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ON THE D0L REPETITION THRESHOLD

Ilya Goldstein1

Abstract. The repetition threshold is a measure of the extent to
which there need to be consecutive (partial) repetitions of finite words
within infinite words over alphabets of various sizes. Dejean’s Conjec-
ture, which has been recently proven, provides this threshold for all
alphabet sizes. Motivated by a question of Krieger, we deal here with
the analogous threshold when the infinite word is restricted to be a
D0L word. Our main result is that, asymptotically, this threshold does
not exceed the unrestricted threshold by more than a little.

Mathematics Subject Classification. 68R15.

1. Introduction

For each n ≥ 2, let Σn be an alphabet of size n. Given an infinite word w over
Σn, we are interested in finite words which appear several times consecutively in w.
For n = 2 it is obvious that each word, w ∈ Σ∞

2 , has a factor (i.e., subword), u,
which is a square (meaning that u = vv for some v ∈ Σ∗

2). On the other hand, the
Thue-Morse word, w ∈ Σ∞

2 , has the property that, for each letter a ∈ Σ2 and word
v ∈ Σ∗

2, the word avava is not a factor of w [24]. The critical exponent, E (w), of
a word w ∈ Σ∞

n is given by:

E (w) = sup

{∣∣ukv
∣∣

|u| : k ≥ 1, ukv is a factor of w, and v is a prefix of u

}
.

With this notation, we may say that for each w ∈ Σ∞
2 we have E (w) ≥ 2, but

there exists a word (the Thue-Morse word) w ∈ Σ∞
2 such that E (w) = 2. One

may consider also larger values of n. Define for n ≥ 2 the repetition threshold:

RT (n) = inf {E (w) : w ∈ Σ∞
n } .
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The above actually states that RT (2) = 2, which raises the question of finding
RT (n) for each n. Thue [23] constructed a word, w ∈ Σ∞

3 , such that E (w) < 2,
which started the study of the exact value of RT (3). Later, Dejean [7] proved
that RT (3) = 7/4, RT (4) ≥ 7/5, and trivially RT (n) ≥ n/ (n − 1) for n ≥ 5.
She stated the now well-known Dejean’s Conjecture:

RT (n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, n = 2,

7/4, n = 3,

7/5, n = 4,

n/ (n − 1) , n ≥ 5.

The conjecture has been completely settled only recently. Pansiot [21] proved its
correctness for n = 4, then Moulin-Ollagnier [20] generalized his method to prove
it for n ∈ [5, 11], later Mohammad-Noori and Currie [18] generalized it for n ∈
[5, 14], and a recent work of Carpi [1,2] has proven it for n ≥ 33. Just this year
Currie and Rampersad [4–6] proved its correctness for the remaining cases, i.e.,
n ∈ [15, 32].

In the proof of Dejean’s Conjecture, the cases n = 2 and n = 3 are special. In
these cases the upper bounds were found using a word which is a fixed point of
a morphism ϕ : Σ∗

n → Σ∗
n, whereas for n ≥ 4 the upper bounds were established

by proving that an appropriate word, w ∈ Σ∞
n , exists. Fixed points of morphisms

on the alphabet Σn for some n ≥ 2 were studied by many researchers, including
Ehrenfeucht and Rozenberg [8–12], Cassaigne [3], Frid [13–15], Mossé [19] and
Tapsoba [22]. They studied a variety of properties of these words, which have also
become to be known as D0L words.

The difference between the cases n = 2, 3 and n ≥ 4 in the proof of Dejean’s
Conjecture leads to additional questions. Consider the quantity

RTD0L (n) = inf {E (w) : w ∈ Σ∞
n such thatw is a D0L word} ,

introduced by Krieger [17]. From the proof of Dejean’s Conjecture it follows that
RTD0L (n) = RT (n) for n = 2, 3. Obviously, RTD0L (n) ≥ RT (n) for all n, but it
is not clear whether we actually have here an equality for n ≥ 4. A construction
of Carpi [1] implies that limn→∞ RTD0L (n) = 1. We would like to compare the
speed of convergence with that we have for RT (n). To do so, we use a special kind
of morphisms: The underlying alphabet consists of the elements of a certain finite
abelian group, and the morphism is defined algebraically. (A similar construction
was considered in [16], there the subword complexity of the emerging D0L words
was studied.) Using such a construction, we are able to show that RTD0L (n) =
RT (n) + o (1/n). We note that the morphisms we use to construct these words
are uniform, so that the small repetition thresholds are already obtained for a
sub-family of that of all D0L words.

We wish to express our gratitude to Dalia Krieger, who introduced us with this
subject, and gave a clear explanation about this issue.
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2. Definitions and basic properties

2.1. A uniform morphic word

Let k be a positive integer divisible by 4, and m a positive integer divisible
by k. Put n = km. Let G = Cm × C4k, where Cl is the cyclic group of order l
for any positive integer l. We view G also as our alphabet, and put Σ = G. We
want to define a uniform morphism of length m over G. Given any (q, r) ∈ G, put
q = kp + j where p ≥ 0 and j ∈ [0, k − 1], and define

μ (q, r) = a0a1 . . . am−1,

where for even r:

ai =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(rk + i, j) , i ≡ 0 (mod 4),
((p + r) k + i, j) , i ≡ 1 (mod 4),
(i, j) , i ≡ 2 (mod 4),
(pk + i, j) , i ≡ 3 (mod 4),

and for odd r:

ai =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(rk + i, j) , i ≡ 0 (mod 4),(
(p + r) k + i, j + (−1)�j/2� · 2

)
, i ≡ 1 (mod 4),

(i, j) , i ≡ 2 (mod 4),(
pk + i, j + (−1)�j/2� · 2

)
, i ≡ 3 (mod 4).

We denote by μ also the extension of μ to a uniform morphism of Σ∗, as well as
the mapping induced by μ on ΣN. Let w = w0w1w2 . . . be the fixed point of this
latter map with w0 = (0, 0).

3. Main results

Theorem 3.1. We have

E (w) = 1 +
1 + 1/

(
m2 − m

)
(k − 3)m + k

< 1 +
k

(k − 3)n
·

Put Σi = {0, 1, . . . , i − 1} for each positive integer i.

Corollary 3.2. There exists a sequence of uniform morphic words, (yi)
∞
i=1, where

yi ∈ ΣN
i , such that

lim
i→∞

E (yi) − 1
RT (i) − 1

= 1.

Corollary 3.3.
RTD0L (n) = RT (n) + o (1/n) .
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4. Proof of theorem 3.1

A straightforward consequence of the definition of μ is the following lemma.

Lemma 4.1. Let α ∈ G, with μ (α) = a0a1 . . . am−1, where ai = (qi, ri) for
i ∈ [0, m − 1]. Then qi ≡ i (mod k) for i ∈ [0, m − 1].

Since k|m and w = μ (w0) μ (w1) μ (w2) . . ., the lemma yields the following
corollary.

Corollary 4.2. Let i ≥ 0, and wi = (q, r). Then q ≡ i (mod k).

For j ∈ Ck, let

Aj = {(i, j) : i ∈ Cm} ,

Bj =
{(

i, j + (−1)�j/2� + (−1)�j/2�+1+i
)

: i ∈ Cm

}
.

For example,

B1 = {(0, 1) , (1, 3) , (2, 1) , (3, 3) , (4, 1) , . . . , (m − 1, 3)} ,

B3 = {(0, 3) , (1, 1) , (2, 3) , (3, 1) , (4, 3) , . . . , (m − 1, 1)} .

Lemma 4.3. Let α = (q, r) ∈ G, where q = kp + j for some p ≥ 0 and j ∈
[0, k − 1]. If 2|r then the word μ (α) is formed of the letters in Aj in some order,
while if 2 � r then it consists of the letters in Bj in some order.

Proof. Put μ (α) = a0a1 . . . am−1, and suppose that r is even. Let i ∈ [0, m − 1].
Then (i, j) ∈ Aj . If i ≡ 0 (mod 4), then for t = i − rk mod m we have at = (i, j).
If i ≡ 1 (mod 4), then for t = i − (r + p) k mod m we have at = (i, j). If i ≡ 2
(mod 4), then ai = (i, j). Finally, if i ≡ 3 (mod 4), then for t = i − kp modm we
have at = (i, j). Thus, there exists some t ∈ [0, m− 1] such that at = (i, j), and
hence for each β ∈ Aj there exists some t ∈ [0, m − 1] such that at = β. Since the
length of μ (α) is m, just as the size of Aj , it means that μ (α) is a permutation
of the letters in Aj .

Now suppose that r is odd. Let i ∈ [0, m − 1]. In case i is even we have (i, j) ∈
Bj , and in case i is odd we have

(
i, j + (−1)�j/2� · 2

)
∈ Bj . If i ≡ 0 (mod 4), then

for t = i−rk mod m we have at = (i, j). If i ≡ 2 (mod 4), then ai = (i, j). If i ≡ 1
(mod 4), then for t = i − (r + p) k mod m we have at =

(
i, j + (−1)�j/2� · 2

)
. If

i ≡ 3 (mod 4), then for t = i−kp modm we have at =
(
i, j + (−1)�j/2� · 2

)
. Thus,

there exists some t ∈ [0, m − 1] such that at =
(
i, j + (−1)�j/2� + (−1)�j/2�+1+i

)
,

and hence for each β ∈ Bj there exists some t ∈ [0, m − 1] such that at = β. Since
the length of μ (α) is m, just as the size of B, it means that μ (α) is a permutation
of the letters in Bj . �

The following lemma is a straightforward consequence of the lemmas above.
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Lemma 4.4. Let α ∈ G, and put α = (q, r). Put μ (α) = a0a1 . . . am−1 and
μ2 (α) = π0π1 . . . πm−1, where πi = μ (ai) for i ∈ [0, m− 1]. If q is even, then for
each i ∈ [0, m − 1], πi is a permutation of the letters in Ai mod k. If q is odd, then
πi is a permutation of the letters in Bi mod k for each i ∈ [0, m− 1] .

Proof. Let p ≥ 0 and j ∈ [0, k − 1] be such that q = pk + j. For each i ∈ [0, m− 1]
put ai = (xi, x

′
i). The definition of μ guarantees that, in case j is even, for

each i ∈ [0, m − 1] the values x′
i are even, while if j is odd then for each i ∈

[0, m − 1] the values x′
i are odd. Moreover, Lemma 4.1 yields that xi ≡ i (mod k).

Therefore, Lemma 4.3 implies that in case j is even, then for each i ∈ [0, m− 1]
the word πi is a permutation of the letters in Ai mod k; and in case j is odd then
for each i ∈ [0, m− 1], this word is a permutation of the letters in Bi mod k. Since
2|k, then j is even if and only if q is even, which completes the proof. �

Lemma 4.5. Let α ∈ G, and let u, v ∈ Σ∗ be such that v is a prefix of u, and uv
is a factor of the word μ2 (α). Then |v| ≤ 1, and if |v| = 1, then |u| ≥ k (m − 1).

Proof. Put α = (q, r), μ (α) = a0a1 . . . am−1, μ2 (α) = b0b1 . . . bm2−1, and ai =
(xi, x

′
i) for i ∈ [0, m − 1]. Lemma 4.4 yields that μ2 (α) = π0π1 . . . πm−1, where

either π = μ (ai) is a permutation of the letters in Ai modk for each i ∈ [0, m − 1],
or πi = μ (ai) is a permutation of the letters in Bi mod k for each i ∈ [0, m − 1].
Note that the sets Aj , j ∈ Ck, are pairwise disjoint, as are the sets Bj , j ∈ Ck.
Since uv is a factor of μ2 (α), there exist a t ∈ [0, m − 1] and l ≥ 0 such that
t + l ≤ m − 1, uv is a factor of πtπt+1πt+2 . . . πt+l, and uv is neither a factor of
πt+1πt+2 . . . πt+l nor a factor of πtπt+1πt+2 . . . πt+l−1. Since πt is a permutation
and v a prefix of u, the word uv is not a factor of πt, and hence l > 0.

Suppose that |v| = 2. Put v = β1β2, and βi = (yi, y
′
i) for i = 1, 2. The previous

paragraph yields that β2 is a factor of πt+l. Since v is a prefix of u, β2 is either
a factor of πt or the first letter of πt+1. In the latter case y′

2 − y′
1 is odd, and

hence the definition of μ yields that β2 is also the first letter of πt+l. Therefore,
β1 is the last letter of πt and the last letter of πt+l−1, which yields by the previous
paragraph that t ≡ t + l − 1 (mod k). Hence we may put xi = kzi + z′i for
i ∈ [0, m − 1], where zi ≥ 0 and z′i ∈ [0, k − 1], and we have both y1 = ztk + m− 1
and y1 = zt+l−1k+m−1. Therefore kzt = kzt+l−1, and since t ≡ t+ l−1 (mod k)
Lemma 4.1 yields z′t = z′t+l−1. Thus, xt = xt+l−1, which contradicts Lemma 4.3,
and hence β2 is not the first letter of πt+1. Symmetrically means β2 is not the
first letter of πt+l , and hence v is a factor of πt+l and a factor of πt.

Since v is a factor of πt and πt+l, the permutations πt and πt+l have a common
letter, and hence t ≡ t + l (mod k). Since 4|k, it means that l is even, and hence
the definition of μ yields x′

t = x′
t+l. If y1 is even, then the definition of μ implies

that y2 − y1 − 1 ≡ ztk (mod m), and also y2 − y1 − 1 ≡ zt+lk (mod m). Thus,
zt+lk = ztk. Since t ≡ t + l (mod k), Lemma 4.1 implies z′t+l = z′t, and hence
xt = xt+l. Therefore, αt = αt+l, which contradicts Lemma 4.3. Similarly, in case
y1 ≡ 1 (mod 4), we have y2 − y1 − 1 ≡ −x′

tk − ztk (mod m) and y2 − y1 − 1 ≡
−x′

t+lk− zt+lk (mod m). Hence, since x′
t = x′

t+l, we also have ztk = zt+lk, which
implies xt = xt+l . Hence, in case y1 ≡ 1 (mod 4) we also have αt = αt+l, which is
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a contradiction. In the last case, y1 = 3 (mod 4), we have y2 − y1 − 1 ≡ x′
tk − ztk

(mod m) and y2 − y1 − 1 ≡ x′
t+lk − zt+lk (mod m). Again, since x′

t = x′
t+l, we

also have xt = xt+l, which yields αt = αt+l, and again we have a contradiction.
Thus, |v| = 2 yields a contradiction, and therefore |v| ≤ 1.

Now, suppose that |v| = 1, and put v = β = (y, y′). Since β is a factor of πt

and πt+l, we have t ≡ t + l (mod k). Therefore, k|l, and since l > 0, it implies
that l ≥ k. Hence, in case l > k we have l ≥ 2k, and therefore |u| ≥ (2k − 2)m ≥
k (m − 1). Now, suppose that l = k. Since μ2 (α) = b0b1 . . . bm2−1, we have
πt = btmbtm+1btm+2 . . . btm+m−1, and πt+k = b(t+k)mb(t+k)m+1 . . . b(t+k+1)m−1.
Since β is a factor of πt, there exists an i ∈ [0, m − 1] such that β = btm+i. Since
4|k, we have x′

t = x′
t+k, and therefore the definition of μ implies that in case

i is even we have b(t+k)m+i = β. Since πt+k is a permutation, it implies that
|u| = km > (k − 1)m. Since 4|k, the definition of μ yields that xt+k = xt + k.
Therefore, in case i is odd we have b(t+k)m+i′ = β, where i′ = i− k mod m. Thus,
if i is odd, then either |u| = km − k or |u| = (k + 1)m − k. Both cases imply
|u| ≥ (k − 1)m, which completes the proof. �

Lemma 4.6. Let (q, r) , (q′, r′) ∈ Σ be such that q′ ≡ q + 1 (mod k), and put
α = (q, r) and β = (q′, r′). Let u, v ∈ Σ∗ be such that v is a prefix of u, and uv is
a factor of the word μ2 (αβ). Then |v| ≤ 1, and if |v| = 1, then |u| ≥ (k − 3)m+k.

Proof. Put μ (αβ) = a0a1 . . . a2m−1, μ2 (αβ) = b0b1 . . . b2m2−1, and ai = (xi, x
′
i)

for each i ∈ [0, 2m− 1]. Since 2|k and q′ ≡ q + 1 (mod k), Lemma 4.4 yields
that μ2 (α) = π0π1 . . . πm−1, and μ2 (β) = πmπm+1 . . . π2m−1, where either for
each i ∈ [0, m − 1] the word πi is a permutation of the letters in Ai modk and for
each i ∈ [m, 2m − 1] it is a permutation of the letters in Bi mod k, or for each i ∈
[0, m − 1] it is a permutation of the letters in Bi modk and for each i ∈ [m, 2m− 1]
it is a permutation of the letters in Ai modk.

Since uv is a factor of μ2 (αβ), there exist a t ≥ 0 and an l > 0, such that
t + l ≤ 2m2, and uv = btbt+1bt+2 . . . bt+l−1. In case t + l ≤ m2, the word uv is a
factor of μ2 (α), and in case t ≥ m2, it is a factor of μ2 (β). In both cases, Lemma
4.5 ensures that |v| ≤ 1, and if |v| = 1 then |u| ≥ k (m − 1) ≥ (k − 2)m + k.
Therefore, in those cases the lemma is true. Hence, from now on, suppose that
t < m2 and t + l > m2.

Suppose that |v| = 2, let v = γ1γ2, and put γi = (yi, y
′
i) for i = 1, 2. As in

the proof of Lemma 4.5, there is no way for γ1 to be the last letter of π�t/m�
and πj for some j ∈ [0, m − 1] \ {�t/m�}, and therefore t + l 	= m2 + 1. Thus,
t + l > m2 + 1, and therefore v is a factor of μ2 (β). If, for each i ∈ [0, m − 1],
the word πi is a permutation of the letters in Bi modk, then since v is a factor
of μ2 (β) we have either γ′

2 − γ′
1 = 0 or γ′

2 − γ′
1 = 1, and since v is a factor of

μ2 (α) bm2+1, then we have either |γ′
2 − γ′

1| = 2, or γ′
2 − γ′

1 = 3, or γ′
2 − γ′

1 = −1.
Thus, since k ≥ 4, we have a contradiction. Therefore, πi is a permutation of the
letters in Ai modk for each i ∈ [0, m − 1]. Hence, since v is a factor of μ2 (β), we
have either |γ′

2 − γ′
1| = 2, or γ′

2 − γ′
1 = 3, or γ′

2 − γ′
1 = −1, and since v is a factor

of μ2 (α) bm2 we have either γ′
2 − γ′

1 = 0 or γ′
2 − γ′

1 = 1. Again, since k ≥ 4, we
have a contradiction, which means that |v| 	= 2, and hence |v| = 1.
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Put v = γ = (y, y′). The definition of t and l implies that bt = γ and bt+l−1 = γ.
Therefore, γ is a factor of both πj and πj′ for j = �t/m� and j′ = �(t + l − 1) /m�.
Thus, πj and πj′ have a common letter, and since either πj is a permutation of
the letters in Aj modk and πj′ is a permutation of the letters in Bj′ modk, or πj

is a permutation of the letters in Bj modk and πj′ a permutation of the letters in
Aj′ modk, then either j′ ≡ j (mod k) or j′ ≡ j ± 2 (mod k). Thus, j′ − j ≥ k − 2,
and hence l − 1 > (k − 3)m. Lemma 4.1 also implies t ≡ t + l − 1 (mod k), and
hence k|m implies that l−1 ≥ (k − 3)m+k. This means that |u| ≥ (k − 3)m+k,
and completes the proof. �
Corollary 4.7. Let u, v ∈ Σ∗ be such that v is a prefix of u, and uv is a factor
of w. If |v| = 1 then |u| ≥ (k − 3)m + k, and if |v| = 2 then |u| ≥ m2.

The corollary deals with repetitions of single letters and of words of length 2
in w. From now on, put wi = (xi, x

′
i) for i ≥ 0. We turn to study repetitions of

factors of length 3 and 4 in w, i.e. the existence of i, j ≥ 0 with i < j such that

wi = wj , wi+1 = wj+1, wi+2 = wj+2, (4.1)

and on occasion also wi+3 = wj+3.

Lemma 4.8. Let i, j ≥ 0 be such that (4.1) is satisfied. Then i ≡ j (mod m).

Proof. Since 4|k and wi = wj , Corollary 4.2 guarantees that i ≡ j (mod 4). Let
t ∈ [0, 3] be such that i + t ≡ 2 (mod 4). If t 	= 3, then by the definition of μ we
have xi+t ≡ i + t (mod m) as well as xj+t ≡ j + t (mod m). Since wi+t = wj+t,
we have i + t ≡ j + t (mod m), which yields i ≡ j (mod m).

It remains to deal with the case t = 3. We have i ≡ 3 (mod 4). If x′
i+1 − x′

i is
odd then �i/m� < �(i + 1) /m�, and therefore i ≡ m− 1 (mod m). Since wj = wi

and wj+1 = wi+1, we analogly obtain j ≡ m − 1 (mod m), and hence i ≡ j
(mod m). Now, suppose that x′

i+1−x′
i is even, and therefore i ≡ 3 (mod 4) yields

�i/m� = �(i + 2) /m� as well as �j/m� = �(j + 2) /m�. Therefore, in such a case
the definition of μ implies that xi+2 − xi+1 − xi − 1 ≡ −i (mod m) as well as
xj+2 − xj+1 − xj − 1 ≡ −j (mod m). Since the equalities in (4.1) hold, we deduce
that i ≡ j (mod m), which completes the proof. �
Lemma 4.9. Let i, j ≥ 0 be such that (4.1) is satisfied. If either i ≡ 0 (mod 4)
or i ≡ 1 (mod 4), then w�i/m� = w�j/m�; if i ≡ 3 (mod 4), then w�(i+1)/m� =
w�(j+1)/m�.

Proof. Since i and j satisfy the equalities in (4.1), Lemma 4.8 implies that i ≡ j
(mod m), and in particular i ≡ j (mod 4). In case i ≡ 0 (mod 4), the definition
of μ gives xi+1 − xi − 1 + x′

i = x�i/m�, and xi − xi+2 + 2 ≡ kx′
�i/m� (mod m).

Therefore, in case i ≡ 0 (mod 4) the equalities in (4.1) imply x�i/m� = x�j/m�,
and kx′

�i/m� ≡ kx′
�j/m� (mod m). Since k|m and m ≥ k2, it follows that x′

�i/m� =
x′
�j/m�, and therefore in case i ≡ 0 (mod 4) we have w�i/m� = w�j/m�.
In case i ≡ 1 (mod 4), the definition of μ shows that xi+2 − xi+1 − 1 + x′

i+1 =
x�i/m�, and xi − xi+2 + 2 ≡ kx′

�i/m� (mod m). Therefore, if i ≡ 1 (mod 4) then
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the equalities in (4.1) imply x�i/m� = x�j/m�, kx′
�i/m� ≡ kx′

�j/m� (mod m), and
similarly to the previous case w�i/m� = w�j/m� as well.

Now suppose that i ≡ 3 (mod 4). If x′
i+1 − x′

i is odd, then the definition of μ
yields i + 1 ≡ 0 (mod m) as well as j + 1 ≡ 0 (mod m). Hence, is such a case we
have xi+1 = kx′

�(i+1)/m� and xi+2−xi+1−1+x′
i+1 = x�(i+1)/m�. Therefore in such

a case the equalities in (4.1) give x�(i+1)/m� = x�(j+1)/m� and kx′
�i/m� ≡ kx′

�j/m�
(mod m), which similarly to the previous cases implies w�(i+1)/m� = w�(j+1)/m�.
On the other hand, in case x′

i+1−x′
i is even, the definition of μ yields �(i + 1) /m� =

�i/m�, and hence xi+2−xi+1−1+x′
i+1 = x�(i+1)/m� and xi+2−xi−2 = kx′

�(i+1)/m�.
Therefore, in such a case the equalities in (4.1) give x�(i+1)/m� = x�(j+1)/m�, and
kx′

�(i+1)/m� ≡ kx′
�(j+1)/m� (mod m), which yields w�(i+1)/m� = w�(j+1)/m� and

completes the proof. �

The previous lemma dealt with repetitions of three-lettered factors, and it also
gives the following corollary, which completes the study of three- and four-lettered
factors in w.

Corollary 4.10. Let i, j ≥ 0 be such that (4.1) is satisfied. If i ≡ 2 (mod 4) and
wi+3 = wj+3, then w�(i+2)/m� = w�(j+2)/m�.

The last lemma and corollary show that each repetition of four- or more letters
is formed through a repetition of a single lettered word, a two-lettered word, or a
three-lettered word. Lemmas 4.4, 4.5, and Corollary 4.7 studied these repetitions.
The following lemmas are tools which will allow us to complete the study of the
critical exponent.

Lemma 4.11. Let i, i′ ≥ 0 be such that wi 	= wi′ and i ≡ i′ (mod k). If x′
i = x′

i′

then for each t ≥ 1 we have wimt+j = wi′mt+j for j ∈ [0, (mt − 1) / (m − 1) − 1]
and wimt+j 	= wi′mt+j for j = (mt − 1) / (m − 1). If x′

i 	= x′
i′ then for each t ≥ 1

we have wimt+j = wi′mt+j for j ∈ [
0,

(
mt−1 − 1

)
/ (m − 1) − 1

]
and wimt+j 	=

wi′mt+j for j =
(
mt−1 − 1

)
/ (m − 1).

Proof. First, suppose that x′
i = x′

i′ . We claim that for t ≥ 1 we have wimt+j =
wi′mt+j for j ∈ [0, (mt − 1) / (m − 1) − 1], but wimt+j 	= wi′mt+j and x′

imt+j =
x′

i′mt+j for j = (mt − 1) / (m − 1). Since i ≡ i′ (mod k), Corollary 4.2 implies
xi ≡ xi′ (mod k), and hence x′

i = x′
i′ implies wim = wi′m. On the other hand,

since wi 	= wi′ we have xi 	= xi′ , and therefore xi ≡ xi′ (mod k) implies wim+1 	=
wi′m+1, although x′

i = x′
i′ yields x′

im+1 = x′
i′m+1. Hence, the statement is true for

t = 1.
Now, suppose the statement is true for some t ≥ 1. Therefore, wimt+1+j =

wi′mt+1+j for each j ∈ [0, m (mt − 1) / (m − 1) − 1], and since x′
imt+j = x′

i′mt+j

for j = (mt − 1) / (m − 1), by the same token as in the previous paragraph we have
wimt+1+j = wi′mt+1+j , wimt+1+j+1 	= wi′mt+1+j+1 and x′

imt+1+j+1 = x′
i′mt+1+j+1

for j = m (mt − 1) / (m − 1). Since m (mt − 1) / (m − 1) =
(
mt+1 − 1

)
/ (m − 1)−

1, the statement turns out to be true for t + 1 as well, which proves the lemma for
the case x′

i = x′
i′ .
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Now, suppose that x′
i 	= x′

i′ . As mentioned above, we have xi ≡ xi′ (mod k).
Therefore, we have xim 	= xi′m, although x′

im = x′
i′m. On the one hand, we

have wim 	= wi′m which implies that the lemma is true also for the case where
x′

i 	= x′
i′ and t = 1. On the other hand, we have already proved the lemma for

the case x′
i = x′

i′ , and hence x′
im = x′

i′m and xim 	= xi′m show that for each
t ≥ 1 we have wimt+j = wi′mt+j for each j ∈ [

0,
(
mt−1 − 1

)
/ (m − 1) − 1

]
and

wimt+j 	= wi′mt+j for j =
(
mt−1 − 1

)
/ (m − 1). �

Lemma 4.12. Let i, i′ ≥ 0 be such that xi 	= xi′ . Then x(i+1)mt−1 	= x(i′+1)mt−1

for each t ≥ 1.

Proof. The statement is obviously true for t = 0. Now, suppose that the state-
ment is true for some t ≥ 0. Since x(i+1)mt−1 	= x(i′+1)mt−1 and (i + 1)mt − 1 ≡
(i′ + 1)mt − 1 (mod k), we also have x(i+1)mt−1 ≡ x(i′+1)mt−1 (mod k), and
therefore the inequality x(i+1)mt−1 	= x(i′+1)mt−1 and the definition of μ give
x(i+1)mt+1−1 	= x(i′+1)mt+1−1, which completes the induction and thus the proof
of the lemma. �

Proof of Theorem 3.1. According to Lemma 4.9 and Corollary 4.10, any repetition
of a word of length of four or more stems from a repetition of a word of length
at most three. Therefore, we may study repetitions of long blocks by studying
repetitions of short (i.e., up to length three) blocks.

A repetition of a word of length two is given by an index, i ≥ 0, and some
l > 0, such that wi = wi+l, wi+1 = wi+l+1, wi−1 	= wi+l−1 and wi+2 	= wi+l+2.
Note that Corollary 4.7 ensures that l ≥ m2. Moreover, Corollary 4.2 implies
k|l. Obviously, for t ≥ 1, we have wimt+j = w(i+l)mt+j for j ∈ [0, 2mt − 1], and
a repetition formed out of this double lettered repetition is defined by means of
an index i′ ∈ [(i − 1)mt + 1, imt] and an s ≥ 2mt, such that wi′+j = wi′+lmt+j

for j ∈ [0, s− 1]. Since wi−1 	= wi+l−1, we have either wim−1 	= wim+lm−1, or
wim−2 	= wim+lm−2, or xim−3 	= xim+lm−3. In the first two cases, Lemma 4.9
and Corollary 4.7 yield that i′ > imt − 2mt−1, and in the latter case Lemma 4.12
yields i′ ≥ imt − 2mt−1. Thus, i′ ≥ imt − 2mt−1, and therefore Lemma 4.11 and
wi+2 	= wi+l+2 yield that s ≤ 2mt−1 + 2mt + (mt − 1) / (m − 1). Hence, for a
factor uv of w, where u, v ∈ Σ∗ and v is a prefix of u, which is formed out of a
double lettered repetition, we have

|uv|
|u| =

mt · l + s

mt · l ≤ 1 +
2/m + 2 + (1 − 1/mt) / (m − 1)

m2
< 1 +

1 + 1/
(
m2 − m

)
(k − 3)m + k

,

where the last inequality is due to the inequality m ≥ k2.
A similar calculation can be applied to the repetitions formed out of the three-

lettered repetitions, i.e., cases where there is an index i ≥ 0 and an l > 0, such that
wi = wi+l, wi+1 = wi+l+1, wi+2 = wi+l+2, wi−1 	= wi+l−1 and wi+3 	= wi+l+3.
Since Corollary 4.7 ensures that l ≥ m2, in a similar way we see that for a factor uv
of w, where u, v ∈ Σ∗ and v is a prefix of u, which is formed out of a three-lettered



290 I. GOLDSTEIN

repetition, we have

|uv|
|u| ≤ 1 +

2/m + 3 + (1 − 1/mt) / (m − 1)
m2

< 1 +
1 + 1/

(
m2 − m

)
(k − 3)m + k

,

for some t ≥ 1.
The last and most interesting case, namely of repetitions formed out of a single-

lettered repetition, i.e., a case where there is an index i ≥ 0 and an l > 0, such
that wi = wi+l, wi−1 	= wi+l−1 and wi+1 	= wi+l+1. First, Corollary 4.2 implies
that k|l, and Corollary 4.7 ensures that l ≥ (k − 3)m + k. For the cases where
l ≥ (k − 3)m + 4k we may apply a similar calculation to the one used above.
Hence, we conclude that for a factor uv of w, where u, v ∈ Σ∗ and v is a prefix of
u, which is formed out of such a repetition, we have

|uv|
|u| ≤ 1 +

2/m + 1 + (1 − 1/mt) / (m − 1)
(k − 3)m + 4k

< 1 +
1 + 1/

(
m2 − m

)
(k − 3)m + k

,

for some t ≥ 1, where the last inequality is due to the inequality 3/ (m − 1) ≤
3k/ ((k − 3)m + k). Now, we deal with the case l < (k − 3)m + 4k. Since k|l
we have either l = (k − 3)m + 3k, or l = (k − 3)m + 2k, or l = (k − 3)m + k.
Therefore, Lemma 4.5 implies that

⌊
i/m2

⌋ 	= ⌊
(i + l) /m2

⌋
, and since l < m2 we

have
⌊
(i + l) /m2

⌋
=

⌊
i/m2

⌋
+ 1. Due to Corollary 4.2 we have x�(i+l)/m2� ≡

x�i/m2� + 1 (mod k), and hence Lemma 4.4 and equality wi = wi+l imply that
�(i + l) /m� = �i/m� + k − 2. Therefore, the definition of μ yields that i is odd,
and hence x′

i+1 	= x′
i+l+1. Let a factor uv of w, where u, v ∈ Σ∗ and v is a prefix

of u, which is formed out such a repetition. Therefore, there exist a t ≥ 1, an
index i′ ∈ [(i − 1)mt + 1, imt], and an s ≥ mt, such that wi′+j = wi′+lmt+j for
j ∈ [0, s − 1], and uv = wi′wi′+1 . . . wi′+lmt+s. Similarly as the previous cases,
we have i′ ≥ imt − 2mt−1, and since x′

i+1 	= x′
i+l+1 Lemma 4.11 yields that

s ≤ 2mt−1 + 2mt +
(
mt−1 − 1

)
/ (m − 1). Thus, we have

|uv|
|u| ≤ 1 +

2/m + 1 +
(
1 − 1/mt−1

)
/m (m − 1)

(k − 3)m + 3k
< 1 +

1 + 1/
(
m2 − m

)
(k − 3)m + k

,

where the last inequality is due to the inequality 2/ (m − 1) ≤ 2k/ ((k − 3)m + k).
Now to the last two cases, l = (k − 3)m + 2k and l = (k − 3)m + k. Since

�(i + l) /m� = �i/m� + k − 2 and k > 4, there is no way that x′
�i/m�k − 2k =

x′
�i/m�+2kk or x′

�i/m�k − k = x′
�i/m�+2kk. Therefore, since either i ≡ 1 (mod 4)

or i ≡ 3 (mod 4), and m � l, we have xi−1 	= xi+l−1. Hence, Lemma 4.12 implies
that for some t ≥ 1 we have ximt−1 	= x(i+l)mt−1, and as we have already shown,
we also have w(i+1)mt+j 	= w(i+l+1)mt+j for j =

(
mt−1 − 1

)
/ (m − 1). It follows

that, a repetition formed out of these cases, i.e., an index i′ ∈ [(i − 1)mt + 1, imt]
and an s ≥ mt, such that wi′+j = wi′+lmt+j for j ∈ [0, s − 1], satisfies i′ = imt

and s ≤ mt +
(
mt−1 − 1

)
/ (m − 1). Thus, for a factor uv of w, where u, v ∈ Σ∗
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and v is a prefix of u, which is formed out of these two cases, we have

|uv|
|u| =

mt · l + s

mt · l ≤ 1 +
1 +

(
1 − 1/mt−1

)
/

(
m2 − m

)
(k − 3)m + k

< 1 +
1 + 1/

(
m2 − m

)
(k − 3)m + k

·

Therefore, the bottom line is that for any factor uv of w, where u, v ∈ Σ∗ and v is
a prefix of u, we have

|uv|
|u| < 1 +

1 + 1/
(
m2 − m

)
(k − 3)m + k

,

which proves that

E (w) ≤ 1 +
1 + 1/

(
m2 − m

)
(k − 3)m + k

· (4.2)

On the other hand, since w0 = (0, 0), we have wm−2k = (m − 2k, 0), which yields
wm2−2km = (0, 0) and wm2−2km+1 = (m − 2k + 1, 0). Consequently,

wm3−2km2+m−k+3 = (m − k + 3, 0) , wm3−2km3+m+1 = (m − 2k + 1, 1) .

Hence, for the indexes

i = m4 − 2km3 + m2 − km + 3m + m− k + 3, j = m4 − 2km3 + m2 + m + 3,

we have wi = (m − 2k + 3, 3) and wj = (m − 2k + 3, 3), which is a single let-
tered repetition. Note that l = j − i = (k − 3)m + k. For each t ≥ 1 put ut =
wimtwimt+1 . . . wjmt−1, and vt = wjmtwjmt+1 . . . w(j+1)mt+(mt−1−1)/(m−1)−1. Ob-
viously, for each t the word utvt is a factor of w, and on the other hand, the
equality wi = wj and Lemma 4.11 ensure that vt is a prefix of ut. Thus, for each
t ≥ 1 we have

E (w) ≥ |utvt|
|ut| = 1 +

1 +
(
1 − 1/mt−1

)
/

(
m2 − m

)
(k − 3)m + k

,

and therefore

E (w) ≥ 1 +
1 + 1/

(
m2 − m

)
(k − 3)m + k

·
The inequality above, together with the inequality in (4.2), completes the proof of
the theorem. �
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