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LOCALLY CATENATIVE SEQUENCES
AND TURTLE GRAPHICS*

JUHANI KARHUMAKI' AND SVETLANA PUZYNINA L2

Abstract. Motivated by striking properties of the well known
Fibonacci word we consider pictures which are defined by this word
and its variants via so-called turtle graphics. Such a picture can be
bounded or unbounded. We characterize when the picture defined by
not only the Fibonacci recurrence, but also by a general recurrence
formula, is bounded, the characterization being computable.

Mathematics Subject Classification. 68R15.

INTRODUCTION

Combinatorics on words is a relatively new research topic in discrete mathe-
matics, see, e.g., [1,7,14,15]. An impressive feature of it is that it is applicable in
and motivated by many quite different areas of science, and especially theoretical
computer science. In particular, infinite words over a finite alphabet are crucial
here. The goal of this paper is to apply the theory and methodology of infinite
words to describe two-dimensional pictures. This is done by using infinite words
as instructions to turtle graphics.

Turtle graphics is a term in computer graphics for a method of programming
vector graphics using a relative cursor upon a Cartesian plane. Papert invented it
as a system for translating a sequence of symbols into the motions of an automaton
(the “turtle”) on a graphics display (see [16]). The basic system is as follows. The
turtle has three attributes: a position, an orientation and a pen. We fix a “step
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length” d to be the distance covered by the turtle in one step. We also set §
to be a given angle, usually § = 360°/n for some integer n. The turtle moves
with commands that are relative to its own position: “move forward” and “turn
left /right by angle §”. Turtle graphics is a key feature of the Logo programming
language. Turtle geometry is also sometimes used in graphics environments as an
alternative to a strictly coordinate-addressed graphics system.

Combined with control flow, procedures, and recursion, the idea of turtle graph-
ics is useful and already used in a Lindenmayer system for giving a geometrical
interpretation to the dynamics of L-systems and for generating fractals: Koch
curve, Dragon curve, Peano curve, Rudin-Shapiro curve, Hilbert curve, etc., see,
e.g. [1,2,8,9,13,17,19], and three-dimension generalizations [10]. For a more gen-
eral treatment of fractal type pictures we refer to [3].

Our starting point is to consider the Fibonacci word, which is known to be one
of the most studied infinite words with amazing properties, see [5]. As we see it
can define, via turtle graphics, either finite or infinite pictures depending on initial
values in its recurrent formulation. This leads to consider all pictures interpreted
by a general recurrent formula. As the main result we characterize when such
a picture is bounded, the characterization is algorithmic. The characterization is
also obtained for recurrence relations with codings over the binary alphabet, which
allows to get the result for binary morphic sequences. In the paper we develop
new algebraic methods for analyzing such curves.

The paper is organized as follows. After a few preliminary definitions in
Section 1, we give in Section 2 examples of curves defined by Fibonacci and Thue-
Morse words. In Section 3, we develop general theory and establish the necessary
and sufficient conditions for boundedness of curves defined by recurrent formulas.
Section 4 is devoted to the general recurrences with codings over the binary al-
phabet. Finally, in Section 5, we give some concluding remarks and discuss open
problems.

1. PRELIMINARIES

Let a = (an)3%, be an infinite word over a finite alphabet ¥. We translate a to
a path visiting integer points of the plane by interpreting letters of a by drawing
instructions. Each letter of X is assigned to a sequence of moves by unit and turns
by 90°, which corresponds to a path in the lattice Z2. We start at the origin in
the direction (0,1). At step n, for n > 0, the cursor is located at some integer
point (z,,y,) and it has a direction d,,, which is one of the four directions. Then
the cursor draws the path, corresponding to the letter a,, in the direction d,,
starting at (z,,y,). In the end of this step the cursor comes to an integer point
(Znt1,Yn+1) and a direction dy,y1, determined by the path, corresponding to the
letter a,,.

A locally catenative sequence is a sequence of words in which each word can be
constructed as a concatenation of previous words in the sequence [12]. Formally,
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an infinite sequence of words X,,, n > 0, is locally catenative, if for some positive
integers k,i1,...,ix and ¢ = max(iy,..., i),

Xn = ananfil .. 'anik

for all n > q. We say that ¢ is the order of the corresponding recurrence relation.
Some authors use a slightly different definition in which codings of previous words
are allowed in the concatenation [1,20]. A locally catenative sequence defines
the infinite word: X = lim,,_ o X,,. Actually, the first member in the recurrent
relation from the definition of locally catenative sequence is X, 1 in order to
provide the existence of such limit. It is known, that such word X is a morphic
word, see, e.g. [1,20].

A very typical example of a locally catenative sequence is the much studied
Fibonacci sequence F,,, see, e.g., [5], given by

Fn: n—an—2;
Fy=0,F =0l. (1.1)

The sequence of Thue-Morse words 75, is not strictly locally catenative; however,
it is locally catenative in the sense of the second definition, because

T, = n—lN(Tn—l);
To =0, (1.2)

where the coding p replaces 0 with 1 and 1 with 0.

A celebrated open problem is to decide, whether or not a given morphic word
is locally catenative. No general algorithm is known, although the problem was
settled in some special cases, for example, for binary alphabets [6]. The intrigue of
this problem is supported by the fact that it is just a special case of more general
and interesting problem of deciding whether a set of words defined by iterating a
morphism, that is a DOL language, is a code, see [4].

The main question we study in this paper is as follows. Suppose we have a
locally catenative sequence with initial conditions and drawing instructions. We
want to find out whether the corresponding curve is bounded or not.

2. CURVES DEFINED BY THE FIBONACCI AND THE THUE-MORSE
SEQUENCES

In this section we study some simple examples of the pictures corresponding to
the Fibonacci and the Thue-Morse words; general theory is developed in the next
sections. The Fibonacci word w is the fixed point of the morphism ¢(0) = 01,
(1) = 0. This word is a Sturmian word, so the numbers of 1’s in two different
subwords of length n differ at most by 1, see [14]. As it was already mentioned in
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the previous section, this word can also be represented as the limit of the sequence
F,, given by (1.1).

In this section we consider the following drawing rules. We start at the origin
in direction (0,1). At step n, for n > 1, we move straight ahead one unit in the
direction we are already moving, if w,, = 0, and turn left by 90° and move one unit,
if w, = 1. Remark that the question about the boundedness of picture defined
by the Fibonacci sequence via these drawing rules has been asked by Saari [18];
actually, answering this question was a starting point of our research. In the
further sections we consider general drawing rules and catenative sequences.

In this section we will describe completely the curve corresponding to F;, and
we will prove that:

e the curve corresponding to the Fibonacci word visits every integer point
in (—00,0] x [1,+00);

e the curve expands very slowly: in every 6 iterations the side of the square
where the curve stays increases only by 2.

In Figure 1 one can see the curves corresponding to the iterations F; of the
Fibonacci sequence. On each picture on the Cartesian plane the curve is indi-
cated by a bold line, an arrow corresponds to the configuration in the end of
iteration, i.e., the position of the point and the direction. The curves on every
sixth iteration are similar to each other; the first eleven curves look a little bit
different. The proof is a straightforward inductive argument. The base of induc-
tion consists of 17 substeps, where first 11 iterations are special, and the next 6
iterations are the same as in general. The inductive step consists of six iterations
(substeps). Each substep is done straightforwardly by joining the picture from the
previous step and rotated and translated picture from the step before the previous
step.

Observe that in the case of the Fibonacci recurrence the length of the sequence
F,, grows exponentially, but the curve grows only polynomially (actually, linearly).

Now we proceed to the picture corresponding to the Thue-Morse word, which
is a fixed point of the morphism ¢(0) = 01, (1) = 10 [14]. As it was already
mentioned in the previous section, this word can also be represented as the limit
of the sequence T;, given by (1.2). We consider the same drawing instructions as
for the Fibonacci sequence.

In the case of the Thue-Morse sequence the curve is bounded, the corresponding
picture is in Figure 2a. The proof is as follows. One can easily draw the picture
corresponding to the curve T of length 16 (see Fig. 2b). In the end of the word
T4 we come to the initial point (0,0) and have the same direction as the one
we started with. One can easily draw the picture corresponding to the curve
ti7...taa = (Ty)"'T5 (see Fig. 2¢). In the end of the word T5 we again come to
the initial point (0,0) and have the same direction as the one we started with.
The defintion (1.2) implies that if we split the Thue-Morse word to the subwords
of length 16, each of them will be either T} or (T4)’1T5. Hence the whole curve is
just the union of these two curves.
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FiGure 1. Curves corresponding to iterations of the Fibonacci

sequence, k > 2.
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FIGURE 2. (a) The curve corresponding to the Thue-Morse word.
(b) The curve corresponding to the word 7y. (c) The curve cor-
responding to the word (7)) 1T5.

It is not difficult to construct drawing rules and/or initial values to obtain a
bounded curve corresponding to the Fibonacci recurrence, as well as unbounded
curve for the Thue-Morse recurrence. For example, for the initial values Fy = 01,
F; = 01011111 the curve defined by the Fibonacci recurrence is bounded. Equiv-
alently, to obtain bounded curve defined by the Fibonacci recurrence we can keep
the initial values Fy = 0, F; = 01 and change the drawing instructions as follows:
at step n, if w, = 0, move straight ahead one unit, then turn left by 90° and move
one unit; if w, = 1, move straight ahead one unit, then repeat five times turn
left by 90° and move one unit. The curve defined by the Thue-Morse recurrence
with the initial value Ty = 0000 is unbounded. Equivalently, unbounded curve
defined by the Thue-Morse recurrence can be obtained using standart initial value
Ty = 0, and changing the drawing instructions as follows: at step n, if w, = 0,
move straight ahead four units; if w,, = 1, repeat four times turn left by 90° and
move one unit.

To conclude this section, we remark that boundedness of figures defined by
general catenative sequences is not a trivial property.

3. BOUNDEDNESS OF CURVES DEFINED BY CATENATIVE
SEQUENCES

In this section we develop general theory for necessary and sufficient conditions
for boundedness of curves defined by locally catenative sequences.

Let X,, be a locally catenative sequence over a finite alphabet ¥ with the re-
currence relation

Xn=Xn1Xn—iy - Xniy, (3.1)
and the initial values
Xo, ..., Xg-1.
Recall that this sequence defines the unique infinite word X = lim,, oo X,.
The letters of ¥ are associated with drawing instructions, i.e., each letter of X

is assigned to a sequence of moves by unit and turns by 90°. We translate a word
X to a path in the lattice Z? using these rules as instructions to turtle graphics.
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For the characterization of boundedness we will need some notation. Namely,
we define the sequence and the group of configurations for recurrence sequence.
These definitions are crucial for our considerations.

A configuration (z,y,d) is an integer point (z,y) and a direction d = 0,1,2 or
3, corresponding to the directions (0,1) (“up”), (—1,0) (“left”), (0,—1) (“down”)
and (1,0) (“right”), respectively. Actually the set of configurations is Z? x Z,.
For a configuration 8 = (x,y, d) denote by |z corresponding point (z,y) without
direction d: (|zz = (x,y).

We translate a word Z € ¥* to a curve in the following way. We start in
the configuration (0,0,0). At step n, for n > 0, we are at some configuration
(Zny Yn, dn), SO we draw a path, corresponding to the n-th letter z, of Z, in the
direction d,,, starting at (2, ¥, ). In the end of this step we come to a configuration
(41, Ynt1,dnt1), determined by the drawing instructions for the letter z,. In
the further text, by Z-curve we mean the curve corresponding to the word Z, and
the final configuration to which we come after drawing Z-curve will be denoted by
conf(Z).

If finite words Y and Z correspond to configurations (x,y,d) and (z/,y’,d’),
then it is not difficult to find a configuration (z”,y”,d”) corresponding to the
word Y Z:

(z+2,y+y,d+d(mod4)), ifd=0,
(x—y,y+a,d+d(mod4), ifd=1,

@y, 4 = L d : (3.2)
(xr —a',y —y,d+d(mod 4)), if d=2,
(x 4y, y—2',d+d(mod 4)), if d=3.

These rules are obtained by rotating the vector (a/,y’) by the angle corresponding
to d and adding this vector to the vector (z,y). Notice that in order to find the
configuration for the word Y Z we do not have to compute configurations letter by
letter, if we know the configurations for the words Y and Z. The configuration
of the word Y Z depends only on configurations of the words Y and Z. Actually
the condition (3.2) defines a product on the set Z? x Z;. We will denote the
operation of product of configurations (x,y,d) and (2/,y’,d’) by *: (z”,y",d") =
(z,y,d) * (2',y',d"). When configurations are denoted by Greek letters, we will
skip * for brevity. The set of configurations with operation defined by (3.2) form
a group with unit element being £ = (0,0,0), and the inverse element is defined
as follows:

x,—y,2), ifd=0,
Y, ,3), if d=1,
Y, )7 if d= 27
(y,—x,1), ifd=3.

(z,y,d)"" =

(=
Ex (3.3)

We say that a configuration (z’,3y’,d’) is a power of a configuration (x,y,d), if
it is obtained as a product of several copies of (z,y,d). Note that configurations
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with d = 1 and d = 3 are elements of order 4, configurations with d = 2 are
elements of order 2, and d = 0 corresponds to elements of infinite order (except
for the configuration (0, 0,0)). For example, powers of a configuration (z,y, 1) are
(x,y,1), (z —y,y +x,2), (—y,x,3) and (0,0,0).

We associate to the locally catenative sequence X, defined by (3.1) the sequence
(an)n>0 of configurations, i.e., o, = confX,. The goal of this section is the
following theorem:

Theorem 3.1. Let X be a locally catenative sequence over a finite alphabet X
corresponding to the recurrence relation X, = Xp_1Xpn—i, ... Xn—i, with initial

values Xo, ..., Xq-1, and let ¢ = max(i1,...,ix). The corresponding curve, with
any drawing instructions, is bounded if and only if there exists an integer N < 2q41,
such that configurations of Xn, Xn41,...,XN4q—1 are powers of a single finite
configuration.

First we prove the following characterization for the boundedness of figures
defined by a locally catenative sequence X:

Lemma 3.2. Let X be a locally catenative sequence over a finite alphabet X cor-
responding to the recurrence relation X, = X, 1 Xp—i, ... Xpn—s, with initial val-
ues Xo, ..., Xq-1, where ¢ = max(i1,...,1;). The corresponding curve, with any
drawing instructions, is bounded if and only if the corresponding sequence «y, of
configurations is ultimately periodic. Moreover, the configurations are ultimately
powers of a single configuration of finite order.

Proof. The proof essentially consists of three parts. First we introduce auxiliary
notation, then we prove the sufficiency of these conditions, and then the necessity.
The sufficiency is proved straightforwardly by indicating a finite subset of Z? and
proving that the curve is contained in this subset. To prove the necessity of these
conditions, we first prove ultimate periodicity of the sequence of configurations
and then show that in the case of bounded curve configurations have to be of a
certain form.

We will need some additional notation. Denote by Sqq(t,z) the square with
center at the point (¢,z) and side 2C, i.e., Squ(t,z) = [t — C,t + C] x [z —
C,z+ C]. Let Y, Z be two words with configurations conf(Y) = (x,y,d) and
conf(Z) = («',y,d’); let pictures corresponding to these words be inside the unions
of squares Ué=1 Sqe(ti, zi) and Uilzl Sqe (t, 1), respectively. Consider the picture
corresponding to the word YZ. One can notice from (3.2) that in the product
(2”,y"”,d") of configurations (x,y,d) and (2',y’,d") the point (z”,y"”) does not
depend on the direction d’. When the picture corresponding to the word Z is
rotated and translated corresponding to the configuration conf(Y’), the square
Sqe (t, z1) moves to the point defined by the product of the configurations (x, y, d)
and (¢, z.,-), where - denotes any direction, i.e., the square Sq~(t;, z/) moves to

19 71

the square Sq-(((x,y,d) * (t;, z},-))|z2). So the picture corresponding to the word

79~
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Y Z is inside the union of squares

l U

U SqC(ti7 z;) U ch(((x,y, d) * (tgv Zzl'a ))lZQ) (3'4)

i=1 i=1

This corresponds to the union of the picture corresponding to the word Y and
the picture corresponding to the word Z rotated and translated accordingly to
conf(Y).

First we will prove the sufficiency of the conditions, i.e., if the sequence of
configurations ultimately consists of powers of some configuration of finite order,
then the corresponding picture is bounded. Notice that if the sequence «,, contains
q successive elements equal to powers of one configuration « of finite order, then
all further elements are powers of a. Denote by N the number from which the
period in configurations starts.

There exists a constant C' € Z such that on the step N + ¢ — 1 the picture is
inside the square Sq(0,0); on previous steps the pictures are parts of this picture,
so they are also inside this square. The picture is inside the following union of
squares (just because it is inside one of these squares corresponding to i = 0):

U Sac(a’(z).

=0

Using rules (3.2) and (3.4), we obtain that product of any two powers of o with
pictures inside this union of squares gives a power of a with picture inside the
same union of squares. Therefore, the picture is bounded.

Now we will prove the necessity of the conditions: if the curve is bounded, then
the sequence of configurations ultimately consists of periodic powers of a single
configuration.

If the whole curve is bounded, then it has only a finite number of configurations
in the end of iterations, denote this number by m. The configuration on every
step is defined by previous ¢ configurations. There are at most m? sequences
of ¢ configurations, so two identical sequences of ¢ configurations can be found
at distance not greater than m?. Therefore, the sequence of configurations is
ultimately periodic with the period T < m9%. Denote by N the length of the
threshold in the ultimately periodic sequence of configurations.

Now we will prove, that in the case of bounded curve there exists a finite
configuration «, such that for n > N all configurations «,, are powers of a.

Denote by (3,7) the monoid, generated by configurations 5 and 7. We will
prove the following claim:

Claim 1. If the curve is bounded and for n,m > N we have «,, = 3 and «,,, = 7,
then the curve goes through configurations (3, ).

We will prove this claim by induction. Denote the period of the ultimately
periodic sequence of configurations by 7', then o, +7; = 8 and ay,1; = 7y for an
integer j. We assume that the period is not less than the order of the recurrence
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relation 7" > ¢, otherwise we multiply the period by integer large enough. Since
the sequence of configurations is ultimately periodic, without loss of generality we
suppose that m,n > ¢, 0 <m—n <T —q.

We will prove that, for all j € N, on the iteration m + Tj + 1 the curve goes
through the configurations {Hfill 0i|0; = B orv}. Actually it means that the curve
passes through configurations which are obtained as product of j+ 1 multiples each
of which is either g or 7.

The curve goes through the configuration &, because we started from it. On
the steps n and m we have the configurations # and ~, respectively. There-
fore, we have the induction base for 7 = 0. Suppose we have the condition
on the step m+T(j — 1)+ 1, d.e., the curve goes through the configurations
{IT_, 6:]6; = B or v}. On the step n+ Tj + 1 we join the curve on step n + T'j
with configuration g with the curve from step n + Tj — i; translated and ro-
tated correspondingly to 3. Therefore, the curve goes through the configurations
{BII}_, 6:il6; = B or v}. Symmetrically, on the step m + Tj + 1 we join the
curve on step m + T'j with configuration v with the curve from step m + Tj — iy
translated and rotated corresponding to 3. Therefore, the curve goes through the
configurations {y [T/, &|d; = 8 or v}. So, joining this set with the set of config-
urations obtained on the step n + T'j + 1, we get that the curve goes through all
the configurations from the set {[[/2] 8;|6; = 5 or 7}.

So, when n,m go to infinity, the curve passes through all the configurations
from the semigroup (3,v). Notice that for bounded curve this monoid has to be
finite and thus all elements in it have to be of finite order.

Claim 2. The monoid (3, ~) is finite iff 5 and ~ are powers of a single configuration
of finite order.

The proof of this claim consists of studying five cases of pairs of configura-
tions depending on their directions, in each case we will prove that one of these
configurations is a power of another.

(1) If 8 = (z,y,0), then necessarily 5 = ¢;

(2) If for 8 = (z,y,d) and v = (2/,y’,d’) we have d = d’, then § = ~, i.e., the

configurations with the same d are equal;

(3) if 8= (z,y,1) and v = (2/,9',2), then v = 3%

(4) if 8 = (z,y,3) and v = (2/,9',2), then v = 3%

(5) if 8= (z,y,1) and v = (', 9, 3), then v = 3.
In each case we will find a configuration from (3,~) which has a finite order only
when one of the configurations is a power of the other.

(1) S has finite order only in the case x = 0,y = 0;

(2) B*y2 =(w—y—2a' +vy',y+2—1vy —2',0) has finite order only in the case
r—y—x' +1y =0,y+x—y — 2 =0, which implies 5 = ~;

(3) B%*y = (z—y—2',y+x—1y,0) has finite order only in the case x—y—2a’ = 0,
y+ 2 — 1y’ = 0, which means v = 3%

(4) B%y = (z+y—2',y—x—y,0) has finite order only in the case x+y—a’ = 0,
y —x —y' = 0, which means v = 3%
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(5) By = (—y +y',xz — 2/,0) has finite order only in the case —y + ¢’ = 0,
x — 2’ = 0, which means v = 3.
Claim 2 is proved.

Claims 1 and 2 imply that starting from the step N every configuration is a
power of a single configuration of finite order. Thus, we proved that the sequence
of configurations is ultimately periodic, moreover, the period is equal to the period
in directions. Lemma 3.2 is proved. ]

Now we are going to establish an upper bound for the threshold of the ultimately
periodic sequence of configurations in the case of bounded picture. We will need
the following auxiliary lemma, which can be probably obtained in a different way
using some techniques from matrix theory.

Lemma 3.3. Consider a vector recurrence relation of the form
gr=Ag" (35)

where §* are vectors of length I, A is a square matriz of order l. Let ° be initial
value, such that the sequence (§")n>0 is ultimately constant. Then the length of
the threshold is less than [.

Proof. Let J be the Jordan form of A via the matrix @ of coordinate transforma-
tion, i.e., A = QJQ' [11]. Then the recurrence relation (3.5) can be written in
the form
Zh=Jz" (3.6)

where z" = Qg". If g” is ultimately constant, then Z" is also ultimately constant.
Denote by ng the number from which these sequences are constant, i.e., 2™ = z"°
for n > ng, z"0~! £ z" . We suppose that ng > 0, otherwise there is nothing to
prove. So we have that z™° = Jz"0 z™ is an eigenvector corresponding to the
eigenvalue 1, "0 = Jzmo~ L

The idea of the proof of this lemma is reconstructing the sequence z" in back-
wards direction, starting from ny and using the recurrence relation (3.6). First we
find out how z™ ! can look like, using the recurrence relation for n = ng, then
z™~2 and so on. To do this we need several simple observations. We split vectors
Z™ into blocks corresponding to Jordan cells of the matrix J and consider each
part separately. Denote by Jl)‘ the Jordan cell of order [ with eigenvalue .

Claim 1. If JlO:Tc =y, theny; =0, 2; = y;—1 fori = 2,...,l and x; can be arbitrary.
Claim 2. If J}y =7, then x; = y; — yiqpq1 fori=1,...,1— 1, 7, = y.
Claim 3. If J}z =0, A #0, then z; =0 fori=1,...,1L.

We have that z"0 is an eigenvector corresponding to the eigenvalue 1. The
equation z" = Jz"° and Claims 1, 2 imply that in 2™ blocks corresponding to
cells with eigenvalue 1 are vectors with zeros in all coordinates of blocks except

the first one which can be arbitrary. Blocks corresponding to cells with other
eigenvalues are zero vectors.
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Claim 3 implies that all the values in blocks corresponding to Jordan cells with

A #0,1 in vectors 2%, ..., 2"~ ! are equal to 0.

Now consider the behavior of values in blocks of Z™ corresponding to the eigen-
value 1. Consider such block of size j and denote it by a” = (af,..., a?). For
the vectors a” we have the recurrence relation a” = J'a"~!. Since z™ is an
eigenvector corresponding to the eigenvalue 1, we have a3® = 0,...,a7° = 0, a}°
can be arbitrary. From the recurrence relation for a™ and Claim 2 we conclude
that a®0—! = @™ . Applying the recurrence relation for i = ng — 2,...,2, we get

that @* = a@"°, so the values from the blocks corresponding to Jordan cells with
eigenvalue 1 are constant from the very beginning.

Now consider the values in blocks of z" corresponding to the eigenvalue 0.
Consider such block of length m and denote corresponding block in z" by b" =

(b7,...,b). For the vectors b we have the recurrence relation l_)’j = Jbn~ L. Since
z"° is an eigenvector corresponding to the eigenvalue 1, we have 0" = 0. From the
recurrence relation for 6™ and Claim 1 we conclude that bg"*l =0,...,000 =0,

b’f‘)_l can be arbitrary nonzero (if it equals zero, there exist another block with
nonzero eigenvalue, because 2" # z"0~1). Applying the recurrence relation for

b=t i =1,...,m—1, we get that bjo "~ =pro" ,b?ﬁfFl = b?‘)*i =po—t,
by T =0 =0, b T = po Tl = 0, b0 can be arbitrary. For i =
m — 1 we get that byo~" = ppo=mFL  pro—m — o=l pHno=m can he arbitrary.
The sequence of b™ can be written in the vector form:
—i—1
byt
i1 no—i
bn071 b?o 7(. bl bngfm
1 b;lO*Z 1
. . ng—t ) .
pro~i=| |, o] be =| ppo-t |, B0 =
: e —
0 bng—i bl0
m—1 .
0

By Claim 1 we have that b20~™ = 0. But this is impossible since b0~ = pio~ !,
S0 ng < M.

Therefore, the length of the threshold is bounded by the size of the largest
Jordan cell in the matrix A, so it is less than m, and m is less than [. Lemma 3.3
is proved. O

Lemma 3.4. Let X be a locally catenative sequence over a finite alphabet 3 corre-
sponding to the recurrence relation X, = Xp_1Xp—iy ... Xp—i, with initial values
Xoy ..., Xg-1, and let ¢ = max(i1,...,ix). If the curve defined by turtle graph-
ics is bounded, then the length of the threshold in the ultimately periodic sequence
(an)n>1 of configurations is less than 2q49.

Proof. Consider the sequence of configurations for a locally catenative sequence
with bounded picture. From Lemma 3.2 it follows that the sequence of con-
figurations is ultimately periodic; denote the period by T. Notice that T <
41, For every n the values z,, and y, can be found as a linear combination of
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Trn—1,Yn—1s-- -+ Tn—q, Yn—q; the coeflicients of the linear combination depend only
on nmod T. Applying corresponding linear combinations for smaller indices, we
can calculate x, and ¥, as a linear combination of every ¢ preceding successive

values of x;,y;. Therefore, we can obtain xpy1,¥nt1,--- s Tntq Yntq A8 linear
combinations of Tp_711, Yn—T+1; - Tn—T+q> Yn—T+¢- Denote by v* the following
vector of length 2q:

TK+iT+1

YK+iT+1

v = : :
TK+iT+q
YK +iT+q

where K is the index from which the period in directions starts, 7.e., 1 < K < 49.
Then

ot = Az—)zfl’

where A is the matrix of coefficients of linear combinations for #* through v¢~!.
If the picture is bounded, then the sequence (z;,y;,d;) is ultimately periodic,
i.e., ¥; is ultimately constant. Applying Lemma 3.3 to the sequence ©°, we get that
the threshold of this sequence is not greater than [ = 2¢q. Therefore, the threshold
of av,, is not greater than 2¢T, where T' < 44, so the upper bound for the threshold
is 2q449. ]

Proof of Theorem 3.1. The proof follows from Lemmas 3.2 and 3.4.

Remark. We note that the boundedness depends only on the recurrence relation
and the configurations of the initial values, and does not depend on the path by
which we come to these configurations, nor on the size of the alphabet, nor on the
drawing rules.

Remark. Theorem 3.1 gives an algorithm to find out whether the curve corre-
sponding to a recurrence relation with initial values is bounded or not. But the
complexity of the algorithm is exponential, so we actually prove that the problem
of determining boundedness is decidable.

Examples. Consider the application of Theorem 3.1 for curves defined by the
Fibonacci recurrence. To check whether drawing instructions for he Fibonacci
word give bounded picture, we should consider first N = 256 configurations and
check whether any two consecutive configurations are powers of one configuration
(or, equivalently, one is a power of another). Consider drawing rules (or initial
conditions) for the examples of curves for the Fibonacci recurrence from Section 2.
For the initial values Fy = 0, F} = 01 it is sufficient to consider first N = 256
configurations and to notice that no two consecutive configurations are powers of
a single configuration, so the curve is unbounded. For the initial values Fy = 01,
Fy, = 01011111 (or previous initial conditions with other drawing instructions
described in Sect. 2) we have that conf(Fy) = (—1,1,1), conf(Fy) = (-2,0,2) =
(conf(Fy))?, so the curve is bounded.
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4. THE BINARY CASE WITH CODINGS

In this section we consider boundedness of curves defined by the general case
of recurrence relation with codings over the binary alphabet ¥ = {0, 1}:

X, = n—1M1 (Xn—il) cee Mk(Xn—ik)v (41)

with the initial values
XO) s 7Xq—1a

where ¢ = max(i1, ..., %), ptj-s are codings, i.e., 1-uniform morphisms [1].

General idea for the characterization of the boundedness in this case is similar to
one from previous section, but in the case of a recurrence relation with codings the
characterization and the proof are more complicated, and some special technical
tricks are required. In the proof we use essentially the fact that the alphabet
is binary, thought we believe that the result could be obtained also for larger
alphabets.

In this section we will use some notation for intermediate steps. Denote by
Xnj = Xnoapmn(Xn—iy) oo pi(Xns;), § = 1,..., k. We will refer to step from
X, to X,41 as nth iteration (or iteration n), and the step from X, ; to X,, j11
(Xpn+1,1 in the case j = k) as subiteration (n,j). We will use the sequence of
configurations ¢,, with intermediate configurations corresponding to subiterations,
i.€., Opkt; = Tn,; = conf(X,, ;), j =1,..., k. Note that e, is a subsequence of the
sequence 0., Opktk = Q.

In the binary case four codings are possible:

(4.2)

Parallel with the sequence X,, we consider the sequence Y,, = u®(X,). Notice
that for the sequence Y,, the following recurrence relation holds:

Yo=Y i M(Yaoi) - - M (Yaip), (4.3)
with the initial values
Yb = MCO(XO)7 XN Y;z—l = MCO(Xq—l)a

where
pg, i gy = ptor py = p,
Aj=quts if =,

1, if py = pt
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Lemma 4.1. Let X be a locally catenative sequence over the binary alphabet
¥ ={0,1} defined by the recurrence relation X, = Xp_1p01(Xn—iy) - - - pi(Xn—i,.)
with p;-s being codings and initial values X, ..., Xq—1, where ¢ = max(i1, ..., ).
If the curve defined by X is bounded, then the corresponding sequence 6., of con-
figurations is ultimately periodic.

Proof. If the whole curve is bounded, then it has only a finite number of configura-
tions in the end of iterations, denote this number by m. If the recurrence relation
contains ° (or ! and pc), then conf(0) is of finite order (which is not greater
than 4). Symmetric assertion holds for conf(1). Therefore, the sequences u°(X,,)
and p!(X,,) have finite set of values defined by the length of X,, modulo 4. The
sequence |X,|mod 4 is periodic, so the sequences u°(X,) and p!'(X,,) are also
periodic. Notice that we can find X,, (and Y;,) from recurrence relations without
using codings p°?, since we can consider the sequence Xy, Yy, X1,Y7,... and take
Y, instead of (X, ;) (and X, _;; instead of (Y, _s,)). So, the configu-
ration on every step is defined by previous 2¢ configurations and configurations
from periodic sequences p°(X,,) and p!(X,,). Therefore, by argument similar to
the general case without codings, we get that the sequence of configurations is
ultimately periodic. Lemma is proved. O

Remark. Notice that if the recurrent relation contains the coding p°, then the
curve corresponding to X,, is bounded if and only if the curve corresponding to
Y,, is bounded.

Denote by L the length of the threshold in the ultimately periodic sequence
Om, i.e., pure period starts from L. Denote by A the set of configurations in the
ultimately periodic sequence §,, for m > L. The set A can be split into four
subsets A%, A% A% A'  where each subset consists of configurations preceding
corresponding coding in the recurrence relation. For example, if pu; = pu, then
for j € {2,...,k} we have v, j_1 € A, for j = 1 we have 7,1 € A, here
n > L/k. Observe that these sets can intersect.

Symmetrically to the sequence d,, of configurations for X,, we define the se-
quence of configurations 3, for the sequence Y;,, and the sets B, B¢, B, B,
B!

For sets of configurations C' and D denote by (C'D) the monoid generated by
products of elements from C' and D, i.e., (CD) = ({v8|y € C,8 € D}). Notice
that (4,7) is not the same as (7).

Theorem 4.2. Let X be a locally catenative sequence over the binary alphabet
¥ ={0,1} defined by the recurrence relation Xy, = Xp_1p1(Xn—iy )« -« (X n—i,.)
with p;-s being codings and initial values X, ..., Xq—1, where ¢ = max(i1, ..., ix).
The corresponding curve, with any drawing instructions, is bounded if and only if
the corresponding sequence d,, of configurations is ultimately periodic and there
exist configurations ¢ and ¥ of finite order such that the following conditions hold:

(1) (A) = (p);

(2) (B') = (¥);

(3) (AB%) = (¢);
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(4) (BA“) = (¥);

(5) conf(0) is of finite order (if the recurrence relation contains the coding p°
or the codings p' and uc);

(6) conf(1) is of finite order (if the recurrence relation contains the coding '
or the codings p° and ).

Remark. The conditions (1)-(6) require that the sets A, A A0 Al Bid
B, B, B! are non-empty; if this is not the case, conditions using empty sets are
omitted in a natural way.

Proof. First we will prove, that if the curve is bounded, then the conditions (1)—(6)
hold, i.e., we start with proving the necessity of conditions (1)—(6). After that we
will prove the sufficiency. Actually, in this proof we develop the method from
previous section for the case of recurrence relation with codings.

(1), (2) The proofs are symmetric and similar to the proof of Lemma 3.2.
We give a sketch of proof of 1). Lemma 4.1 implies that the sequence §,, of
configurations is ultimately periodic, denote by IV the threshold in this ultimately
periodic sequence. So, we prove the assertion analogous to to Claim 1 from the
proof of Lemma 3.2: if the curve is bounded and for n,m > N, §,,6,, € A" we
have §,, = 8 and d,, = v, then the curve goes through configurations (3,v). The
proof is just repeating of the argument of Claim 1. Next we apply Claim 2 from
the proof of Lemma 3.2 and (1) follows.

(3), (4) We will prove the necessity of both conditions simultaneously. The
proof consists of two steps. First we prove that the monoid (A% B°) consists of
powers of a single finite configuration. Secondly, we prove that this configuration
is the same as for (A%).

So, let M’ be the maximum of lengths of thresholds in the ultimately periodic
sequences 0, and (3,,, and T’ = Tk be their common period. Without loss of
generality M’ = kM for some integer M, i.e., we use M’ and T for indices of
sequences O, B, with subiterations. We assume that the period is not less than
the order of the recurrence relation 7' > ¢, otherwise we multiply the period by
integer large enough.

We will prove by induction that, for all j € N, the X/, p4ji3)-curve goes
through the configurations (4°°B)J and the Y47 (4j43)-curve goes through the
configurations (B A)7.

These curves go through the configuration e, because we started from it. On
the iteration M + T (first pure period) the X/ pr-curve and Yy r-curve pass
through the configurations A°° and B°°, respectively.

Now we skip one period in order to use all the configurations we obtained at
previous step. During the period starting in M +27 and ending in M +37 on every
subiteration (n,[) corresponding to a configuration £ from A°® we add to the X, ;-
curve the translated and rotated Y, _;,, ,-curve according to the recurrence relation.
Therefore, the X, ;1-curve passes through configurations obtained by product of
¢ and configurations through which the Y,,_;,_,-curve passes, i.c., {B°. Running
though the period starting in M + 27" and ending in M + 37 and through all £
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from A, we get that the Xjp;4sp-curve passes through A°°B¢. Symmetrically
we get that the Y4 3p-curve passes through B A,

Therefore, we have the induction base for j = 1. Suppose we have the condition
for j.

During the period starting in M + 457 and ending in M + (45 + 1)T on every
subiteration (n,[) corresponding to a configuration £ from A°® we add to the X, ;-
curve the translated and rotated Y;, s, ,-curve for i defined by recurrence relation.
Therefore, the X, ;41-curve passes through configurations obtained by product of £
and configurations through which Y,,_;,, ,-curve passes, i.e., {(B°°A°)7. Running
though the period starting in M + 4357 and ending in M + T'(4j 4+ 1) and through
all £ from A, we get that the X/, 1 q1)-curve passes through ACO(BCOACf)j.
Symmetrically we get that the Y/ 4 p4;41)-curve passes through B (A% B)7.

Continuing this line of reasoning, we get that during the period starting in
M+T(4j+2) and ending in M +T'(4j+3) the X ps 7 (4j43)-curve passes through the
configurations £ B°(A° B)’ and thus through A% B (A B°)] = (A% B)i+1,
Symmetrically we get that the Y p(4j43)-curve passes through (B®A)/+t,

So, when j goes to infinity, the X-curve and Y-curve pass through all the
configurations from the semigroups (A°°B) and (B A), respectively. So for
boundedness of curves these monoids should be finite, hence, by what we proved
in Lemma 3.2, in each of them all the elements should be powers of a single finite
configuration.

It remains to prove that these generating configurations for monoids (A B°)
and (B®A) coincide with ones from (A™) and (B'), respectively. It holds
that the X-curve and Y-curve pass through the configurations from the monoids
(At A Be°) and (B, BA°°), correspondingly. We omit the proof of this fact,
because it is similar to what we have just proved above and to Claim 1 from the
proof of Lemma 3.2. The monoids (A%, A°B°°) and (B, B®A®) are finite iff
<Azd> — <AcoBco> — <<,0> and <Bid> — <BcoAco> — <,¢>

Therefore, the necessity of (3) and (4) is proved.

(5), (6) See proof of Lemma 4.1.

Now we should prove the sufficiency of conditions (1)—(6), 4.e., the ultimate
periodicity of the sequences of configurations and conditions (1)—(6) imply bound-
edness of the curve.

There exist constants C, Cy € Z such that on the iteration M the pictures X
and Y, are inside the squares Sq¢, (0,0) and Sqg, (0,0), respectively. Let C3 be
an integer such that the curves corresponding to sequences from {0, 1}¢, i < 4k, lie
inside the square Sqc, (0,0). This set of curves includes all curves we can obtain
with codings ;¥ 4! in one iteration when going from X,, to X,,;1 and from Y,, to
Yin41. Let C = max(Cq, Ca, Cs).

We will prove that the X,,-curve is inside the union of squares Sq(n|zz2), where
1 runs over the set

Sx = () [ J () A cont(0) () A" cont (1) | ()4 |
U(@ACOBOconf(O) U(ap)Ac"Blconf(l);
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and the Yj,-curve is inside the union of squares Sqq(n|z2), where n runs over the
set

Sy = () (@) B conf(0) (1) B'conf(1) | J(v) B
J @) B A cont (0) |_J(w) B Aconf(1).

At the iteration M the pictures are inside these unions of squares (just because they
are inside one of these squares). Now we will prove that if after the subiteration
(n,j) the pictures are covered by these sets of squares, then they will be covered
with these sets after the subiteration (n,j 4+ 1) (or (n+ 1,1), if j = k). We prove
it for the X-curve, for the Y-curve the proof is symmetric.

At the subiteration (n, j) with p;11 = p'® and the configuration v, ; = £ € (¢)
we join the X, j-curve with the X, _;,, -curve using the rules (3.2) and (3.4), so
we obtain that the X, j1-curve is inside the union of squares Sqq (n|z2), where n
runs over the set £Sx. Since € € (), we have that £(p) C (p), so £Sx C Sx.

At the subiteration (n, j) with p,41 = u° and the configuration v, ; = x € A
we join the X, j-curve with the Y, _; ,  -curve using the rules (3.2) and (3.4), so
we obtain that the X, j;1-curve is inside the union of squares Sqq (n|z2), where n
runs over the set xSy . First observe that

X<1/}> g ACO<,¢)> — ACO<BCOACO> — <ACOBCO>ACO — <CP>ACO,
(p)A“B = (p).

Using these equalities, we prove separately for each subset from the union Sy that
left multiplication by x gives a subset of Sx:

x(¥) € (p)A% € Sx

x (1) B conf(0) C (p) A°B°conf(0) C Sx

x (1) B'conf(1) C (p) A B'conf(1) C Sx

X(¥) B C (p)A“B” = (p) C Sx

(1) B A%conf(0) C (¢) A% B A%conf(0) = (p)A°conf(0) C Sx

x (1) B A conf(1) C () A B A'conf(1) = (¢)A'conf(1) C Sx.

Subiterations from the sets A%, A!, BY and B' will not give points outside these
squares because of the choice C > (C3. In the case A = () and A = ( the
conditions (5), (6) and ultimate periodicity imply boundedness. In fact, in this
case starting from M we will draw the same curve during each period.
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Therefore, the X-curve and Y-curve stay inside these sets of squares and there-
fore are bounded. So, the sufficiency of the conditions (1)-(6) is proved. Theo-
rem 4.2 is proved. O

5. CONCLUDING REMARKS AND FUTURE RESEARCH

In this paper we studied curves defined by locally catenative words with drawing
instructions and gave an algebraic characterization for the boundedness of such
figures. We focused on catenative sequences, though modifications of our method
might also work for studying curves defined by other words, e.g., Sturmian words,
words used for building fractal curves. The results of this paper open a number of
directions of research. It would be interesting to generalize these results for larger
alphabets, to provide a bound making the characterization decidable. It would
be interesting also to find an efficient characterization; it is worth noting that
such characterization cannot be obtained with our method. A natural question
is also to find out what kind of figures are obtained in the general case. Another
direction of research might be considering how many times we come to each point,
mark it on the pictures by shades, i.e., black vertices are visited often, grey ones
sometimes, white ones have not been visited yet. It would be interesting to consider
generalizations of all these problems in higher dimensions, where instead of “turns”
rotations of the space should be considered. Besides that, the algebraic techniques
developed in this paper might give new approaches to some other problems of
combinatorics on words.
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