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THE CODE PROBLEM FOR DIRECTED FIGURES

Micha�l Kolarz1

Abstract. We consider directed figures defined as labelled polyomi-
noes with designated start and end points, with two types of catenation
operations. We are especially interested in codicity verification for sets
of figures, and we show that depending on the catenation type the
question whether a given set of directed figures is a code is decidable
or not. In the former case we give a constructive proof which leads to
a straightforward algorithm.
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Introduction

Variable-length word codes, i.e., subsets X of a monoid such that every product
of the elements decomposes uniquely over X , have been studied by many authors
and extensive literature exists in this subject, including e.g. the well-known mono-
graph [3]. Much less is known about the codicity in two dimensions. Some authors
have extended word codes to trees (see [6]) or polyominoes (e.g. [1,2]); decidability
of the codicity testing problem varies in these cases. However, it is undecidable in
the case of both standard and labelled polyominoes (cf. [8,9]).

The interest in two-dimensional codes is natural in the context of various disci-
plines that use picture encodings, e.g. [4]. In the present paper we study pictures
composed of labelled polyominoes, equipped with start and end points; we call
them directed figures. Catenation of directed figures is defined with an optional
merging function. We characterize decidability of the question whether a given
set of directed figures is a code in both situations (with or without the merging
function). In the decidable cases we give proofs that lead to simple algorithms.
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In Section 1 we define directed figures and related operations. Then, in Sec-
tion 2, the notion of a code is introduced in the context of catenation with and
without the merging function. The decidability question for some specific cases
is also solved here. Section 3 is concerned with the codicity verification for both
kinds of codes, giving algorithms in typical cases. We end with some plans for
future study.

1. Preliminaries

Let Σ be a finite, nonempty alphabet. For u = (ux, uy) ∈ Z
2, a translation in

Z
2 by vector u is denoted by τu,

τu : Z
2 � (x, y) �→ (x + ux, y + uy) ∈ Z

2.

For a set V ⊆ Z
2 and an arbitrary function f : V → X it obviously induces

τu : P (Z2) � V �→ {τu(v) | v ∈ V } ∈ P (Z2),

τu : XV � f �→ f ◦ τ−u ∈ Xτu(V ).

Definition 1.1 (Directed figure). Let D ⊆ Z
2 be finite and non-empty, b, e ∈ Z

2

and l : D → Σ. A quadruple f = (D, b, e, l) is called a directed figure (over Σ)
with

domain dom(f) = D,
start point begin(f) = b,
end point end(f) = e,
labelling function label(f) = l,
translation vector tran(f) = e − b.

In addition we define the empty directed figure ε as (∅, (0, 0), (0, 0), ∅).
Note that we make no additional assumptions about the relative placement of

domain, start point and end point of the figure and connectedness of the domain.

Example 1.2. Directed figures with graphical representation (a circle marks the
start point and a diamond marks the end point of the figure).

ε �	
({(0, 0), (1, 1)}, (0, 0), (1, 0), {(0, 0) �→ a, (1, 1) �→ c}) a�

c	
({(0, 0)}, (0, 2), (2, 0), {(0, 0) �→ a}) a

�
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The set of all directed figures over Σ is denoted by Σ�. Two directed figures
x, y are equal if there exists u ∈ Z

2 such that

y = (τu(dom(x)), τu(begin(x)), τu(end(x)), τu(label(x))).

Thus, we actually consider figures up to a translation.

Definition 1.3 (Catenation). Let x = (Dx, bx, ex, lx) and y = (Dy, by, ey, ly) be
directed figures. If Dx ∩ τxe−yb

(Dy) = ∅, catenation of x and y is defined as

x ◦ y = (Dx ∪ τxe−yb
(Dy), bx, τxe−yb

(ey), l),

where

l(z) =
{

lx(z) for z ∈ Dx,
τxe−yb

(ly)(z) for z ∈ τxe−yb
(Dy).

If Dx ∩ τxe−yb
(Dy) �= ∅, catenation of x and y is not defined.

Example 1.4. Catenation of two figures.

a�b
c
	 ◦ a�

c	 =
a�b

c
a

c	
Example 1.5. Catenation of the following figures is not defined (point labeled by
c in the first figure overlaps with point labeled by b in the second figure).

a�b
c
	 a�

b c	
Definition 1.6 (m-catenation). Let x = (Dx, bx, ex, lx) and y = (Dy, by, ey, ly) be
directed figures. m-catenation of x and y w.r.t. a merging function m : Σ×Σ → Σ
is defined as

x ◦m y = (Dx ∪ τxe−yb
(Dy), bx, τxe−yb

(ey), l),

where

l(z) =

⎧⎨
⎩

lx(z) for z ∈ Dx \ τxe−yb
(Dy),

τxe−yb
(ly)(z) for z ∈ τxe−yb

(Dy) \ Dx,
m(lx(z), τxe−yb

(ly)(z)) for z ∈ Dx ∩ τxe−yb
(Dy).

Example 1.7. π1-catenation of two figures (π1 denotes projection on the first
argument).

a�b
c
	 ◦π1

a�

b c	 =
a�b

c
a

c	
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Observe that ◦ is associative. ◦m is associative if and only if m is associative.
So for associative m, Σ�

m = (Σ�, ◦m) is a monoid (which is never free).
Abusing this notation, we also write X� (resp. X�

m) to denote the set of all
figures that can be composed by ◦ catenation (resp. ◦m m-catenation) from figures
in X ⊆ Σ�. When some results hold for ◦ catenation as well as for ◦m m-catenation,
we use • catenation symbol, and “x•y” should then be read as “x◦y (resp. x◦my)”.
In the same way we use “x ∈ X�

•” to denote “x ∈ X� (resp. x ∈ X�
m)”.

From now on let m be an arbitrary associative merging function.

2. Codicity

2.1. Codes

In this subsection we show that in general it is not decidable wether a given set
is a code w.r.t. ◦ catenation.

Definition 2.1 (Code). X ⊆ Σ� is a code if for any x ∈ X� there exists only one
sequence x1, . . . , xk ∈ X such that x = x1 ◦ . . . ◦ xk.

Example 2.2. { a�	, a�	 } ⊆ {a}� is a code.

Example 2.3. {w = a�a
	

, x = a�a	, y = a�
a	

, z =
a�

a
	
} ⊆ {a}� is not a code

since w ◦ x = y ◦ z = a�
a

a
a	

The following consideration is based on ideas presented in [2] (Sects. 3 and 4).
Let Σ = {a}. For h, hN , hE , hS , hW ∈ Z+ such that hN , hE , hS , hW ≤ h and

b, e ∈ {N, E, S, W} (N as north, E as east, S as south and W as west) we define
a directed hooked square DHSh(hN , hE , hS , hW )b

e to be a directed figure f ∈ Σ�

with:

dom(f) = B \ (H−
N ∪ H−

E ∪ H−
S ∪ H−

W ) ∪ (H+
N ∪ H+

E ∪ H+
S ∪ H+

W ),

begin(f) =

⎧⎪⎪⎨
⎪⎪⎩

(0, h + 2) if b = N,
(h + 2, 0) if b = E,
(0,−h − 2) if b = S,
(−h − 2, 0) if b = W,

end(f) =

⎧⎪⎪⎨
⎪⎪⎩

(0, h + 3) if e = N,
(h + 3, 0) if e = E,
(0,−h − 3) if e = S,
(−h − 3, 0) if e = W,



THE CODE PROBLEM FOR DIRECTED FIGURES 493

Figure 1. DHS4(1, 2, 3, 4)N
E - full and reduced graphical representation.

where

B = {(x, y) | x, y ∈ {−h− 2, . . . , h + 2}},
H−

N = {(−1, y) | y ∈ {h + 2 − hN , . . . , h + 2}} ∪ {(0, h + 2 − hN)},
H−

E = {(x, 1) | x ∈ {h + 2 − hE , . . . , h + 2}} ∪ {(h + 2 − hE , 0)},
H−

S = {(1, y) | y ∈ {−h − 2, . . . ,−h − 2 + hS}} ∪ {(0,−h− 2 + hS)},
H−

W = {(x,−1) | x ∈ {−h − 2, . . . ,−h − 2 + hW }} ∪ {(−h − 2 + hW , 0)},
H+

N = {(1, y) | y ∈ {h + 3, . . . , h + 3 + hN}} ∪ {(0, h + 3 + hN )},
H+

E = {(x,−1) | x ∈ {h + 3, . . . , h + 3 + hE}} ∪ {(h + 3 + hE , 0)},
H+

S = {(−1, y) | y ∈ {−h− 3 − hS , . . . ,−h− 3}} ∪ {(0,−h− 3 − hS)},
H+

W = {(x, 1) | x ∈ {−h− 3 − hW , . . . ,−h − 3}} ∪ {(−h− 3 − hW , 0)},

i.e. f is a square with hooks on each side (see e.g. Fig. 1).
Observe that for x = DHSh(hN , hE, hS , hW )b

e and x′ = DHSh(h′
N , h′

E, h′
S , h′

W )b′
e′

catenation x ◦ x′ is defined if and only if e matches to b′, i.e.:

e = N and b′ = S or
e = E and b′ = W or
e = S and b′ = N or
e = W and b′ = E

and he = h′
b′ .
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ai1

x′

bx

Ii
� ◦

ai2

x′

x′
x′ � ◦ . . . ◦

airi

x′

x′
x′ �

[xi[WE = DHS(ai1 , x
′, bx, Ii)W

E ◦ DHS(ai2 , x
′, x′, x′)W

E ◦ . . . ◦ DHS(airi
, x′, x′, x′)W

E

ai1

x′

xi

x′ � ◦
ai2

x′

x′
x′ � ◦ . . . ◦

airi

x′

x′
x′ �

]xi[WE = DHS(ai1 , x
′, xi, x

′)W
E ◦ DHS(ai2 , x

′, x′, x′)W
E ◦ . . . ◦ DHS(airi

, x′, x′, x′)W
E

ai1

x′

x′
x′ � ◦

ai2

x′

x′
x′ � ◦ . . . ◦

airi

e

exi

x′
��

]xi]WS = DHS(ai1 , x
′, x′, x′)W

E ◦ DHS(ai2 , x
′, x′, x′)W

E ◦ . . . ◦ DHS(airi
, e, exi, x

′)W
S

Figure 2. Basic-figures for xi = ai1 · · · airi
.

Now we encode the Post problem in a set of directed figures over Σ = {a}.
The Post problem can be stated as follows:

Let A = {a1, . . . , ap} be a finite alphabet, x1, . . . , xk, y1, . . . , yk ∈ A+ such
that xi �= yi (for i ∈ {1, . . . , k}). One cannot decide if there exists i1, . . . , in ∈
{1, . . . , k}, n ≥ 2, such that xi1 · · ·xin = yi1 · · · yin .

We describe a set of directed figures X such that the Post problem has a solution
if and only if X is a code.

Consider the following set:

H =
⋃

i∈{1,...,k}
{xi, yi, exi , yyi , Ii} ∪ {ai | i ∈ {1, . . . , p}} ∪ {x, y, x′, y′, bx, by, e},

where Ii are additional elements related to each pair (xi, yi) from corresponding
Post Problem. Set h = |H | = 5k+p+7. We can define a bijection between H and
{1, . . . , h}, so from now on, each element of H is identified with its image by this
bijection. Since h is fixed in our consideration we write DHS(hN , hE , hS , hW )b

e

instead of DHSh(hN , hE , hS , hW )b
e.

For each xi ∈ X we define basic-figures [xi[, ]xi[ and ]xi] (Fig. 2); these figures
will be used to encode the word xi standing at the beginning (we call it begin
solution figure), in the middle (middle solution figure) and at the end (end solution
figure) of a solution of the Post problem, respective.

In addition we define annex-figures (Figs. 3–6); first three types of these figures
will be used to convey information about solution of the Post problem from north
to south, from north to west and from east to west respective, last one will convey
no information.
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xi

x

xi

x �

xi

x

xi

x �

Mx[i, N.S]WE = DHS(xi, x, xi, x)W
E Mx[i, N.S]EW = DHS(xi, x, xi, x)E

W

exi

e

exi

x ��

exi

e

exi

x
��

Ex[i, N.S]NW = DHS(exi , e, exi, x)N
W Ex[i, N.S]WS = DHS(exi , e, exi, x)W

S

Figure 3. Annex-figures for passing information from north to south.

xi

x

x

xi
�

xi

x

x

xi
�

Mx[i, N.W ]WE = DHS(xi, x, x, xi)W
E Mx[i, N.W ]EW = DHS(xi, x, x, xi)E

W

exi

e

e

exi
��

exi

e

e

exi��

Ex[i, N.W ]NW = DHS(exi , e, e, exi)N
W Ex[i, N.W ]WS = DHS(exi , e, e, exi)W

S

Figure 4. Annex-figures for passing information from north to west.

In the same way we define figures for “y-part” of the Post problem, replacing
the letter x by the letter y.

Let X be the set of all defined figures (6k basic-figures and 32k + 2 annex-
figures, 16k for each parts: “x-part” and “y-part”). Observe that there exists no
half-plain of integer values anchored in (0, 0) (i.e. {v ∈ Z

2 | u · v > 0} for some
u ∈ Z

2, where · denotes the usual dot product) containing all translation vectors
of the figures we have defined.

Proposition 2.4. If the Post problem has a solution then X is not a code.

Proof. Let i1, . . . , in ∈ {1, . . . , k} be a solution of the Post problem, i.e.

xi1 · · ·xin = yi1 · · · yin .
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x

xi

x

xi
�

x

xi

x

xi
�

Mx[i, E.W ]WE = DHS(x, xi, x, xi)W
E Mx[i, E.W ]EW = DHS(x, xi, x, xi)E

W

x

exi

e

exi
�

x

exi

e

exi
�

Ex[i, E.W ]WE = DHS(x, exi , e, exi)W
E Ex[i, E.W ]EW = DHS(x, exi , e, exi)E

W

bx

xi

bx

Ii ��

bx

xi

bx

Ii
��

BMx[i, E.W ]ES = DHS(bx, xi, bx, Ii)E
S BMx[i, E.W ]NE = DHS(bx, xi, bx, Ii)N

E

bx

exi

e

Ii ��

bx

exi

e

Ii
��

BEx[i, E.W ]ES = DHS(bx, exi , e, Ii)E
S BEx[i, E.W ]NE = DHS(bx, exi , e, Ii)N

E

Figure 5. Annex-figures for passing information from east to west.
Consider following directed figures:

wx1 = [xi1 [
W
E ◦]xi2 [

W
E ◦ . . . ◦]xin−1 [

W
E ◦]xin ]WS ,

wxj = Ex[in, N.S]NW ◦ Nx[]EW ◦ . . . ◦ Nx[]EW︸ ︷︷ ︸
|xn|−2 times

◦

Nx[]EW ◦ . . . ◦ Nx[]EW︸ ︷︷ ︸
|xn−1|−1 times

◦Mx[in−1, N.E]EW ◦

. . .

Nx[]EW ◦ . . . ◦ Nx[]EW︸ ︷︷ ︸
|xj+1|−1 times

◦Mx[ij+1, N.E]EW ◦

Nx[]EW ◦ . . . ◦ Nx[]EW︸ ︷︷ ︸
|xj|−1 times

◦Mx[ij, N.E]EW ◦

Mx[ij, E.W ]EW ◦ . . . ◦ Mx[ij, E.W ]EW︸ ︷︷ ︸
|xi1 ···xij−1 |−1 times

◦BMx[ij, E.W ]ES

(for even j < n),
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x

x

x

x �

x

x

x

x �

Nx[]WE = DHS(x, x, x, x)W
E Nx[]EW = DHS(x, x, x, x)E

W

Figure 6. Annex-figure which pass no information.

wxj = BMx[ij , E.W ]NE ◦ Mx[ij , E.W ]WE ◦ . . . ◦ Mx[ij, E.W ]WE︸ ︷︷ ︸
|xi1 ···xij−1 |−1 times

◦

Mx[ij , N.E]WE ◦ Nx[]WE ◦ . . . ◦ Nx[]WE︸ ︷︷ ︸
|xj |−1 times

◦

Mx[ij+1, N.E]WE ◦ Nx[]WE ◦ . . . ◦ Nx[]WE︸ ︷︷ ︸
|xj+1|−1 times

◦

. . .

Mx[in−1, N.E]WE ◦ Nx[]WE ◦ . . . ◦ Nx[]WE︸ ︷︷ ︸
|xn−1|−1 times

◦

Nx[]WE ◦ . . . ◦ Nx[]WE︸ ︷︷ ︸
|xn|−2 times

◦Ex[in, N.S]WS

(for odd j < n),

wxn = Ex[in, N.W ]NW ◦ Ex[in, E.W ]EW ◦ . . . ◦ Ex[in, E.W ]EW︸ ︷︷ ︸
|xi1 ···xin |−2 times

◦BEx[in, E.W ]ES

(if n is even),

wxn = BEx[in, E.W ]NE ◦ Ex[in, E.W ]WE ◦ . . . ◦ Ex[in, E.W ]WE︸ ︷︷ ︸
|xi1 ···xin |−2 times

◦Ex[in, N.W ]WS

(if n is odd).

In the same way we define figures wy1, . . . , wyn.
It is easy to see that wx1 ◦ . . . ◦wxn = wy1 ◦ . . . ◦wyn ⊆ X�. Hence X is not a

code. �

Example 2.5. Consider

Σ = {a, b},
X = (x1, x2, x3) = (b, ab, bab),
Y = (y1, y2, y3) = (ba, abb, b).
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bx

ex3

e

I3
��

x

ex3

e

ex3
�

x

ex3

e

ex3
�

x

ex3

e

ex3
�

x

ex3

e

ex3
�

ex3

e

e

ex3��

bx

x1

bx

I1 ��

x

x1

x

x1
�

x1

x

x

x1
�

x

x

x

x �

x

x

x

x �

ex3

e

ex3

x ��

a

bx

I2

b

x′

x

�

b

x′

x1

x′ �

b

x

x′
a

x

b

e

ex3

��

�

�

Figure 7. “X”-tiling of f .

by

ey3

e

I3
��

y

ey3

e

ey3
�

y

ey3

e

ey3
�

y

ey3

e

ey3
�

y

ey3

e

ey3
�

ey3

e

e

ey3��

by

y1

by

I1 ��

y

y1

y

y1
�

y

y1

y

y1
�

y1

y

y

y1
�

y

y

y

y �

ey3

e

ey3

y ��

a

by

I2

b

y

b

y′

y

�

b

y1

y′
a

y′

y

�

b

e

ey3

y′
��

�

�

Figure 8. “Y ”-tiling of f .

We have x2x1x3 = y2y1y3. Figure f with two different tiling with elements of X
is presented in Figures 7 and 8 (where thick arrows show the flow of information
through annex-figures).

Proposition 2.6. If X is not a code then the related Post problem has a solution.

Proof. Let f be a figure of minimal size (w.r.t. to the size of its domain) which
admits two tilings with elements of X, i.e. there exist f1, . . . , fp, g1, . . . , gq ∈ X
such that f1 �= g1 and f1 ◦ . . . ◦ fp = g1 ◦ . . . ◦ gq.
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Consider directed hooked squares tiling f (these are annex-figures and squares
of which basic-figures are built). Let d be the westmost among the northmost of
them. We have following possibilities:

Case 1 : d ∈ ⋃
z∈{x,y}

⋃
j∈{1,...,k}{Ez[j, N.S]NW , Ez [j, N.W ]NW , Ez[j, E.W ]NW }.

Since d is the westmost among the northmost of all squares tiling f , it cannot
have north and west neighbour squares, i.e. squares hooked to it at north side and
west side, respective. This implies that f = d, which contradicts the definition of
the double tiling of f .

Case 2 : d ∈ ⋃
z∈{x,y}

⋃
j∈{1,...,k}{Ez[j, N.S]WS , Ez [j, N.W ]WS }.

Since d has no north and west neighbours, north and west hooks of d are
uniquely determined by f . Each of listed figures is uniquely determined by its north
and west hooks. This implies that d is also uniquely determined by f . d has no
west neighbour and it has the start point at its west side, which implies that it must
be the first one in sequence of figures whose catenation gives f , i.e. d = f1 = g2.
Then either f = d (contradiction as previously), or f ′ = f2 ◦ . . . ◦ fp = g2 ◦ . . . ◦ gq

is a smaller figure with two tilings, which contradicts the minimality of f .

Case 3 : d ∈ ⋃
z∈{x,y}

⋃
j∈{1,...,k}{Mz[j, N.S]EW , Mz[j, N.W ]EW , Mz[j, E.W ]EW } ∪

{Nx[]EW , Ny[]EW }.
As in Case 1, d is uniquely determined by f . d has no west neigbour and it

has the end point at its west side, which implies that it must be the last one in
sequence of figures whose catenation gives f , i.e. d = fp = gq. Then either f = d
(contradiction as previously) or f ′ = f1 ◦ . . .◦fp−1 = g1 ◦ . . .◦gq−1 is smaller figure
with two tilings, which contradicts the minimality of f .

Case 4 : d ∈ ⋃
z∈{x,y}

⋃
j∈{1,...,k}{BMz[j, E.W ]NE , BEz [j, E.W ]NE }.

Now d must be the first one in tiling since it has the start point at its north
side and it is the northmost in tiling. Observe that there exists no square with
e-hook at the north side. This implies that BMz[j, E.W ]NE and BEz[j, E.W ]NE
(z ∈ {x, y}) cannot be the first elements of two different tiling sequences of f .
This implies that d is uniquely determined by f and d = f1 = g1. Contradiction
as in Case 2.

Case 5 : d ∈ ⋃
z∈{x,y}

⋃
j∈{1,...,k}{BMz[j, E.W ]ES , BEz [j, E.W ]ES }

As in Case 4, d is uniquely determined by f . If d = BEz[j, E.W ]ES (for z ∈
{x, y}) then d is the last element of a tiling sequence. Contradiction as in Case
3. If d = BMz[j, E.W ]ES (for z ∈ {x, y}) then (for some i ∈ {1, . . . , p}) f =
f1 ◦ f2 ◦ . . . ◦ fi−1 ◦ d ◦ fi+1 ◦ . . . ◦ fp, where f1 ∈ {Mz[j, E.W ]EW , Mz[j, N.W ]EW }
and f2 = . . . = fi−1 = Mz[j, E.W ]EW . Contradiction as in Case 1.

This leads us to a conclusion that:
Case 6 : Directed hooked square d is a part of a basic-figure. In particular d is

a “first part” of f1 and g1.

Now it is easy to observe the following properties of f ’s tiling:

(1) If f1 is a figure that encodes one of the words from X , then all fi (i ∈
{1, . . . , p}) are figures encoding “x-part” of the related Post problem (since
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there is no figure that links a figure from “x-part” with a figure from “y-
part”). In the same way, if f1 encodes a word from Y , then fi encodes “y-
part” of the Post problem. Similar statement is true for gi (i ∈ {1, . . . , q}).

(2) First “row” of figures in tiling is a sequence of middle solution figures (may
be empty) which is ended by an end solution figure (that ends row) and
may be started with a begin solution figure.

(3) Sequence of middle solution figures from the first row implies that in the
tiling, leftmost column’s hooks (Ij hooks of some BM and BE annex-
figures) correspond to the sequence of indices of words encoded by those
figures.

This leads us to simple observation, that the only possible two tilings of f are
tilings of the form defined in the proof of Proposition 2.4. This implies that the
related Post problem has a solution. �

Theorem 2.7. It is not decidable whether a given set X ⊆ Σ� is a code.

Proof. Follows directly from Proposition 2.4 and Proposition 2.6 and the undecid-
ability of the Post problem. �

2.2. m-codes

Definition 2.8 (m-code). X ⊆ Σ� is an m-code if for any x ∈ X�
m there exists

only one sequence x1, . . . , xk ∈ X such that x = x1 ◦m . . . ◦m xk.

Example 2.9. { a�	, a�
	

} ⊆ {a}� is a π1-code.

Example 2.10. { x = a�	, y = a�	 } ⊆ {a}� is not a π1-code since x ◦π1 y =
x ◦π1 y ◦π1 x ◦π1 y = x = a�a	 .

The results for the m-catenation are quite different from those for catenation
(see [5]).

Theorem 2.11. Let X ⊆ Σ� be such that for any u ∈ Z
2

⋃
x∈X

{tran(x)} ∩ {v ∈ Z
2 | u · v ≤ 0} �= ∅. (1)

Then X is not an m-code.

3. Codicity verification

Results on codicity verification in this section are based on our previous work [5],
where they were obtained in the context of m-catenation with an additional re-
striction for the figures. Considerations presented here work for both types of
catenation, with no constraints on the relative position of domain and both begin
and end points of figures.



THE CODE PROBLEM FOR DIRECTED FIGURES 501

Let us consider a situation, when for a given X = {x1, . . . , xn} ⊆ Σ� there
exists a vector τ such

∀x ∈ X : τ · tran(x) > 0.

Without loss of generality we can assume that

∀x ∈ X : begin(x) = (0, 0)

and

∠(R−π
2
(τ), tran(x1)) ≤ ∠(R−π

2
(τ), tran(x2)) ≤ . . . ≤ ∠(R−π

2
(τ), tran(xn)),

where ∠ denotes an angle between two wectors, and Rφ denotes a rotation by φ.
Now choose constants rE , rN , rW , rS > 0 such that the vectors

τE = rEτ,

τN = rNRπ
2
(tran(xn)),

τW = −rW τ,

τS = rSR−π
2
(tran(x1))

define a “bounding area” for figures in X , i.e.,

∀x ∈ X : dom(x) ∪ {end(x)} ⊆
⋂

u∈{τE ,τN ,τW τS}
{HP(u, begin(x))},

where for u, v ∈ Z
2 HP(u, v) denotes half-plane {w ∈ Z

2 | u · (w − (v + u)) ≤ 0}
(see Fig. 9).

For x ∈ X�
• define

CE+(x) = HP(τs, end(x)) ∩ HP(τn, end(x)) ∩ HP(τw , end(x)),

CE−(x) = Z
2 \ CE+(end(x)),

CW+(x) =
⋃
v

{v + (CE+(end(x)) ∩ HP(τe, end(x)))},

CW−(x) = Z
2 \ CW+(end(x)),
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• •�
v

u
v + u

Figure 9. HP(u, v). The half-plain contains integer grid points
lying on vertical line and to the left side of that line (the region
marked by horizontal lines).

where the union in the definition of CW+(x) is taken over v ∈ Z
2 lying within an

angle spanned by vectors −τ(x1) and −τ(xn) (see Figs. 10 and 11).
Immediately from definition we have following properties:

Proposition 3.1. Let x, y ∈ X�• . Labels of CE−(x) cannot be changed or defined
in x • y:

u ∈ CE−(x) ∩ dom(x) ⇒ label(x)(u) = label(x • y)(u),
u ∈ CE−(x) \ dom(x) ⇒ u �∈ dom(x • y).

Proposition 3.2. Let x ∈ X�
• . Labels of CW−(x) are not defined in x:

u ∈ CW−(x) ⇒ u �∈ dom(x).

Proposition 3.3.
∀x, y ∈ X�

• : CE+(x • y) ⊆ CE+(x).

Proposition 3.4.

∀x, y ∈ X�
• : CW+(x) ⊆ CW+(x • y).

For x, y ∈ X�
• we definie a configuration as a pair (x, y). We say that for

x′, y′ ∈ X�
• configuration (x′, y′) is a successor of (x, y) and write (x, y) ≺ (x′, y′)

if for some z ∈ X either x′ = x • z or y′ = y • z. By ≺∗ we denote the transitive
closure of ≺. Obviously we have

X is not a code (resp. m-code) ⇔ ∃x, y ∈ X, z ∈ X�
• : x �= y, (x, y) ≺∗ (z, z).
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Figure 10. Half-planes HP(τ, begin(x)) (τ ∈ {τE , τN , τW , τS});
the black dot denotes the start point of x.

Our goal is either to find a configuration (x, y) such that

(x, y) ≺ . . . ≺ (z, z) (2)
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CW+(x)
CE+(x)

Figure 11. CW+(x) and CE+(x) regions; the black dot denotes
the end point of x.

– then X is not a code (resp. m-code), or to prove that such a configuration does
not exist – then X is a code (resp. m-code). A configuration satisfying (2) is
called a proper configuration.

Proposition 3.5. If (x, y) is proper and (x′, y′) ≺ (x, y), then (x′, y′) is proper.

Proof. Obvious. �
Let

ρ = max
x∈X

{minimal natural number n such that B(begin(x), n) ∩ dom(x) �= ∅},

where for u = (ux, uy) ∈ Z
2 and n ∈ N B(u, n) denotes a ball on integer grid with

center u and radius r, i.e.,

B(u, n) = {(vx, vy) ∈ Z
2 | |ux − vx| + |uy − vy| ≤ n}

(see Fig. 12).

Proposition 3.6. If (x, y) is proper, then

B(end(x), ρ) ∩ (CW+(y) ∪ CE+(y)) �= ∅,
B(end(y), ρ) ∩ (CW+(x) ∪ CE+(x)) �= ∅.

Proof. See definitions of CW+() and CE+(). �
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a

�

	 a
b

c

b

	
a�
b

c

Figure 12. Directed figures and minimal balls (marked with
thick lines).

Proposition 3.7. If (x, y) is proper, then

label(x) |CE−
(x)∩CE−

(y)
≡ label(y) |CE−

(x)∩CE−
(y)

.

Proof. See definition of CE−() and Proposition 3.1. �

Notice that we do not need all of the information contained in configurations,
just those labellings that can be changed by future catenations. By Proposi-
tion 3.7, instead of (x, y) we can consider a reduced configuration defined as a pair
(πRC(x, y), πRC(y, x)) where

πRC(z, z′) = (end(z), label(z) |dom(z)\(CE−
(z)∩CE−

(z′))).

Now Proposition 3.5 implies that we need only consider configurations where the
span along τe is bounded by |τe|, i.e., |τe ·(end(x)−end(y))| ≤ |τe|2, since no single
figure advances end(x) or end(y) by more than |τe|. Moreover, Proposition 3.6
restricts the perpendicular span (in the direction of R−π

2
(τe)). Hence the number

of reduced configurations, up to translation, is finite.
This leads us to the following result:

Theorem 3.8. Let X ⊆ Σ� be such that there exists u ∈ Z
2

⋃
x∈X

{tran(x)} ⊆ {v ∈ Z
2 | u · v > 0}. (3)

It is decidable whether X is a code (resp. m-code).

In particular, for m-catenation we have:

Corollary 3.9. It is decidable whether a given finite set X ⊆ Σ� is a m-code.

Proof. If for any u ∈ Z
2 condition (1) holds then, from Theorem 2.11, X is not an

m-code. On the other hand, if there exists u ∈ Z
2 such that condition (3) holds,

from Theorem 3.8, we can verify if X is an m-code. �
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Observe that from what we have presented we can obtain an algorithm that
verifies whether a given set is a code by either finding identity configuration
(xi1 • . . . • xik

, xj1 • . . . • xjl
) or checking that there is no such configuration.

4. Final remarks

We are now interested in the complexity of the codicity verification algorithms.
Apparently it depends on the angle spanned by the translation vectors of figures.
Bigger angles obviously give higher complexity, and when the angle tends to zero,
the algorithm becomes similar to the well-known Sardinas-Patterson algorithm.
We also plan to study the specific case of figures with parallel translation vectors,
resembling partial words. We hope that in this case, with possible additional
constaints, the defect effect could be saved, cf. [5,7].

Acknowledgements. The author is thankful to W�lodzimierz Moczurad for fruitful discus-
sions and useful comments.
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