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UNIQUE DECIPHERABILITY IN THE ADDITIVE
MONOID OF SETS OF NUMBERS ∗, ∗∗

Aleksi Saarela1

Abstract. Sets of integers form a monoid, where the product of two
sets A and B is defined as the set containing a + b for all a ∈ A and
b ∈ B. We give a characterization of when a family of finite sets is a
code in this monoid, that is when the sets do not satisfy any nontrivial
relation. We also extend this result for some infinite sets, including all
infinite rational sets.

Mathematics Subject Classification. 68R05, 68Q45.

1. Introduction

The product of two languages A and B is defined as the language containing all
words uv, where u ∈ A and v ∈ B. Then the set of all languages is a monoid. Some
problems that are easy for words are very hard in this monoid of languages. For
example, if xy = yx for two words x, y, then x and y are powers of a common word,
but no similar result holds for languages. In fact, the maximal language commuting
with a given finite language is not necessarily even recursively enumerable [7].
As another example, it is undecidable whether ABiC = DEiF for all i, where
A, B, C, D, E, F are given finite sets [6].

We will study some problems in the case when the languages are unary. The
monoid of unary languages is isomorphic to the additive monoid of sets of natural
numbers, so we will actually formulate everything in terms of sets of numbers.
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A set of words A is said to be a code, if no word of A∗ has two different
representations as products of elements of A. Then it is also said that A has the
unique decipherability property. Codes have been studied a lot, see e.g. [1], and
they are fundamentally important in message transmission.

The notion of unique decipherability can be extended to other monoids, e.g. to
the monoid of languages. We are interested in this problem for unary languages,
that is in the additive monoid of sets of integers, where the product of two sets A
and B is defined as the set containing all sums a+b, where a ∈ A and b ∈ B. Now a
family of sets can be defined to be a code, if no set has two different representations
as a product of these sets. Because the monoid is commutative, representations
are not considered different if they differ only by the order of the sets.

The problem of determining whether a given family of finite sets of natural
numbers is a code was proved to be decidable in [3]. We will extend this result by
giving a complete characterization of these codes, and by generalizing it for some
infinite sets. We will also study the power equality problem, that is the problem
of determining whether some powers of two sets are equal.

We will begin in Section 2 by giving the required definitions and by proving some
results about powers of sets of integers. These results are related to the Frobenius
problem, see e.g. [9] for a survey [5] for a generalization for words and [4] for
related algebraic results. The main result of this section is that if the elements
of a set do not have a common divisor, then sufficiently large powers of the set
contain almost all integers between their minimums and maximums. This result
is very important in the later sections.

In Section 3 we consider the power equality problem. For example, we show
that it is sufficient to consider powers that are of linear size with respect to the
maximum of the sets. The results in this section form the basis for the solution of
the unique decipherability problem, and are also of independent interest.

In Section 4 we give a characterization of codes in the additive monoid of finite
sets of integers. In particular, we prove that a family of three sets is never a code,
i.e. three sets always satisfy a nontrivial relation. We prove a similar result for
certain infinite sets, including all infinite rational sets.

2. Additive powers of a set

Let M be a monoid. The subsets of M form a monoid, where the product of
two sets A, B ⊆ M is defined to be AB = {uv : u ∈ A, v ∈ B} . We are interested
in the case of unary languages, that is the case of M = {a}∗, where a is a letter.
This monoid M is isomorphic with the additive monoid of nonnegative integers
N0, where the isomorphism is ak �→ k. Also the monoid of unary languages is
isomorphic with the monoid of sets of nonnegative integers, where the isomorphism
is {ak1 , ak2 , . . .} �→ {k1, k2, . . .}. Thus we will formulate everything in terms of sets
of numbers. Often we can allow the sets to contain also negative integers. We will
mostly consider finite sets.
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If m, n ∈ Z, k ∈ N0 and A, B ⊆ Z, then we use the following notation:

[m, n] = {a ∈ Z : m ≤ a ≤ n} ,

[m,∞) = {a ∈ Z : a ≥ m} ,

(−∞, n] = {a ∈ Z : a ≤ n} ,

AB = {a + b : a ∈ A, b ∈ B} ,

Ak = {a1 + · · · + ak : a1, . . . , ak ∈ A} ,

A∗ =
∞⋃

k=0

Ak,

A + n = {a + n : a ∈ A} ,

A · n = {an : a ∈ A} ,

A/n = {a/n : a ∈ A} .

We will often need to assume that the elements of a set do not have a common
divisor, or that the minimum of a set is zero. Thus we let

Sn = {A ⊆ [0, n] : 0, n ∈ A, gcdA = 1} .

If A ∈ Sn, then let Ã = {n − a : a ∈ A} be the “reverse” of A. Now ÃB = ÃB̃.
Let A = {0, a1, . . . , ar} ⊂ N0 and gcdA = 1. It is well known that every

sufficiently large integer can be represented in the form

a1x1 + · · · + arxr, (2.1)

where x1, . . . , xr ∈ N0. The Frobenius problem asks, what is the largest integer
that cannot be represented in this way. This integer is called the Frobenius number
of A and we denote it by G(A). The numbers (2.1) form the set A∗, so G(A) is
the largest integer not in A∗.

We define Fm(A) to be the smallest integer such that

A∗ ∩ [0, m] ⊆ AFm(A).

We assume that 0 ∈ A, so A ⊆ A2 ⊆ A3 ⊆ . . . and Fm(A) exists for every m. The
number Fm(A) tells how large the coefficients x1, . . . , xr need to be: if n ≤ m and
n has a representation of the form (2.1), then n has such a representation, where
x1 + · · · + xr ≤ Fm(A).

There are many results concerning the size of the Frobenius number. We use
the following result from [2].

Lemma 2.1. If A = {a0, . . . , ar} ∈ Sn, where 0 = a0 < · · · < ar = n, then
G(A) ≤ a1n − a1 − n ≤ n2 − 2n.

We also need an upper bound for Fm(A).
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Lemma 2.2. If A = {a0, . . . , ar} ∈ Sn, where 0 = a0 < · · · < ar = n, then
Fm(A) ≤ n − 1 + m/n.

Proof. Let g = G(A) and a ∈ A∗ ∩ [0, m]. If a ≤ g + n, then a ∈ Ak, where
k = �(g + n)/a1�. If a > g+n, then a = g+ i+n(a−g− i)/n, where i ∈ {1, . . . , n}
is such that g + i ≡ a mod n. Now g + i ∈ Ak and n(a − g − i)/n ∈ Al, where
again k = �(g + n)/a1� and l = (a− g− i)/n, and thus a ∈ Ak+l. So with the help
of Lemma 2.1 we get the result

Fm(A) ≤ k + l ≤ g + n

a1
+

a − g − 1
n

≤ n − 1 +
m

n
· �

Next we examine the structure of Ak for large k. If A ∈ Sn, then Ak ⊆
[0, kn]. Because A∗ contains almost every natural number, Ak contains almost
every number from the interval [0, kn]. Only some numbers from the beginning
and from the end are missing. These missing numbers will be essentially the same
for all large values of k (of course the large missing numbers will be getting larger
and larger as k grows). This is formalized by the following theorem.

Theorem 2.3. Let A ∈ Sn, C = A∗ ∩ [0, n2 − 2n] and D̃ = (Ã)∗ ∩ [0, n2 − 2n].
Now

Ak = C ∪ [
n2 − 2n + 1, kn − n2 + 2n− 1

] ∪ (D + kn − n2 + 2n)

for all k ≥ 2n − 2.

Proof. Let k ≥ 2n− 2. By Lemma 2.2,

F�kn/2�(A), F�kn/2�
(
Ã

)
≤ n − 1 + k/2 ≤ k.

Now we get

Ak ∩
[
0, �kn/2�

]
= A∗ ∩

[
0, �kn/2�

]
=

(
A∗ ∩

[
0, n2 − 2n

])
∪

(
A∗ ∩

[
n2 − 2n + 1, �kn/2�

])
= C ∪

[
n2 − 2n + 1, �kn/2�

]
.

Here the first equality holds, because k ≥ F�kn/2�(A), and the last equality follows
from Lemma 2.1. Similarly we get Ãk ∩ [0, �kn/2�] = D̃ ∪ [n2 − 2n + 1, �kn/2�].
The claim follows. �

3. Power equality problem

We will study the power equality problem, that is the problem of determining
whether some powers of two finite sets A, B ⊂ Z are equal. The following lemma
tells how this problem can be reduced to the case where minA = min B = 0.
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Lemma 3.1. Let min Ai = mi < max Ai = ni, Ai = Bi + mi, and k, l > 0. Now
Ak

1 = Al
2 if and only if Bk

1 = Bl
2 and m1n2 = m2n1.

Proof. The sets Ak
1 and Al

2 are equal if and only if

Bk
1 + km1 = Bl

2 + lm2. (3.1)

If the sets Ak
1 and Al

2 are equal, then their minimums and maximums are equal,
that is km1 = lm2 and kn1 = ln2. From this and (3.1) it follows that Bk

1 = Bl
2

and m1n2 = m2n1.
On the other hand, if Bk

1 = Bl
2, then k(n1 −m1) = maxBk

1 = maxBl
2 = l(n2 −

m2). Multiplying this by m1m2 gives km1(m2n1 −m1m2) = lm2(m1n2 −m1m2).
If m1n2 = m2n1, then km1 = lm2 and (3.1) holds. �

It is clear that if min A = min B = 0, then some powers of A and B can be
equal only if gcdA = gcd B = d, and if this is the case, then Ak = Bl if and only
if (A/d)k = (B/d)l. Thus we can assume that d = 1.

Example 3.2. Let A2 = B2. If the two smallest elements of A are 0 and a, then
the two smallest elements of A2 are also 0 and a. Thus 0 and a must also be the
two smallest elements of B. Similarly the two largest elements of A and B must
be the same.

The example of A �= B, A2 = B2, where the largest element of A is as small
as possible, is A = {0, 1, 3, 4}, B = {0, 1, 2, 3, 4} (or vice versa). In this case
A2 = B2 = {0, 1, 2, 3, 4, 5, 6, 7, 8}.

The sets A, B can also be selected to be maximal in the sense that they are not
proper subsets of any set D such that A2 = D2. For example, if

A = {0, 1, 3, 7, 8, 9}, B = {0, 1, 3, 6, 8, 9}, C = {0, 1, 2, 6, 8, 9},

then A2 = B2 = C2 �= D2 for all D such that A ⊂ D, B ⊂ D or C ⊂ D.

Theorem 3.3. Let m ≤ n, A ∈ Sm and B ∈ Sn. There are i, j > 0 such that
Ai = Bj if and only if

Ak ∩ [0, n2 − 2n] = Bk ∩ [0, n2 − 2n] and

Ãk ∩ [0, n2 − 2n] = B̃k ∩ [0, n2 − 2n], (3.2)

where k = 2n − 2.

Proof. If Ai = Bj , then im = jn and Aki = Bkj for all k. Thus there are such
i, j if and only if there are such i, j ≥ 2n − 2. If Ai = Bj , where i, j ≥ 2n − 2,
then (3.2) holds by Lemma 2.2.

Next, assume that (3.2) holds. Consider two arbitrary integers i, j ≥ 2n − 2
satisfying im = jn. Then Ai = Bj by Theorem 2.3. �

Theorem 3.3 gives a condition for the existence of the required numbers i and j,
and this leads to an algorithm for solving the power equality problem. The next
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theorem gives a similar condition, which is perhaps not as useful algorithmically,
but may be easier in some other ways.

Theorem 3.4. Let A ∈ Sm and B ∈ Sn. There are i, j > 0 such that Ai = Bj if
and only if A∗ = B∗ and (Ã)∗ = (B̃)∗.

Proof. If m ≤ n, Ai = Bj and C ∈ {A, B, Ã, B̃}, then

C∗ =
(
C2n−2 ∩ [

0, n2 − 2n
]) ∪ [

n2 − 2n + 1,∞
)

by Lemmas 2.1 and 2.2. Now A∗ = B∗ and (Ã)∗ = (B̃)∗ by Theorem 3.3. On the
other hand, if A∗ = B∗ and (Ã)∗ = (B̃)∗, then (3.2) holds by Lemma 2.2. �

We can use Theorem 3.3 to prove that if Ak = Bk holds for some k, then it
holds for all sufficiently large k. We are not aware whether Ak = Bk implies
Ak+1 = Bk+1.

Theorem 3.5. If A, B ∈ Sn and Ak = Bk for some k > 0, then Ak = Bk for all
k ≥ 2n− 2.

Proof. If Ak = Bk for some k, then by Theorem 3.3 equation (3.2) holds for
k = 2n − 2, and by Lemma 2.2 it holds for all larger k as well. The claim now
follows from Theorem 2.3. �

Theorem 3.5 raises the following question: if n is fixed, then what is the smallest
number m such that if A, B ∈ Sn and Ak = Bk for some k > 0, then Ak = Bk

for all k ≥ m? Theorem 3.5 proves that m ≤ 2n − 2, and the following example
proves that m ≥ n − 2.

Example 3.6. Let A = {0, 1, n − 1, n}. Now An−3 �= [0, n]n−3, but An−2 =
[0, n]n−2. The inequality holds, because n−2 /∈ An−3. The equality holds, because
every element of [0, n]n−2 = [0, (n− 2)n] is of the form an + b, where a ∈ [0, n− 3]
and b ∈ [0, n], and if a+ b ≤ n− 2, then an+ b ∈ {0, 1, n}n−2, and if a+ b > n− 2,
then an + b = (a + b − n + 1)n + (n − b)(n − 1) ∈ {0, n− 1, n}n−2.

4. Unique decipherability problem

In this section we will study the unique decipherability problem in the monoid
of sets of integers. The motivation for the terms “code” and “decipherability”
comes from the theory of languages. There, a language A is called a code, if the
following holds: if u1, . . . , um, v1, . . . , vn ∈ A and u1 . . . um = v1 . . . vn, then m = n
and ui = vi for all i. A good reference on the theory of codes is [1].

In the commutative monoid of sets of integers the definition of a code can be
written as follows. A family of sets {A1, . . . , As} is a code, or has the unique
decipherability property, if no set has two essentially different representations as a
product of these sets, or more formally if there are no numbers k1, . . . , ks, l1, . . . , ls
such that Ak1

1 . . . Aks
s = Al1

1 . . . Als
s and ki �= li for some i.
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Theorem 4.1. Let A1, . . . , As be finite sets of integers. Let min Ai = mi and
maxAi = ni. The sets Ai form a code if and only if s = 1 and A1 �= {0} or s = 2
and m1n2 �= m2n1.

Proof. Let Ak1
1 . . . Aks

s = Al1
1 . . . Als

s . The minimums and maximums of these sets
must be the same, that is

m1(k1 − l1) + · · · + ms(ks − ls) = 0 and

n1(k1 − l1) + · · · + ns(ks − ls) = 0.

This can be viewed as a pair of equations with s unknowns ki − li and coefficients
mi, ni. This pair of equations has nontrivial solutions if and only if the rank of
the matrix (

m1 . . . ms

n1 . . . ns

)
is smaller than s. The rank is s if and only if s = 1 and A1 �= {0} or s = 2 and
m1n2 �= m2n1.

If the rank is s, then necessarily ki = li for all i. This means that the sets Ai

form a code.
If the rank is smaller than s, then we can select the numbers ki and li to

be positive integers so that kj �= lj for some j. Let Ai = Bi + mi. Let d =
gcd(B1 ∪ · · · ∪ Bs) and Ci = Bi/d. If D = Ck1

1 . . . Cks
s and E = Cl1

1 . . . Cls
s , then

D∗ = (C1 ∪ · · · ∪ Cs)∗ = E∗ and (D̃)∗ = (C̃1 ∪ · · · ∪ C̃s)∗ = (Ẽ)∗. Now from
Theorem 3.4 it follows that Dk = El for some k, l. Because

d maxD = k1(n1 − m1) + · · · + ks(ns − ms)

= l1(n1 − m1) + · · · + ls(ns − ms) = d maxE,

it must be k = l. This means that(
Ak1

1 . . . Aks
s

)k

=
(
Bk1

1 . . . Bks
s

)k

+ k(k1m1 + · · · + ksms)

= Dk · d + k(k1m1 + · · · + ksms)

= Ek · d + k(l1m1 + · · · + lsms)

=
(
Bl1

1 . . . Bls
s

)k

+ k(l1m1 + · · · + lsms) =
(
Al1

1 . . . Als
s

)k

and the sets Ai do not form a code. �
A subset of a monoid is rational, if it is obtained from finite sets by repeatedly

using the operations of union, product and star. In other words, all finite sets are
rational, and if A and B are rational, so are A∪B, AB and A∗. In the case of the
additive monoid N0, a set A ⊆ N0 is rational if and only if it is ultimately periodic,
that is if there are finite sets B, C and a number n such that A = B ∪ C{n}∗.

We have given a characterization of all codes in the additive monoid of finite sets
of integers. Next it would be natural to study the unique decipherability problem
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for rational sets. We can indeed generalize Theorem 4.1, and the condition we
need is actually weaker than rationality: some power of some set must contain an
infinite rational set. The next lemma gives some equivalent conditions.

Lemma 4.2. Let A ⊂ Z be infinite and min A > −∞. The following are equiva-
lent:

(i) Ak contains an infinite rational set for some k;
(ii) Ak contains an infinite arithmetic progression for some k.

If these conditions hold and 0 ∈ A, then {gcdA}∗ � Ak is finite for some k. If
also min A = 0, then A∗ = Al for some l (this is called the finite power property).

Proof. Every arithmetic progression is a rational set, and every infinite rational
set contains an infinite arithmetic progression, so (i) and (ii) are equivalent.

Let 0 ∈ A and let a, b ∈ Z be such that a + bn ∈ Ak for every n ≥ 0. Because
A∗ contains all sufficiently large multiples of gcdA, there are numbers c, l such
that every multiple of gcdA that is in the interval [c + 1, c + b] is also in Al. Now
Al+k contains every number that is greater than a + c and divisible by gcdA.

Let min A = 0 and let {gcdA}∗ � Ak be finite. Now Ak ⊆ Ak+1 ⊆ Ak+2 ⊆
· · · ⊆ {gcdA}∗ and only finitely many of these inclusions can be proper, so Al =
Al+1 = Al+2 = · · · = A∗ for some l. �

It is not necessary for any of the conditions in Lemma 4.2 to hold for k = 1.
For example, if A is the set of all squares, then A4 = N0 = A∗ by Lagrange’s
four-square theorem.

Theorem 4.3. Let A1, . . . , As be sets of integers. Let min Ai = mi > −∞ for all
i. Let Ak

1 contain an infinite arithmetic progression for some k. The sets Ai form
a code if and only if s = 1 and m1 �= 0.

Proof. If s = 1 and m1 = 0, then Al
1 = A∗

1 = Al+1
1 for some l by Lemma 4.2. If

s = 1 and m1 �= 0, then Ak
1 �= Al

1 for all k �= l, because min Ak
1 = km �= lm =

min Al
1 for all k �= l.

Let s ≥ 2. There are k1, k2, l1, l2 > 0 such that k1m1 + k2m2 = l1m1 + l2m2,
but k1 �= l1 or k2 �= l2. Let Ai = Bi + mi. Now Bk

1 contains an infinite arith-
metic progression, and the same is true for the sets (Bk1

1 Bk2
2 )k and (Bl1

1 Bl2
2 )k. By

Lemma 4.2, there is a number l such that (Bk1
1 Bk2

2 )∗ = (Bk1
1 Bk2

2 )l and (Bl1
1 Bl2

2 )∗ =
(Bl1

1 Bl2
2 )l. Also (Bk1

1 Bk2
2 )∗ = (B1 ∪ B2)∗ = (Bl1

1 Bl2
2 )∗. Now

(
Ak1

1 Ak2
2

)l

=
(
Bk1

1 Bk2
2

)l

+ l(k1m1 + k2m2)

=
(
Bk1

1 Bk2
2

)∗
+ l(k1m1 + k2m2)

=
(
Bl1

1 Bl2
2

)∗
+ l(l1m1 + l2m2)

=
(
Bl1

1 Bl2
2

)l

+ l(l1m1 + l2m2) =
(
Al1

1 Al2
2

)l

and the sets Ai do not form a code. �
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In Theorem 4.3 we assumed that every infinite set is one-way infinite, i.e. has
a finite minimum. The case where every set has a finite maximum is of course
symmetric. We can also consider the two-way infinite case, i.e. the case when at
least one set has arbitrarily large elements, and at least one (possibly the same)
has arbitrarily small elements. This is done in the following theorem.

Theorem 4.4. Let A and B be (not necessarily distinct) infinite sets of inte-
gers. Let the sets (A ∩ [0,∞))k and (B ∩ (−∞, 0])k contain infinite arithmetic
progressions for some k. The sets A, B do not form a code.

Proof. Now (AB)k contains increasing and decreasing infinite arithmetic progres-
sions. Let m ∈ (AB)k and C + m = (AB)k. Let a, b be such that

gcd C = gcd(C ∩ [a,∞)) = gcd(C ∩ (−∞, b]).

By Lemma 4.2, there is a number l1 such that (C∩[a,∞))l1 contains all but finitely
many of the positive numbers divisible by gcdC. Similarly, there is a number l2
such that (C ∩ (−∞, b])l2 contains all but finitely many of the negative numbers
divisible by gcdC. If l > l1, l2, then Cl = {± gcdC}∗. Now

((AB)k)l+gcd C = Cl+gcd C + ml + m gcdC = {± gcdC}∗ + ml + m gcdC

= {± gcdC}∗ + ml = Cl + ml = ((AB)k)l

and the sets A, B do not form a code. �

We have shown that three finite sets of integers do not form a code, and we
have generalized this for certain infinite sets. However, no similar result holds for
all infinite sets. The next example shows that there are arbitrarily large codes in
the additive monoid of sets of integers.

Example 4.5. Let Ai = {1} ∪ {(i + js)! : j ∈ N0} for i = 1, . . . , s. Let B =
Ak1

1 . . . Aks
s . We prove that the sets Ai form a code by showing that the set B

uniquely determines the exponents ki.
Let j be such that js > min B = k1 + · · ·+ ks. Now k(i + js)! + min B − k ∈ B

for k ≤ ki, but not for k = ki + 1. Thus every ki is determined by B.

It remains an interesting question what can be said about the unique decipher-
ability problem (or the power equality problem) in the case of non-unary languages.
This question probably requires an entirely different approach. In [3] it was proved
that the unique decipherability problem is decidable for sets of finite languages if
some letter appears exactly once in every word of every language. It is also known
that the set of finite prefix sets is a free monoid, i.e. generated by a code [8].
Perhaps similar results could be proved for some other classes of languages.
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