p β. �

{a, b}2-amiable words – words over a binary alphabet yielding identical Parikh
matrix – have been characterized in several different ways in [2,3]. Our following
theorem provides one more characterization by PTE2-equivalence.

Theorem 4.12. Let α, β ∈ {a, b}∗. The following three conditions are equivalent:
(1 ) α, β are amiable, (2 ) α ∼{a,b}2 β, (13) α ≈2 β.

Proof. The equivalence of (1 ) and (2 ) follows from Remark 4.2. To prove the
equivalence of (1 ) and (3 ), observe that each of these two conditions implies
Π(α) = Π(β) (see Prop. 4.8). Assume therefore that Π(α) = Π(β) holds. Then
|α| = |β| and, following Lemma 4.6, σ

(1)
a (α) = σ

(1)
a (β) iff σ

(1)
b (α) = σ

(1)
b (β). Denote

r = |α|b = |β|b. Then α = ax0bax1b . . . baxr−1baxr and β = ay0bay1b . . . bayr−1bayr

for some integers x0, . . . xr, y0, . . . yr ≥ 0. The value σ
(1)
b (α) can be expressed

as σ
(1)
b (α) =

∑r−1
i=0

∑i
j=0(xj + 1). In this sum the term xi occurs exactly r − i
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times. Each symbol in the i-th group of a’s participates in r − i subwords ab

of α. Therefore σ
(1)
b (α) =

∑r−1
i=0 (r − i)xi + r(r + 1)/2 = |α|ab + r(r + 1)/2.

Similarly, σ
(1)
b (β) = |β|ab + r(r + 1)/2. Thus σ

(1)
b (α) = σ

(1)
b (β) iff |α|ab = |β|ab.

The latter condition is equivalent to amiability of α and β, since we assumed
Π(α) = Π(β). �

If |Σ| = k > 2 or p > 2, the conditions α ∼Σp β and α ≈p β need not be
equivalent, as illustrated by Example 4.13. However, the sequence of assertions
following Example 4.13 will lead to our main result (Thm. 4.19) stating that the
former equivalence implies the latter.

Example 4.13.
(1) In the case k = 2, p = 3, consider the words

α = ababaabab, β = baaaabbba.

Here Π(α) = Π(β) = (5, 4), σ
(1)
a (α) = σ

(1)
a (β) = 23, σ

(1)
b (α) = σ

(1)
b (β) =

22 and σ
(2)
a (α) = σ

(2)
a (β) = 135, σ

(2)
b (α) = σ

(2)
b (β) = 150, hence α ≈3 β.

However, |α|aab = 17 	= 18 = |β|aab, therefore α �{a,b}3 β.
(2) In the case k = 3, p = 2, consider the words

α = abbabcbabbacbabcabaab, β = bbbcbaaabaaacbbbcbaba.

Here Π(α) = Π(β) = (8, 10, 3) and σ
(1)
a (α) = σ

(1)
a (β) = 94, σ

(1)
b (α) =

σ
(1)
b (β) = 103, σ

(1)
c (α) = σ

(1)
c (β) = 34, hence α ≈2 β. However, |α|ab =

35 	= 34 = |β|ab, therefore α �{a,b,c}2 β.

Let a, b ∈ Σ. We define a morphism ha,b : Σ∗ → (Σ − a)∗ replacing the symbol a
by b. The morphism is given as ha,b(a) = b and ha,b(d) = d, for d ∈ Σ − a. An
easy observation yields

Proposition 4.14. Let a, b ∈ Σ be distinct symbols, and let α, β ∈ Σ∗.

(1) Let q ≥ 0. Then σ
(q)
b (ha,b(α)) = σ

(q)
a (α) + σ

(q)
b (α). If c ∈ Σ − {a, b} then

σ
(q)
c (ha,b(α)) = σ

(q)
c (α).

(2) Let p ≥ 1. If α ≈p β then ha,b(α) ≈p ha,b(β).

A similar property as (2 ) in Proposition 4.14 holds for Σp-amiability.

Lemma 4.15. Let α, β ∈ Σ∗, p ≥ 1 and a, b ∈ Σ. If α ∼Σp β then ha,b(α) ∼(Σ−a)p

ha,b(β).

Proof. For u ∈ (Σ − a)p, consider the usual notation h−1
a,b(u) = {v ∈ Σ∗|ha,b(v) =

u} ⊆ Σ|u| ⊆ Σp. Then |α|u =
∑

v∈h−1
a,b(u) |α|v =

∑
v∈h−1

a,b(u) |β|v = |β|u. �

Before proceeding to Lemma 4.18, which is crucial for proving our main result
(Thm. 4.19), we need two more technical lemmas. We assume that, by default,
an empty sum is equal to 0, an empty product is equal to 1, and

(
u
t

)
= 0 for

t > u ≥ 0.
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Lemma 4.16. Let t, u ≥ 0 be integers. Then

t!
(

u

t

)
= (u − t + 1)(t − 1)!

(
u

t − 1

)
.

Proof. Both sides are equal to 0 if u < t. Let u ≥ t. Then

(u − t + 1)(t − 1)!
(

u

t − 1

)
= (u − t + 1)(t − 1)!

(
u

t − 1

)

= (u − t + 1)(t − 1)!
u!

(t − 1)!(u − t + 1)!

= t(t − 1)!
u!

t!(u − t)!

= t!
(

u

t

)
. �

Lemma 4.17.
(1) For each integer t ≥ 0, there exists a sequence of integers {at,m}t−1

m=1 such
that, for any integer u ≥ 0,

ut = t!
(

u

t

)
+

∑t−1

m=1
at,mum. (4.1)

(2) Let r ≥ 0 be a fixed integer. Then for each integer s ≥ 0 there exists a
sequence of integers {bs,j}s−1

j=0 (depending on r) such that, for any integer
0 ≤ i ≤ r,

is = (−1)ss!
(

r − i

s

)
+

∑s−1

j=0
bs,ji

j . (4.2)

Proof. (1 ) Induction on t. For t = 0, 1, the assertion is satisfied by the empty
sequence, and for t = 2 by the sequence with the only element a2,1 = 1. Let
there be a sequence {at−1,m}t−2

m=1 for some t − 1 ≥ 2, satisfying (4.1). Choose
at,1 = −(t − 1)at−1,1, at,m = at−1,m−1 − (t − 1)at−1,m for 1 ≤ m ≤ t − 2, and
at,t−1 = at−1,t−2+t−1. We express ut as ut = u·ut−1 = (t−1)ut−1+(u−t+1)ut−1.
Now we use the inductive hypothesis and, consequently, Lemma 4.16:

ut = (t − 1)ut−1 + (u − t + 1)
[
(t − 1)!

(
u

t − 1

)
+

∑t−2

m=1
at−1,mum

]

= (t − 1)ut−1 + t!
(

u

t

)
+

∑t−2

m=1
at−1,mum+1 − (t − 1)

∑t−2

m=1
at−1,mum

= t!
(

u

t

)
+

∑t−1

m=1
at,mum.

(2 ) Induction on s. For s = 0 the assertion is satisfied by the empty sequence and
for s = 1 by the sequence with the only element b1,0 = r. Let there be a sequence
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{bs−1,j}s−2
j=0 for some s− 1 ≥ 1, satisfying (4.2). Choose bs,0 = −(r − s + 1)bs−1,0,

bs,j = bs−1,j−1−(r−s+1)bs−1,j for 1 ≤ j ≤ s−2, and bs,s−1 = bs−1,s−2+r−s+1.
We express is as is = i · is−1 = (r − s + 1)is−1 − (r − i − s + 1)is−1. Now we use
the inductive hypothesis and, consequently, Lemma 4.16 (choosing u = r − i and
t = s)

is = (r − s + 1)is−1

− (r − i − s + 1)
[
(−1)s−1(s − 1)!

(
r − i

s − 1

)
+

∑s−2

j=0
bs−1,ji

j

]

= (r − s + 1)is−1 + (−1)ss!
(

r − i

s

)

+
∑s−2

j=0
bs−1,ji

j+1 − (r − s + 1)
∑s−2

j=0
bs−1,ji

j

= (−1)ss!
(

r − i

s

)
+

∑s−1

j=0
bs,ji

j. �

Lemma 4.18. Let α, β ∈ {a, b}∗, and p ≥ 2. Assume α ∼{a,b}p
β, α =

ax1bax2bax3 . . . axrbaxr+1 and β = ay1bay2bay3 . . . ayrbayr+1 , r ≥ 1. Denote, for
1 ≤ i ≤ r, Xi =

∑i
j=1 xj and Yi =

∑i
j=1 yj. If s, t ≥ 0 and s + t ≤ p − 1 then∑r

i=1 isXt
i =

∑r
i=1 isY t

i .

Proof. Induction on s + t. The assertion is trivial for s + t = 0. Let it be true for
all s, t ≥ 0 satisfying s + t ≤ z − 1 for some 1 ≤ z ≤ p − 2. Let s + t = z. Using
4.1 with u = Xi we obtain

∑r

i=1
isXt

i =
∑r

i=1
is

[
t!
(

Xi

t

)
+

∑t−1

m=1
at,mXm

i

]

= t!
∑r

i=1
is

(
Xi

t

)
+

∑t−1

m=1
at,m

∑r

i=1
isXm

i

where in the second term of the latter equation we changed the order of summation.
Now we apply (4.2):

∑r

i=1
isXt

i = t!
∑r

i=1

[
(−1)ss!

(
r − i

s

)
+

∑s−1

j=0
bs,ji

j

] (
Xi

t

)

+
∑t−1

m=1
at,m

∑r

i=1
isXm

i

= (−1)ss!t!
∑r

i=1

(
r − i

s

)(
Xi

t

)

+
∑s−1

j=0
bs,j

∑r

i=1
ijt!

(
Xi

t

)

+
∑t−1

m=1
at,m

∑r

i=1
isXm

i .
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The second term was obtained by changing the order of summation. Applying (4.1)
with u = Xi again we get

∑r

i=1
isXt

i = (−1)ss!t!
∑r

i=1

(
r − i

s

)(
Xi

t

)

+
∑s−1

j=0
bs,j

∑r

i=1
ij

[
Xt

i −
∑t−1

m=1
at,mXm

i

]

+
∑t−1

m=1
at,m

∑r

i=1
isXm

i .

The second term can be now expressed as a sum of two parts. The latter one of
them, after changing the order of summation, will be joined with the last term.

∑r

i=1
isXt

i = (−1)ss!t!
∑r

i=1

(
r − i

s

)(
Xi

t

)

+
∑s−1

j=0
bs,j

∑r

i=1
ijXt

i

+
∑t−1

m=1
at,m

[∑r

i=1
isXm

i −
∑s−1

j=0
bs,j

∑r

i=1
ijXm

i

]
. (4.3)

A similar equality is valid for
∑r

i=1 isY t
i . Using the inductive hypothesis, we may

replace each occurrence of Xi in the last two terms of (4.3) by Yi. The assumption
α ∼{a,b}p

β, implies |α|atbs+1 = |β|atbs+1 . Now observe that
∑r

i=1

(
r−i

s

)(
Xi

t

)
=

|α|atbs+1 , since there are exactly
(
r−i
s

)(
Xi

t

)
occurrences of the subword atbs+1 in

α with the first b at position i. In a similar way,
∑r

i=1

(
r−i
s

)(
Yi

t

)
= |β|atbs+1 .

Hence Xi may be replaced by Yi in the term (−1)ss!t!
∑r

i=1

(
r−i

s

)(
Xi

t

)
, as well.

Consequently,
∑r

i=1 isXt
i =

∑r
i=1 isY t

i . �
We are ready to prove the main result of this section.

Theorem 4.19. Let |Σ| ≥ 2, p ≥ 1 and α, β ∈ Σ∗. Then α ∼Σp β implies α ≈p β.

Proof. Induction on k = |Σ|.
Assume first k = 2 and Σ = {a, b}. We use induction on p. The assertion

is trivial for p = 1. Let us assume it is true for some p − 1 ≥ 1. We will
prove its validity for p. Let α ∼{a,b}p

β. Then, by the inductive hypothesis,
α ≈p−1 β. Using the notation from Lemma 4.18, we obtain σ

(p−1)
b (α) =

∑r
i=1(Xi+

i)p−1 =
∑r

i=1

∑
s+t=p−1

(
p−1

s

)
isXt

i =
∑

s+t=p−1

(
p−1

s

) ∑r
i=1 isXt

i . In the same

way one obtains the equality σ
(p−1)
b (β) =

∑
s+t=p−1

(
p−1

s

) ∑r
i=1 isY t

i . Lemma 4.18

implies σ
(p−1)
b (α) = σ

(p−1)
b (β). The equality σ

(p−1)
a (α) = σ

(p−1)
a (β) follows from

Lemma 4.6.
Let us assume now that the implication is true for some k − 1 ≥ 2. Let p ≥ 1.

Take any c ∈ Σ and any two symbols a, b ∈ Σ, distinct from c. Consider α, β ∈ Σ∗

and assume α ∼Σp β. Lemma 4.15 together with (1 ) of Proposition 4.14 and
the inductive hypothesis implies σq

c (α) = σq
c (ha,b(α)) = σq

c (ha,b(β)) = σq
c (β) for

0 ≤ q < p. �
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Remark 4.20. An inspection of the Proof of Lemma 4.18 and the case k = 2 of
the Proof of Theorem 4.19 reveals, that in the case Σ = {a, b}, the assumption
α ∼{a,b}p

β can be replaced by a weaker assumption α ∼a∗b∗∩{a,b}p
β. We do not

know whether some similar weaker assumption is sufficient in the case of a larger
alphabet.

Our next lemma documents that, though, generally, the PTE2-equivalence is
not sufficient for Σ2-amiability, an additional condition can make it sufficient in
case k = 3. However, this is not true for k ≥ 4, as shown in Example 4.22.

Lemma 4.21. Let |Σ| = 3 and let α, β ∈ Σ∗, such that α ≈2 β. If, for two distinct
symbols a, b ∈ Σ, |α|ab = |β|ab then α ∼Σ2 β.

Proof. Assume Σ = {a, b, c}. Then hc,b(α) ≈2 hc,b(β) by (2 ) of Proposition 4.14.
Therefore, by Theorem 4.12, |hc,b(α)|ab = |hc,b(β)|ab. Thus |α|ab + |α|ac = |β|ab +
|β|ac implying |α|ac = |β|ac. The equality |α|bc = |β|bc can be proved in a similar
way, using the morphism hc,a and Proposition 1.1. The same Proposition 1.1
then implies similar equalities for the remaining three words from Σ2. Therefore
α ∼Σ2 β. �

Example 4.22. Consider the words

α = dbbabcbabbacbdbcabaab, β = bbbcbaddbaaacbbbcbaba.

Then Π(α) = Π(β) = (6, 10, 3, 2) and σ
(1)
a (α) = σ

(1)
a (β) = 79, σ

(1)
b (α) = σ

(1)
b (β) =

103, σ
(1)
c (α) = σ

(1)
c (β) = 34, σ

(1)
d (α) = σ

(1)
d (β) = 15 hence α ≈2 β. Furthermore,

|α|ab = 22 = |β|ab, |α|ac = 7 	= 8 = |β|ac,|α|ad = 3 	= 2 = |β|ad,|α|bc = 17 	=
16 = |β|bc, |α|bd = 7 	= 8 = |β|bd,|α|cd = 2 = |β|cd therefore α �{a,b,c,d}2 β. Hence
out of every three distinct symbols one can choose two symbols x, y such that
|α|xy = |β|xy and still α �{a,b,c,d}2 β.

After replacing of all occurrences of a symbol a by a symbol b using the mor-
phism ha,b, the value of σ

(q)
c remains unchanged for c distinct rom a, b ((1 ) of

Prop. 4.14). We now introduce a morphism ha : Σ∗ → (Σ − a)∗ erasing all occur-
rences of a symbol a ∈ Σ. The morphism is defined as ha(a) = λ and ha(d) = d,
for d ∈ Σ − a. By applying the morphism, the value of σ

(q)
c , for c 	= a, may,

and mostly will, change. We will mention just a few facts about the effect of the
morphism ha on the value of σ

(q)
c and PTE-equivalence of words.

Proposition 4.23. Let α, β ∈ Σ∗. Then α ∼Σ2 β implies ha(α) ∼(Σ−a)2 ha(β).

Lemma 4.24. Let a, b ∈ Σ, a 	= b, and α ∈ Σ∗. Then σ
(1)
b (α) = σ

(1)
b (ha(α)) +

|α|ab.

Proof. If b occurs in α at position i, then the image of this symbol occurs in ha(α)
at position i − m, where m is the number of symbols a occurring in the prefix
of α of length i − 1. This occurrence of b participates in exactly m subwords ab
of α. �
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Theorem 4.25. Let |Σ| ≥ 2 and α, β ∈ Σ∗. Then α ∼Σ2 β iff ha(α) ≈2 ha(β)
for every a ∈ Σ.

Proof. For |Σ| = 2, the assertion is trivial. Let us assume |Σ| ≥ 3. The only-if part
follows from Lemma 4.24 and Theorem 4.19. To prove the if part, assume α, β ∈ Σ∗

such that ha(α) ≈2 ha(β) for every a ∈ Σ. Proposition 4.8 implies Π(α) = Π(β).
Let a, b be distinct symbols from Σ. We will prove that |α|ab = |β|ab. Lemma 4.24
implies σ

(1)
a (α) = σ

(1)
a (hb(α)) + |α|ba and σ

(1)
b (α) = σ

(1)
b (ha(α)) + |α|ab. Therefore

σ
(1)
a (α) + σ

(1)
b (α) = σ

(1)
a (hb(α)) + σ

(1)
b (ha(α)) + |α|a|α|b, where we applied (1.1).

From ha(α) ≈2 ha(β) and hb(α) ≈2 hb(β) it follows (using Prop. 4.8), that

σ(1)
a (α) + σ

(1)
b (α) = σ(1)

a (β) + σ
(1)
b (β). (4.4)

Consider a third distinct symbol c ∈ Σ. Equalities similar to (4.4) are valid for
the pairs a, c and b, c, as well. These three equalities than imply σb(α) = σb(β)
and the equality |α|ab = |β|ab follows from Lemma 4.24. �

We conclude by observing the values of the mapping σ
(1)
a on fair words [10,21].

A word α ∈ Σ is called fair if for each pair of symbols a, b ∈ Σ, |α|ab = |α|ba. Every
palindrome (a word α satisfying α = αR) is a fair word, ab3a2b is an example of a
fair word not being a palindrome. In the following proposition we use the notation
δa,b = if a = b then 1 else 0 and the fact that every palindrome can be expressed
as αbαR for some α ∈ Σ∗ and b ∈ Σ ∪ λ.

Proposition 4.26. Let α ∈ Σ∗, a, b ∈ Σ.
(1) If α is fair, then α ∼Σ2 αR and α ≈2 αR.
(2) If α is fair, then σ

(1)
a (α) = (|α| + 1)|α|a/2. If |Σ| = 2 and σ

(1)
a (α) =

(|α| + 1)|α|a/2, then α is fair.
(3) σ

(1)
a (ααR) = (2|α| + 1)|α|a, σ

(1)
a (αbαR) = (|α| + 1)(2|α|a + δa,b).

Proof. (1 ) If α is fair then, for a, b ∈ Σ, a 	= b, |α|ab = |α|ba = |αR|ab. Thus
α ∼Σ2 αR and Theorem 4.19 implies α ≈2 αR. (2 ) Following Part (1 ), σ

(1)
a (αR) =

σ
(1)
a (αR). The first assertion follows from Lemma 4.5. The second assertion is

obtained using Lemmas 4.5, 4.6, and Theorem 4.12. (3 ) Using Corollary 4.4 and
Lemma 4.5 we obtain σ

(1)
a (ααR) = σ

(1)
a (α)+σ

(1)
a (αR)+ |α||αR|a = (|α|+1)|αR|a +

|α||α|a = (2|α|+1)|α|a, since |αR|a = |α|a, and σ
(1)
a (αbαR) = σ

(1)
a (αb)+σ

(1)
a (αR)+

|αb||αR|a = σ
(1)
a (α) + (|α| + 1)δa,b + σ

(1)
a (αR)+ (|α| + 1)|α|a = (|α| + 1)(2|α|a +

δa,b). �
Hence the symbols in a fair word α are “evenly” distributed, since the average

position number of any symbol is (|α| + 1)/2.

Example 4.27. The word αβR, where α, β are the words from (2 ) of Exam-
ple 4.13, satisfies the condition σ

(1)
d (αβR) = (|αβR| + 1)|αβR|d/2 for d ∈ {a, b, c}.

However, |αβR|ab = 81 	= 79 = |αβR|ba. The second assertion from (2 ) Proposi-
tion 4.26 cannot be generalized for |Σ| ≥ 3.
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