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NORMALIZATION OF EDIT SEQUENCES
FOR TEXT SYNCHRONIZATION

Rafael C. Carrasco1 and Alexander Sánchez Dı́az2

Abstract. It often occurs that local copies of a text are modified by
users but that the local modifications are not synchronized (thus allow-
ing the merged text to become the source for later editions) until later
when, for instance the network connection is reestablished. Since text
editions usually affect a small fraction of the whole content, the history
of edit operations provides a compact representation of the modified
file. In this paper, we define a normal form for these records which will
permit for the comparison of all text files that have been obtained by
editing a common source S when the difference between each output file
Oi and the source file is given as a sequence Li of edit operations. We
show that the normalized sequence is unique for all the equivalent text
editions and provide efficient procedures with which to compute this
normal form and to obtain the edit sequence LM transforming S into
a merged file M which integrates all the local modifications. We also
discuss how these normalization can be integrated into the operational
transformation paradigm for optimistic replication.

Mathematics Subject Classification. 68U99.

1. Introduction

The replication of data enables independent access to shared information, such
as that contained in wiki pages or distributed databases by maintaining multiple
copies of the data in separate computers. Optimistic approaches to data replica-
tion provide a higher availability of the resources because they allow the replicas
to be updated independently. In these frameworks, the consistency of the data
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must be attained later, during the reconciliation process, and the convergence to
an identical state is only guaranteed at quiescence. A complete review of the
optimistic replication techniques has been published by Saito and Shapiro [18].

Depending on the nature of the information that is propagated, there are two
main families of approaches for the updates performed in optimistic replication:
state transfer, in which the current object is propagated, and operation transfer [5],
in which only the modifications regarding a previous state are shared. There are
several fast methods with which to compare content – see, for example, [13,23] –
and there is also a standard procedure with which to compare files that come from
an original common source [9].

Delta compression methods [20] can be used in the state transfer approach to
reduce the amount of information transmitted over the network, since they encode
the differences between a source file and a target file. For example, the rsync algo-
rithm [24] seeks the minimal number of blocks that must be transmitted in order
to update a replica according to the primary copy. However, when no file acts
as primary for the distributed data, a mechanism must be defined which decides
what modifications must be preserved in the synchronization. Non-conflicting
operations are usually propagated automatically [1] but whenever unsafe synchro-
nizations are detected a conflict is reported. For example, the algorithm Unison
reports a conflicts to the user when a file has been modified on both sources [15].

However, network bandwidth is optimized if conflicts are minimized. The use
of vector time pairs [14] to track file modifications and synchronization history
together has been implemented in the Tra synchronizer [4] in order to avoid false
conflicts and to allow for partial synchronizations. An algebraic framework which
provides a proof system for reasoning about operations performed on a file system
also exists [16].

The log-based model for the reconciliation of replicas denominated as Ice-
Cube [8] exploits dynamic constraints in order to merge logs of actions performed
on a common initial state. These constraints prune the space of reorderings that
must be explored in order to minimize conflicts and the model can also be ap-
plied to binary objects. In this approach, non-commutative operations appear in
a canonical order while commutative operations are ordered arbitrarily but con-
sistently.

In the case of collaborative editors, operation-transfer methods permit a more
flexible resolution of conflicts during replication and, in particular, the defini-
tion of strategies with which to preserve the users’ intention [21,22]. For exam-
ple, operation-based merging [11] defines a precedence relation on the primitive
transformations and partitions the primitive transformations performed into non-
conflicting blocks, so that there cannot be any cycles among blocks; it then detects
conflicts based on prior knowledge concerning what operations commute (both lo-
cally or globally).

In this paper, we address the generation of modification logs containing edit
operations performed on each text and its application to detect conflicts and to
update replicas. Edit sequences, rather than single edit operations, will be prop-
agated when frequent or persistent partitions in the network occur. We then



NORMALIZATION OF EDIT SEQUENCES FOR TEXT SYNCHRONIZATION 237

define a normalized form for the sequences of edit operations together with certain
algorithms with which to obtain and maintain it. We shall prove that this nor-
malization is unique and, that it thus allows equivalent sequences to be identified
by means of a simple comparison. Furthermore, the amount of information that
must be propagated is reduced because cancelling operations are automatically
removed.

The normalized edit sequences are introduced in Section 2 and a procedure by
which compute them from log files is described in Section 3. Some basic methods
with which to modify and update edit sequences are described in Section 4. In
Section 5, the results are summarized and ongoing research topics are presented.

2. Basic concepts

We shall consider insertions and deletions to be the basic edit operations on
text files. In the following, edit operations will be denoted with pairs in E =
N×Σ#, where Σ# = Σ∪ {#} is the alphabet of characters permitted in the text,
Σ = {a, b, c, . . .}, extended with the special symbol # to represent deletions. A
pair (k, γ) ∈ E will be interpreted as the insertion of character γ after position
k in the text if γ ∈ Σ and as the deletion of the character at position k + 1 if
γ = #. More precisely, the result S · (k, γ) obtained after the application of the
edit operation (k, γ) to a source text S = s1s2 · · · sL is

S · (k, γ) =

⎧⎨
⎩

s1 · · · skγsk+1 · · · sL if γ ∈ Σ and k ≤ L
s1 · · · sksk+2 · · · sL if γ = # and k < L
undefined otherwise.

(2.1)

An edit sequence is a finite sequence of edit operations. More specifically, the
empty edit sequence will be denoted with ε and the output when it operates on
text S is S ·ε = S. The output when the edit sequence X = x1 · · ·xN , with N > 1,
operates on text S is S ·X = (S · x1) · (x2 · · ·xN ). For example, the output when
(2, a)(0, #)(1, c) operates on abcd is bcacd.

Two edit sequences X and Y will be said to be equivalent, X ≡ Y , if they
generate identical output S ·X = S · Y when they operate on any source text S.
In order to compare edit sequences, it is convenient to define a normalized form.
For this purpose, we will write (i, α) ≺ (j, β) if either i < j or α = β = # with
i = j, and state that the edit sequence x1x2 · · ·xN is normalized if xn−1 ≺ xn for
all 1 < n ≤ N . In particular, the empty sequence ε, which has length N = 0, is
normalized.

A key feature of normalized edit sequences is that they are unique because two
edit operations in a normalized sequence cannot access the same position in the
text – unless they belong to a run of identical deletions (k, #) encoding a block
delete. Indeed, let X = ε and S be an empty text. The result S · Y will then
be undefined – and, thus, different from S · X = S – unless Y = ε or Y starts
with an insertion (k, σ) with k = 0 and σ ∈ Σ. However, in the last case, later
edit operations in Y can only remove those characters that appear after the first
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character in the text and, thus, S ·Y �= S. Therefore, Y must be identical to X = ε.
Consequently, Y ≡ X = x1x2 · · ·xM with M > 0 implies Y �= ε. Furthermore, the
initial operation y1 in Y = y1y2 · · · yN must be identical to x1 because, first, an
insertion (i, σ) or a run of identical deletions (i, #) modifies the content of the text
at position i + 1 and this content (and the preceding content) cannot be changed
later by operations of the type (j, γ) with j > i; and, second, a normalized edit
sequence contains at most one type of operation – a single insertion (i, σ) or a
run of deletions (i, #) – operating on position i. By induction, the remaining
operations in X and Y must be also identical.

In the following section, sequences will be obtained as an intermediate result,
but will not fully normalized since they may contain pairs of the type (i, σ)(i, #).
In this case, x1, x2, · · ·xN will be called a quasi-normalized edit sequence where
xn−1 � xn for all 1 < n ≤ N and (i, α) � (j, β) denotes i < j or α = # with i = j.

3. Normalization of edit sequences

As will be shown below, for every edit sequence X it is always possible to obtain
a normalized edit sequence Y , such that Y ≡ X through the application of a set of
transpositions. However, as edit operations are not commutative, the procedure
requires a careful analysis. For instance, if i ≥ j we can write for all γ ∈ Σ# and
σ ∈ Σ:

(i, γ)(j, σ) ≡ (j, σ)(i + 1, γ). (3.1)
This equivalence allows any unnormalized edit sequence of the type (i, γ)(j, σ)
to be transformed into a new one which is normalized, because i ≥ j implies
(j, σ) ≺ (i + 1, γ). In contrast, for pairs of the type (i, γ)(j, #) with i > j and
γ ∈ Σ# it holds that

(i, γ)(j, #) ≡ (j, #)(i− 1, γ). (3.2)
This equivalence leads either to a normalized edit sequence, if (j, #) ≺ (i− 1, γ),
or only to a quasi-normalized edit sequence if i = j + 1 and γ ∈ Σ. However,
according to equation (3.1), (j, #)(j, σ) is equivalent to (j, σ)(j + 1, #) which
satisfies (j, σ) ≺ (j + 1, #), and the consecutive application of both equivalences
thus leads to a normalized sequence1. Finally, for i = j and σ ∈ Σ we have

(i, σ)(j, #) ≡ ε, (3.3)

signifying that the removal of an inserted character is equivalent to the (normal-
ized) empty sequence.

The three equivalence relations shown above are used by Algorithm 1 to trans-
form any unnormalized edit sequence x1 · · ·xN into an equivalent quasi-normalized
edit sequence. In this algorithm, which can be considered as a variation of the
standard insertion sort, the empty sequences generated as a consequence of the

1We will not use directly the equivalence (j +1, σ)(j, #) ≡ (j, σ)(j +1, #) in the sorting algo-
rithms below because it could generate unnormalized sequences when the neighboring operations
in the sequence are considered.
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Algorithm 1 quasiNormalize(X)
Input: An edit sequence X = x1 · · ·xN

Output: A quasi-normalized edit sequence Y such that X ≡ Y .
1: for n = 1, . . . , N do
2: m← n
3: while m > 1 ∧ xm �= null ∧ (xm−1 = null ∨ xm−1 ⊀ xm) do
4: (i, α)← xm−1

5: if xm−1 = null then
6: xm−1 ← xm

7: xm ← null {Skip over null}
8: else if xm is an insertion then
9: xm−1 ← xm

10: xm ← (i + 1, α){Apply eq. (3.1)}
11: else if xm−1xm ≡ ε then
12: xm−1 ← null
13: xm ← null {Apply eq. (3.3)}
14: else
15: xm−1 ← xm

16: xm ← (i− 1, α) {Apply eq. (3.2)}
17: end if
18: m← m− 1
19: end while
20: end for
21: Y ← clean(X) {Remove all identity operations (nulls) in X}
22: return Y

application of the equivalence (3.3) are replaced by a distinguished identity oper-
ation – represented as a null reference in the implementation.

It is not difficult to realize that, after iteration n in this algorithm, the prefix
x1 · · ·xn is quasi-normalized if all identity operations in x1 · · ·xn are removed
(although for the sake of efficiency, these removals take place after the last iteration
and the main loop skips over identity operations). When xn+1 is an insertion (j, σ),
it is moved by applying the equivalence (3.1) until (j, σ) is placed after an operation
(i1, γ1) such that (i1, γ1) ≺ (j, σ) and before a subsequence (i2, γ2)(i3γ3) · · · such
that j ≤ i2. The result is a new prefix containing · · · (i1, γ1)(j, a)(i2 + 1, γ2)(i3 +
1, γ3) · · · which is quasi-normalized because j < i2 + 1 and (i2, α2)(i3, α3) · · ·
is quasi-normalized. When xn+1 is a deletion (j, #), it is moved by applying
equivalence (3.2) until (j, #) is placed after a subsequence · · · (i1, γ1)(i2, γ2) such
that (i2, γ2) ≺ (j, #) and before a subsequence (i3, γ3)(i4, γ4) · · · such that j < i3
with two possible results:

– In the case of i2 = j and γ2 ∈ Σ, the equivalence (3.3) is immediately ap-
plied and a prefix containing · · · (i1, γ1)(i3−1, γ3)(i4−1, γ4) · · · is obtained,
which is quasi-normalized because γ2 ∈ Σ implies i1 < i2 < i3.

– Otherwise, a prefix containing the subsequence · · · (i1, γ1)(i2, γ2)(j, #)(i3−
1, γ3)(i4 − 1, γ4) · · · is obtained, which is quasi-normalized because j ≤
i3 − 1 and (i3, γ3)(i4, γ4) · · · is quasi-normalized.
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Interestingly, a quasi-normalized edit sequence can be transformed into an
equivalent normalized edit sequence with a second application of the algorithm 1.
Note that, in a quasi-normalized subsequence, all unnormalized subsequences
match the pattern x(k, #)m(k, σ0)(k+1, σ1) · · · (k+n, σn)y with x �= (k, #), m > 0,
and y �= (k+n+1, σn+1). After equivalence (3.1) has been applied, these patterns
lead to a normalized subsequence of the form x(k, σ0)(k +1, σ1) · · · (k +n, σn)(k +
n + 1, #)my which contains neither empty nor unnormalized sequences: on the
one hand, x ≺ (k, #) and x �= (k, #) implies x ≺ (k, σ0); on the other hand, y
modifies a position which is strictly larger than k + n but it is not of the type
(k + n + 1, σn+1) and, thus, (k + n + 1, #) ≺ y.

Therefore, the edit sequence obtained after the application of Algorithm 1
to a quasi-normalized sequence is normalized. For practical applications, this
quadratic-time algorithm can be replaced, as is described in Appendix, by a
much more efficient combination of a sorting method based on merge sort – which
works in O(N log N) time – followed by a linear time procedure that sorts quasi-
normalized blocks.

4. Updating edit sequences

The procedure described in the previous section permits the identification of
equivalent edit sequences, since they share identical normal forms. It also permits
the systematic comparison of log files Li storing edit sequences performed at the
local replica stored at site si derived from a common source file S. If two edit
sequences L1 and L2 have normalized equivalents L̄1 = (i1, α1) · · · (iM , αM ) and
L̄2 = (j1, β1) · · · (jN , βN) respectively which are not identical, it is possible to cre-
ate a new edit sequence LM = L1⊕L2 which integrates the information contained
in L1 and L2.

A naive solution will propagate non-conflicting operations in L1 and L2 to LM :
for example, those identical in the normalized sequences L̄1 and L̄2 or accessing
disjoint contents in the text. However, it is well known that the design of a
procedure that maintains consistency between replicas is a non-trivial challenge
in operation transformations [22], where all sites must reach a convergent state
at quiescence. Moreover, proving the correctness of the transformation is a subtle
task and various methods with which to verify this automatically [7] have been
proposed. The proof essentially checks whether some sufficient conditions are
met but the question if weaker requirements may suffice does not appear to be
established.

Figure 1 illustrates how the result of merging three normalized edit sequences
e1, e2 and e3 differs if identical insertions – the leading (0, a) in e1⊕e2 and e3 – are
merged during the construction of the synchronized sequence LM . As customarily
done, a precedence of sites (here, lower identifiers have higher priority) is applied
to determine the order in which insertions with identical positions that originated
at different sites must be applied. A careful analysis shows that this kind of
insertions, even if they are sorted according to the priority of the originating site,
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Figure 1. Merging two edit sequences from three different sites:
e1 ⊕ (e2 ⊕ e3) and (e1 ⊕ e2)⊕ e3.

is the source of the inconsistency in the results. Indeed, concurrent insertions may
be temporally placed at different positions in the sequence LM , depending on the
order in which the information regarding external editions arrives at the site, but
they can only be merged when they are contiguous. Note that this cannot be the
case with deletions, because a delete either removes a character inserted previously
on the same site (and its effect is then the cancellation of the former operation) or
it removes a character that was already in the original document; therefore, there
is no ambiguity in the effect a delete generates in the source text.

Owing to this ambiguity, the early dOPT algorithm [5] was found to be incor-
rect. The improved algorithm adOPTed [17] solved this issue – as proved by [12] –,
essentially by preserving all insertions. This choice generates some unexpected re-
sults, such as a duplicated character a in the former example in which two users
perform identical corrections. However, this will make it easier to supervise the re-
sult when, for example, one user adds the word as and a second user concurrently
adds the word all, since the merged file will show the whole information through
the string asall.

Therefore, in order to build LM = L1 ⊕ L2 from the normalized sequences
L̄1 and L̄2, the reconciliation process should preserve the semantics of the users’
actions. For example, abc · (1, #)(1, #) = a, but the addition of an insertion such
as (0, a) as the very first operation in the sequence leads to the unexpected result
abc ·(0, a)(1, #)(1, #) = ac. The addition of an insertion (i, σ) to a normalized edit
sequence before an operation (k, γ) such that (i, σ) ≺ (k, γ) clearly begs an increase
in the position of all operations later in the edit sequence – so that the example
becomes (0, a)(2, #)(2, #) – while removing an insertion (i, σ) begs for a decrease
in their value.2 We thus define δ(#) = −1 and δ(γ) = 1 for all γ �= #. It is possible

2The manipulation of deletions requires further considerations because removing, for example,
the first (0, #) in (0, #)(0, #)(1, a)(2, b) should lead to the sequence (0, #)(2, a)(3, b), that is, only
the removal of the last deletion in a run follows the analogous to the simple rule for insertion
removal.
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then to apply the following set of propagation rules, provided that two indices m
and n are used to traverse the normalized sequences L̄1 = (i1, α1) . . . (in, αN ) and
L̄2 = (j1, β1) . . . (jM , βM ) respectively and two parameters ω1 and ω2 represent
the offsets that must be applied to later operations in L̄1 and L̄2:

– A0: add (im + ω1, αm) to LM and set m = m + 1 and n = n + 1.
– A1: add (im + ω1, αm) to LM and set m = m + 1 and ω2 = ω2 + δ(αm).
– A2: add (jn + ω2, βn) to LM and set n = n + 1 and ω1 = ω1 + δ(βn).

The first action (A0) will be applied only if im + ω1 = jn + ω2 and αm = βn = #.
The second action (A1) will be applied in the following cases:

1. n = N (L̄2 exhausted).
2. im + ω1 < jn + ω2 (position precedence).
3. im +ω1 = jn +ω2 and αm �= # and βn = # (precedence of insertions over

deletes).
4. im + ω1 = jn + ω2, αm �= #, βn �= # and s1 has precedence over s2 (site

precedence).

In all the remaining cases, the third action (A2) will be applied. The preference for
insertions over deletions makes the result LM quasi-normalized but its normaliza-
tion requires the application of the block sorting procedure described in the pre-
vious section. The symmetry of the procedure guarantees that L1⊕L2 = L2⊕L1

and also (L1 ⊕ L2)⊕ L3 = L1 ⊕ (L2 ⊕ L3).
The sequence LM obtained with this procedure at site si can be applied to

the original state in order to obtain a convergent updated state. However, if the
source state has not been preserved and only the most recent state is available, it
is necessary to compute L′

i such that LM ≡ LiL
′
i. The edit sequence L′

i can be
obtained by comparing LM with Li.

The removal of operations in Li which are not in LM affects only some of the
operations later in the edit sequence, depending, in general, on the intermediate
operations. Fortunately, any operation can be easily moved until it becomes the
last operation in the edit sequence by applying the following set of commutation
relations, which are valid for all a, b ∈ Σ:

(i, a)(j, b) ≡
{

(j − 1, b)(i, a) if i < j

(j, b)(i + 1, a) if i ≥ j

(i, a)(j, #) ≡

⎧⎪⎨
⎪⎩

(j − 1, #)(i, a) if i < j

ε if i = j

(j, #)(i− 1, a) if i > j

(i, #)(j, b) ≡
{

(j + 1, b)(i, #) if i ≤ j

(j, b)(i + 1, #) if i ≥ j

(i, #)(j, #) ≡

⎧⎪⎨
⎪⎩

(j + 1, #)(i, #) if i ≤ j

(j, #)(i, #) if i = j

(j, #)(i− 1, #) if i > j.

(4.1)
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Once the operation becomes the last operation in the sequence, it can be safely
removed. For example, abcde · (2, #)(0, #)(0, #)(1, #) = d, while simply remov-
ing the initial operation (2, #) does not preserve the user intention because abcde ·
(0, #)(0, #)(1, #) = ce. However, by applying the equivalences shown above in or-
der to move the initial operation (2, #) backwards, one obtains (2, #)(0, #)(0, #)
(1, #) ≡ (0, #)(0, #)(2, #)(1, #). After the last operation in the sequence is re-
moved, the expected result abcde · (0, #)(0, #)(2, #) = cd is then obtained. It is
worth noting that, in some cases, the moved operation is cancelled with a later op-
eration owing to the application of the forth equivalence in (4.1) – (i, #)(i, a) = ε –,
and the process thus stops before the end of the sequence is reached. This situation
reflects the fact that an operation equivalent to that which is to be removed has
been later performed in the sequence, and it is a thus reasonable choice to keep
just one of them.

The edit operations in LM which are not in Li can neither be safely inserted
in the middle of the sequence (since later operations may require updating) nor
appended unchanged at the end. For example, if the operation x1 is added before
the operation x2, then x2 should be rewritten as x′

2 such that x1x
′
2 ≡ x2x

′
1 for some

operation x′
1. Thus, for x1, x2, y1, y2 ∈ E, we will write xR

1 y1 ≡ x2y
R
2 if and only

if x1x2 ≡ y1y2. These equivalences can easily be derived from the commutation
relations (4.1):

(i, a)R (j, b) ≡

⎧⎪⎨
⎪⎩

(j + 1, b)(i, a)R if i ≤ j ∧ a �= b

(j, b)(i + 1, a)R if i ≥ j ∧ a �= b

ε if i = j ∧ a = b

(i, a)R (j, #) ≡
{

(j + 1, #)(i, a)R if i ≤ j

(j, #)(i − 1, a)R if i > j

(i, #)R (j, b) ≡
{

(j − 1, b)(i, #)R if i < j

(j, b)(i + 1, #)R if i ≥ j

(i, #)R (j, #) ≡

⎧⎪⎨
⎪⎩

(j − 1, #)(i, #)R if i < j

ε if i = j

(j, #)(i− 1, #)R if i > j.

(4.2)

If it is necessary to insert an operation z before an edit sequence x1 · · ·xN , a fast
procedure to compute the resulting sequence is, therefore, to move backwards zR

in the sequence zzRx1 · · ·xN using the equivalences (4.2) until either the moved
operation is cancelled or the end of the sequence is reached (and the moved oper-
ation is then removed). For example, in order to add a deletion (2, #) before the
sequence (0, #)(1, #), (2, #)R(0, #)(1, #) ≡ (0, #)(1, #)R(1, #) ≡ (0, #) is com-
puted, and the resulting edit sequence after the addition is therefore (2, #)(0, #).

In summary, we can implement a procedure to obtain a new edit sequence L′
i

from LM that can be applied to the current state. The algorithm starts with an
empty list L′

i and proceeds iteratively as follows:
– Find the first operation z which differs in LM and Li.
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– If z is in Li but not in LM (z has been removed with regard to Li), then
move z backwards in LiL

′
i using the equivalences (4.1) until either the

equivalence (i, a)(i, #) ≡ ε (third equivalence in the list) is applied or the
end of the sequence is reached. In the last case, remove the last operation
in the edit sequence.

– If z is in LM but not in Li (z has been added with regard to Li), then
add zzR to LiL

′
i and move zR backwards using the equivalences (4.2) until

either the equivalence zRz ≡ ε (third or nine equivalences in the list) can
be applied or the end of the sequence is reached. In the last case, remove
the last (reverse) operation in the edit sequence.

5. Conclusion

We have defined a normalized form for the sequences of edit operations per-
formed on a text file. This normalized form is unique, and thus permits the direct
comparison of local editions which have been performed on a common source text
file. We also provide simple and efficient algorithms with which to obtain a nor-
malized edit sequence from a general sequence.

In comparison to traditional replication methods that guarantee consistency [12],
the temporal precedence is not enforced by our approach, since our normalization
essentially maintains a precedence based on the position of the source file affected
by the edit operation so that later edits cannot influence the preceding ones.

This normalization avoids one of the inefficiencies in the transmission of oper-
ation logs: if a block of operations cancels a previous operation, for example a
deletion removes a large set of changes performed previously, then the normalized
edit sequence does not include these edit operations. This question has been previ-
ously addressed with procedures specifically designed for the log files transferred in
replication [19]. The other obvious source of inefficiency, changes that have been
identically performed on both sites, can be avoided by using delta compression
applied to the normalized logs.

The formalism can be easily extended so that delete operations also contain
which character is erased in the text. This extension makes some equivalences
between edit sequences unsafe because they depend on the text they operate on:
for instance, if (0, ā) denotes the deletion of a character a at position 1, the output
when (0, ā)(0, a) operates on S = s1 · · · sL will be undefined if s1 �= a but equivalent
to ε otherwise. However, the extension may present some advantages which are
worth exploring:

– One can define the reverse of edit sequences because the original file can
be recovered from the output and the applied edit sequence, provided that
the output is not undefined.

– If S · X = S · Y is not undefined, then X and Y generate identical out-
put when applied to any source file (provided that both results are not
undefined).
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– The length of the shortest equivalent sequence is related to the indel dis-
tance (the edit distance when substitutions are not permitted) between
the source and the output text.

We also plan to explore the extension of the ideas presented here to the case of
the comparison of structured texts – such as those contained in XML documents,
configuration files or syntactically parsed content – exploiting both the particular
features that its synchronization presents [6,10] and previous ideas developed for
the comparison of tree structures. [2,25]
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Appendix. Faster normalization based on merge sort

The construction of a quasi-normalized edit sequence can be implemented as an
adaptation of the merge sort algorithm. The key in this procedure is a modified
merge function [3] which builds a normalized edit sequence Z from two normalized
edit sequences X = x1x2 · · ·xM and Y = y1y2 · · · yN . This function proceeds
iteratively and at every iteration a suffix xmxm+1 · · ·xM , a suffix ynyn+1 · · · yN

and a prefix z1z2 · · · zr of the final result Z are considered. After every iteration the
algorithm guarantees that zr ≺ xm∧zr ≺ yn and also that the sequence z1z2 · · · zr

is quasi-normalized. After the last iteration is complete, a final sorting procedure
(Algorithm 2) is applied which transforms a quasi-normalized edit sequence into
a normalized sequence in linear time.

The merge function uses to indexes, m and n, to iterate over the normalized edit
sequences X and Y respectively and an auxiliary integer ω that stores the offset
that must be applied to the positions in xm+1 · · ·XM owing to the edit operations
in y1 · · · yn−1, which have been previously added to the output Z. If m > M
or n > N , the function adds the remaining operations (yn · · · yN or xm · · ·xM

respectively) before returning Z. Otherwise, it examines the initial operations in
xm · · ·xM and yn · · · yN : let xm = (i, α) and, if m < M , xm+1 = (j, β) and let
yn = (k, γ) and, if n < N , yn+1 = (l, δ). If yn is an insertion (k, γ) with γ �= #,
only two cases need to be considered:

(1) If i + ω < k, then add (i + ω, α) to Z and set m = m + 1.
(2) Otherwise, add (k, γ) to the output and set n = n + 1 and ω = ω + 1.

However, if γ = #, all the following cases must be considered:

(1) If i + ω < k, then add (i + ω, α) to Z and set m = m + 1.
(2) If i + ω = k a number of sub-cases may appear,

(a) If j > i + 1 (or m ≥ M) and α �= # then set m = m + 1, n = n + 1
and ω = ω − 1.

(b) If j > i + 1 (or m ≥ M) and α = # then add (k, #)(i + ω, #) to Z
and set m = m + 1, n = n + 1 and ω = ω − 1.
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(c) If j = i then add (i + ω, #) to Z and set m = m + 2.
(d) If j = i + 1:

(i) If α �= # then add (k, #)(i + ω, #) to Z.
(ii) Set m = m + 2, n = n + 1 and ω = ω − 1.
(iii) If β �= # then

(A) If n = N or δ �= # or l > k then add (j + ω − 1, β) to Z.
(B) Otherwise, set n = n + 1 and ω = ω − 1.

(e) If j = i + 1 and β = # then add (k, β) to Z and set m = m + 1,
n = n + 1 and ω = ω − 1.

(3) If i + ω = k + 1 then add (k, #)(k, α) to Z and set m = m + 1, n = n + 1
and ω = ω − 1. Moreover,
(a) If α = # or n = N or δ �= # or l �= k then add (i + ω − 1, α) to Z.
(b) Otherwise, set n = n + 1 and ω = ω − 1.

(4) If i + ω > k + 1, then add (k, #) to Z, and set n = n + 1 and ω = ω − 1.
After every merge, the sorting Algorithm 2 is called. This function essentially
counts the number of deletions in a run (line 5) and if they are followed by the
suitable insertions (matching the pattern described at the end of Sect. 2), every
insertion is then swapped with a deletion in the preceding run (lines 7-8). Once
the pattern end is reached, all deletions in the run become identical (see line 12).

Algorithm 2 blockSort(X)

Input: A quasi-normalized edit sequence X = x1 · · ·xN

Output: A normalized edit sequence Y such that X ≡ Y .
1: length = 1
2: for n = 2, . . .N do
3: (k, γ)← xn

4: if γ = # ∧ xn = xn−1 then
5: length← length + 1
6: else if xn−1 ⊀ xn then
7: xn−length ← xn

8: xn ← (k + 1, #)
9: else

10: while length > 1 do
11: xn−length ← xn−1

12: length← length− 1
13: end while
14: end if
15: end for
16: while length > 1 do
17: xN+1−length ← xN

18: length← length− 1
19: end while
20: return X
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