
RAIRO-Theor. Inf. Appl. 45 (2011) 197–223 Available online at:

DOI: 10.1051/ita/2011007 www.rairo-ita.org

ON THE PARAMETERIZED COMPLEXITY
OF APPROXIMATE COUNTING

J. Andrés Montoya1

Abstract. In this paper we study the parameterized complexity of
approximating the parameterized counting problems contained in the
class #W [P], the parameterized analogue of #P . We prove a param-
eterized analogue of a famous theorem of Stockmeyer claiming that
approximate counting belongs to the second level of the polynomial
hierarchy.

Mathematics Subject Classification. 68Q15, 68Q17.

1. Introduction

In this paper we analyze the parameterized complexity of approximating the
counting problems in the class #W [P], the parameterized analogue of the class
#P . We compare those problems with the problems contained in the parameter-
ized polynomial hierarchy. This way of analyzing the computational complexity
of approximating hard counting problems resembles Stockmeyer’s analysis [12] of
the complexity of approximating #SAT . Actually, in this paper we have tried to
obtain, and we have obtained, a parameterized analogue of Stockmeyer’s theorem.

1.1. Parameterized complexity

Parameterized complexity theory [3,5] provides a framework for a refined anal-
ysis of hard algorithmic problems.

Classical complexity theory [11] analyses problems by the amount of a resource,
usually time or space, that is required by algorithms solving them. The amount of
the resource required is measured as a function of the size of the input. Measuring

Keywords and phrases. Computational complexity, parameterized complexity, counting prob-
lems, approximate counting.

1 Escuela de Matemáticas, Universidad industrial de Santander, Spain;
amontoyaa@googlemail.com; juamonto@uis.edu.co

Article published by EDP Sciences c© EDP Sciences 2011

http://dx.doi.org/10.1051/ita/2011007
http://www.rairo-ita.org
http://www.edpsciences.org

198 J. ANDRÉS MONTOYA

complexity only in terms of the input size means ignoring any structural informa-
tion about the input instances in the resulting complexity theory. Sometimes, this
makes problems appear harder than they typically are. Parameterized complexity
theory measures complexity not only in terms of the input size, but in addition in
terms of a parameter, which is a numerical value that may depend on the input
in an arbitrary way. The main intention of this theory is to address complexity
issues in situations where we know that the parameter is comparatively small.

A good example is the problem of evaluating database queries. From the clas-
sical point of view this problem is tractable only in very restrictive cases, (the
evaluation of conjunctive queries is already NP hard!). If one review the hardness
proofs for the Database evaluation problem, it is easy to note that it is necessary to
consider cases where the size of the query non trivially depends on the size of the
database. In real life, databases are huge and queries are small. It suggests that
we can consider the size of the query as a parameter and measure the complexity of
the problem in terms of two independent quantities, database size and query size,
if we want to obtain something new we have to consider a new (parameterized)
notion of tractability.

The central notion of parameterized complexity theory is fixed parameter
tractability. This relaxes the classical notion of tractability, polynomial time solv-
ability, by admitting algorithms whose nonpolynomial behavior is restricted only
by the parameter, in addition the theory provides us with a parameterized in-
tractability theory allowing us to prove the intractability of certain problems by
classifying them into parameterized complexity classes by means of suitable pa-
rameterized reductions.

1.2. Counting complexity

A typical class of computational problems is the class of counting problems.
Counting problems are at least as hard as decision problems: if we can count the
number of solutions we can decide if there exists at least one solution. Count-
ing complexity, the complexity analysis of counting problems, was developed by
Valiant with a series of ground breaking articles published in 1979 [14,15]. Valiant
proved that some counting problems are harder than expected, he proved that the
problem of counting the number of perfect matchings in a graph is #P complete.
This is surprising because the corresponding decision problem, the problem of de-
ciding if a graph has at least one perfect matching, belongs to P . The big surprise
came next when Toda [13] proved that any problem in the polynomial hierarchy
can be reduced to any #P complete problem, and it implies that any problem in
the polynomial hierarchy can be reduced to the problem of counting the number
of perfect matchings. Thus, we can conclude:

(1) Hard counting problems are much more difficult than the corresponding
decision problems (if the polynomial hierarchy does not collapse).

(2) There are counting problems which are highly intractable, although the
corresponding decision problems are tractable (even trivial).

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 199

When we cope with counting problems we have the following alternative: we
can try to compute approximate solutions instead of computing exact solutions.
Approximating a counting problem is easier than computing exact solutions to
the problem. Stockmeyer proved [12] that approximating the problem #SAT can
be done in probabilistic polynomial time if oracle access to the decision prob-
lem SAT is provided, from this theorem Stockmeyer obtained as a corollary that
probabilistic approximate counting belongs to the second level of the polynomial
hierarchy.

Parameterized counting complexity is not yet a mature theory, there are few
works on the topic [2,4,8,10] and no structural theorems like the one of Toda.
Muller [10] proved a parameterized analogue of Stockmeyer theorem, he proved
that any problem in #W [P] can be approximated in randomized fpt time, if or-
acle access to W [P] is provided. This result does not imply that parameterized
approximate counting belongs to the parameterized polynomial hierarchy given
that it is unknown if this hierarchy is closed under parameterized Turing reduc-
tions (actually, it is very unlikely that this hierarchy is closed under this type of
reductions).

In this work we prove that approximate counting belongs to the parameterized
polynomial hierarchy. We prove that the parameterized complexity of approximat-
ing the problems in #W [P] can be identified with the parameterized complexity
of a family of parameterized gap problems which is contained in BP · ∃ ·FPT, the
parameterized analogue of the Arthur–Merlin Class. Then, we prove a parame-
terized analogue of Lautemann-Sipser theorem which implies that BP · ∃ ·FPT is
included in the second level of the parameterized polynomial hierarchy.

1.3. Organization of the paper

The paper is organized into five sections. In section two we introduce the ba-
sic concepts of parameterized complexity theory. Section 3 is divided into three
subsections. In Section 3.1 we introduce some parameterized operators, which are
analogous to the classical operators ∀, ∃ and BP , those parameterized operators
allow us to define new parameterized classes from old ones. Using operators ∀
and ∃ we define a hierarchy of parameterized classes analogous to the polynomial
hierarchy. The BP operator allow us to define probabilistic parameterized classes.
In Section 3.2 we introduce most of the hashing machinery that we will use in
the proofs of our main results. In Section 3.3 we present a randomized fpt algo-
rithm that can be used to approximate any parameterized counting problem in
the class #W [P]. The algorithm, based on hashing techniques, requires access to
a W [P] oracle. In Section 4 we study the complexity of approximating, within
a constant range, the counting problems in the class #W [P]. To this end we
introduce a family of parameterized gap problems. Moreover, we introduce the
parameterized Arthur-Merlin class BP · ∃ · FPT , and we prove that the parame-
terized gap problems introduced in this section belong to this class. In Section 5
we prove a parameterized analogue of Lautemann-Sipser theorem which implies

200 J. ANDRÉS MONTOYA

that BP · ∃ · FPT is included in the second level of the parameterized polyno-
mial hierarchy, we obtain as a corollary our parameterized Stockmeyer’s theorem
claiming that approximate counting belongs to second level of the same hierarchy.

2. A technical preface

In this section we introduce the basic definitions of parameterized complexity
theory, more detailed information can be found in [3] and [5].

Notation 2.1. Σ∗ is the set of finite 0-1 words.

Definition 2.2. A parameterized problem is a subset of Σ∗ × N.

Definition 2.3. Given x ∈ {0, 1}n, the Hamming weight of x is equal to

|{i ≤ n : xi = 1}| .

An important example of parameterized problem is the problem p-WSAT
(CIRC) defined below.

Fact 2.4. (p-WSAT (CIRC): parameterized circuit satisfiability)
• Input: (C, k), where C is a boolean circuit and k ∈ N.
• Parameter: k.
• Problem: decide if there exists a satisfying assignment of C whose

Hamming weight is equal to k.

The first important definition is the definition of efficient algorithm. Efficient
algorithms will be called fpt algorithms.

Definition 2.5. An fpt algorithm is an algorithm M whose running time, on
input (x, k), is upperbounded by f (k)·p (|x|), where f is some computable function
and p (X) is some polynomial.

We can use the notion of efficient algorithms to define a suitable notion of
parameterized feasible problems. To this end, we define the parameterized class
FPT whose elements are the parameterized feasible problems.

Definition 2.6. The parameterized class FPT is the class of parameterized prob-
lems that can be decided using an fpt algorithm.

The next important definition is the notion of reducibility that will be used
throughout the paper.

Definition 2.7. Given L, L∗ two parameterized languages, L is fpt many-one
reducible to L∗, (L �fpt L

∗ for short), if and only if there exists an fpt algorithm
M such that, on input (x, k) ∈ Σ∗×N, algorithm M computes a pair (x′, k′) that
satisfies

(1) k′ ≤ g (k) for some computable function g.
(2) (x, k) ∈ L if and only if (x′, k′) ∈ L∗.

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 201

The following is a technical definition that will be used to define the parame-
terized class W [P], the parameterized analogue of NP.

Definition 2.8. Given L a parameterized problem we have that

〈L〉fpt := {L∗ : L∗ �fpt L} .

Definition 2.9. W [P] := 〈p−WSAT (CIRC)〉fpt .

The parameterized class W [P] has a good machine characterization.

Definition 2.10. A W [P] restricted Turing machine M is a nondeterministic
Turing that satisfies:

(1) There exist a computable function f and a polynomial p (X) such that, on
every run of M with input (x, k), the running time of M is upperbounded
by f (k) · p (|x|) .

(2) There exists a computable function g such that, on every run of M with
input (x, k), machine M guesses at most g (k) · log (|x|) nondeterministic
bits.

Theorem 2.11. L ∈ W [P] if and only if there exists a W [P] restricted Turing
machine M that decides L.

A proof of this theorem can be found in [5], Thm. 3.14. Our aim is to analyze
the parameterized complexity of some parameterized counting problems, to this
end we introduce the notion of parameterized counting problem and a suitable
notion of reducibility between parameterized counting problems.

Definition 2.12. A parameterized counting problem is a function h : Σ∗×N → N.

Definition 2.13. Given h, h∗ two parameterized counting problems, h is parsi-
monious reducible to h∗, (h �par h

∗ for short), if and only if there exists an fpt
algorithm M such that, on input (x, k), algorithm M computes a pair (x′, k′) that
satisfies:

(1) k′ ≤ g (k) for some computable function g.
(2) h ((x, k)) = h∗ ((x′, k′)) .

The following is a technical definition that will be used to define the class
#W [P], the parameterized analogue of the counting class #P.

Definition 2.14. Given a parameterized counting problem h we have that

〈h〉par := {h∗ : h∗ �par h} .

We define the parameterized counting class #W [P] as the closure under pa-
rameterized parsimonious reductions of a suitable parameterized analogue of the
problem #SAT , (it is well known that we can define the class #P as the closure
under parsimonious reductions of the counting problem #SAT).

202 J. ANDRÉS MONTOYA

Definition 2.15. (p-#WSAT (CIRC): parameterized counting of satisfying as-
signments)

• Input: (C, k), where C is a boolean circuit and k ∈ N.
• Parameter: k.
• Problem: compute the number of satisfying assignments of C whose

Hamming weight is equal to k.

Definition 2.16. #W [P] := 〈p-#WSAT (CIRC)〉par.

3. Probabilistic approximate counting is easy

While the theorem of Toda states that exact counting is very hard [13], a well
known theorem of Stockmeyer states that probabilistic approximate counting is
not very hard [12], it says that probabilistic approximate counting belongs to
the second level of the polynomial hierarchy. We want to prove a parameterized
analogue of Stockmeyer’s theorem.

3.1. Basic definitions

In this section we introduce some basic operators and list some of their basic
properties. We introduce those operators to define some parameterized classes
which are analogous to the classical classes that are introduced in the paper of
Toda [13].

Notation 3.1. From here on, if it is clear from the context, we will use the symbol
{0, 1}f to denote the set {0, 1}f(k)·log(|x|).

Definition 3.2. Let L be a parameterized language and let C be a parameterized
class (i.e. a set of parameterized languages closed under fpt many-one reductions)

(1) L ∈ ∃ ·C if and only if there exist Ω ∈ C and a computable function f such
that

(x, k) ∈ L ⇐⇒ ∃y ∈ {0, 1}f ((x, y, k) ∈ Ω).
(2) L ∈ ∀ ·C if and only if there exist Ω ∈ C and a computable function f such

that
(x, k) ∈ L ⇐⇒ ∀y ∈ {0, 1}f ((x, y, k) ∈ Ω).

(3) L ∈ BP · C if and only if there exist Ω ∈ C and a computable function f
such that

• (x, k) ∈ L ⇒ Pry∈{0,1}f [(x, y, k) ∈ Ω] ≥ 3
4 .

• (x, k) /∈ L ⇒ Pry∈{0,1}f [(x, y, k) ∈ Ω] ≤ 1
4 .

Note 3.3. Let C be a parameterized class, the definition of the parameterized
class BP · C corresponds to the direct adaptation of the definition of the classical
BP operator. In the classical setting the error probability associated to the BP
operator can be bounded either by a constant, like in our definition ofBP ·C, or by a
polynomially decaying function. Those two possible definitions are (almost always)
equivalent because of the probability amplification properties of (most) classical

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 203

complexity classes. It is not the case in the parameterized framework: in the
parameterized setting probability amplification is always a complex issue (which
has been studied in some depth in [9]). In some cases probability amplification
can be achieved with the help of efficient pseudorandom generators, but it is not
always the case: probability amplification holds for a parameterized class BP · C
if and only if C is closed under some special type of parameterized true table
reductions [9]. Also, we have to choose one of two possible definitions, we believe
that working with the weakest one is the right choice, (though some proofs can
become longer and more complicated).

We say that an operator F is monotone if and only if given C and C∗ two
parameterized classes:

(1) The containment C ⊆ F · C holds.
(2) C ⊆ C∗ implies F · C ⊆ F · C∗.

Lemma 3.4. Let C be a parameterized class
(1) ∃, ∀, and BP are monotone.
(2) ∃ · FPT = W [P] .
(3) co−BP · C ⊆ BP · (co− C) .
(4) If co− C = C, then co−BP · C = BP · C.
(5) BP · BP · C ⊆ BP · C.

Proof.
• (item 3) Given L ∈ co − BP · C, there exist Ω ∈ C and a computable

function f such that
(1) (x, k) ∈ L⇒ Pry∈{0,1}f [(x, y, k) ∈ Ω] ≤ 1

4 .
(2) (x, k) /∈ L⇒ Pry∈{0,1}f [(x, y, k) ∈ Ω] ≥ 3

4 .
Hence

(1) (x, k) ∈ L⇒ Pry∈{0,1}f [(x, y, k) ∈ Ωc] ≥ 3
4 .

(2) (x, k) /∈ L⇒ Pry∈{0,1}f [(x, y, k) ∈ Ωc] ≤ 1
4 .

We can conclude that L ∈ BP · (co− C), since Ωc ∈ co− C.
• (item 5) The containmentBP ·C ⊆ BP ·BP ·C holds, since BP is monotone.

Given L ∈ BP ·BP · C, there exist Φ ∈ BP · C and a computable function
f such that
(1) (x, k) ∈ L⇒ Pry∈{0,1}f [(x, y, k) ∈ Φ] ≥ 9

10 .
(2) (x, k) /∈ L⇒ Pry∈{0,1}f [(x, y, k) ∈ Φ] ≤ 1

10 .
Furthermore, there exist Ω ∈ C and a computable function g such that

(1) (x, y, k) ∈ Φ ⇒ Prz∈{0,1}g [(x, y, z, k) ∈ Ω] ≥ 9
10 .

(2) (x, y, k) /∈ Φ ⇒ Prz∈{0,1}g [(x, y, z, k) ∈ Ω] ≤ 1
10 .

Thus, we have
(1) (x, k) ∈ L⇒ Pr(y,z)∈{0,1}f×{0,1}g [(x, y, z, k) ∈ Ω] ≥ 81

100 ≥ 3
4 .

(2) (x, k) /∈ L⇒ Pr(y,z)∈{0,1}f×{0,1}g [(x, y, z, k) ∈ Ω] ≤ 19
100 ≤ 1

4 .
So, we can conclude that L ∈ BP · C. �

In parameterized complexity two important hierarchies of parameterized classes
have been considered: the W and the A hierarchies [3]. Both of these hierarchies

204 J. ANDRÉS MONTOYA

are in some sense analogous to the polynomial hierarchy. In this paper we introduce
a third hierarchy which we consider the natural parameterized analogue of the
polynomial hierarchy, we call this new hierarchy the parameterized polynomial
hierarchy (PH [P] hierarchy for short). The PH [P] hierarchy is defined using the
operators ∀ and ∃.

Definition 3.5. Given C a parameterized class we define, for each i ∈ N, a new
class Σi · C

(1) Σ0 · C := Π0 · C := C.
(2) Σi+1 · C := ∃ · Πi · C.
(3) Πi+1 · C := ∀ · Σi · C.

We are ready to define our parameterized analogue of the polynomial hierarchy,
the PH [P] hierarchy.

PH [P] :=
⋃
i∈N

(Σi · FPT ∪ Πi · FPT) .

Note 3.6. The PH [P] hierarchy is investigated in more depth in author’s Ph.D.
thesis [8].

Definition 3.7. p-CLOGSAT is the following parameterized problem
• Input: (C, k), where k ∈ N and C is boolean circuit such that the number

of its input gates is upperbounded by k log (|C|).
• Parameter: k.
• Problem: decide if (C, k) is satisfiable.

Lemma 3.8. p-CLOGSAT is W [P] complete.

Proof. It is straightforward to verify that p-CLOGSAT belongs to W [P]. We
only have to prove that p-CLOGSAT is W [P] hard. To this end we will show
that p-WSAT (CIRC) is fpt many one reducible to p-CLOGSAT . The proof
is an easy application of the k log (n) trick of Downey and Fellows (also called
k log (n) trick of Flum and Grohe [5]).

Let (C, k) be an instance of p-WSAT (CIRC) and let m be the number of input
gates of C. We can compute in fpt time a circuit DC,k which maps {0, 1}k log(m)

onto the set

{s ∈ {0, 1}m : the hamming weight of s is lesser than or equal to k} .

If we hardwire the output gates of DC,k and the input gates of C we obtain a
circuit HC,k such that

(1) HC,k is satisfiable if and only if (C, k) ∈ p-WSAT (CIRC).
(2) The size of HC,k is bigger than the size of C.
(3) The number of input gates of HC,k is equal to k log (m) and k log (m) ≤

k log (|HC,k|).

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 205

Thus, (HC,k, k) is an instance of p-CLOGSAT such that

(1) (C, k) ∈ p-WSAT (CIRC) if and only if (HC,k, k) ∈ p-CLOGSAT .
(2) (HC,k, k) can be computed from (C, k) in fpt time.

So, we have proven that p-WSAT (CIRC) is fpt many one reducible to p-
CLOGSAT . �

3.2. Hashing

In this section we introduce the hashing machinery that we will use in some of
the proofs.

Definition 3.9. Given A and B two finite sets and given H ⊆ BA we say that
H is a U2-Hashing family if and only if for all i, j ∈ A and for all c, d ∈ B the
equality

Pr
h∈H

[h (i) = c & h (j) = d] =
1

|A|2
holds.

Example 3.10. Given p, k, i ∈ N, k ≥ i and p prime, the set Hp
k,i of affine trans-

formations from GF (p)k to GF (p)i is a U2-Hashing family [6], where given m ≥ 1
and p prime, the symbol GF (pm) denotes the finite field of size pm.

Example 3.11. Given r ≤ n two natural numbers the hashing family Fn,r

{
ha,b ∈ (GF (2r))GF (2n) : a, b ∈ {0, 1}n & ha,b (z) := (az + b) �r

}

is a U2-Hashing family, where the operations employed in the definition of the
function ha,b ∈ Fn,r are the operations of the field GF (2n) [6].

Note 3.12. Any element h ∈ Hp
k,i is determined by a pair (Ah, vh), where Ah is a

i× k matrix with entries in GF (p) and vh ∈ GF (p)k, it implies that we only need
O (ik log (p)) bits to specify a given element of Hp

k,i.

Note 3.13. Note that the elements of Fn,r can be specified using O (n) bits. It is
the case because in order to specify an element, say ha,b, of GF (2n) it is sufficient
to specify a pair (a, b) ∈ (GF (2n))2 .

U2-Hashing families have interesting combinatorial properties, one of them is
encoded in the so called leftover hashing lemma.

Let H be a U2-Hashing family whose elements are functions with domain A and
range B. Given S ⊂ A and b ∈ B we define a random variable YS,b : H → N in
the following way:

YS,b (h) =
∣∣S ∩ h−1(b)

∣∣ .
Let ρ be the expected value of YS,b.

206 J. ANDRÉS MONTOYA

Lemma 3.14 (leftover hashing lemma I).
Given S ⊂ H, given b ∈ B and given ε � 0 we have that

Pr [|YS,b (h) − ρ| ≥ ερ] ≤ 1
ε2ρ

·

The proof of the leftover hashing lemma can be found in [6].

3.3. A probabilistic approximation algorithm

In this section we will present a randomized algorithm, indebted to Muller [10],
for approximating any problem in #W [P], the algorithm is based on Hashing
techniques.

Recall the definition of the U2-Hashing family Hp
k,i (Ex. 3.10). Given S ⊆

GF (p)k we consider the random variable Yi : Hp
k,i → N defined by

Yi(h) :=
∣∣S ∩ h−1(0i)

∣∣
where 0i is the

−→
0 -vector of GF (p)i.

Let ρi be the expected value of Yi, we have that ρi = |S|
pi . The leftover hashing

lemma implies that given ε � 0 the inequality

Pr
[∣∣∣∣Yi (h) − |S|

pi

∣∣∣∣ ≥ ε
|S|
pi

]
≤ pi

ε2 |S|

holds.

Theorem 3.15 (Muller’s algorithm). For all c, c∗ ∈ N there exists a randomized
algorithm M with oracle access to the problem p-CLOGSAT and such that

(1) On every run of M with input (C, k), algorithm M uses O
(
k3 log (|C|))

random bits.
(2) On every run of M with input (C, k), algorithm M makes less than

f (k) p (|C|) oracle queries, for some computable function f and some poly-
nomial p (X).

(3) On every run of M with input (C, k), the running time of M is upper-
bounded by g (k) q (|C|) , for some computable function g and some poly-
nomial q (X).

(4) On every run r of M with input (C, k), algorithm M computes a com-
putable number MC,k,r (which depends on the run) such that

Pr
r

[
(C, k)

(
1 − 1

|C|c
)

≤ MC,k,r ≤ # (C, k)
(

1 +
1

|C|c
)]

≥ 1 − 1
|C|c∗

where # (C, k) denotes the number of satisfying assignments of C.

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 207

Proof. Given c and c∗ algorithm M is defined in the following way:
On input (C, k)

(1) M computes l = 2c+ c∗ + 1 (to get a error probability of 1 − 1
|C|c∗).

(2) M computes a prime number p ∈ {|C| , . . . , 2 |C| + 1}.
(3) For all i ∈ {1, . . . , k} , algorithm M randomly chooses h ∈ Hp

k,i.
(4) M computes i0 := min

{
i ≤ k : Yi (h) � pl

}
.

(5) M outputs pi0Yi0 (hi0).

• We know, from the Bertrand’s postulate, that there exists a prime number
p ∈ {|C| , . . . , 2 |C| + 1} . Such a number can be computed in polynomial
time, wrt the size of C, using either a brute force algorithm or the algorithm
of Agrawal-Saxena-Kayal [1].

• In the third step M chooses k random functions from Hp
k,i, each one

of those functions is determined by choosing at most
(
k2 + k

)
log (2 |C|)

random bits, that means that the number of random bits used by Muller’s
algorithm is O

(
k3 · log (|C|)).

• The checking in step 4 can be performed in fpt time using the p-CLOGSAT
oracle. This is the case, because l is a fixed number that does not depend
on k and the problem p-CLOGSAT is self-reducible. The self-reducibility
of p-CLOGSAT implies that the listing problem associated to p-CLOGSAT
can be solved in fpt-delay time using the oracle p-CLOGSAT [10].

Claim. Pr
[
(C, k)

(
1 − 1

|C|c
)
≤ MC,k ≤ # (C, k)

(
1 + 1

|C|c
)]

≥ 1 − 1
|C|c∗ .

Let d be equal to # (C, k) ≤ |C|k ≤ pk and let m be a natural number such
that m ≤ k and pm−1 ≤ d ≤ pm.

• If i ≤ m− l− 2, then

ρi ≥ pm−1

pm−l−2
= pl+1.

This is the case because

Pr
h∈Hp

k,i

[
Yi � pl

] ≤ Pr
h∈Hp

k,i

[
Yi �

1
p
ρi

]

≤ Pr
h∈Hp

k,i

[
|Yi − ρi| ≥ (p− 1)

p
ρi

]

≤ p2

(p− 1)2 ρi

≤ p2

(p− 1)2 pl+1
≤ 1

(p− 1)2 pl−1
·

• If i = m− l+ 1, then

pl−1 =
pm

pm−l+1
≥ ρi ≥ pm−1

pm−l+1
= pl−2.

208 J. ANDRÉS MONTOYA

It follows from the following inequalities:

Pr
h∈Hp

k,i

[
Yi ≥ pl

] ≤ Pr
h∈Hp

k,i

[|Yi − ρi| ≥ (p− 1) ρi]

≤ 1
(p− 1)2 ρi

≤ 1
(p− 1)2 pl−2

·

• If i ∈ {m− l − 1,m− l,m− l + 1}, then

ρi =
d

pi
≥ pm−1

pm−l+1
= pl−2.

It follows from the following inequalities:

Pr
h∈Hp

k,i

[∣∣piYi

∣∣ ≥ εd
]

= Pr
h∈Hp

k,i

[|Yi − ρi| ≥ ερi]

≤ 1
ε2ρi

≤ 1
ε2pl−2

·

From the first item we obtain that

Pr [i0 ≤ m− l− 2] ≤ m− l − 2

(p− 1)2 pl−1
·

And from the second item we obtain

Pr [i0 � m− l+ 1] ≤ 2
(p− 1)2 pl−2

·

Therefore

Pr [i0 /∈ {m− l − 1,m− l,m− l + 1}] ≤ 1
(p− 1)2 pl−3

·

Now, if we take ε := 1
pc we get

1
ε2pl−2

=
p2c

pl−2
≤ p−c∗−1 ≤ |C|−c∗−1 ·

Altogether we have

Pr
[
(C, k)

(
1 − 1

|C|c
)

≤ MC,k ≤ # (C, k)
(

1 +
1

|C|c
)]

≥ 1 − 1
|C|c∗ · �

Corollary 3.16. Given χ ∈ #W [P] there exists a randomized fpt algorithm M
with access to the oracle p-CLOGSAT that approximates the function χ.

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 209

Note 3.17. Given L a W [P] complete problem we could use, in Muller’s algo-
rithm, an oracle L instead of the oracle p-CLOGSAT 1.

In the following sections we will prove that approximate counting belongs to
the PH [P] hierarchy. The proof is divided in the following stages:

(1) Given χ ∈ #W [P], we prove that the complexity of approximating χ,
within a given constant range, is equal to the complexity of a parameter-
ized gap problem that we call p-approx(χ).

(2) Using hashing techniques we prove that for every χ ∈ #W [P], the problem
p-approx(χ) belongs to BP · ∃ · FPT.

(3) We prove that, if W [P] is ∧-closed, then BP · ∃ · FPT is included in the
second level of the PH [P] hierarchy, that is: we prove a parameterized
analogue of Lautemann-Sipser theorem. The proof of this theorem is based
on Lautemann’s proof but in addition we have to use the pseudorandom
generator of Ajtai, Komlos and Szemeredi to reduce the number of random
bits used in the probabilistic constructions included in the proof.

4. Approximate counting and gap problems:
approximate counting belongs to BP · ∃ · FPT

The main theorem in last subsection says that we can probabilistic approxi-
mate every problem in #W [P] using a W [P] oracle, this theorem gives us strong
evidence against the PH [P] hardness of approximate counting. While in the clas-
sical framework we could already claim that probabilistic approximate counting
belongs to the second level of the polynomial hierarchy, we have still not proven
that this is the case in the parameterized framework because we don’t know if the
levels of the PH [P] hierarchy are closed under parameterized Turing reductions,
(it is very unlikely that PH [P] is closed under parameterized Turing reductions).

Given M a randomized algorithm and given (x, k) an input of M we use the
symbol Ix,k to denote the set of possible random choices of algorithm M, on input
(x, k) . Let O be the set of possible outputs of algorithm M, we use the symbol
M (x, k) to denote the random variable M (x, k) : Ix,k → O defined by:

M (x, k) (ξ) = M (x, k, ξ)

where M (x, k, ξ) is the output of M, on input (x, k) , determined by the random
choice ξ.

Definition 4.1. Given a parameterized counting problem χ and given c ≥ 1, a
randomized fpt algorithm M approximates χ within the range c if and only if for
all instance (x, k) of χ the inequality

Pr
[
χ (x, k)

1
c
≤ M (x, k) ≤ χ (x, k) c

]
≥ 2

3

holds, where the probability is computed with respect to the random choices of M.

1A detailed and alternative proof of this theorem can be found in [10].

210 J. ANDRÉS MONTOYA

In this section we will investigate the hardness of approximating, within a con-
stant range, a given problem χ ∈ #W [P]. First we have to state and prove a
technical lemma.

Lemma 4.2. Given χ ∈ #W [P] and given c ∈ N, the function χc : Σ∗ × N → N
defined by

χc (x, k) = (χ (x, k))c

belongs to #W [P].

Proof. If χ ∈ #W [P], we know that there exist a W [P] Turing machine M and a
computable function g such that

(1) For every run of M with input (x, k), machine M makes g (k) log (|x|)
nondeterministic guesses.

(2) The running time of every run of M, with input (x, k), is bounded by
f (k) p (|x|).

(3) χ (x, k) = #acc (M (x, k)).
Let Mc be a W [P] Turing machine such that

• For every run of Mc with input (x, k) , machine Mc nondeterministically
guesses r1, . . . , rc ∈ {0, 1}g.

• For all i ≤ c, machine Mc simulates the run of M, on input (x, k), when
M uses the nondeterministic choices codified by ri.

• Mc accepts (x, k) if and only if for all i ≤ c the simulation of the deter-
ministic computation of M, on input (x, ri, c) , ends in an accepting state.

It is clear that χc (x, k) = (#acc (M (x, k)))c. �
Next lemma says that if we can compute approximations within the range 2, we

can compute approximations within any constant range c � 1. Because of this,
we will only investigate the complexity of computing approximations within the
range 2.

Lemma 4.3. Given χ a #W [P] complete problem, if there exists an algorithm
M that approximates χ within the range 2, then for all c � 1, there exists an
algorithm Mc that approximates χ within the range c.

Proof. Let d be a natural number such that (2)
1
d ≤ c. The algorithm Mc is the

following one:
On input (x, k)

(1) Mc computes a pair (x∗, k∗) such that χ (x∗, k∗) = (χ (x, k))d.
(2) Mc simulates the computation of M, on input (x∗, k∗).
(3) Given t the output of M on input

(
x

∗
, k∗
)
, algorithm Mc outputs (t)

1
d .

The computation in step 1 can be performed in fpt time given that Mc only
has to compute a pair (x∗, k∗) such that χ (x∗, k∗) = χc (x, k), remember that
χc ∈ #W [P] and χ is #W [P] complete.

In step 2, algorithm Mc computes a number t such that

Pr
[
1
2

(χ (x, k))d ≤ t ≤ 2 (χ (x, k))d

]
≥ 2

3
·

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 211

Therefore

2
3
≤ Pr

[(
1
2

) 1
d

χ (x, k) ≤ (t)
1
d ≤ (2)

1
d χ (x, k)

]

≤ Pr
[
1
c
χ (x, k) ≤ (t)

1
d ≤ cχ (x, k)

]
.

We can conclude that

Pr
[
1
c
χ (x, k) ≤Mc (x, k) ≤ cχ (x, k)

]
≥ 2

3
·

Given that (t)
1
d is the output Mc. �

Given χ ∈ #W [P] we define a parameterized gap problem that corresponds in
some sense to the problem of approximating χ within the range 2.

Definition 4.4. p-approx (χ) is the parameterized gap problem defined by
Input: (x, k, c), where (x, k) is an instance of χ and c ∈ N.
Parameter: k.
Yes-instances: (x, k, c) is a Yes-instance if and only if χ (x, k) ≥ 2c.
Not-instances: (x, k, c) is a Not-instance if and only if χ (x, k) ≤ c.

We prove that we can approximate χ within the range 2, (in fpt time), if oracle
access to p-approx(χ) is provided.

Let (x, k) be an instance of χ, there exists a natural number m ≤ |x|k such that

2m ≤ χ (x, k) ≤ 2m+1.

It follows from the definition of m that

(1) 1
2χ (x, k) ≤ 2m ≤ 2 (χ (x, k)).

(2) 1
2χ (x, k) ≤ 2m+1 ≤ 2χ (x, k).

So, in order to approximate χ (x, k) within the range 2 it is sufficient to compute
a number n ∈ {m,m+ 1}. The proof of the following theorem is based on this
fact.

Theorem 4.5. Given χ ∈ #W [P] there exists an fpt algorithm M with access
to the oracle p-approx(χ) and such that

(1) M approximates χ within the range 2.
(2) M queries the oracle at most g (k) log (|x|) times, where g is a computable

function.

Proof. On input (x, k) the algorithm M computes a number n ∈ N such that
n ∈ {m,m+ 1}, after that M outputs 2n.

212 J. ANDRÉS MONTOYA

First two easy facts.
• If i ≤ m− 1, then (x, k, 2i) is a Yes-instance of p-approx(χ).
• If i ≥ m+ 1, then (x, k, 2i) is a Not-instance of p-approx(χ).

Let g be a computable function such that for all (x, k) ∈ Σ∗ × N we have that
χ(x, k) ≤ 2g(k) log(|x|). Algorithm M works in the following way:

On input (x, k)
(1) For all i ≤ g (k) log (|x|), algorithm M computes vi ∈ {0, 1} such that:

vi =
{

0, if the answer to the oracle query
(
x, k, 2i

)
is NO;

1, otherwise.

(2) M computes n := min {i ≤ g (k) log (|x|) : vi = 0}.
(3) M outputs 2n.

Fact. n ∈ {m,m+ 1}.
This is the case because
(1) If i ≤ m− 1, then vi = 1.
(2) If i ≥ m+ 1, then vi = 0.

Then, it is clear that:
• 2n ∈ {2m, 2m+1

}
.

• 1
2χ (x, k) ≤ 2n ≤ 2χ (x, k).

We have that the output of M is an approximation of χ(x, k) within the range 2.
�

Last theorem allows us to identify the problem of computing approximations
to χ within the range 2 with the gap problem p-approx(χ).

4.1. Approximate counting belongs to BP · ∃ · FPT
In the following we will analyze the complexity of the parameterized gap prob-

lems p-approx(χ), with χ ∈ #W [P]. We want to prove that for all χ ∈ #W [P]
the gap problem p-approx(χ) belongs to some level of the PH [P] hierarchy. To
this end, we prove:

(1) For all χ ∈ #W [P] we have that p-approx(χ) ∈ BP · ∃ · FPT .
(2) A parameterized analogue of the Lautemann-Sipser theorem, that is: we

prove that BP ·∃·FPT is included in the second level of the parameterized
polynomial hierarchy [7].

4.1.1. Approximate counting belongs to the parameterized Arthur-Merlin class

In this section we prove that p-approx(χ) ∈ BP · ∃ · FPT . The core of the
argument is an standard Hashing argument. Hashing allow us to transform a
dicothomy of the form:

Either there are so many certificates (more than 2c) or there are so few (less
than c).

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 213

Into a dicothomy of the form:
The probability that there are at least one certificate is either very high (bigger

then 3
4) or very small (less than 1

4).
Note that this is the type of transformation that we need if we want to prove

that p-approx(χ) ∈ BP · ∃ · FPT.
Let us begin with the proof. First we have to define the meaning of a gap

problem belonging to BP · ∃ · FPT .
We will say that p-approx(χ) ∈ BP ·∃ ·FPT if and only if there exist Ω ∈ FPT

and two computable functions h, g such that:
• If (x, k, c) is a Yes-instance of p-approx (χ), then

Pr
z∈{0,1}g

[
∃y ∈ {0, 1}h ((x, y, z, k) ∈ Ω)

]
≥ 3

4
·

• If (x, k, c) is a Not-instance of p-approx(χ), then

Pr
z∈{0,1}g

[
∃y ∈ {0, 1}h ((x, y, z, k) ∈ Ω)

]
≤ 1

4
·

Now we prove that given χ ∈ #W [P] the parameterized gap problem p-
approx (χ) belongs to BP · ∃ · FPT . The proof relies on the leftover hashing
lemma.

Given χ a problem in #W [P], there exists Ω ∈ FPT such that χ(x, k) = |Sx,k|,
where Sx,k is the set {

y ∈ {0, 1}h : (x, y, k) ∈ Ω
}
.

We consider the language Ω6 ∈ FPT defined by

Ω6 :=
{
(x, y1, . . . , y6, k) : y1, . . . , y6 ∈ {0, 1}h & (x, y1, k) ∈ Ω, . . . , (x, y6, k) ∈ Ω

}
.

Let S6
x,k be the set

{(y1, . . . , y6) : y1, . . . , y6 ∈ Sx,k} .
Fact 4.6. Given (x, k, c) an instance of p-approx (χ):

(1) If (x, k, c) is a Yes-instance of p-approx(χ), then |S6
x,k| ≥ 26c6.

(2) If (x, k, c) is a Not-instance of p-approx(χ), then |S6
x,k| ≤ c6.

Let (x, k, c) be an instance of p-approx(χ) and let n,m be natural numbers such
that n = 6h (k) log (|x|) and m = log

(
4c6
)
.

Recall the definition of the U2-Hashing family Fn,m (Ex. 3.11).

Lemma 4.7. If (x, k, c) is a Yes-instance of p-approx(χ), then

Pr
r∈Fn,m

[
∃y ∈ {0, 1}6·h (

y ∈ S6
x,k & r (y) = 0m

)] ≥ 3
4
·

214 J. ANDRÉS MONTOYA

Proof. Let (x, k, c) be a Yes-instance of p-approx(χ) and let Ym : Fn,m → N be
the random variable defined by

Ym (r) :=
∣∣S6

x,k ∩ r−1 (0m)
∣∣

where r ∈ Fn,m. If ρm is the expected value of Ym we have that ρm ≥ 16. Now if
we use the leftover hashing lemma (Lem. 3.14), choosing ε = 1

2 , we obtain

Pr
r∈Fn,m

[Ym (r) = 0] ≤ Pr
r∈Fn,m

[
|Ym (r) − ρm| �

1
2
ρm

]
≤ 1

4
· �

Lemma 4.8. If (x, k, c) is a Not-instance of p-approx(χ), then

Pr
r∈Fn,m

[
∃y ∈ {0, 1}6·h (

y ∈ S6
x,k & r (y) = 0m

)] ≤ 1
4
·

Proof. First we note that for all y ∈ {0, 1}6·h the inequality

Pr
r∈Fn,m

[r (y) = 0m] ≤ 2−m

holds. Therefore

Pr
r∈Fn,m

[∃y ∈ S6
x,k (r (y) = 0m)

] ≤ ∑
y∈S6

x,k

Pr
r∈Fn,m

[r (y) = 0m]

≤ ∣∣S6
x,k

∣∣ 2−m ≤ c62−m ≤ 1
4
· �

Theorem 4.9. Given χ ∈ #W [P], the gap language p-approx(χ) belongs to
BP · ∃ · FPT .

Proof. Given x, k and c we take m = log
(
4c6
)

and n = 6h (k) log (|x|) and we
consider the language Ω∗ defined by

Ω∗ := {(x, y1, . . . , y6,m, r, k) : ϕn,m & ψn,m}

where:
(1) ϕn,m := y1, . . . , y6 ∈ {0, 1}h & (x, y1, k) , . . . , (x, y6, k) ∈ Ω.
(2) ψn,m := m ≤ n & r ∈ Fn,m & r (y1, . . . , y6) = 0m.
(3) h is a computable function.
(4) Ω is a language in FPT such that for all instance (x, k) of χ the equality

χ (x, k) =
∣∣∣{y ∈ {0, 1}h : (x, y, k) ∈ Ω

}∣∣∣
holds.

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 215

From the last two lemmas we have that:
• If (x, k, c) is a Yes-instance of p-approx(χ), then

Pr
r∈Fn,m

[
∃y1, . . . , y6 ∈ {0, 1}h ((x, y1, . . . , y6,m, r, k,) ∈ Ω∗)

]
≥ 3

4
.

• If (x, k, c) is a Not-instance of p-approx(χ), then

Pr
r∈Fn,m

[
∃y1, . . . , y6 ∈ {0, 1}h ((x, y1, . . . , y6,m, r, k,) ∈ Ω∗)

]
≤ 1

4
·

Note that the number of random bits used to specify the random choice r, where
r ∈ Fn,m, is O (h (k) log (|x|)) . Thus, we have proven that p-approx(χ) belongs to
the parameterized class BP · ∃ · FPT . �

5. A parameterized Lautemann-Sipser theorem:
approximate counting belongs to the PH [P] hierarchy

We are trying to prove that for all χ ∈ #W [P] the gap problem p-approx(χ)
belongs to PH [P]. We already know that given χ ∈ #W [P] the gap problem
p-approx(χ) belongs to BP · ∃ ·FPT . In this section we prove that, under certain
complexity theoretic hypothesis, the class BP · ∃ ·FPT is included in ∀ · ∃ ·FPT .
Specifically we prove that

(1) BP · FPT ⊂ ∃ · ∀ · FPT ∩ ∀ · ∃ · FPT.
(2) If ∃ · FPT is ∧-closed, then BP · ∃ · FPT is included in ∀ · ∃ · FPT.

As a corollary we get our parameterized analogue of Stockmeyer’s theorem: if
∃ · FPT is ∧-closed, parameterized approximate counting belongs to ∀ · ∃ · FPT.
Note 5.1. Remember that ∃ · FPT is equal to W [P].

Our proof is very close to Lautemann’s proof [7], though we have to use the
pseudorandom generator of Ajtai, Komlos and Szemeredi (see Ref. [6]) (AKS
algorithm, for short) to save random bits and we have to take into account some
technical details.

5.1. Majority reductions and probability amplification

A probabilistic parameterized class BP · C is well behaved if BP · C has some
type of probability amplification, i.e. BP · C is well behaved if given L ∈ BP · C
we can decrease the error probability associated to L by reducing L to some other
problem in the class BP · C. Here we introduce a formal notion of well behaveness
that we call the pam property.

Definition 5.2. Given C a parameterized class, BP · C has the pam property if
and only if for all L ∈ BP · C and for all computable function g there exist Ω ∈ C
and a computable function f such that

• (x, k) ∈ L ⇒ Pry∈{0,1}f [(x, y, k) ∈ Ω] ≥ 1 − 2−g(k) log(|x|).

216 J. ANDRÉS MONTOYA

• (x, k) /∈ L ⇒ Pry∈{0,1}f [(x, y, k) ∈ Ω] ≤ 2−g(k) log(|x|).

In this section we study the relation between the closure of C under majority
reductions and the probability-amplification properties of BP · C. We prove that
if C is maj-closed, then BP · C has the pam property. The proof of this theorem is
very similar to the classical analogue, but in addition we have to use in the proof
the AKS algorithm in order to save random bits.

Notation 5.3. From here on, we will use the symbol ⊗ to denote the boolean
operator Majority.

Definition 5.4. L is majority reducible to L∗ if and only if there exist an fpt algo-
rithm M and two computable functions f, g such that, on input (x, k), algorithm
M computes a sequence

(x1, k1) , . . . ,
(
xf(k) log(|x|), kf(k) log(|x|)

)
that satisfies:
(1) (x, k) ∈ L⇔ ⊗

j≤f(k) log(|x|)
(xj , kj) ∈ L∗.

(2) For all i ≤ f(k) log(|x|) we have ki ≤ g (k).

We will say that C is maj-closed if and only if C is closed under majority re-
ductions. Next theorem says us that in order to amplify the success probability
(equivalently, to decrease the error probability), we can make a big saving of ran-
dom bits if we use a suitable pseudorandom generator.

Theorem 5.5 (AKS theorem). There exist an algorithm, namely AKS, and
constants N1, N2 ∈ N such that for all m, i ∈ N and for all a ∈ {0, 1}N1(m+i)

algorithm AKS computes, on input (a, i,m) , a sequence a1, . . . , aiN2 ∈ {0, 1}m

such that for all A ⊂ {0, 1}m

(1) |A| ≥ 3
42m ⇒ Pra∈{0,1}N1(m+i)

[⊗
j≤iN2

aj ∈ A
]
≥ 1 − 2−i.

(2) |A| ≤ 1
42m ⇒ Pra∈{0,1}N1(m+i)

[⊗
j≤iN2

aj ∈ A
]
≤ 2−i.

(3) The running time of AKS is bounded by a polynomial p(m, i).

Note 5.6. The algorithm AKS is the pseudorandom generator of Ajtai, Komlos
and Szemeredi which is based on expander graphs (see Ref. [6]).

Notation 5.7. From now on we will use the symbols N1 and N2 to denote the
constants mentioned in the statement of theorem 5.5 (i.e. N1 and N2 denote the
parameters of the AKS algorithm).

Using AKS theorem we can easily prove the following theorem which says us
that there exists a deep relation between the closure under majority reductions
and probability amplification.

Theorem 5.8. If C is maj-closed, then BP · C has the pam property.

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 217

Proof. Let L, Ω be languages such that L ∈ BP · C, Ω ∈ C and
• (x, k) ∈ L ⇒ Pry∈{0,1}f [(x, y, k) ∈ Ω] ≥ 3

4 ,
• (x, k) /∈ L ⇒ Pry∈{0,1}f [(x, y, k) ∈ Ω] ≤ 1

4

where f is some suitable computable function.
Given g a computable function we define Ωg in the following way

Ωg :=

⎧⎨
⎩(x, y, k) : y ∈ {0, 1}N1(f+g) &

⊗
j≤N2g(k) log(|x|)

(x, zj , k) ∈ Ω

⎫⎬
⎭

where z1, . . . , zN2g(k) log(|x|) is the output-sequence of the algorithm AKS on input
(y, g(k) log(|x|), f(k) log(|x|)). The problem Ωg belongs to C because C is maj-
closed and it follows from the AKS-theorem that

• (x, k) ∈ L ⇒ Pry∈{0,1}N1(f+g) [(x, y, k) ∈ Ωg] ≥ 1 − 2−g(k) log(|x|).
• (x, k) /∈ L ⇒ Pry∈{0,1}N1(f+g) [(x, y, k) ∈ Ωg] ≤ 2−g(k) log(|x|).

Therefore, BP · C has the pam property �

Corollary 5.9. BP · FPT has the pam property.

Proof. FPT is closed under majority reductions. �

5.2. A parameterized Lautemann-Sipser theorem

Let C be a parameterized class such that BP · C has the pam property. Given
L ∈ BP · C we can suppose that there exist Ω ∈ C and a computable function f
such that

• (x, k) ∈ L =⇒ |Sx,k| ≥ 2f(k) log(|x|) (1 − 2−k log(|x|)) ,
• (x, k) /∈ L =⇒ |Sx,k| ≤ 2f(k) log(|x|)2−k log(|x|),

where Sx,k :=
{
y ∈ {0, 1}f : (x, y, k) ∈ Ω

}
.

Along this section we fix a parameterized class C such that the pam property
holds for BP · C.

Notation 5.10. In the following if v ∈ {0, 1}N1f , the symbol AKS(v) will denote
the set

{
v1, . . . , vN2f(k) log(|x|)

}
, where v1, . . . , vN2f(k) log(|x|) is the output-sequence

of the algorithm AKS, on input (v, 2f (k) log (|x|) , f (k) log (|x|)).
Note that if (x, k) ∈ L, the inequality

Pr
v∈{0,1}N1f

[{
v1, . . . , vN2f(k) log(|x|)

} ∩ Sx,k �= ∅
] ≥ 1 − 2−2f(k) log(|x|)

holds.

Notation 5.11. If it is clear from the context we will use the symbol n to denote
the number f(k) log(|x|).

218 J. ANDRÉS MONTOYA

Notation 5.12. Given S ⊂ {0, 1}m and given v ∈ {0, 1}m we use the symbol S+v
to denote the set

{s+ v : s ∈ S}
where + denotes the addition operation over the vector space GF (2)m.

The next two lemmas are our parameterized version of the core of Lautemann’s
probabilistic argument.

Lemma 5.13. If (x, k) ∈ L, then ∃v ∈ {0, 1}N1·f ∀z ∈ {0, 1}f((AKS(v) + z) ∩
Sx,k �= ∅).
Proof. Let (x, k) be a member of L. We prove that

Prv∈{0,1}N1f [∀z ∈ {0, 1}f ((AKS(v) + z) ∩ Sx,k �= ∅)] > 0.

If we fix z ∈ {0, 1}f , we have

Prv∈{0,1}N1f [AKS(v) + z ⊂ (Sx,k)c] ≤ 2−2n.

Therefore

Prv∈{0,1}N1f [∃z ∈ {0, 1}f (AKS(v) + z ⊂ (Sx,k)c)]

≤
∑

z∈{0,1}f

Prv∈{0,1}N1f [AKS(v) + z ⊂ (Sx,k)c] ≤ 2n2−2n � 1.

Thus, we have

Prv∈{0,1}N1f [∀z ∈ {0, 1}f (AKS(v) + z � (Sx,k)c)] � 0.

So, we have proven that if (x, k) ∈ L, then

∃v ∈ {0, 1}N1·f ∀z ∈ {0, 1}f((AKS(v) + z) ∩ Sx,k �= ∅). �

Fact 5.14. For all k ∈ N there exists Rk ∈ N such that if |x| ≥ Rk, then

2k log(|x|) ≥ N2f (k) log (|x|) = N2n.

Proof. We can suppose, without loss of generality, that k ≥ 2 and that |x| ≥
log (|x|) . If we fix k ≥ 2 we can take Rk ≥ N2f (k) , note that

2k log(|x|) = |x|k ≥ |x|2 ≥ N2f (k) |x| ≥ N2f (k) log (|x|) . �

Lemma 5.15. If (x, k) ∈ L and |x| ≥ Rk, then for all S ⊂ {0, 1}f such that
|S| ≤ N2n, there exists z ∈ {0, 1}f such that S + z ⊂ Sx,k.

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 219

Proof. Suppose that for all z ∈ {0, 1}f we have that S + z � Sx,k, (i.e. for all
z ∈ {0, 1}f we have that S � Sx,k + z). Then, for all z ∈ {0, 1}f there exists
sz ∈ S such that sz /∈ Sx,k + z. It implies that there exists s ∈ S such that
s /∈ Sx,k + z for at least 2n

N2n of the z’s, i.e. there exists s ∈ S such that

|{u : s+ u /∈ Sx,k}| ≥ 2n

N2n
·

Let Hs be a set with the following two properties

(1) Hs ⊂ {u : s+ u /∈ Sx,k}.
(2) |Hs| ≥ 2n

N2n .

It is easy to verify that

• Hs + s ⊂ (Sx,k)c.
• |Hs + s| ≥ 2n

N2n .

And it implies that

|(Sx,k)c| ≥ |Hs + s| ≥ 2f(k) log(|x|)

N2f (k) log (|x|) ·

But this is a contradiction since

|(Sx,k)c| ≤ 2f(k) log(|x|)

2k log(|x|) and N2f (k) log (|x|) ≤ 2k log(|x|). �

Notation 5.16. Given v ∈ {0, 1}N1f and v1, . . . , vN2n the output sequence of
AKS on input (v, 2f (k) log (|x|) , f (k) log (|x|)) the symbol AKS(v, i) denotes the
string vi.

Let Ω1, Ω2 be the following pair of parameterized languages

Ω1=

⎧⎨
⎩(x, v, z, k) : v ∈ {0, 1}N1f&z ∈ {0, 1}f&

∧
i≤N2n

(x,AKS(v, i) + z, k) ∈ Ω

⎫⎬
⎭

&

Ω2=

⎧⎨
⎩(x, v, z, k) : v ∈ {0, 1}N1f&z ∈ {0, 1}f&

∨
i≤N2n

(x,AKS(v, i) + z, k) ∈ Ω

⎫⎬
⎭ .

It is easy to obtain, from the last two lemmas, the following corollary.

Corollary 5.17. If (x, k) ∈ L and |x| ≥ Rk, then

(1) ∀v ∈ {0, 1}N1f∃ z ∈ {0, 1}f ((x, v, z, k) ∈ Ω1) .
(2) ∃v ∈ {0, 1}N1f∀ z ∈ {0, 1}f ((x, v, z, k) ∈ Ω2) .

220 J. ANDRÉS MONTOYA

We have almost obtained representations of L as ∀ · ∃ · C and ∃ · ∀ · C languages.
It remains to be verified that the languages Ω1 and Ω2 are elements of the class C.
Unfortunately, if we want to prove this fact we have to suppose that C is closed
under a specific type of parameterized Turing reductions.

Definition 5.18. L is conjunctive reducible to L∗ if and only if there exist an fpt
algorithm M and two computable functions f, g such that, on input (x, k), algo-
rithm M computes a sequence (x1, k1) , . . . ,

(
xf(k) log(|x|), kf(k) log(|x|)

)
that satisfies

(1) (x, k) ∈ L ⇔ ∧i≤f(k) log(|x|) (xi, ki) ∈ L∗.
(2) For all i ≤ f(k)log(|x|) we have that ki ≤ g(k).

Definition 5.19. L is disjunctive-reducible to L∗ if and only if there exist an
fpt algorithm M and two computable functions f and g such that, on input
(x, k), algorithm M computes a sequence (x1, k1) , . . . ,

(
xf(k) log(|x|), kf(k) log(|x|)

)
that satisfies

(1) (x, k) ∈ L ⇔ ∨
i≤f(k) log(|x|)

(xi, ki) ∈ L∗.

(2) For all i ≤ f(k)log(|x|), ki ≤ g(k).

We will say that C is ∧-closed if and only if for all L, if there exists L∗ ∈ C such
that L is conjunctive-reducible to L∗, then L ∈ C. We define ∨-closed analogously.

Fact 5.20. If C is ∧-closed, then Ω1 ∈ C.

Fact 5.21. If C is ∨-closed, then Ω2 ∈ C.

Let g be a computable function such that for all k ∈ N the inequality g(k) ≥ Nk

holds. Given L ∈ BP · C, we consider the parameterized languages:
(1) L≥ := {(x, k) : |x| ≥ g(k) & (x, k) ∈ L}.
(2) L≤ := {(x, k) : |x| ≤ g(k) & (x, k) ∈ L}.

Fact 5.22. L≤ ∈ FPT.

Note 5.23. Given C a parameterized class we say that C is a regular class if and
only if given L ∈ C there exists a computable function h : N × N → N such that
for every (x, k) ∈ Σ∗ × N the query

(x, k) ∈ L?

can be solved in time bounded by h(|x|, k). If all the problems contained in C
are computable the class C is a regular class. Given L ∈ C and given M a Turing
machine recognizing L we can define h (n, k) in the following way

h (n, k) = max
x:|x|=n

{tM (x, k)}

where tM (x, k) denotes the running time of M on input (x, k) . It is important to
stress that each one of the parameterized classes considered in this work and in
the literature are regular classes.

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 221

Theorem 5.24 (parameterized abstract Lautemann-Sipser theorem). If C is
∨-closed, ∧-closed and BP · C has the pam property, then L≥ ∈ ∀ · ∃ · C ∩ ∃ · ∀ · C.

Proof. We prove that L≥ ∈ ∃ · ∀ · C, the proof of L≥ ∈ ∀ · ∃ · C is very similar.
We know that

(x, k) ∈ L≥ ⇒ ∃v ∈ {0, 1}N1f∀z ∈ {0, 1}f((x, v, z, k) ∈ Ω2).

If (x, k) /∈ L≥, then

| (Sx,k)c | ≥ (1 − 2−k log(|x|))2n.

Then, if (x, k) /∈ L≥ we have that

∀v ∈ {0, 1}N1f∃z ∈ {0, 1}f(AKS (v) + z ⊂ (Sx,k)c)

and it implies that if (x, k) /∈ L≥, then

�∃v ∈ {0, 1}N1f∀z ∈ {0, 1}f((x, v, z, k) ∈ Ω2).

Thus

(x, k) ∈ L≥ ⇔ ∃v ∈ {0, 1}N1f∀z ∈ {0, 1}f((x, v, z, k) ∈ Ω2).

So, we can conclude that L≥ ∈ ∃ · ∀ · C, (since Ω2 ∈ C). �

Corollary 5.25. Suppose that BP · C has the pam property
(1) If C is ∧-closed, then BP · C ⊆ ∀ · ∃ · C.
(2) If C is ∨-closed, then BP · C ⊆ ∃ · ∀ · C.

5.3. Some specific cases

In the following we consider the cases C = FPT and C = W [P] .

Fact 5.26. FPT is ∧-closed, ∨-closed and BP · FPT has the pam property.

We obtain as a corollary our first parameterized analogue of the Lautemann-
Sipser theorem.

Corollary 5.27 (parameterized Lautemann-Sipser theorem). BP · FPT ⊆ ∀ · ∃ ·
FPT ∩ ∃ · ∀ · FPT.

Now we consider the more difficult case C = W [P] .

Proposition 5.28. W [P] is ∨-closed.

Proof. Given L ∈W [P] there exist a W [P] Turing machine M and a computable
function f such that for all x, k

(1) (x, k) ∈ L if and only if M accepts (x, k).

222 J. ANDRÉS MONTOYA

(2) On every run of M, with input (x, k), only the first f(k)log(|x|) moves are
nondeterministic.

Let L∗ be a language such that L∗ is disjunctive-reducible to L, let M, g, h be
the algorithm and the functions in the definition of disjunctive reduction. We will
define a W [P] restricted Turing machine M∗ that decides the language L∗. M∗ is
the following machine:

on input (x, k)
(1) M∗ guesses i ∈ {1, . . . , g(k)log(|x|)}.
(2) M∗ computes (xi, ki) the ith element of the output sequence of M, on

input (x, k).
(3) M∗ guesses y ∈ {0, 1}f(ki) log(|xi|).
(4) M∗ simulates the deterministic part of the computation of M, on input

(xi, ki), using the nondeterministic string y.
It is clear that (x, k) ∈ L∗ if and only if M∗ accepts (x, k). �

Proposition 5.29. If W [P] is ∧−closed, then W [P] is maj-closed.

Proof. Let L be a language in W [P] and let Σ be a language which is maj-
reducible to L. There exist an fpt algorithm M and two computable functions f
and g such that for all (x, k)

(1) algorithm M computes, on input (x, k) , a sequence

(x1, k1) , . . . ,
(
xf(k) log(|x|), kf(k) log(|x|)

)
.

(2) (x, k) ∈ Σ ⇔ ⊗
i≤f(k) log(|x|)

(xi, ki) ∈ L.

(3) For all i ≤ f (k) log (|x|) we have that ki ≤ g (k).
Let M be the following nondeterministic W [P] restricted Turing machine:
On input (x, k)
(1) M simulates the computation of M on input (x, k).
(2) Given (x1, k1) , . . . ,

(
xf(k) log(|x|), kf(k) log(|x|)

)
the output of M, on input

(x, k), machine M guesses v ∈ {0, 1}f(k) log(|x|) such that the Hamming
weight of v is larger than or equal to f(k) log(|x|)

2 .
(3) M computes the sequence {(xi, ki) : vi = 1}.
(4) M verifies that

∧
i≤f(k) log(|x|):vi=1

(xi, ki) ∈ L.

M is a nondeterministic W [P] machine since we are supposing that W [P] is
∧-closed, furthermore it is easy to verify that (x, k) ∈ Σ if and only if M accepts
(x, k) . Then, we have that Σ ∈ W [P]. Thus, we have proven that W [P] is
maj-closed. �

Corollary 5.30. If we suppose that W [P] is ∧-closed we have
(1) BP · ∃ · FPT has the pam property.
(2) (Parameterized Strong Lautemann-Sipser theorem) The class BP ·∃ ·FPT

is contained in the class ∀ · ∃ · FPT .

ON THE PARAMETERIZED COMPLEXITY OF APPROXIMATE COUNTING 223

(3) (Parameterized Stockmeyer’s theorem) For all χ ∈ #W [P] the gap prob-
lem p-approx (χ) belongs to ∀ · ∃ · FPT , that is: approximate counting
belongs to the second level of the PH [P] hierarchy.

Las corollary shows that if we suppose that W [P] is ∧-closed, then suitable
parameterized analogues of Lautemann-Sipser and Stockmeyer theorems can be
established. We finish this work stating a question that arises from Corollary 5.30.

Question 1. Is W [P] ∧-closed?

Acknowledgements. Dedicated to Mamadimitriou and Hijodimitriou, thanks to Joerg
Flum. This work was developed with the financial support of VIE-UIS. The author
especially thanks the anonymous referee for carefully reading the manuscript and for
providing him with many helpful suggestions which have greatly improved his writing.

References

[1] M. Agrawal, N. Saxena and N. Kayal, PRIMES is in P. Annals of Math. 160 (2004) 781–793.
[2] V. Arvind and V. Raman, Approximation algorithms for some parameterized counting prob-

lems, in Proceedings of the 13th Annual International Symposium on Algorithms and Com-
putation, edited by P. Bose and P. Morin. Lect. Notes Comput. Sci. 2518 (2002) 453–464.

[3] R.G. Downey and M.R. Fellows, Parameterized Complexity. Springer-Verlag (1999).
[4] J. Flum and M. Grohe, The parameterized complexity of counting problems. SIAM J.

Comput. 33 (2004) 892–922.
[5] J. Flum and M. Grohe, Parameterized Complexity Theory. Springer-Verlag (2006).
[6] O. Goldreich, Randomized methods in Computation. Manuscript (2001) http://www.

wisdom.weizmann.ac.il/~oded/rnd.html.
[7] C. Lautemann, BPP and the Polynomial Hierarchy. Inform. Process. Lett. 17 (1983) 215–

217.
[8] J.A. Montoya, On parameterized Counting. Ph.D thesis, Freiburg University (2008).
[9] J.A. Montoya, The parameterized complexity of probability amplification. Inform. Process.

Lett. 109 (2008) 46–53.
[10] M. Muller, Randomized approximations of parameterized counting problems. Proceedings of

the 2nd International Workshop on Parameterized and Exact Computation (IWPEC’06).
Lect. Notes Comput. Sci. 4169 (2006) 50–59.

[11] C.H. Papadimitriou, Computational Complexity. Addison-Wesley (1994).
[12] L. Stockmeyer, On approximation Algorithms for #P. SIAM J. Comput. 14 (1985) 849–861.
[13] S. Toda, PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20 (1991)

865–877.
[14] L.G. Valiant, The complexity of computing the permanent. Theoret. Comput. Sci. 8 (1979)

189–201.
[15] L.G. Valiant, The complexity of enumeration and reliability problems. SIAM J. Comput. 8

(1979) 410–421.

Communicated by Ch. Choffrut.
Received April 7, 2008. Accepted February 1, 2011.

http://www.wisdom.weizmann.ac.il/~oded/rnd.html
http://www.wisdom.weizmann.ac.il/~oded/rnd.html

	Introduction
	Parameterized complexity
	Counting complexity
	Organization of the paper

	A technical preface
	Probabilistic approximate counting is easy
	Basic definitions
	Hashing
	A probabilistic approximation algorithm

	Approximate counting and gap problems: approximate counting belongs to BPFPT
	Approximate counting belongs to BPFPT

	A parameterized Lautemann-Sipser theorem: approximate counting belongs to the PH[P] hierarchy
	Majority reductions and probability amplification
	A parameterized Lautemann-Sipser theorem
	Some specific cases

	References

