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BINARY WORDS AVOIDING THE PATTERN
AABBCABBA

Pascal Ochem
1, 2

Abstract. We show that there are three types of infinite words over
the two-letter alphabet {0, 1} that avoid the pattern AABBCABBA.
These types, P , E0, and E1, differ by the factor complexity and the
asymptotic frequency of the letter 0. Type P has polynomial factor
complexity and letter frequency 1

2
. Type E0 has exponential factor

complexity and the frequency of the letter 0 is at least 0.45622 and
at most 0.48684. Type E1 is obtained from type E0 by exchanging 0
and 1.

Mathematics Subject Classification. 68R15.

1. Introduction

This paper deals with pattern avoidability [4,7]. Let Σs denote the s-letter
alphabet {0, 1, . . . , s − 1}. A pattern is a finite word over the alphabet of capi-
tal letters {A, B, . . .}. An occurrence of a pattern is obtained by replacing each
alphabet letter by a non-empty word. For example, the word 0111010011 is an
occurrence of the pattern ABBA where A �→ 011 and B �→ 10; it also contains
another occurrence of this pattern (i.e. 1001) as a factor. A word avoids a pattern
P if it contains no occurrence of P as a factor. The avoidability index λ(P ) of
the pattern P is the smallest alphabet size over which an infinite word avoiding P
exists. Patterns such as A, ABC, ABA, ABACBA cannot be avoided with any
finite alphabet. These patterns such that λ(P ) = ∞ are said to be unavoidable
and have been characterized by Zimin [11].

Let tn be the number of words of length n in a language. If that language
is closed under taking factors, which is the case for words avoiding a pattern,
then tn is sub-multiplicative and the growth rate limn→∞ (tn)

1
n is well-defined.
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See the survey of Berstel [3] for more information on the growth rate. For a
given pattern P , once its avoidability index is known, it is interesting to consider
the factor complexity of words avoiding P over Σλ(P ), in order to know whether
P is “barely” or “easily” avoided over Σλ(P ). For example, it is known that
λ(ABDACEBAFCAGCB) = 4 and that there are only polynomialy many words
over Σ4 avoiding that pattern [1], so their growth rate is 1. On the other hand,
λ(AA) = 3 and there are exponentially many ternary square-free words, since their
growth rate is > 1.30125 [6].

In this paper, we show that binary words avoiding AABBCABBA can be
classified into three disjoint types P , E0, and E1. Type E1 is obtained from
type E0 by exchanging 0 and 1. There are polynomialy many words of type P
and the asymptotic frequency of the letter 0 in words of type P is 1

2 . There are
exponentially many words of type E0 but their growth rate is small. When it is
defined, the frequency of the letter 0 in an infinite word of type E0 is between
0.45622 and 0.48684. Type E1 is obtained from type E0 by exchanging 0 and 1.

2. Three types of words avoiding AABBCABBA

A finite word is recurrent in an infinite word w if it appears as a factor of w
infinitely many times. An infinite word w is recurrent if all its finite factors are re-
current in w. We are interested in infinite binary recurrent words avoiding the pat-
tern AABBCABBA. Such words equivalently avoid the formula AABB.ABBA
(see [4,5] for more on formulas). This means that for every occurrence of AABB
(e.g., 000011) that appears, the corresponding occurrence of ABBA (so, 001100)
does not appear, or vice versa. To see this, suppose that both an occurrence of
AABB and the corresponding occurrence of ABBA appear in an infinite recur-
rent word w. Since these two occurrences are recurrent factors in w, then w must
contain, from left to right, the mentioned occurrence of AABB, followed by one
letter, and then an infinite suffix that has to contain the corresponding occurrence
of ABBA. This creates an occurrence of AABBCABBA.

Remark 2.1. An infinite recurrent word avoiding AABBCABBA also avoids the
patterns AABBA and AAAA.

This remark is a straightforward consequence of the property on formulas men-
tioned above. An occurrence of AABBA contains an occurrence of AABB and
the corresponding occurrence of ABBA. An occurrence of AAAA is both an oc-
currence of AABB such that A = B and the corresponding occurrence of ABBA.

Figure 1 is a graph whose vertices are the occurrences of length 4 of AABB or
ABBA that might be recurrent in an infinite binary word avoiding AABBCABBA.
The factors 0000 and 1111 have been ruled out since they are occurrences of
AAAA (see Rem. 2.1). An edge stands for an incompatibility between an occur-
rence of AABB and the corresponding occurrence of ABBA: two factors asso-
ciated to adjacent vertices cannot be recurrent in a same infinite word avoid-
ing AABBCABBA. So, given an infinite binary recurrent word w avoiding
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Figure 1. Graph of incompatibilities between factors of length 4.

AABBCABBA, we can associate the set of vertices of the graph that appear
as factors in w. Moreover, this set is an independent set.

Let us check that neither an independent set of size at most one nor {0011, 1100}
can be associated to an infinite binary recurrent word avoiding AABBCABBA.
By symmetry and maximality, we only need to consider the case of the sets {0110}
and {0011, 1100}. In the case of the set {0110} (resp. {0011, 1100}), we can enu-
merate lexicographically all binary words avoiding the patterns AABBCABBA,
AABBA, and AAAA, and the factors 0011, 1100, and 1001 (resp. the factors 0110
and 1001).

There remain three potential types for an infinite binary recurrent word avoiding
AABBCABBA, that we call P , E0, and E1. These three types respectively
contain factors in {0110, 1001}, {1100, 0110}, and {0011, 1001}. Notice that by
exchanging 0 and 1, type P stays unchanged, type E0 becomes type E1, and type
E1 becomes type E0.

3. Type P has polynomial growth

Let t be the fixed point of the morphism 0 �→ 012, 1 �→ 02, 2 �→ 1, and let h be
the morphism defined by

0 �→ 0010110111011101001,
1 �→ 00101101101001,
2 �→ 00010.

In this section, we give a characterization of words of type P :

Theorem 3.1. The set of factors of type P is the set of factors of h(t).

The following lemma about t is needed in the proof of Theorem 3.1.
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Lemma 3.2. If w is an infinite recurrent ternary square-free word, the following
assertions are equivalent:

• w has the same set of factors as t;
• w contains neither 010 nor 212 as a factor;
• w does not contain factors of the form 0v1v0 with v ∈ Σ∗

3.

Proof. The equivalence of the first and the second assertion is a well known result
of Thue (see [2] for a translation). Let us prove the equivalence of the second
and third assertion, which is that when considering recurrent languages of ternary
square-free word, avoiding factors of the form 0v1v0 with v ∈ Σ∗

3 is equivalent to
avoiding the factors 010 and 212. Because of square-freeness, avoiding 0v1v0 is
equivalent to avoiding 010, 02120, and 02v′212v′20 with v′ ∈ Σ∗

3. Because it is
a recurrent language, avoiding 02120 is equivalent to avoiding 212, since 02120 is
the only possible extension of 212 that does not create a square. �

Let us prove one direction of Theorem 3.1, namely that h(t) contains only
factors of type P . Since t is recurrent, so is h(t). Since h(t) contains 0110 and
1001, it remains to check that h(t) avoids AABBCABBA. First, we show that
h(t) contains no square xx with |x| > 4. It is easy to check that no such large
square appears in the h-image of a factor of t of length at most two. Notice also
that for every letter i ∈ Σ3, the factor h(i) appears only in h(t) as the h-image of
the letter i. This implies that any large square would be a factor of a word of the
form h(pvmvs) with v ∈ Σ∗

3, p, m, s ∈ Σ3, p �= m, and m �= s. So there would be
a large square also in h(pms), which happens only in the case pms = 010. Since
t contains no factors of the form 0v1v0 by Lemma 3.2, h(t) contains no square
xx with |x| > 4. So we can list all the occurrences of the pattern AABB in h(t),
because their length is at most 16. Then we can check that for every occurrence of
the pattern AABB in h(t), the corresponding occurrence of ABBA is not a factor
of h(t).

Now, we prove the other direction of Theorem 3.1, namely that every factor of
type P is a factor of h(t). First, we check that a factor of type P is a factor of
the h-image of some ternary word. We consider the language P ′ of binary words
avoiding 0011, 1100, AAAA, AABBA, and AABBCABBA. It contains P by
Remark 2.1. We compute the set of factors in P ′ of length |h(0)| + |h(1)| = 33
and remove from this set factors that are not prolongable in P ′. This can be done
with the method described in Section 4, until this set becomes equal to the set
of factors of h(t) of length 33. In this set, every factor with prefix h(i) for some
i ∈ Σ3 is such that the prefix h(i) is followed by either h((i + 1) (mod 3)) or
h((i + 2) (mod 3)). Thus, a factor of type P is a factor of the h-image of some
ternary word.

Let L ⊂ Σ∗
3 denote the language of words whose h-image is of type P . Since

factors of type P are recurrent, words in L are bi-prolongable in L. Let u ∈ Σ+
3 . We

suppose now that L contains a square occurrence uu. Because of the prolongability,
this implies that L contains a factor puus for some p, s ∈ Σ3. Since 00 is a common
proper prefix of h(1), h(2), and h(3), we can write h(u) = 00r for some r ∈ Σ+

2 .
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The following three cover every possible values of p and s. Each case is ruled out
because it contains an occurrence of AABBA, which is forbidden by Remark 2.1.

• If s = 2, then h(uu2) = 00r00r00010 contains an occurrence of AABBA
with A = 0 and B = r00.
• If p = 2, then h(2uus) has a prefix 0001000r00r00 that contains an occur-

rence of AABBA with A = 0 and B = 0r0.
• If p, s ∈ {0, 1}, then h(puus) contains a factor 0100100r00r0010 because

01001 is a common suffix of h(0) and h(1), and 0010 is a common prefix
of h(0) and h(1). This factor is an occurrence of AABBA with A = 010
and B = 0r0.

This shows that the language L contains square-free words only.
Factors of the form 0v1v0 with v ∈ Σ∗

3 are not in L since their image by h
contains the factor 1101001h(v)00101101101001h(v)0010110111 which is an oc-
currence of AABBA with A = 1 and B = 01001h(v)001011011.

To summarize, every factor of type P is a factor of the h-image of some recur-
rent ternary square-free word avoiding factors of the form 0v1v0 with v ∈ Σ∗

3. By
Lemma 3.2, every factor of type P is thus a factor of h(t). This concludes the
proof of Theorem 3.1.

As a corollary of Theorem 3.1, words of type P have polynomial growth.

4. Types E0 and E1 have exponential growth

Theorem 4.1. The growth rate for words of type E0 is between 1.002584956 and
1.02930952.

Proof. For the lower bound, we extend the result [7] that the image of any ternary
7
4

+-free word by the following 102-uniform morphism k avoids AABBCABBA.

0 �→ w0010110111011100010110001000101101110
1 �→ w1100010110111011100010110001000101101
2 �→ w1110001011000100010110111011000101101

with w =11000101101110111000101101110110001011011100010110001000101101110.

These words avoiding AABBCABBA are actually of type E0 since they are
recurrent and contain the factors 1100 and 0110.

Kolpakov [6] has shown that the growth rate of ternary 7
4

+-free (resp. square-
free) words is at least 1.245 (resp. 1.30125).

Ternary 7
4

+-free words were used [7] as pre-image for k in order to have sim-
ple and standardized proofs. To get the lower bound of Theorem 4.1, we need
the stronger statement that the k-image of any ternary square-free word avoids
AABBCABBA. We can prove this by checking that the k-image of any ternary
square-free word of length 3 contains no square xx with |x| > 26. Then again,
for each occurrence of AABB in the k-image of some ternary square-free word,
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we can check that the corresponding occurrence of ABBA does not appear. The
growth rate of words of type E0 is thus at least 1.301251/102 > 1.0025849.

For the upper bound, we basically use our method [9] that gave an upper bound
on the growth rate of ternary square-free words. We have noticed that the notion
of prolongability is much more important for words of type E0 than for ternary
square-free words (maybe because the growth rate is much lower). For example,
in a ternary square-free word pws such that |w| = 50 and |p| = |s| = 15, the
factor w is very probably a recurrent factor in some infinite ternary square-free
word. This is not the case for type E0. We take this behavior into account by
computing iteratively a set of words of some length avoiding AABBCABBA,
0011, and 1001 from another such set. These sets contain all words of type E0

of the specified length but maybe also other words that are not prolongable. Let
f(n, e, S, k) be the function that computes the set of words w such that pws avoids
AABBCABBA, 0011, and 1001, |w| = n, |p| = |s| = e, and every factor of length
k of pws belongs to S, where S is a previously computed set of words of length
k. For example (with fictional values), we can first compute a set of words of
length 40 from scratch: S1 ← f(40, 5, ∅, 0). Then a set of words of length 50
from S1: S2 ← f(50, 10, S1, 40). Then another set of words of length 50 from S2:
S3 ← f(50, 10, S2, 50). Of course, we have that S3 ⊆ S2 and hope that S3 ⊂ S2.
Maybe even the set of prefixes of length 40 of words in S3 is smaller than the
initial set S1. The user thus computes sets of words of increasing size and obtain
a set of words that are prolongable by at least e letters, where e is the second
parameter in the final call. Cassaigne [4] described a similar method using Rauzy
graphs. We have obtained a set S of words of length 360 that are prolongable by
40 letters to the left and to the right.

The upper bound in Theorem 4.1 has been obtained by applying the transfer
matrix method [9] with parameters k = 359 and l = 101. That is, we constructed
a matrix M such that M [i, j] is the number of factors of length k + l = 460 whose
prefix (resp. suffix) is the ith (resp. jth) factor of length k. Then the upper bound
is obtained by taking the lth root of the largest eigenvalue of M . Compared to
the calculation described in [9], we made the following modifications: we used an
adjacency list representation, because the matrix here is much sparser, and we
required that only the words w of length k+ l such that every factor of w of length
360 belongs to S are taken into account in the matrix. Shur [10] presented another
method for upper bounds on the growth rate that gives a better result for ternary
square-free words. It would be interesting to check if his method also gives a better
bound for words of type E0. �

5. Letter frequencies

Let |v|i denote the number of occurrences of the letter i in the finite word v.

Theorem 5.1. Let w be an infinite recurrent word avoiding AABBCABBA. For
all ε > 0, there exists an integer nε such that the frequency |v|0

|v| of the letter 0 in
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every finite factor v of w with length at least nε is in

• [
1
2 − ε, 1

2 + ε
]

if w is of type P ;
• [

271
594 − ε, 37

76 + ε
]

if w is of type E0;
• [

39
76 − ε, 323

594 + ε
]

if w is of type E1.

Proof. Let us check that infinite words of type P have letter frequency 1
2 . It is

well-known (and easy to check) that the letters of Σ3 have equal frequencies in the
fixed point t of the morphism 0 �→ 012, 1 �→ 02, 2 �→ 1. Now, by Theorem 3.1,
words of type P are factors of the image of t by a morphism h that satisfies
|h(0)|0 + |h(1)|0 + |h(2)|0 = |h(0)|1 + |h(1)|1 + |h(2)|1.

For types E0 and E1, we only have to compute lower bounds, since if x is a
lower bound on the frequency of the letter 0 for type Ei, then (1 − x) is an up-
per bound on the frequency of the letter 0 for type E1−i. These lower bounds
were obtained using our method [8] with a “suffix cover”. A suffix cover C of
a language L is a set of factors such that every large enough and prolongable
enough word in L has a suffix that belongs to C. We used the suffix cover
C0 = {00, 1101110001011000100010, 1100010, 110, 1} for type E0, and the suf-
fix cover C1 = {00111010010001000, 01110111010010001000, 0100011101001000,
0100100010011101001000, 0111011101001000, 0100, 010, 01110, 1} for type E1.

To check that C0 is a suffix cover of E0, it is sufficient to verify that every
word in the set S computed in Section 4 has a suffix in C0, because S contains
every factor of type E0 of length 360. We also check that the complement of every
word in S has a suffix in C1. Now, to prove for example that the asymptotic
frequency of the letter 0 is at least 271

594 in an infinite word of type E0, we verify
with backtracking that, for every u ∈ C0, there exists no right infinite binary word
w such that uw is of type E0 and |p|0

|p| < 271
594 for every finite prefix p of w. �

It is noticeable that these three sets of potential frequencies are disjoint: if
w is an infinite binary recurrent word avoiding AABBCABBA with defined
letter frequencies, then the frequency of 0 is in

[
271
594 , 37

76

] ∪ {
1
2

} ∪ [
39
76 , 323

594

]
=

[0.45622 . . . , 0.48684 . . .] ∪ {0.5} ∪ [0.51315 . . . , 0.54377 . . .]. The infinite words of
type E0 obtained by the construction in [7] and in Section 4 are of type E0 and
the frequency of the letter 0 is 48

102 = 8
17 = 0.47058 . . .

6. Conclusion

Infinite binary recurrent words avoiding AABBCABBA split into three types
when considering the factors of length 4. Informally, such splittings happen be-
cause the letter C appears only once in the pattern, but is not necessarily related
to the length of factors. Nothing prevents a priori from further sub-splittings into
sub-types when considering larger factor lengths. Type P obviously cannot be
split. Since types E0 and E1 are symmetrical, we can focus on type E0 and con-
sider the set S of words of type E0 of length 360 discussed in Section 4. We have
checked that for every two ( distinct ) words w1, w2 ∈ S, and for every occurrence
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of AABB appearing in w1, the corresponding occurrence of ABBA does not ap-
pear in w2. This means that no sub-splitting happens for length 360. We leave as
an open question whether such a sub-splitting exists.

We do not know how to prove a negative answer. A positive answer could
be obtained by constructing an infinite word of type E0 containing a particu-
lar occurrence of AABB (as a recurrent factor) and another one containing the
corresponding occurrence of ABBA.
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