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ON THE SYNTACTIC COMPLEXITY OF TREE SERIES
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and Antonios Kalampakas
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Abstract. We display a complexity notion based on the syntax of a
tree series which yields two distinct hierarchies, one within the class of
recognizable tree series and another one in the class of non-recognizable
tree series.
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1. Introduction

The notion of syntactic complexity of a recognizable graph language has orig-
inated in [5]. It is a structural complexity measure giving rise to a syntactic
classification inside the class of recognizable graph languages. The syntactic com-
plexity of a recognizable graph language L is given by a function mapping any
couple of natural numbers, representing the type of a graph, to the number of the
distinct syntactic classes at this type. We have displayed graph languages with
various types of complexities and showed that the set of connected graphs has
Bellian complexity. Furthermore, the language of Eulerian graphs is syntactically
more complicated than that of connected graphs (cf. [8]).

This notion has been also investigated in the setup of tree languages. More
precisely, in [6], the syntactic complexity of a tree language is defined to be the
number of the distinct syntactic classes of all trees with a fixed yield length. This
allows a classification of tree languages according to their structural properties and
several interesting results are obtained. The class of recognizable tree languages is
properly contained in that of languages with bounded complexity. The Dyck tree

Keywords and phrases. Tree series, syntactic complexity, recognizability.

1 Aristotle University of Thessaloniki, Department of Mathematics, 54124 Thessaloniki,
Greece; bozapali@math.auth.gr
2 Democritus University of Thrace, Department of Production Engineering and Management,
67100 Xanti, Greece; akalamp@math.auth.gr
3 Technical Institute of Kavala, Department of Exact Sciences, 65404 Kavala, Greece.

Article published by EDP Sciences c© EDP Sciences 2010

http://dx.doi.org/10.1051/ita/2010014
http://www.rairo-ita.org
http://www.edpsciences.org


258 S. BOZAPALIDIS AND A. KALAMPAKAS

language of order k

Dk = {t | t ∈ TΓ, |t|f1 = · · · = |t|fk
, rank(fi) = 2},

has polynomial syntactic complexity of degree k − 1, and the diagonal language

Ld = {f(t, t) | t ∈ TΓ}, f a fixed binary symbol,

has exponential syntactic complexity.
In the present paper we develop a structural complexity theory for tree series.

Let TΓ be the set of all trees over a ranked alphabet Γ and PΓ the set of all trees
with just one occurrence of the variable x. Then PΓ becomes a free monoid with
operation the substitution at x. Moreover, PΓ acts on the set TΓ by the same way.
A formal power series on trees with coefficients in a field K, is just a function
S : TΓ → K. The right derivative of S at t and the left derivative of S at τ are
defined respectively by

St−1 : PΓ → K, (St−1, τ ′) = (S, τ ′t) for every τ ′ ∈ PΓ,

τ−1S : TΓ → K, (τ−1S, t′) = (S, τt′) for every t′ ∈ TΓ.

We denote by V (S) (resp. F (S)) the subspace of KPΓ (resp. KTΓ) generated by
the right (resp. left derivatives) of S.

Tree series are interpreted by K −Γ-algebras A = (A, α) where A is a K-vector
space and α is a family of multilinear functions

αf : Am → A, f ∈ Γm, m ≥ 0.

We can endow V (S), in a canonical way, with the structure of a K − Γ-algebra,
called the syntactic K − Γ-algebra of S.

A tree series S : TΓ → K is said to be recognizable if it can be realized by a
pair (A, ϕ) where A is a finitely dimensional K − Γ-algebra and ϕ : A → K a
linear form. This means that S = ϕ ◦ hA, where hA is the unique K − Γ-algebra
morphism from TΓ to A. We have the following characterization result from [4]:
a tree series S : TΓ → K is recognizable if and only if dimF (S) < ∞ if and only if
dimV (S) < ∞. In this case we have dimF (S) = dimV (S).

Syntactic complexity of tree series is introduced in Section 4, it is described by
a function SCS : N → N which sends every natural number n to the maximum
number of linearly independent right derivatives St−1 where t runs over all trees
whose width (i.e., yield length) is n. It is proved that for every tree language
L, the syntactic complexity of its characteristic series does not exceed that of L.
We say that a tree series S : TΓ → K has bounded, polynomial or exponential
syntactic complexity according to the explicit formula defining the function SCS .

Although every recognizable series has bounded syntactic complexity this does
not characterize recognizability. Indeed, the series that sends every tree t to 1

|t|
(where |t| is the size of t) has bounded complexity but is not recognizable. More-
over, we display a tree series (the characteristic series of Dk) with polynomial
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syntactic complexity, and show that from every series S with non zero coefficients
we can construct a series Sd with exponential complexity SCSd

(n) = Cn−1, where

Cn =
1

n + 1

(
2n
n

)

is the nth Catalan number.
Berstel and Reutenauer demonstrated in [1], by using a pumping lemma tech-

nique, that the series height sending every tree to its height is not recognizable.
In Section 5 we calculate its syntactic complexity

SCheight(n) = �n − log2 n�,

where �r� denotes the greatest integer not exceeding r. On the other hand, it
is rather surprising that the series heightp that sends every tree to its height
modulo p (p prime) is recognizable. Moreover, we present a tree language, over
the alphabet Γ consisting of a binary symbol f and a unary symbol α, that has
the same syntactic complexity with height, namely the set Lavl of all AV L trees
i.e., all trees t such that either t = α or t = f(t1, t2), with t1, t2 ∈ Lavl and

|height(t1) − height(t2)| ≤ 1.
Since all recognizable tree series have bounded syntactic complexity this notion
is only appropriate for a classification of non-recognizable tree series. In the last
section we provide a complexity measure suitable for the class of recognizable tree
series. It is based on a refined context namely P

(n)
Γ which is the set of all trees in

TΓ(X) where the variables x1, . . . , xn occur in the yield of the tree (in this order
from left to right) exactly once. Two dual notions of derivatives are obtained for
all τ ∈ P

(n)
Γ and t1, . . . , tn ∈ TΓ

τ−1S : T n
Γ → K, (τ−1S, (t1, . . . , tn)) = (S, τ [t1, . . . , tn]),

and

S(t1, . . . , tn)−1 : P
(n)
Γ → K, (S(t1, . . . , tn)−1, τ) = (S, τ [t1, . . . , tn]),

and their corresponding sets are

F (S)(n) = 〈τ−1S | τ ∈ P
(n)
Γ 〉 and V (S)(n) = 〈S(t1, . . . , tn)−1 | t1, . . . , tn ∈ TΓ〉.

We prove that a series S : TΓ → K is recognizable if and only if dimF (S)(n) <
∞, for all n, if and only if dimV (S)(n) < ∞, for all n. In this case it holds
dimF (S)(n) = dimV (S)(n). The refined syntactic complexity RSCS of a recogniz-
able tree series S is described by the function sending every natural number n to
the dimension of F (S)(n). Since for any non recognizable tree series S it holds

RSCS(n) = ∞, for all n
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the above notion of complexity is suitable to classify only recognizable tree series.
The recognizable series tree size, branch enumeration, and branch length have
the same linear complexity,

RSCS(n) = n + 1.

Moreover, the recognizable tree series heightp has exponential refined syntactic
complexity namely,

RSCheightp(n) = pn.

The presented syntactic complexities yield the following hierarchy within the class
of tree series

RSCBOUND ⊂ RSCPOL ⊂ RSCEXP ⊂ REC ⊂
⊂ SCBOUND ⊂ SCPOL ⊂ SCEXP,

where REC is the class of recognizable tree series and UBOUND, UPOL, UEXP
denote respectively the classes of tree series with bounded, polynomial and expo-
nential U -complexity (U = SC, RSC).

2. Tree languages and their syntactic complexity

To construct trees we need a (finite) ranked alphabet Γ =
⋃

k≥0

Γk and a set X

of variables. We pose Xn = {x1, . . . , xn}, for n ≥ 1.
The set of trees over Γ and X is the smallest set TΓ(X) inductively defined by

the items

• Γ0 ∪ X ⊆ TΓ(X);
• t1, . . . , tk ∈ TΓ(X) and f ∈ Γk implies f(t1, . . . , tk) ∈ TΓ(X).

Often the tree f(t1, . . . , tk) is depicted as

hence the denomination tree. We denote TΓ the set of all trees over Γ without
variables (i.e., TΓ = TΓ(∅)). Subsets of TΓ(X) are refereed to as tree languages.

The height of a tree t ∈ TΓ(X) is the length of its longest branch. Formally the
function height : TΓ(X) → N is inductively defined by

• height(α) = 0, for α ∈ Γ0 ∪ X ;
• height(f(t1, . . . , tk)) = 1 + max{height(t1), . . . , height(tk)}, f ∈ Γk and

t1, . . . , tk ∈ TΓ(X).

The yield of a tree t ∈ TΓ is the word y(t) obtained by concatenating from left to
right the leaves (i.e., the symbols of Γ0 occurring in t). Formally, y : TΓ → Γ∗

0, is
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inductively defined by

y(c) = c, (c ∈ Γ0), y(f(t1, . . . , tk)) = y(t1) . . . y(tk), (f ∈ Γk, ti ∈ TΓ).

The width of t ∈ TΓ(X) is the length of its yield: |y(t)| = width(t).
The basic operation on trees is substitution. Given t, t1, . . . , tn ∈ TΓ(Xn), we

denote by t[t1, . . . , tn] the result of substituting ti at the place of xi, inside t,
1 ≤ i ≤ n. Denote by PΓ the subset of TΓ(x) consisting of all trees with just one
occurrence of the variable x. PΓ becomes a monoid with the substitution at x as
operation: for τ, π ∈ PΓ, τ · π = τ [π]. This monoid is free over the set of trees of
the form

f(t1, . . . , ti−1, x, ti+1, . . . , tk), f ∈ Γk, k ≥ 1, tj ∈ TΓ. (1)

This means that every τ ∈ PΓ, τ �= x, is uniquely decomposed as a product of
trees of the form (1) and the number of these trees is denoted by ||τ ||, actually
||τ || is the length of the unique path starting from the root of τ and ending to its
unique leaf labeled by x.

The monoid PΓ acts, again by substitution at x, on the set TΓ:

PΓ × TΓ → TΓ, (τ, t) �→ τ · t = τ [t].

Let L ⊆ TΓ be a tree language, t ∈ TΓ, and τ ∈ PΓ. The right derivative of L at t
and the left derivative of L at τ are

Lt−1 = {τ | τ ∈ PΓ, τ · t ∈ L}, τ−1L = {t | t ∈ TΓ, τ · t ∈ L},

respectively. The equivalence relation ∼L on (the algebra) TΓ

t ∼L t′ if Lt−1 = Lt′−1

is actually a congruence, i.e.,

t1 ∼L t′1, . . . , tk ∼L t′k and f ∈ Γk, imply f(t1, . . . , tk) ∼L f(t′1, . . . , t
′
k).

It is called the syntactic congruence of the language L.

Proposition 2.1 (cf. [7]). The following conditions are equivalent for a language
L ⊆ TΓ

(i) L is recognized by a finite tree automaton.
(ii) card{Lt−1 | t ∈ TΓ} < ∞.
(iii) card{τ−1L | τ ∈ PΓ} < ∞.
(iv) The syntactic congruence ∼L has finite index (i.e., a finite number of

classes).

In [6] we develop a complexity theory in order to investigate and classify tree
languages according to their syntactic structure. Syntactic complexity is a way to
measure the complexity of the syntax of a tree language. It counts the number
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of distinct syntactic classes of trees with a fixed width. Formally the syntactic
complexity of a tree language L ⊆ TΓ is the function

SCL : N → N∞, SCL(n) = card{t̄ | t ∈ TΓ, width(t) = n}, n ∈ N,

where t̄ stands for the ∼L-class of t. Alternatively we have

SCL(n) = card{Lt−1 | t ∈ TΓ, width(t) = n}, n ∈ N.

It should be noticed that SCL(n) < ∞, for all n ∈ N, whenever the alphabet Γ has
no unary symbols, because in this case the set of trees with width = n is finite.

A tree language L ⊆ TΓ is said to have
• bounded syntactic complexity, whenever there is a constant c ∈ N such that

SCL(n) ≤ c, for all n;

• polynomial syntactic complexity whenever there is a polynomial

p(n) =
m∑

k=0

aknk, ak ∈ N

such that
SCL(n) ≤ p(n), for all n;

• exponential syntactic complexity whenever there is a constant c ∈ N such
that

SCL(n) ≤ cn, for all n.

By Proposition 2.1 every recognizable tree language has bounded syntactic com-
plexity, but the converse is not true. The language

Lbal = {tk | k ≥ 0}, with t0 = α, tk+1 = f(tk, tk), k ≥ 0,
where rank(α) = 0, rank(f) = 2, is an instance of a non-recognizable tree language
with bounded syntactic complexity: SCLbal

(n) ≤ 2, for all n.

Proposition 2.2 ([6], Prop. 5). Given the ranked alphabet Γ = {f1, . . . , fk, α},
rank(fi) = 2, 1 ≤ i ≤ k, rank(α) = 0, the Dyck tree language of order k

Dk = {t | t ∈ TΓ, |t|f1 = · · · = |t|fk
}

has polynomial syntactic complexity of degree k − 1, namely

SCDk
(n) =

1
(k − 1)!

n(n + 1) · · · (n + k − 2).

Throughout this paper we will often use the alphabet Γ̂ consisting of a binary
symbol f and a nullary symbol α, Γ̂ = {f, α}.
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Proposition 2.3 ([6], Prop. 6). The diagonal language

Ld = {f(t, t) | t ∈ TΓ̂},
has exponential syntactic complexity, namely,

SCLd
(n + 1) =

1
n + 1

(
2n
n

)
� 4n

n3/2
√

π
·

3. Formal power series on trees

A formal power series on trees (tree series for sort), with coefficients in a field
K, is just a function S : TΓ → K. The support of S is the set {t ∈ TΓ | (S, t) �= 0}.
For t ∈ TΓ the element (S, t) is referred to as the coefficient of S at t. In the
set K〈〈TΓ〉〉 of all such tree series, addition, scalar multiplication and Hadamard
product are defined pointwise

(S1 + S2, t) = (S1, t) + (S2, t), (λS, t) = λ(S, t), (S1 � S2, t) = (S1, t)(S2, t),

for S1, S2, S ∈ K〈〈TΓ〉〉, λ ∈ K and t ∈ TΓ.
We denote by K〈TΓ〉 the set of all tree series S : TΓ → K with finite support,

called polynomials. Thus any polynomial p ∈ K〈TΓ〉 can be written as a finite
formal sum

p =
n∑

j=1

λjtj

for some n ≥ 1, λj ∈ K, and tj ∈ TΓ.
The derivatives of a tree series S : TΓ → K at t ∈ TΓ and τ ∈ PΓ, are defined

by
St−1 : PΓ → K, (St−1, τ ′) = (S, τ ′t) for every τ ′ ∈ PΓ,
τ−1S : TΓ → K, (τ−1S, t′) = (S, τt′) for every t′ ∈ TΓ,

which belong to the K-spaces KPΓ and KTΓ of all functions PΓ → K and TΓ → K
respectively with the pointwise addition and scalar multiplication.

We denote by V (S) (resp. F (S)) the subspace KPΓ (resp. KTΓ) generated by
all the right (resp. left derivatives) of S:

V (S) = 〈St−1 | t ∈ TΓ〉 (resp. F (S) = 〈τ−1S | τ ∈ PΓ〉).
Tree series are interpreted via multilinear algebras. A K − Γ-algebra A = (A, α)
is a K-vector space A together with a family of multilinear functions

αf : Am → A, f ∈ Γm, m ≥ 0.

A morphism from A = (A, α) to B = (B, β) is a linear function h : A → B
compatible with Γ-operations

h(αf (q1, . . . , qm)) = βf (h(q1), . . . , h(qm)), f ∈ Γm, m ≥ 0, qi ∈ A.
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The space K〈TΓ〉 is converted, in a natural way, into a K − Γ-algebra with the
property: for any K − Γ-algebra A = (A, α) there is a function hA : TΓ → A
inductively defined by

hA(f(t1, . . . , tm)) = αf (hA(t1), . . . , hA(tm)), f ∈ Γm, m ≥ 0, ti ∈ TΓ.

Its linear extension

h̄A : K〈TΓ〉 → A, h̄A

(∑
i

λiti

)
=
∑

i

λihA(ti)

is the unique existing K−Γ-algebra morphism from K〈TΓ〉 to A. Call A reachable,
whenever h̄A is a surjective function. The monoid PΓ acts on each K − Γ-algebra
A = (A, α)

PΓ × A → A, (τ, q) �→ τ · q
by induction on ||τ || as follows

− x · q = q for all q ∈ A;
− if τ = f(t1, . . . , ti−1, x, ti+1, . . . , tk), f ∈ Γk, tj ∈ TΓ, q ∈ A,

τ · q = αf (hA(t1), . . . , hA(ti−1), q, hA(ti+1), . . . , hA(tk));

− if τ = τ1 · τ2, τ1 �= x �= τ2, q ∈ A,

τ · q = τ1 · (τ2 · q).

Lemma 3.1. For any A = (A, α), it holds

hA(τt) = τ · hA(t), for all τ ∈ PΓ, t ∈ TΓ.

We can endow V (S) with the structure of a K − Γ-algebra if for each f ∈ Γk we
define the operation (V (S))f : V (S)k → V (S) by setting

(V (S))f (St−1
1 , . . . , St−1

k ) = Sf(t1, . . . , tk)−1, for all t1, . . . , tk ∈ TΓ.

The so obtained pair VS = (V (S), V (S)) is called the syntactic K−Γ-algebra of S.
Clearly, VS is reachable since the function

h̄VS : K〈TΓ〉 → V (S), h̄VS

⎛
⎝∑

j

λjtj

⎞
⎠ =

∑
j

λjSt−1
j

is surjective.
A tree series S : TΓ → K is said to be recognizable if there exists a pair

(A = (A, α), ϕ), called a realization of S, with A a finitely dimensional K − Γ-
algebra and ϕ : A → K a linear form such that S = ϕ ◦ hA. We have the next
characterization result.
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Theorem 3.1 (cf. [4]). A tree series S : TΓ → K is recognizable iff dimF (S) < ∞
iff dimV (S) < ∞. In this case we have dimF (S) = dimV (S).

The syntactic representation of S : TΓ → K is (VS = (V (S), V (S)), ϕS) where
ϕS is the linear form

ϕS : V (S) → K, ϕS(St−1) = (S, t).

This representation is universal in the following sense.
A realization (A = (A, α), ϕ) of S is reachable if the underline K − Γ-algebra

(A, α) is reachable.

Proposition 3.1 (cf. [3]). For every reachable realization (A = (A, α), ϕ) of S
there is a unique surjective morphism of K − Γ-algebras h : A → VS such that
hVS = h ◦ hA and ϕS ◦ h = ϕ. The function h is defined as follows: if (hA(ti))i∈I

is a basis for A, then
h(hA(ti)) = St−1

i , i ∈ I.

A characterization of tree series recognizability through matrix representations is
presented in [3] whereas an effective construction of VS is given in [2].

Given a language L ⊆ TΓ its characteristic series ch(L) : TΓ → K, has as
coefficients

(ch(L), t) = 1 if t ∈ L,

= 0, otherwise.

Proposition 3.2. If L ⊆ TΓ is recognizable, then so is its characteristic series
ch(L).

Proof. The identity

τ−1ch(L) = ch(τ−1L),

holds for every τ ∈ PΓ. Indeed, for all t ∈ TΓ we have

(τ−1ch(L), t) = 1 ⇔ (ch(L), τt) = 1 ⇔ τt ∈ L

⇔ t ∈ τ−1L ⇔ (ch(τ−1L), t) = 1.

Thus card{τ−1(ch(L)) | τ ∈ PΓ} ≤ card{τ−1L | τ ∈ PΓ} < ∞, and so dim(ch(L)) <
∞, i.e., ch(L) is recognizable (Thm. 3.1). �

Proposition 3.3. If the series S, S′ : TΓ → K are recognizable, then so are the
series S + S′, λS (λ ∈ K), S � S′, τ−1S (τ ∈ PΓ).

Proof. We only exhibit the case S�S′. Consider the syntactic realizations (V (S),
V (S), ϕS), (VS′ , vS′ , ϕS′) of S, S′ respectively. Then the triple

(V (S) ⊗ VS′ , V (S) ⊗ vS′ , ϕS ⊗ ϕS′)
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is a realization of S � S′ (cf. [1]). Here V (S) ⊗ VS′ denotes the tensor product of
the spaces V (S) and VS′ ,

(V (S) ⊗ vS′)f : (St−1)k → V (S) ⊗ VS′ , f ∈ Γk, k ≥ 0,

is given by

(V (S) ⊗ vS′)f (St−1
i1

⊗ S′t′−1
j1

, . . . , St−1
ik

⊗ S′t′−1
jk

) =

Sf(ti1 , . . . , tik
)−1 ⊗ S′f(t′j1 , . . . , t

′
jk

)−1

whereas the linear form ϕS ⊗ ϕS′ : V (S) ⊗ VS′ → k is given by

(ϕS ⊗ ϕS′)(St−1 ⊗ S′t′−1) = (S, t)(S′, t′).

The result follows from the next inequality

dimVS�S′ ≤ dim(V (S) ⊗ VS′) ≤ dimV (S) · dimVS′ < ∞. �

4. Syntactic complexity of tree series

Syntactic complexity is a tool to study the syntax of a tree series S : TΓ → K.
It is described by a function SCS : N → N∞ which sends every natural number
n to the maximum number of linearly independent right derivatives St−1 where t
runs over all trees whose width is n. Thus, by setting

Vn(S) = 〈St−1 | t ∈ TΓ, width(t) = n〉,
we get

SCS(n) = dimVn(S).
Notice that in the case Γ deprives unary symbols (Γ1 = ∅), then dimVn(S) < ∞,
i.e., SCS ranges over N. The bounded, polynomial or exponential syntactic com-
plexity classes for tree series S : TΓ → K are defined analogously to the case of tree
languages. The corresponding classes of tree series are denoted SCBOUND(Γ),
SCPOL(Γ), SCEXP (Γ).

By Proposition 3.2, it is clear that for every tree language L ⊆ TΓ, the syntactic
complexity of ch(L) does not exceed that of L.

Proposition 4.1. For every L ⊆ TΓ it holds SCch(L) ≤ SCL.

According to Theorem 3.1 every recognizable series S : TΓ → K has bounded
syntactic complexity, but this fact does not characterize recognizability.

Theorem 4.1. There is a non-recognizable tree series which has bounded syntactic
complexity.

Proof. Consider the series

S : TΓ̂ → Q, (S, t) =
1
|t| ,
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where |t| is the number of symbols of Γ̂ = {f, α} occurring in t. We construct
inductively the sequence of trees

t0 = α, tk+1 = f(tk, α),

and observe that |tk| = 2k + 1, k ≥ 0. Now, the derivatives St−1
0 , . . . , St−1

k−1, are
linearly independent. Indeed, let

λ0St−1
0 + λ1St−1

1 + · · · + λk−1St−1
k−1 = 0,

that is
λ0

|τ |+|t0| + λ1
|τ |+|t1| + · · · + λk−1

|τ |+|tk−1| = 0, for all τ ∈ PΓ̂,

where |τ | is the number of symbols of Γ̂ occurring in τ . As τ ranges over PΓ̂ we
may view |τ | as a variable x so that the previous relation can be written as

λ0
x+1 + λ1

x+3 + · · · + λk−1
x+2k−1 = 0, for all x.

By differentiating the above relation p times (p = 0, 1, . . . , k−1) we get the system

λ0

(x + 1)p
+

λ1

(x + 3)p
+ · · · + λk−1

(x + 2k − 1)p
= 0, for all x.

Taking x = 0 above, we finally obtain the Vandermonde system

λ0

1p
+

λ1

3p
+ · · · + λk−1

(2k − 1)p
= 0, p = 0, 1, . . . , k − 1,

from which we get λ0 = λ1 = · · · = λk−1 = 0 as wanted. Consequently, by virtue
of Theorem 3.1 the series S is not recognizable.

Let us calculate its syntactic complexity. For every n all trees t with width(t) =
n satisfy |t| = 2n − 1. It turns out that all derivatives St−1, width(t) = n are
equal to each other and so the subspace they generate has dimension 1, that is
SCS(n) = 1 for all n. Hence S has bounded syntactic complexity. �

The previous result states that SCBOUND(Γ) strictly contains the class REC(Γ)
of recognizable tree series over Γ. Hence, we get the hierarchy

REC(Γ) ⊂ SCBOUND(Γ) ⊂ SCPOL(Γ) ⊂ SCEXP (Γ).

Lemma 4.1. Let (A = (A, α), ϕ) be a realization of the series S : TΓ → K and
put

Vn(A) = 〈hA(t) | t ∈ TΓ, width(t) = n〉.
There exists a linear surjective function hn : Vn(A) → Vn(S) defined as follows: if
(hA(ti))1≤i≤k is a basis of the space Vn(A), then

hn(hA(ti)) = St−1
i , 1 ≤ i ≤ k.

Consequently, dimVn(S) ≤ dimVn(A).
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Proof. Immediate from Proposition 3.1. �

Proposition 4.2. Let S, S′ : TΓ → K, λ ∈ K and τ ∈ PΓ, then
SCS+S′ ≤ SCS + SCS′ , SCλS = SCS (λ �= 0),

SCS�S′ ≤ SCS · SCS′ , SCτ−1S = SCS .
Therefore, the classes SCBOUND(Γ), SCPOL(Γ), SCEXP (Γ) are closed under
sum, scalar product, Hadamard product and left derivatives.

Proof. We only treat the series S � S′. Applying Lemma 4.1 for A = V (S) ⊗ VS′

and taking into account the proof of Proposition 3.3, we get a surjective function
hn : Vn(V (S) ⊗ VS′) → Vn(S � S′) which maps the vector

hV (S)⊗VS′ (t) = hV (S)(t) ⊗ hVS′ (t)

to the vector (S � S′)t−1. Therefore,

dimVn(S � S′) ≤ dimVn(V (S) ⊗ VS′)

≤ dim(Vn(S) ⊗ Vn(S′)) = dimVn(S) · dimVn(S′)

that is SCS�S′ ≤ SCS · SCS′ as wanted. �

It is not hard to see that the characteristic series of the tree languages Dk, intro-
duced in Section 3, has the same syntactic complexity as Dk which is polynomial
of degree k − 1 (see Prop. 2.2).

A series S : TΓ → K will be called syntactically hard if it has the highest
possible complexity. This means that

dimVn(S) = card{t | t ∈ TΓ, width(t) = n}.

From any series S : TΓ → K such that (S, t) �= 0 for all t ∈ TΓ, a syntactically
hard series Sd : TΓ → K can be derived by setting

(Sd, s) = (S, t)2, if s = f(t, t),
= 0, otherwise,

provided Γ has a binary symbol f . For the proof of the fact that Sd is syntacti-
cally hard, we have to show that, for all n, the list of derivatives Sdt

−1, t ∈ TΓ,
width(t) = n, is linearly independent. Indeed, assume that

∑
t∈TΓ,width(t)=n

λtSdt
−1 = 0

or that ∑
t∈TΓ,width(t)=n

λt(Sd, τt) = 0, for all τ ∈ PΓ.
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Setting above τ = f(t, x) for some t ∈ TΓ, we find

λt(Sd, f(t, t)) = 0

or λt(S, t)2 = 0, or
λt = 0, for all t ∈ TΓ, width(t) = n,

as wanted.
In the case that we deal with the simple alphabet Γ̂ = {f, α}, then it is well

known from Combinatorics that card{t | width(t) = n} is the (n − 1)th Catalan
number Cn−1, where

Cn =
1

n + 1

(
2n
n

)
.

Hence,

Proposition 4.3. For every S : TΓ̂ → K, with (S, t) �= 0 for all t ∈ TΓ̂, the series
Sd : TΓ̂ → K defined above is syntactically hard, i.e., SCSd

(n) = Cn−1.

5. Tree height

Berstel and Reutenauer, using a pumping lemma technique, demonstrated that
the series sending every tree to its height is not recognizable (cf. [1]). Our task in
the sequel will be to compute the syntactic complexity of height : TΓ → Q.

For the sake of simplicity, in this section, we assume that Γ is the ranked
alphabet Γ̂ consisting of a binary symbol f and a nullary symbol α. We denote
by �r� the the greatest integer less than or equal to r and by �r� the least integer
greater than or equal to r.

Theorem 5.1. The syntactic complexity of height is given by the formula

SCheight(n) = �n − log2 n�, for all n.

Proof. First of all we observe that, for all t ∈ TΓ, it holds

height(t) + 1 ≤ width(t) ≤ 2height(t)

from which we get that

log2(width(t)) ≤ height(t) ≤ width(t) − 1. (2)

Our next step will be to compute the dimension of the subspace

Vn(height) = 〈height t−1 | t ∈ TΓ, width(t) = n〉, for all n.

According to (2) if width(t) = n, then

log2 n ≤ height(t) ≤ n − 1. (3)
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Let t1, . . . , tk be trees with different heights, height(ti) = m + i, 1 ≤ i ≤ k,
satisfying (3) (m = �log2 n− 1� and k = �n− log2 n�). We are going to show that
the derivatives

height t−1
1 , . . . , height t−1

k

form a basis of Vn(height). Assume that

λ1(height t−1
1 ) + · · · + λk(height t−1

k ) = 0

or that
λ1height(τt1) + · · · + λkheight(τtk) = 0

for all τ ∈ PΓ. Choose τ1, . . . , τk ∈ PΓ such that height(τi) = m + k and ||τi|| = i.
By evaluating the above equation for τ = τi, 1 ≤ i ≤ k, we obtain the linear
homogeneous system

λ1height(τit1) + · · · + λkheight(τitk) = 0 (4)

for i = 1, . . . , k.
Now we need to calculate height(τitj) for every i and j. Let i = 1, this means

that the path from the root of τ to the unique leaf labeled by the variable x has
length 1 while the height of τ is m + k. Hence, the height of the tree τ1tj will
remain m+k when the height of tj is smaller than m+k (i.e., for j = 1, . . . , k−1)
and only for j = k, which means that height(tk) = m + k, the height of τ1tk will
become 1 + m + k. Thus, we get that

height(τ1tj) =
{

m + k, for j = 1, . . . , k − 1;
m + k + 1, for j = k.

Using the same arguments we get that

height(τ2tj) =

⎧⎨
⎩

m + k, for j = 1, . . . , k − 2;
m + k + 1, for j = k − 1;
m + k + 2, for j = k,

and similarly for i > 2. Finally for i = k we get

height(τktj) = m + k + j, for j = 1, . . . , k.

Therefore, the system (4) becomes

λ1(m + k) + λ2(m + k) + · · · + λk−1(m + k) + λk(m + k + 1) = 0
λ1(m + k) + λ2(m + k) + · · · + λk−1(m + k + 1) + λk(m + k + 2) = 0

· · · = 0
λ1(m + k + 1) + λ2(m + k + 2) + · · · + λk−1(m + 2k − 1) + λk(m + 2k) = 0
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whose determinant is non vanishing and so λ1 = · · · = λk = 0. This shows that

height t−1
1 , . . . , height t−1

k

are linearly independent. On the other hand we observe that if t, t′ ∈ TΓ are such
that height(t) = height(t′), then height t−1 = height t′−1 and so height t−1

1 , . . . ,
height t−1

k generates the space Vn(height). We conclude that

dimVn(height) = �n − log2 n�, for all n

hence the proposed formula for SCheight. �
Remark. In the case that Γ is an arbitrary finite ranked alphabet with no unary
symbols then the inequality (2) becomes

logk2
width(t) ≤ height(t) ≤ width(t) − 1

k1 − 1

where k1 (resp. k2) is the smallest (resp. greatest) positive rank such that Γk1 �= ∅
(resp Γk2 �= ∅). However, the computed syntactic complexity is in the same class
as above.

In the sequel we display a tree language having the same syntactic complexity
with the series height. The language Lavl of AV L-trees consists of all trees t ∈ TΓ

such that either t = α or t = f(t1, t2) with t1, t2 ∈ Lavl and
|height(t1) − height(t2)| ≤ 1.

If t, t′ ∈ Lavl and height(t) = height(t′), then Lavlt
−1 = Lavlt

′−1. Moreover,
choosing a sequence of AV L-trees tn with height(tn) = n, (n ≥ 0), it is easy
to see that the corresponding derivatives Lavlt

−1 are distinct. Hence Lavl is not
recognizable.

For a fixed n, we have
card{Lavlt

−1 | width(t) = n} = card{height(t) | width(t) = n}
and the last number, as we have previously seen, is �n− log2 n�. We conclude that

Proposition 5.1. It holds SCLavl
= SCheight.

Recall that for p prime the ring Zp of modulo p integers is a field. We notice the
rather surprising result that the series sending every tree t to its height modulo p
(p prime) is recognizable. Indeed, we have to show that the space generated by
the right derivatives of the series

heightp : TΓ → Zp, heightp(t) = height(t)(mod p)

has finite dimension. Actually we shall show that

dimVheightp
= p.

As always Zp = {0, 1, . . . , p − 1} stands for the field of mod p integers.
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Let us choose trees ti, with height(ti) = i, 0 ≤ i ≤ p − 1 and suppose that

λ0heightpt
−1
0 + λ1heightpt

−1
1 + · · · + λp−1heightpt

−1
p−1 = 0

or that

λ0heightp(τt0) + λ1heightp(τt1) + · · · + λp−1heightp(τtp−1) = 0

for all τ ∈ PΓ. Choose τ1, . . . , τp−1 ∈ PΓ such that height(τi) = p−1 and ||τi|| = i.
Evaluating the previous equality for τ = τi, 0 ≤ i ≤ p − 1 we find a linear
homogeneous system whose determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣

p − 1 p − 1 · · · p − 1 p − 1 p − 1
p − 1 p − 1 · · · p − 1 p − 1 0
p − 1 p − 1 · · · p − 1 0 1

...
...

... · · · · · · · · ·
p − 1 p − 1 0 1 · · · p − 3
p − 1 0 1 · · · p − 3 p − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 p − 1
... · · · p − 1

...

0 · · · · · · ...

p − 1 · · · · · · ...

∣∣∣∣∣∣∣∣∣∣∣
is (−1)p(p − 1)p. Since p is prime, p does not divide (p − 1)p, that is the above
determinant is non vanishing modulo p. Thus λi = 0, for i = 0, 1, . . . , p − 1 and
so the considered list of right derivatives is linearly independent. Moreover, it
generates the space Vheightp

since for every t ∈ TΓ we have

heightpt
−1 = heightpt

−1
k , with k = heightpt.

We conclude:

Proposition 5.2. For every prime number p the tree series heightp is recognizable.
Moreover, dimVheightp

= p and so cardVheightp
= pp.

6. The complexity of recognizable tree series

The hierarchy formed by the previously introduced syntactic complexity locates
all recognizable tree series into its first level, the class of bounded tree series.
Our intention in the present section is to built a hierarchy within the class of
recognizable series by providing an efficient complexity measure for these series.

As we have seen the function SCS introduced in the previous section gives no
information for recognizable tree series. Our intention in the present section is to
provide an efficient complexity measure for these series.

Let us denote by P
(n)
Γ the subset of TΓ(Xn) formed by all trees where x1, . . . , xn

occur in the yield of the tree (in this order from left to right) exactly once.
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For instance the tree

For every n ≥ 1 there is a function

P
(n)
Γ × T n

Γ → TΓ, (τ, t1, . . . , tn) �→ τ [t1, . . . , tn].

With respect to S : TΓ → K, two dual notions of derivatives can be defined:

τ−1S : T n
Γ → K, (τ−1S, (t1, . . . , tn)) = (S, τ [t1, . . . , tn]),

and

S(t1, . . . , tn)−1 : P
(n)
Γ → K, (S(t1, . . . , tn)−1, τ) = (S, τ [t1, . . . , tn]),

for all τ ∈ P
(n)
Γ and t1, . . . , tn ∈ TΓ. For every n we set

F (S)(n) = 〈τ−1S | τ ∈ P
(n)
Γ 〉 and V (S)(n) = 〈S(t1, . . . , tn)−1 | t1, . . . , tn ∈ TΓ〉.

In particular F (S)(1) = F (S) and V (S)(1) = V (S).
We need some additional notation. Given a K−Γ-algebra A = (A, α), for every

t ∈ TΓ(Xn) and every q1, . . . , qn ∈ A, the element t[q1, . . . , qn] ∈ A is inductively
defined as follows

• for t = xi, xi[q1, . . . , qn] = qi, 1 ≤ i ≤ n;
• for t = c ∈ Γ0, c[q1, . . . , qn] = αc;
• for t = f(t1, . . . , tk), f ∈ Γk, k ≥ 1, ti ∈ TΓ(Xn)

f(t1, . . . , tk)[q1, . . . , qn] = αf (t1[q1, . . . , qn], . . . , tk[q1, . . . , qn]).

Lemma 6.1. For any K − Γ-algebra A = (A, α) it holds:

hA(τ [t1, . . . , tn]) = τ [hA(t1), . . . , hA(tn)]

for all τ ∈ P
(n)
Γ and t1, . . . , tn ∈ TΓ.

Proof. Straightforward. �
Lemma 6.2. Let A = (A, α) be a finitely dimensional K − Γ-algebra. Then, for
every t ∈ TΓ, height(t) > dimA, the element hA(t) can be written as a linear
combination of elements of the form hA(s), for s ∈ TΓ with height(s) ≤ dimA.
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Proof. Let us decompose t as follows

t = τpτp−1 · · · τ1c, c ∈ Γ0

where all τi are of the form

τi = fi(ti,1, . . . , ti,ki−1, x, ti,ki+1, . . . , ti,λi), fi ∈ Γλi , ti,j ∈ TΓ

and p > dimA. Since the list

hA(c), hA(τ1c), . . . , hA(τp−1 · · · τ1c), hA(τpτp−1 · · · τ1c)

contains more than domA entries, some of them will be linear combination of its
previous elements in the above list. Hence there is an i with 1 ≤ i ≤ p and:

hA(τiτi−1 · · · τ1c) =
i−1∑
j=1

λjhA(τjτj−1 · · · τ1c)

and so

hA(t) = hA(τpτp−1 · · · τ1c) = τpτp−1 · · · τi+1hA(τiτi−1 · · · τ1c)

=
i−1∑
j=1

λjτpτp−1 · · · τi+1hA(τjτj−1 · · · τ1c)

=
i−1∑
j=1

λjhA(τpτp−1 · · · τi+1τjτj−1 · · · τ1c)

=
i−1∑
j=1

λjhA(tj)

with tj = τpτp−1 . . . τi+1τjτj−1 . . . τ1c and hence height(tj) ≤ height(t) for all j.
By repeating this process if necessary we arrive to the desired decomposition.

�
Theorem 6.1. For a tree series S : TΓ → K the next conditions are equivalent.

(i) S is recognizable;
(ii) dimF (S)(n) < ∞, for all n;
(iii) dimV (S)(n) < ∞, for all n.

In this case we have
dimF (S)(n) = dimV (S)(n).

Proof. (i) ⇒ (ii). Assume that (A = (A, α), ϕ) is a finitely dimensional realization
of S. We shall demonstrate that for every t1, . . . , tn ∈ TΓ

S(t1, . . . , tn)−1 ∈ 〈S(s1, . . . , sn)−1 | si ∈ TΓ, height(si) ≤ dimA, 1 ≤ i ≤ n〉.
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Indeed, for all τ ∈ P
(n)
Γ we have

(S(t1, . . . , tn)−1, τ) = (S, τ [t1, . . . , tn]) = ϕ(hA(τ [t1, . . . , tn]))

= ϕ(τ [hA(t1), . . . , hA(tn)]) (by Lem. 6.1).

By Lemma 6.2 we have that there are sj with height(sj) ≤ dimA and

hA(ti) =
q∑

j=1

λijhA(sj), q = dim〈hA(s) | height(s) ≤ dimA〉

and so by continuing the above string of equalities we get

=
q∑

j1,...,jn=1

λ1j1 · · ·λnjnϕ(τ [hA(sj1), . . . , hA(sjn)])

=
q∑

j1,...,jn=1

λ1j1 · · ·λnjnϕ(hA(τ [sj1 , . . . sjn ]))

=
q∑

j1,...,jn=1

λ1j1 · · ·λnjn(S, τ [sj1 , . . . sjn ])

=
q∑

j1,...,jn=1

λ1j1 · · ·λnjn(S(sj1 , . . . sjn)−1, τ)

=

⎛
⎝ q∑

j1,...,jn=1

λ1j1 · · ·λnjnS(sj1 , . . . sjn)−1, τ

⎞
⎠ .

Consequently, S(t1, . . . tn)−1 =
∑

j1,...,jn
λ1j1 · · ·λnjnS(sj1 , . . . sjn)−1 as asserted.

(ii) ⇒ (i). Follows from Theorem 3.1 and the fact that P
(1)
Γ = PΓ.

(iii) ⇒ (ii). Assume that dimV (S)(n) = k and choose a basis of V (S)(n)

S(t11, . . . t1n)−1, . . . , S(tk1, . . . tkn)−1. (5)

The function Φ : F (S)(n) → Kk defined by the formula

Φ(τ−1S) = ((S, τ [t11, . . . , t1n]), . . . , (S, τ [tk1, . . . , tkn]))

is well defined and linear. In addition it is injective that is its kernel collapses to
the zero vector

Φ(p) = (0, . . . , 0) implies p = 0.

Indeed, let
p =

∑
j

λj(τ−1
j S),



276 S. BOZAPALIDIS AND A. KALAMPAKAS

the condition Φ(p) = (0, . . . , 0) means that

∑
j

λj(S, τj [ti1, . . . , tin]) = 0 for all i = 1, . . . , k. (6)

Then for every t1, . . . , tn ∈ TΓ we have⎛
⎝∑

j

λj(τ−1
j S), (t1, . . . , tn)

⎞
⎠ =

∑
j

λj(S, τj [t1, . . . , tn])

=
∑

j

λj(S(t1, . . . , tn)−1, τj).

By decomposing S(t1, . . . , tn)−1 along the basis (5),

S(t1, . . . , tn)−1 =
∑

i

μiS(ti1, . . . , tin)−1

and replacing it in the last member of the above equalities we get

=
∑

j

λj

(∑
i

μi(S(ti1, . . . , tin)−1, τj)

)
=
∑

i

μi

∑
j

λj(S, τj [ti1, . . . , tin])

(6)
=
∑

i

μi · 0 = 0.

Therefore, p = 0 as wanted. From the injectivity of Φ we obtain

dimF (S)(n) ≤ dimKk = k = dimV (S)(n).

(ii) ⇒ (iii). We only have to dualize the previous argument to get the inequality

dimV (S)(n) ≤ dimF (S)(n). �

The refined syntactic complexity of a tree series S : TΓ → K is the function

RSCS : N → N∞, RSCS(n) = dimF (S)(n), for all n.

According to the previous theorem, for any recognizable series S, the function
RSCS cannot reach ∞.

Example 6.1. All the tree series
• tree size: Tsize : TΓ → Q, (Tsize, t) = |t|;
• branch enumeration: Ben : TΓ → Q, (Ben, t) = number of branches of t;
• branch length: BL : TΓ → Q, (BL, t) = sum of lengths of all branches

of t,
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are recognizable, and they have the same linear refined syntactic complexity,
namely

RSCS(n) = n + 1, for all n.

The complexity notion we have introduced is only appropriate for recognizable
tree series as confirms the following result.

Proposition 6.1. Assume that the alphabet Γ has no unary symbols and S : TΓ →
K is a non-recognizable tree series. Then

RSCS(n) = ∞, for all n.

Proof. First we establish the logical implication

dimF (S)(n+1) < ∞ ⇒ dimF (S)(n) < ∞, for all n.

Suppose that

τ−1
1 S, . . . , τ−1

p S, (τ1, . . . , τp ∈ P
(n+1)
Γ ) (7)

is a basis of F (S)(n+1). For every τ ∈ P
(n+1)
Γ , i ∈ {1, 2, . . . , n + 1} and c ∈ Γ0 we

introduce the tree

τ (i,c) = τ [x1, . . . , xi−1, c, xi, . . . , xn] ∈ Pn
Γ .

We denote by An the set of all trees π ∈ P
(n)
Γ whose yield is x1x2 · · ·xn. The

hypothesis Γ1 = ∅ ensures that An is a finite set. We shall show that the finite set
of series

{π−1S | π ∈ An} ∪ {(τ (i,c)
j )−1S | j = 1, . . . , p, i = 1, . . . , n + 1, c ∈ Γ0} (8)

generates the subspace F (S)(n) and so its dimension cannot exceed the cardinality
of this list. For this it suffices to show that for every π ∈ P

(n)
Γ , the series π−1S

is a linear combination of the list (8). If y(π) = x1x2 · · ·xn, then π ∈ An and we
have nothing to show. Assume that y(π) = w0x1w1 · · ·xi−1wi−1 · · ·xnwn with at
least one of the words w0, w1, . . . , wn non empty. For instance let wi−1 = ui−1c,
c ∈ Γ0 and take

π̄ = π[x1/x1, . . . , xi−1/xi−1, xi/c, xi+1/xi, . . . , xn+1/xn] ∈ P
(n+1)
Γ

then π̄−1S is written as a linear combination of the basis (7)

π̄−1S =
p∑

j=1

λjτ
−1
j S (λj ∈ K).

We have

π−1S = (π̄(i,c))−1S =
p∑

j=1

λj(τ
(i,c)
j )−1S,
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as wanted. It follows that

dimF (S)(n) = ∞ implies dimF (S)(n+1) = ∞, for all n. (9)

Since P
(1)
Γ = PΓ and F

(1)
S = FS and S is non-recognizable, it follows from The-

orem 1 that dimF
(1)
S = ∞. Thus, by (9) we have that dimF

(n)
S = ∞ for all

n ≥ 1. �

As we have seen in Section 5, the series heightp : TΓ → Zp is recognizable
for any prime number p. Its refined syntactic complexity is exponential, namely
RSCheightp

(n) = pn, for all n. Here we need some notation, for τ ∈ P
(n)
Γ , ||τ ||k is

the length of the path starting from the root of τ and ending to the variable xk,
1 ≤ k ≤ n. Next, for i1, . . . , in ∈ {0, 1, . . . , p−1}, consider the trees τi1,...,in ∈ P

(n)
Γ

so that
height(τi1,...,in) = p − 1 and ||τi1,...,in ||k = ik, 1 ≤ k ≤ n.

The derivatives

τ−1
i1,...,in

heightp : T n
Γ → Zp, 0 ≤ i1, . . . , in ≤ p − 1

are linearly independent i.e., the equation

∑
0≤i1,...,in≤p−1

λi1,...,inτ−1
i1,...,in

heightp = 0 (10)

implies that all coefficients λi1,...,in are vanishing. For this let us choose the tree
tj ∈ TΓ, height(tj) = j, 0 ≤ j ≤ p − 1 and evaluate the equation (10) at all
the n-tuples (tj1 , . . . , tjn), 0 ≤ j1, . . . , jn ≤ p − 1. There results the homogeneous
system

∑
0≤i1,...,in≤p−1

λi1,...,inheightp(τi1,...,intj1,...,jn) = 0, (11)

for all 0 ≤ j1, . . . , jn ≤ p − 1, where heightp(τi1,...,intj1,...,jn) is

• p − 1, if max(i1 + j1, . . . , in + jn) ≤ p − 1,
• max(i1 + j1, . . . , in + jn) − p, if max(i1 + j1, . . . , in + jn) ≥ p.

At this point we proceed as in the proof of Proposition 5.2: the determinant of
the system (11) is equal to (−1)pn

(p − 1)pn

which is non zero modulo p. We
summarize:

Proposition 6.2. The modulo p height function heightp : TΓ → Zp has exponen-
tial refined syntactic complexity:

RSCheightp
(n) = pn, for all n.
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By denoting RSCBOUND(Γ), RSCPOL(Γ), RSCEXP (Γ) the classes of recog-
nizable series with bounded, polynomial and exponential complexity respectively,
we obtain the hierarchy

RSCBOUND(Γ) ⊂ RSCPOL(Γ) ⊂ RSCEXP (Γ)

inside the class REC(Γ).
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connaissables. Theor. Inf. Appl. 23 (1989) 449–459.

[4] S. Bozapalidis and O.L. Bozapalidou, The rank of a formal tree power series. Theoret.
Comput. Sci. 27 (1983) 211–215.

[5] S. Bozapalidis and A. Kalampakas, Recognizability of graph and pattern languages. Acta
Informatica 42 (2006) 553–581.

[6] S. Bozapalidis and A. Kalampakas, On the Complexity of the Syntax of Tree Languages,
Proceedings of the 3rd International Conference of Algebraic Informatics, CAI09. Lect. Notes
Comput. Sci. 5725 (2009) 189–203.

[7] F. Gécseg and M. Steinby, Tree Automata. Akademiai Kiado, Budapest (1984).
[8] A. Kalampakas, The Syntactic Complexity of Eulerian Graphs, Proceedings of the 2nd

International Conference of Algebraic Informatics, CAI07. Lect. Notes Comput. Sci. 4728
(2007) 208–217.

Communicated by J. Berstel.
Received March 17, 2009. Accepted December 16, 2009.


	Introduction
	Tree languages and their syntactic complexity
	Formal power series on trees
	Syntactic complexity of tree series
	Tree height
	The complexity of recognizable tree series
	References

