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CONSTRUCTION OF TREE AUTOMATA
FROM REGULAR EXPRESSIONS ∗

Dietrich Kuske
1

and Ingmar Meinecke
2

Abstract. Since recognizable tree languages are closed under the ra-
tional operations, every regular tree expression denotes a recognizable
tree language. We provide an alternative proof to this fact that results
in smaller tree automata. To this aim, we transfer Antimirov’s partial
derivatives from regular word expressions to regular tree expressions.
For an analysis of the size of the resulting automaton as well as for algo-
rithmic improvements, we also transfer the methods of Champarnaud
and Ziadi from words to trees.
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Introduction

One of the most prominent topics in formal language theory is the comparison
of different finite descriptions for potentially infinite objects – the languages. The
result of Kleene [14] states the equivalence between finite automata and regular
expressions for languages of finite words. The transformation of a finite automa-
ton into an equivalent regular expression is a prototypical example of dynamic
programming. The converse transformation is of direct practical consequence e.g.
in text processing. For this reason, several methods were proposed within the last
decades to find more efficient algorithms, see [19,20] for surveys. For teaching
purposes, one often uses an inductive construction. The most common construc-
tion is the standard or position automaton (Glushkov [10] and McNaughton and
Yamada [17]). Brzozowski’s construction [4] of a deterministic finite automaton
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uses derivates of regular expressions. This approach was modified by Antimirov [2]
who defined partial derivatives to construct a non-deterministic automaton from
a regular expression.

Kleene’s theorem was lifted to the setting of trees [22], also cf. [8,9], which
are one of the most fundamental concepts in computer science. A regular tree
expression defines a language of ordered trees. An inductive construction even
produces a tree automaton accepting this language. The number of states of
this automaton is exactly the number of iterations in the expression E plus |E|Σ
where |E|Σ is the number of occurrences of symbols from the ranked alphabet
in E. In this paper, we define partial derivatives for regular tree expressions
and build by their help a non-deterministic finite tree automaton recognizing the
language denoted by the regular expression. The concept of partial derivatives
will yield a tree automaton with at most |E|Σ states and |E|2Σ transitions. The
construction of this tree automaton and the correctness proof is combined with
algorithmic considerations to build this automaton. We adapt and modify the
approach by Champarnaud and Ziadi [5,6] in the word case who extended work of
Berry and Sethi [3]. Here, we use linearizations of regular tree expressions. The
main idea is to distinguish occurrences of the same symbol at different positions
in the regular expression. By doing so, we can ensure a certain uniqueness of
the partial derivatives. As it turns out, the partial derivatives of the original
regular expression are just projections of the partial derivatives of the linearized
regular expression. This approach results in two main advantages: firstly, the
desired automaton is in fact a quotient of an automaton that stems from the
linearized regular expression. This way we also get the upper bound on the number
of transitions mentioned above. Secondly, the theoretical results allow for an
efficient algorithm working in the syntax-tree of E. We obtain an algorithm with
O(R · size(E)2) space and time complexity where R is the maximal rank of a
symbol occuring in the finite ranked alphabet Σ and size(E) is the size of the
regular expression.

Beside the standard and the partial derivative construction there are other pro-
posals in the literature how to obtain an automaton from a regular expression.
Especially, it would be interesting whether the construction of the follow automa-
ton [7,12,13] carries over to the setting of trees. In this paper we consider ranked
trees. However, regular expressions were explored for unranked trees in connec-
tion with XML. They are used in pattern matching, see e.g. [11]. In an extended
abstract [15] of this paper, we wondered whether the concept of partial derivatives
can lead to fruitful results and algorithms in this area. A first answer was given
by Suzuki and Okui [21] who applied successfully the concept of partial deriva-
tives to regular hedge expression patterns. Last but not least, Lombardy and
Sakarovitch [16] applied the method of partial derivatives to a weighted setting for
words. We are confident that this should be also possible for trees.
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1. Trees, automata, and regular expressions

Let N be the set of non-negative integers. Throughout this paper, we fix a
finite ranked alphabet Σ = (Σm)m∈N. The set TΣ of trees over Σ is defined by the
Backus-Naur form (BNF)

t ::= f(t, . . . , t︸ ︷︷ ︸
m times

)

where f ∈ Σm. For the base case c ∈ Σ0, we will write c instead of c(). A subset
L ⊆ TΣ is called a tree language.

A (top-down) tree automaton over Σ is a tuple A = (Q, Σ, I, Δ) where Q is
a set of states, I ⊆ Q is the set of initial states, and Δ = (Δm)m∈N is the set
of transitions1 such that Δm ⊆ Q × Σm × Qm for every m ∈ N. Especially,
Δ0 ⊆ Q×Σ0. A finite tree-automaton (or FTA) is a tree automaton A with only
finitely many states and, thus, only finitely many transitions (note that there are
only finitely many m with Σm �= ∅).

As to whether a tree t is accepted by a tree automaton A = (Q, Σ, I, Δ) is
defined inductively along the construction of the tree t: if t = c ∈ Σ0, then t is
accepted by A iff there exists a state q ∈ I with (q, c) ∈ Δ0. For f ∈ Σm with
m > 0, the tree f(t1, . . . , tm) is accepted by A iff there exist states q ∈ I and
q1, . . . , qm ∈ Q such that (q, f, q1, . . . , qm) ∈ Δm and, for 1 ≤ i ≤ m, the tree ti is
accepted by the tree automaton (Q, Σ, {qi}, Δ). The language L(A) recognized by
A is the set of all trees t that are accepted by A. A tree language L is recognizable
if there is a FTA A with L(A) = L.

We next introduce some constructions of tree languages that extend the rational
operations on word languages. Let f ∈ Σm and L1, . . . , Lm ⊆ TΣ. Then we put

f(L1, . . . , Lm) = {f(t1, . . . , tm) | ti ∈ Li for i = 1, . . . , m}.

For L ⊆ TΣ and c ∈ Σ0 we define for every t ∈ TΣ inductively the non-uniform
substitution t[c← L]:

• c[c← L] = L and d[c← L] = {d} for every d ∈ Σ0 with d �= c;
• f(t1, . . . , tm)[c← L] = f(t1[c← L], . . . , tm[c← L]).

Then the c-product of L1, L2 ⊆ TΣ is the language L1 ·c L2 =
⋃

t∈L1
t[c ← L2].

Now the iterated c-products are defined for L ⊆ TΣ by

L0,c = {c} and Ln+1,c = Ln,c ∪ L ·c Ln,c.

The c-iteration of L is defined as L∗c =
⋃

n≥0 Ln,c.
It is well-known that a tree language L is recognizable if and only if it can

be denoted by a regular expression. These regular expressions are defined by the

1In the term-rewriting terminology employed by [8], the transition (q, f, q1, . . . , qm) is denoted
by the rule q(f(x1, . . . , xm)) → f(q1(x1), . . . , qm(xm)).
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following grammar in BNF2:

E ::= ∅ | f(E, . . . , E︸ ︷︷ ︸
m times

) | (E + E) | (E ·c E) | (E∗c)

where f ∈ Σm and c ∈ Σ0. Again, we write c instead of c() whenever c ∈ Σ0.
The semantics �E� of a regular expression E is defined inductively by

�∅� = ∅, �f(E1, . . . , Em)� = f(�E1�, . . . , �Em�),

�(E + F )� = �E� ∪ �F �, �(E ·c F )� = �E� ·c �F �, and

�(E∗c)� = �E�∗c.

For a set M of regular expressions, we put �M� =
⋃

E∈M �E�.
The set of all regular expressions over the ranked alphabet Σ is denoted by

EXP(Σ). Let |E|f denote the number of occurrences of the letter f ∈ Σ in E. The
alphabetic width |E|Σ of E is defined by |E|Σ = max

{
1,

∑
f∈Σ |E|f

}
, i.e., |E|Σ is

the number of occurrences of symbols from Σ in E but for technical reasons at
least 1. Thus, |∅|Σ = 1. The size of E is defined inductively by: size(∅) = size(c) =
1 for c ∈ Σ0, size(f(E1, . . . , Em)) = 1 +

∑m
i=1 size(Ei), size

(
(E + F )

)
= size

(
(E ·c

F )
)

= 1+size(E)+size(F ), and size
(
(E∗c)

)
= 1+size(E). Every regular expression

E can be understood as a tree over the ranked alphabet Σ ∪ {+, ·c, ∗c, ∅ | c ∈ Σ0}
where + and ·c have rank 2, ∗c has rank 1, and ∅ has rank 0. This tree is called
the syntax-tree tE of E.

2. A direct construction

In this section, we will construct from a regular expression E a tree automa-
ton AE that accepts �E�. The finiteness of this automaton will only be proved
later. Our construction is based on partial derivates that we have to define and
investigate first.

Let M be a set of regular expressions, F some regular expression, and c ∈ Σ0.
Then M ·c F denotes the set {(E ·c F ) | E ∈M}. Similarly, we put for a setM of
m-tuples of regular expressions

M·c F =
{(

(E1 ·c F ), (E2 ·c F ), . . . , (Em ·c F )
) | (E1, E2, . . . , Em) ∈M}

.

Definition 2.1. For g ∈ Σm, m ≥ 1, and a regular expression E, we define the
sets g−1E of m-tuples of regular expressions inductively:

• g−1∅ = ∅,
2For constructing an equivalent regular expression for a given tree automaton, it is necessary

to introduce additional symbols of rank zero, cf. [9], Proposition 9.2. But since we are interested
only in the converse, i.e., the construction of automata from an expression, we do not have to
differentiate between nullary symbols from the alphabet and additional ones.
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• g−1 f(E1, E2, . . . , En) =

{
{(E1, E2, . . . , En)} if f = g

∅ if f �= g,

• g−1(E + F ) = g−1E ∪ g−1F ,

• g−1(E ·c F ) =

{
(g−1E) ·c F ∪ g−1F if c ∈ �E�

(g−1E) ·c F otherwise,
• g−1(E∗c) = (g−1E) ·c (E∗c).

Let Σ≥1 =
⋃

m≥1 Σm = Σ \ Σ0 denote the set of non-nullary symbols from the
ranked alphabet Σ. Following Antimirov, we define further functions ∂w for finite
words w ∈ Σ∗

≥1 over the alphabet Σ≥1. By ε we denote the empty word.

Definition 2.2. Let E be a regular expression. Then ∂εE = {E} and, for w ∈ Σ∗
≥1

and g ∈ Σ≥1, the set ∂wgE consists of all regular expressions F that appear in
some tuple from g−1E′ for some E′ ∈ ∂wE. For a set of words W ⊆ Σ∗

≥1 and a
regular expression E, we put ∂W E =

⋃
w∈W ∂wE.

The function ∂w is called the partial derivative with respect to w.

Note that ∂wgE = ∂g∂wE =
⋃

E′∈∂wE ∂gE
′ for all w ∈ Σ∗

≥1 and g ∈ Σ≥1.
Further note that we consider derivatives with respect to words over the non-
nullary symbols from Σ and not with regard to trees.

Example 2.3. Let Σ0 = {a, b}, Σ1 = {g, h}, and Σ2 = {f}. Consider the regular
tree expression

E =
((

f
(
g
(
h(a)

)
, g(b)

)∗a
)

︸ ︷︷ ︸
E1

·b
(
h(a) + h(b)

)︸ ︷︷ ︸
E2

)
.

Note that b /∈ �E1�. Hence ∂gE = ∂hE = ∅ and

∂fE =
{((

g
(
h(a)

) ·a E1

) ·b E2

)
,
((

g(b) ·a E1

) ·b E2

)}
.

Furthermore, we compute the following partial derivatives:

∂fgE =
{((

h(a) ·a E1

) ·b E2

)
,
((

b ·a E1

) ·b E2

)}
,

∂fghE =
{((

a ·a E1

) ·b E2

)
, a, b

}
;

where the last equality is due to ∂h

(
(b ·a E1) ·b E2

)
= ∂hE2 = {a, b}. Notice that

∂fghfE = ∂fE. Hence, together with ∂εE = {E} we obtain eight different partial
derivatives of E.

A symbol f ∈ Σ occurs unguarded in E if no ancestor in the syntax tree tE is
labeled by an element of Σ. We will be interested in the number 〈E〉f of unguarded
occurrences of f in E that can be defined inductively by:

• 〈∅〉f = 0,
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• 〈f(E1, . . . , Em)〉f = 1 and 〈g(E1, . . . , En)〉f = 0 for g �= f ,
• 〈(E1 + E2)〉f = 〈(E1 ·c E2)〉f = 〈E1〉f + 〈E2〉f , and
• 〈(E∗c)〉f = 〈E〉f .

Proposition 2.4. Let E be a regular expression and g ∈ Σ≥1. Then |g−1E| ≤
〈E〉g. Especially, if |E|g = 0 then g−1E = ∂gE = ∅.
Proof. The claim is shown by induction on the construction of E: for E = ∅, the
claim is trivial. If we have E = f(E1, . . . , Em) and f �= g, then |g−1E| = 0, so the
claim is also trivial. If f = g, then |g−1E| = 1 = 〈E〉g .

Next consider the case (E + F ): then

|g−1(E + F )| ≤ |g−1E|+ |g−1F | ≤ 〈E〉g + 〈F 〉g = 〈(E + F )〉g.

For the product, we have

|g−1(E ·c F )| ≤ |(g−1E) ·c F |+ |g−1F | ≤ |g−1E|+ |g−1F |
≤ 〈E〉g + 〈F 〉g = 〈(E ·c F )〉g.

Similarly, we obtain for the iteration

|g−1(E∗c)| = |(g−1E) ·c (E∗c)| = |g−1E| ≤ 〈E〉g = 〈(E∗c)〉g. �

Next, we express the semantics of a regular expression �E� in terms of the semantics
of the tuples from g−1E.

Proposition 2.5. For any regular expression E, we have

�E� =
⋃
{g(�G1�, . . . , �Gm�) | g ∈ Σ≥1, (G1, . . . , Gm) ∈ g−1E}

∪ {c ∈ Σ0 | c ∈ �E�}. (1)

Proof. Let �E�0 = �E�∩Σ0. The proof proceeds by induction on the construction
of the regular expression E. For E = ∅, equation (1) holds. Next let E =
f(E1, . . . , Em) where f ∈ Σm and E1, . . . , Em are regular expressions. We put−→
G = (G1, . . .Gm). Then

�E� = f(�E1�, . . . , �Em�)

=
⋃
{f(�G1�, . . . , �Gm�) | −→G ∈ f−1E} (since f−1E = {(E1, . . . , Em)})

=
⋃
{g(�G1�, . . . , �Gm�) | g ∈ Σ,

−→
G ∈ g−1E} (since g−1E = ∅ for f �= g).

The proof in case E = (E1 + E2) is immediate and therefore omitted. Next let
E = (E1 ·c E2). Then we have

�E� = �E1� ·c �E2�

=
(
(�E1� \ {c}) ·c �E2�

)
∪

(
(�E1� ∩ {c}) ·c �E2�

)
.
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By the induction hypothesis, the first of these two sets equals(⋃{
f(�G1�, . . . , �Gm�) | f ∈ Σ,

−→
G ∈ f−1E1

})
·c �E2� ∪ (�E1�0 \ {c})

=
⋃{

f(�(G1 ·c E2)�, . . . , �(Gm ·c E2)�) | f ∈ Σ,
−→
G ∈ f−1E1

} ∪ (�E1�0 \ {c})
=

⋃{
f(�H1�, . . . , �Hm�) | f ∈ Σ,

−→
H ∈ (f−1E1) ·c E2

} ∪ (�E1�0 \ {c}).

If c ∈ �E1�, then the second of the two sets above equals

�E2� =
⋃{

f(�H1�, . . . , �Hm�) | f ∈ Σ,
−→
H ∈ f−1E2

} ∪ �E2�0,

otherwise it is empty. Hence equation (1) holds for E = (E1 ·c E2).
Finally, consider the regular expression (E∗c). If f(t1, . . . , tm) ∈ �(E∗c)� =

�E�∗c, then there exists n ≥ 0 with f(t1, . . . , tm) ∈ �E�n+1,c \ �E�n,c. Hence there
exists s ∈ �E� with f(t1, . . . , tm) ∈ {s} ·c �E�n,c. Since f(t1, . . . , tm) /∈ �E�n,c,
the tree s is of the form s = f(s1, . . . , sm). By the induction hypothesis, we find
(G1, . . . , Gm) ∈ f−1E with si ∈ �Gi�. Hence we obtain

f(t1, . . . , tm) ∈ {s} ·c �(E∗c)�

⊆ f(�G1�, . . . , �Gm�) ·c �(E∗c)�

= f(�(G1 ·c (E∗c))�, . . . , �(Gm ·c (E∗c))�).

Since the tuple
(
(Gi ·c (E∗c))

)
1≤i≤m

= (Gi)1≤i≤m ·c (E∗c) belongs to f−1(E∗c),
we showed the containment “⊆” of equation (1).

Conversely let f ∈ Σ and
−→
H ∈ f−1(E∗c) = (f−1E) ·c (E∗c). Then there exists

a tuple of regular expressions
−→
G ∈ f−1E with

−→
H =

−→
G ·c (E∗c). Hence we get

f(�H1�, . . . , �Hm�) = f(�(G1 ·c (E∗c))�, . . . , �(Gm ·c (E∗c))�)

= f(�G1�, . . . , �Gm�) ·c (E∗c).

By the induction hypothesis, f(�G1�, . . . , �Gm�) ⊆ �E�, so we can continue

⊆ �E� ·c �(E∗c)� ⊆ �(E∗c)�. �

Let E be a regular expression and let QE = ∂Σ∗
≥1

E. Then we define a set of
transitions ΔE as{(

F, f, G1, G2, . . . , Gm

) | F ∈ QE , f ∈ Σm, m ≥ 1, (G1, . . . , Gm) ∈ f−1F
}

∪{
(F, c) | F ∈ QE , c ∈ Σ0, c ∈ �F �

}
.

Furthermore, let AE = (QE , Σ, {E}, ΔE) denote the tree automaton whose only
initial state is the regular expression E.
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Theorem 2.6. Let E be a regular expression over the ranked alphabet Σ. Then
AE is a tree automaton that accepts �E�.

Proof. We show by induction on the structure of trees that for any tree t ∈ TΣ

and any regular expression F , the tree automaton AF accepts t iff t ∈ �F �.
First let t = c ∈ Σ0. Now c is accepted by AF iff there is a transition

(F, c) ∈ ΔF . But this is the case iff c ∈ �F �. Now let t = f(s1, . . . , sm) for some
m > 0. Then t is accepted by AF iff there is a transition (F, f, (G1, . . . , Gm)) ∈ ΔF

such that si is accepted by the tree automaton (QF , Σ, {Gi}, ΔF ) for all 1 ≤ i ≤ m.
Note that the reachable part of the automaton (QF , Σ, {Gi}, ΔF ) is the set of
states QGi . Hence, si is accepted by this automaton iff it is accepted by AGi .
By the induction hypothesis, this is equivalent to saying si ∈ �Gi�. Since this
holds for all 1 ≤ i ≤ m, we have that t is accepted by AF iff there exists
(G1, . . . , Gm) ∈ f−1(F ) with si ∈ �Gi� which is, by Proposition 2.5, equivalent to
saying t ∈ �F �. �

Example 2.7. Consider the regular expression

E =
((

f
(
g
(
h(a)

)
, g(b)

)∗a︸ ︷︷ ︸
E1

)
·b

(
h(a) + h(b)

)︸ ︷︷ ︸
E2

)

from Example 2.3. There we computed the partial derivatives of E. Thus QE =
{qi | i = 0, . . . , 7} where

q0 = E, q1 =
((

g
(
h(a)

) ·a E1

) ·b E2

)
, q2 =

((
g(b) ·a E1

) ·b E2

)
,

q3 =
((

h(a) ·a E1

) ·b E2

)
, q4 =

((
b ·a E1

) ·b E2

)
, q5 =

((
a ·a E1

) ·b E2

)
,

q6 = a, q7 = b.

The set of transitions ΔE comprises

q0
f−→ (q1, q2), q1

g−→ q3, q2
g−→ q4, q3

h−→ q5, q4
h−→ q6,

q4
h−→ q7, q5

f−→ (q1, q2),

q0
a−→ ⊥, q5

a−→ ⊥, q6
a−→ ⊥, q7

b−→ ⊥.

Here, q0
f−→ (q1, q2) and q0

a−→ ⊥ mean that (q0, f, q1, q2), (q0, a) ∈ ΔE .

In the last example, the tree automaton resulting from our construction is
finite. But so far, we did not prove in general that the tree automaton AE has
only finitely many states, i.e., that �E� is recognizable. Theorem 3.16 will show
that the number of states is linear and that the number of transitions is quadratic
in the size of E. This will only be achieved after going through the following two
constructions.
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3. An indirect construction via linearizations

The idea of the indirect construction is as follows: in a regular expression E,
uniquely mark the occurrences of letters from Σ≥1. Then apply our direct con-
struction to the resulting regular expression E. The projection of this automaton
accepts �E�. As it turns out, a quotient of the automaton one obtains this way is
isomorphic to the result of the direct construction.

3.1. Linear regular expressions

A regular expression E is linear if every letter f ∈ Σ≥1 occurs at most once
in E. Note that c ∈ Σ0 may occur more than once. The following proposition is
a consequence of Proposition 2.4.

Proposition 3.1. Let E be a linear regular expression and g ∈ Σm for m ≥ 1.
Then |g−1E| ≤ 1 and therefore |∂gE| ≤ m.

For M ⊆ EXP(Σ) and g ∈ Σ≥1, we put g−1M =
⋃{

g−1E | E ∈ M
}
. Now

we consider partial derivatives with respect to non-empty words for linear regular
expressions.

Proposition 3.2. Let E, F be linear regular expressions over the alphabet Σ such
that also (E + F ) and (E ·c F ) are linear. Let w ∈ Σ∗

≥1 and g ∈ Σ≥1. Then the
following hold true:

• g−1∂w(E + F ) =

{
g−1∂wE if |E|g > 0,
g−1∂wF otherwise.

• g−1∂w(E ·c F ) =

⎧⎪⎨⎪⎩
(g−1∂wE) ·c F if |E|g > 0,⋃{g−1∂vF | ∃u ∈ Σ∗

≥1 : w = uv and c ∈ �∂uE�}
otherwise.

• There are suffixes v1, . . . , vk of w such that

g−1∂w(E∗c) =
⋃

1≤i≤k

(g−1∂viE) ·c (E∗c).

Proof. If |E|g = 0, then |∂wE|g = 0 implying g−1∂wE = ∅ by Proposition 2.4.
Now g−1∂w(E + F ) = g−1∂wE ∪ g−1∂wF . If |E|g > 0, then g−1∂wF = ∅ and
g−1∂w(E + F ) = g−1∂wE. Otherwise we get g−1∂wE = ∅ and g−1∂w(E + F ) =
g−1∂wF .

For the remaining claims we proceed by induction on |w|. The claims are
obvious for |w| = 0. From now on let w = wf for some w ∈ Σ∗

≥1 and f ∈ Σ≥1.
First, we consider g−1∂w(E ·c F ). By the induction hypothesis, we obtain

f−1∂w(E ·c F ) =

{
(f−1∂wE) ·c F if |E|f > 0,⋃{f−1∂vF | ∃u ∈ Σ∗

≥1 : w = uv & c ∈ �∂uE�} otherwise.
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First, consider the case |E|f > 0 and |E|g > 0. Then |F |f = |F |g = 0 and therefore
g−1F = ∅. Hence we have g−1∂w(E ·c F ) = (g−1∂wE) ·c F .

Next, let |E|f > |E|g = 0. Then (i) g−1∂wE = ∅ and (ii) ∂vF = ∅ for all non-
empty suffixes v of w (since f occurs in v but not in F ). Since, by the induction
hypothesis, f−1∂w(E ·c F ) = (f−1∂wE) ·c F , we get ∂w(E ·c F ) = ∂f∂w(E ·c F ) =
(∂f∂wE) ·c F = (∂wE) ·c F and therefore

g−1∂w(E ·c F ) = g−1((∂wE) ·c F )

=

{
(g−1∂wE) ·c F if c /∈ �∂wE�

(g−1∂wE) ·c F ∪ g−1F otherwise

(i)
=

{
∅ if c /∈ �∂wE�

g−1F otherwise
(ii)
=

⋃
{g−1∂vF | ∃u ∈ Σ∗

≥1 : w = uv & c ∈ �∂uE�}

as required.
Now assume |E|f = 0. Then the induction hypothesis implies f−1∂w(E ·c F ) =⋃{f−1∂vF | ∃u ∈ Σ∗

≥1 : w = uv, c ∈ �∂uE�}. Hence we obtain

∂w(E ·c F ) = ∂f∂w(E ·c F )

=
⋃
{∂f∂vF | ∃u ∈ Σ∗

≥1 : w = uv, c ∈ �∂uE�}
=

⋃
{∂vF | ∃u ∈ Σ∗

≥1 : w = uv, v �= ε, c ∈ �∂uE�}
=

⋃
{∂vF | ∃u ∈ Σ∗

≥1 : w = uv, c ∈ �∂uE�}

where the last equality holds since ∂wE = ∅. Applying g−1 to this equation yields

g−1∂w(E ·c F ) =
⋃
{g−1∂vF | ∃u : w = uv, c ∈ �∂uE�}.

If |E|g = 0, this is precisely what we wanted to show. Otherwise, we obtain
|F |g = 0 and therefore g−1∂vF = ∅ for all v ∈ Σ∗

≥1. Hence, in this case the last
expression equals ∅. Since also g−1∂wE = ∅ (due to the non-occurrence of f in
E), this equals (g−1∂wE) ·c F as required. This shows the claim for (E ·c F ).

Now consider the regular expression (E∗c). By the induction hypothesis, there
are suffixes v1, . . . , vk of w such that

f−1∂w(E∗c) =
⋃

1≤i≤k

(f−1∂viE) ·c (E∗c)

and ∂w(E∗c) =
⋃

1≤i≤k

(∂vifE) ·c (E∗c).
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Hence, for vi = vif (1 ≤ i ≤ k) we have

g−1∂w(E∗c) = g−1

⎛⎝ ⋃
1≤i≤k

(∂viE) ·c (E∗c)

⎞⎠
=

{⋃
1≤i≤k(g−1∂viE) ·c (E∗c) if c /∈ �∂viE� for all 1 ≤ i ≤ k,⋃
1≤i≤k(g−1∂viE) ·c (E∗c) ∪ g−1(E∗c) otherwise.

Since g−1(E∗c) = (g−1E) ·c (E∗c) = (g−1∂εE) ·c (E∗c), the set of tuples of regular
expressions g−1∂w(E∗c) is of the required form. �

Proposition 3.3. Let E be a linear regular expression, u, w ∈ Σ∗
≥1, and g ∈ Σ≥1.

Then we have:
(1) |g−1∂uE| ≤ 1,
(2) if g−1∂uE �= ∅ and g−1∂wE �= ∅, then g−1∂uE = g−1∂wE.

Proof. The proof is by induction on the structure of E.
For E = ∅ the claim is immediate. Now consider the case E = f(E1, . . . , En).

Since E is linear, there is at most one i with |Ei|g > 0, if no such i exists, set
i = 1. Then we have

g−1∂uE =

⎧⎪⎨⎪⎩
g−1∂u′{E1, . . . , En} = g−1∂u′Ei if u = fu′,
{(E1, . . . , En)} if u = ε & f = g,

∅ otherwise,

where the first case is due to |Ej |g = 0 for j �= i, and, similarly for g−1∂wE. By
induction hypothesis, we get immediately |g−1∂uE| ≤ 1.

Assume g−1∂uE �= ∅ and g−1∂wE �= ∅. If f = g is the first letter of u = fu′,
then ∅ �= g−1∂uE = g−1∂u′Ei = f−1∂u′Ei = ∅ since E is linear, a contradiction.
Hence, either f �= g for the first letter f of u or f = g and u is empty. Since
the analogous holds for w, we obtain u = ε iff w = ε. Now the claim follows
immediately from the induction hypothesis.

For E = (E1 + E2) the claims are immediate by Proposition 3.2 and the induc-
tion hypothesis.

Let E = (E1 ·cE2). If |E1|g > 0, then by Proposition 3.2 g−1∂uE = (g−1∂uE1)·c
E2 as well as g−1∂wE = (g−1∂wE1) ·c E2. Hence, |g−1∂uE| ≤ 1 by induction
hypothesis. If g−1∂uE and g−1∂wE are non-empty, so are the sets g−1∂uE1 and
g−1∂wE1. Hence, by the induction hypothesis, the claim follows. Suppose now
|E1|g = 0. Then g−1∂uE is a finite union of sets of the form g−1∂u′E2 where
every u′ is a suffix of u. The induction hypothesis implies that any two non-empty
of them are equal, i.e., g−1∂uE = g−1∂u′E2 for some u′. Similarly, g−1∂wE =
g−1∂w′E2 for some word w′. Now both claims follow from the induction hypothesis.

A similar argument can be applied in case E = (F ∗c) with (g−1∂u′F ) ·c (F ∗c)
in place of g−1∂u′E1. �
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An immediate consequence of the last proposition is

Corollary 3.4. Let E be a linear regular expression, u, w ∈ Σ∗
≥1 and g ∈ Σm with

m ≥ 1. Then
(1) |∂ugE| ≤ m,
(2) if ∂ugE �= ∅ and ∂wgE �= ∅, then ∂ugE = ∂wgE.

By Proposition 3.2 and Corollary 3.4 we conclude

Corollary 3.5. For a linear regular expression E and w ∈ Σ+
≥1 we have ∂w(E∗c) =

(∂uE) ·c (E∗c) for some non-empty suffix u of w.

Next, we bound the number of partial derivatives of a linear regular expression.

Proposition 3.6. Let E be a linear regular expression. Then we have |∂Σ+
≥1

E| ≤
|E|Σ − 1 and |∂Σ∗

≥1
E| ≤ |E|Σ.

Proof. Note that ∂Σ∗
≥1

E = ∂Σ+
≥1

E ∪ {E}. We apply induction on E. Recall that

|∅|Σ = 1. Then we have |∂Σ+
≥1
∅| = 0 = |∅|Σ − 1. For E = f(E1, . . . , En), g ∈ Σ≥1

and u ∈ Σ∗
≥1, we get

∂guE =

{
∂u{E1, . . . , En} if g = f ,
∅ if g �= f .

Hence, |∂Σ+
≥1

E| ≤∑n
i=1 |∂Σ∗

≥1
Ei| ≤

∑n
i=1 |Ei|Σ = |E|Σ− 1. For E = (E1 +E2) we

use Proposition 3.2 and the induction hypothesis and obtain the assumption. If
E = (E1 ·c E2), then again by Proposition 3.2: |∂Σ+

≥1
E| ≤ |∂Σ+

≥1
E1|+ |∂Σ+

≥1
E2| ≤

|E1|Σ−1+|E2|Σ−1 ≤ |E|Σ−1. Finally, we conclude by Corollary 3.5 |∂Σ+
≥1

(E∗c)| ≤
|∂Σ+

≥1
E| ≤ |E|Σ − 1 = |(E∗c)|Σ − 1. �

3.2. The projection construction

Recall that Theorem 2.6 provides a possibly infinite tree automaton AE that
accepts �E�. Assuming E to be linear, we are now in the position to improve this
result:

Corollary 3.7. Let E be a linear regular expression over the ranked alphabet Σ.
Then AE is a finite tree automaton with at most |E|Σ states and at most |E|Σ · |Σ|
transitions that accepts �E�.

Proof. The equality L(AE) = �E� was shown in Theorem 2.6. Since the set of
states of AE equals ∂Σ∗

≥1
E, the finite tree automaton has at most |E|Σ states

by Proposition 3.6. For f ∈ Σ≥1 and D ∈ QE, there is at most one transition
of the form

(
D, f, (G1, . . . , Gm)

)
by Proposition 3.3(1), i.e., there are at most

|E|Σ · |Σ≥1| transitions whose label belongs to Σ≥1. In addition, there can be
|QE × Σ0| ≤ |E|Σ · |Σ0| transitions of the form (D, c) with c ∈ Σ0. �
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Remark 3.8. A top-down FTA A = (Q, Σ, I, Δ) is deterministic if I is a singleton
and (q, f, q1, . . . , qm), (q, f, p1, . . . , pm) ∈ Δ imply qi = pi for all i ∈ {1, . . . , m}.
Due to Proposition 3.3(1), we have even proved that for a linear regular expres-
sion E the FTA AE is a deterministic top-down automaton which implies the
number of transitions given in the corollary. For arbitrary regular expressions E,
the FTA AE is in general not deterministic.

Let Γ and Σ be two alphabets with Γ0 ⊆ Σ0. A mapping η : Γ → Σ with
η(Γm) ⊆ Σm for every m ∈ N and η(c) = c for all c ∈ Σ0 is called a projection.
We can extend η naturally to η : EXP(Γ)→ EXP(Σ) by:

• η(∅) = ∅, η(f(E1, . . . , Em)) = η(f)(η(E1), . . . , η(Em)),
• η

(
(E +F )

)
= (η(E)+η(F )), η

(
(E ·c F )

)
= (η(E) ·c η(F )), and η

(
(E∗c)

)
=

(η(E)∗c).

Definition 3.9. Let E and E be regular expressions over the ranked alphabets
Σ and Γ, respectively, and let η : Γ → Σ be a projection. We say that E is a
refinement of E with respect to the projection η if η(E) = E.

E is called a linearization of E with respect to η if E is linear and a refinement
of E with respect to η.

Example 3.10. A linearization of the regular expression E from Example 2.3 is

E =
((

f1

(
g2

(
h3(a)

)
, g4(b)

)∗a
)
·b

(
h5(a) + h6(b)

))
where Γ = {f1, g2, g4, h3, h5, h6, a, b} and η : Γ→ Σ is given by η : f1 �→ f, g2, g4 �→
g, h3, h5, h6 �→ h, a �→ a, b �→ b.

Note that due to η(c) = c for c ∈ Σ0 both the constants from Σ0 and the
operations ·c and ∗c remain unchanged. By abuse of notation, we denote also the
two natural continuations of η to Γ∗ and to TΓ by η. The following lemma is easily
shown:

Lemma 3.11. Let E be a regular expression and E a refinement of E with respect
to η : Γ→ Σ. Then η(�E�) = �E�.

Let E be an arbitrary regular expression. Then one can construct a small finite
tree automaton AE accepting �E� as follows: firstly, construct some linearization
E of E with respect to η : Γ→ Σ (we can assume that every symbol from Γ appears
in E and therefore |Γ| ≤ |E|Σ = |E|Σ). Secondly, build the finite tree automaton
AE which then has at most |E|Σ = |E|Σ states and at most |E|Σ · |Γ| ≤ |E|Σ2

transitions. Thirdly, replace the transitions (F , f, (G1, . . . , Gm)) of this automaton
by (F , η(f), (G1, . . . , Gm)). Then, by Lemma 3.11, the following is immmediate:

Corollary 3.12. Let E be a regular expression. Then AE is a finite tree automa-
ton with at most |E|Σ states and at most |E|Σ2 transitions that accepts �E�.



360 D. KUSKE AND I. MEINECKE

3.3. The quotient construction

We will now collapse some of the states of the automaton AE . The resulting
automaton will turn out to be isomorphic to the automaton AE from our first
construction.

We define the following equivalence relation ∼ on QE :

F ∼ H :⇐⇒ η(F ) = η(H).

We denote the equivalence class of G ∈ QE by [G] and put QE/∼= {[G] | G ∈
QE}. Let Gi, Hi ∈ QE with Gi ∼ Hi for i = 1, . . . , m and f1, f2 ∈ Γ≥1 with
η(f1) = η(f2) = f . Then f1(G1, . . . , Gm) ∼ f2(H1, . . . , Hm). Thus the following
quotient FTA is well-defined: ÃE =

(
QE/∼, Σ, {[E]}, Δ′

E

)
where

Δ′
E =

{(
[F ], f, [G1], . . . , [Gm]

) | (F , f, G1, . . . , Gm

) ∈ ΔE

}
.

We will show that the FTA ÃE is isomorphic toAE and, thus, in particular accepts
the language �E�. Here, two FTA A = (Q, Σ, I, Δ) and A′ = (Q′, Σ, I ′, Δ′) are
isomorphic if there is a bijective mapping ϕ : Q→ Q′ with q ∈ I iff ϕ(q) ∈ I ′ and
(q, f, q1, . . . , qm) ∈ Δ iff (ϕ(q), f, ϕ(q1), . . . , ϕ(qm)) ∈ Δ′. Therefore, we have to
clarify that η(F ) ∈ QE = ∂Σ∗

≥1
(E) for every F ∈ QE . The following fundamental

relation between the partial derivatives of E and of a refinement E is firstly shown
for partial derivatives with respect to a single letter g by an induction on the
construction of E:

Proposition 3.13. Let E be a regular expression over the ranked alphabet Σ and
E a refinement of E with respect to η : Γ→ Σ. Then we have for every g ∈ Σ≥1

g−1E =
⋃

g∈η−1(g)

η(g−1E) and ∂gE =
⋃

g∈η−1(g)

η(∂gE).

Proof. We prove the first equation. From this the second one follows easily.
We proceed by induction on the construction of E. For E = ∅, the claim is

immediate. Let E = f(E1, . . . , En). If g �= f , then g−1E = ∅ = g−1E for every
g ∈ η−1(g). So let g = f . Now f−1E = (E1, . . . , En) on the one hand. On the
other hand, E = f(E1, . . . , En) for some f ∈ η−1(f) and some refinements Ei of
Ei with respect to η. Hence η(f

−1
E) = (E1, . . . , En). Since h−1E = ∅ for all

h �= f , the equality follows for E = f(E1, . . . , En).
Now, let E = (E1 + E2). Then there are refinements E1 and E2 of E1 and E2

with respect to η such that E = (E1 + E2). Now g−1E is as follows:

g−1(E1 + E2) = g−1E1 ∪ g−1E2 =
⋃

g∈η−1(g)

η(g−1E1) ∪
⋃

g∈η−1(g)

η(g−1E2)

=
⋃

g∈η−1(g)

η
(
g−1E1 ∪ g−1E2

)
=

⋃
g∈η−1(g)

η
(
g−1E

)
.
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We turn to E = (E1 ·c E2). Again, there are refinements E1 and E2 of E1 and
E2 with respect to η such that E = (E1 ·c E2). First suppose c /∈ �E1�. Since
η−1(c) = {c}, Lemma 3.11 implies c /∈ �E1�. Hence, we have for this case:

g−1(E1 ·c E2) = (g−1E1) ·c E2

=

⎛⎝ ⋃
g∈η−1(g)

η(g−1E1)

⎞⎠ ·c E2 =
⋃

g∈η−1(g)

η((g−1E1) ·c E2)

=
⋃

g∈η−1(g)

η(g−1(E1 ·c E2)) =
⋃

g∈η−1(g)

η(g−1E).

The case of c ∈ �E1� is similar. For E∗c we conclude:

g−1(E∗c) = (g−1E) ·c E∗c

=

⎛⎝ ⋃
g∈η−1(g)

η(g−1E)

⎞⎠ ·c E∗c

=
⋃

g∈η−1(g)

η((g−1E) ·c E
∗c

) =
⋃

g∈η−1(g)

η(g−1(E∗c)). �

Now we lift this result to partial derivatives with respect to arbitrary words.

Theorem 3.14. Let E be a regular expression over the ranked alphabet Σ and E
a refinement of E with respect to η : Γ→ Σ. Then we have for every w ∈ Σ∗

≥1

∂wE =
⋃

w∈η−1(w)

η(∂wE).

Proof. We proceed by induction on the length of w where the case w = ε is trivial.
By Proposition 3.13, the assumption holds for |w| = 1. Now consider w = ug with
u ∈ Σ∗

≥1 and g ∈ Σ≥1. Using the induction hypothesis we get:

∂ugE = ∂g∂uE = ∂g

( ⋃
u∈η−1(u)

η
(
∂uE

))
= ∂g η

⎛⎝ ⋃
u∈η−1(u)

∂uE

⎞⎠ . (�)

Consider the set H =
⋃{∂uE | u ∈ η−1(u)}. Then there is for every F ∈ η(H) a

refinement F ∈ H such that, by Proposition 3.13,

∂gF =
⋃

g∈η−1(g)

∂gF.
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Moreover, every F ∈ H is a refinement of some F ∈ η(H) with respect to η.
Hence, we can continue equation (�):

=
⋃

g∈η−1(g)

η
(
∂g

( ⋃
u∈η−1(u)

∂uE
))

=
⋃

g∈η−1(g)

η
( ⋃

u∈η−1(u)

∂ugE
)

=
⋃

ug∈η−1(ug)

η
(
∂ugE

)
. �

This shows the claim for w = ug.

Now we can identify the result of the quotient construction.

Theorem 3.15. The finite tree automaton ÃE is isomorphic to AE.

Proof. The isomorphism is given by ϕ : QE/∼→ QE : [G] �→ η(G). Firstly,
ϕ really maps into QE. Indeed, G = ∂wE for some w. By Theorem 3.14,
η(G) ∈ ∂Σ∗

≥1
E = QE . Injectivity of ϕ is obvious by the definition of ∼. Sur-

jectivity follows from Theorem 3.14. Certainly, ϕ([E]) = E. Now, suppose(
[F ], f, [G1], . . . , [Gm]

) ∈ Δ′
E . Then there is a f such that

(
F , f, G1, . . . , Gm

) ∈
ΔE which means (G1, . . . , Gm) ∈ f

−1
F . But due to Proposition 3.13 we have

(G1, . . . , Gm) ∈ f−1F where Gi = η(Gi) and F = η(F ). Vice versa, if now
(G1, . . . , Gm) ∈ f−1F , then there is an f ∈ Γ≥1 with (G1, . . .Gm) ∈ f

−1
F . More-

over, we have for c ∈ Σ0:

([F ], c) ∈ Δ′
E ⇐⇒ c ∈ �F � ⇐⇒ c ∈ �η(F )� ⇐⇒ (η(F ), c) ∈ ΔE . �

Now we will show that the FTA AE from Theorem 2.6 is finite. The number
of transitions of AE is obviously bounded from above by |QE | · |Σ| · |QE |R ≤
|E|ΣR+1 · |Σ| where R is the maximal rank appearing in Σ. However, as we will
show next, the upper bound for the number of transitions is much smaller.

Theorem 3.16. Let E be a regular expression. Then AE is a finite tree automaton
with at most |E|Σ states and at most |E|Σ2 transitions that accepts �E�.

Proof. The equality L(AE) = �E� was shown in Theorem 2.6. The numbers of
states and transitions of AE equal those of ÃE by Theorem 3.15. Since ÃE is a
quotient of AE , the result follows from the estimates in Corollary 3.12. �

Compare this to the inductive construction of a finite tree automaton accept-
ing �E�: for union and c-product, one takes the disjoint union of the argument
automata and adds some transitions. For c-iteration, one has to add one new state
in order to accept the tree c. Hence, the inductive construction yields a finite tree
automaton whose number of states equals |E|Σ plus the number of c-iterations
applied in the construction. The number of transitions of that automaton is very
difficult to analyse.
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4. Algorithmic issues

Due to Theorem 3.15, we can construct the FTA ÃE to get the automaton AE .
Following this line, Champarnaud and Ziadi [5] gave in the case of words an
algorithm with an O(|E|Σ · size(E)2) space and time complexity. By algorithmic
refinements they enhanced the algorithm to one with an O(size(E)2) space and
time complexity. We can mainly adapt this algorithm for the construction of the
FTA AE from a regular tree expression E. Since the algorithm is based on a more
detailed analysis of the structure of partial derivatives, we first prove some more
facts about them.

4.1. Existence and form of partial derivatives

It follows immediately from Proposition 3.2, Corollary 3.5, and Theorem 3.14
that every partial derivative D is a product of sub-expressions of E. But we can
characterize the form of the partial derivatives from ΔfE :=

⋃{∂wfE | w ∈ Σ∗
≥1}

for any linear expression E and f ∈ Σ≥1 in even more detail.
The partial derivatives of a linear expression can be computed by following the

path from the respective symbol f at position p up to the root of the syntax tree.
The computation starts with the sub-expression Epk of the kth son of f . We
multiply sub-expressions either when we pass a ·c-node from the left or when we
pass a ∗c-node. When passing a ·c-node from the right, we have to check whether
we can reach a c to the left of the ·c-node by cancellation of letters of rank greater
than or equal to one. If this is the case, we just pass without any changes, if not,
then there is no partial derivative with respect to f . In the following, we would
like to put this more formal.

Positions p of a tree are defined as usual as finite words over N where ε is the
position of the root. The positions of a tree are ordered by the prefix ordering ≤.
Positions of an expression E are understood as those in the syntax-tree tE . Every
position p determines the sub-expression of E at position p, which is denoted by Ep.
We refer to the label at position p in the syntax tree tE by �(p).

To decide the existence of partial derivatives we compute inductively the func-
tion κ with κ(p) = {c ∈ Σ0 | ∃t ∈ �Ep� : c occurs in t}:

κ(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if �(p) = ∅,
{�(p)} if �(p) ∈ Σ0,⋃m−1

i=0 κ(pi) if �(p) ∈ Σm with m ≥ 1,
κ(p0) ∪ κ(p1) if �(p) = +,
κ(p0) \ {c} ∪ κ(p1) if �(p) = ·c and c ∈ κ(p0),
κ(p0) if �(p) = ·c and c /∈ κ(p0),
κ(p0) ∪ {c} if �(p) = ∗c.
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Lemma 4.1. Let E ∈ EXP(Σ) be linear such that f ∈ Σm with m ≥ 1 occurs in
E. Let p be the unique position with �(p) = f . Then ΔfE �= ∅ if and only if for
all positions q with q1 ≤ p and �(q) = ·c for some c ∈ Σ0 we have c ∈ κ(q0).

Proof. The proof is by induction on E. For E = ∅, there can be no position
with label f . If E = f(E1, . . . , Er), then ΔfE �= ∅ and the condition is satisfied
vacuously. Let E = g(E1, . . . , Em) with g �= f . Then ΔfE �= ∅ if and only if there
is an i ∈ {1, . . . , m} with ΔfEi �= ∅. By induction hypothesis, we get the claim.
Similarly, we proceed for E = (E0 + E1). Now let E = (E0 ·c E1). If f occurs
in E0, then ΔfE �= ∅ if and only if ΔfE0 �= ∅. The induction hypothesis for E0

yields the claim for E. If f is contained within E1, then ΔfE �= ∅ if and only
if ΔfE1 �= ∅ and there is a word w ∈ Σ∗

≥1 such that there is an F ∈ ∂wE0 with
c ∈ �F �, cf. Proposition 3.2 and Corollary 3.4. The last condition is satisfied if
and only if c ∈ κ(0) (which can be shown by an induction on the structure of E0).
Hence, the claim follows also for this case. Finally, let E = (E∗c

0 ). Then ΔfE �= ∅
if and only if ΔfE0 �= ∅ and we apply the induction hypothesis. �

For technical reasons, we introduce an auxiliary symbol ε. For positions p =
p1p2 . . . pn with pi ∈ N and n ≥ 1 we define the functions ι and σ by

ι(p) =

{
ε if �(p1 . . . pn−1) ∈ Σ ∪ {+} or if �(p1 . . . pn−1) = ·c and pn = 1,
c if �(p1 . . . pn−1) = ∗c or if �(p1 . . . pn−1) = ·c and pn = 0,

and

σ(p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε if �(p1 . . . pn−1) ∈ Σ ∪ {+} or

if �(p1 . . . pn−1) = ·c and pn = 1,
p1 . . . pn−11 if �(p1 . . . pn−1) = ·c and pn = 0,
p1 . . . pn−1 if �(p1 . . . pn−1) = ∗c.

Note that both ι and σ at position p = p1 . . . pn depend on the label �(p1 . . . pn−1)
of the upper neighbour of p (which cannot be ∅). For a fixed position p = p1 . . . pn,
we abbreviate ι(p1 . . . pi) and σ(p1 . . . pi) by ιp(i) and σp(i), respectively, for all
prefixes p1 . . . pi of p.

Theorem 4.2. Let E ∈ EXP(Σ) be linear with f ∈ Σm (m ≥ 1) occuring in E.
Let p = p1p2 . . . pn (pi ∈ N) be the unique position of f in the syntax tree tE. Let
i1 < . . . < ir ≤ n be precisely the indices for which ιp(ij) �= ε (j = 1, . . . , r). We
put for every k ∈ {0, . . . , m− 1}

Df (E)k =
((

. . .
(
Epk ·ιp(im) Eσp(im)

)
·ιp(im−1) . . .

)
·ιp(i1) Eσp(i1)

)
. (2)

If ΔfE �= ∅, then ΔfE = {Df(E)k | k = 0, . . . , m− 1}.
Especially, the number of factors in Df(E)k is bounded by the number of prod-

ucts ·c and stars ∗c appearing on the path from f to the root.
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Proof. We proceed by induction on the structure of E. For E = ∅, the symbol
f cannot occur in E. Let E = g(E1, . . . , El). If g = f (and l = m), then
ΔfE = {E1, . . . , Em} which yields the assumption. Now let g �= f . Then ΔfE =
ΔfEi for some i ∈ {1, . . . , l}. By induction hypothesis, ΔfEi = {DEi(f)k | k =
0, . . . , m− 1}. Note that ι(1) = ε. Hence, ΔfE = ΔfEi = {Df (E)k | k =
0, . . . , m− 1}.

For E = (E0 + E1), ΔfE = ΔfEi for either i = 0 or i = 1. Again by
induction hypothesis, ΔfEi = {Df(Ei)k | k = 0, . . . , m − 1}, ι(1) = ε, and
Df (E)k = Df (Ei)k which yields the assumption.

Now let E = (E0 ·c E1). First, assume that f occurs in E0. Then ΔfE =
(ΔfE0) ·c E1. Here, Df (E)k = Df (E0)k ·ι(1) Eσ(1) = Df (E0)k ·c E1. Applying the
induction hypothesis, we get ΔfE = {Df(E)k | k = 0, . . . , m− 1}. Secondly, let
us suppose that f occurs in E1. Since ΔfE �= ∅, we have ΔfE = ΔfE1. Moreover,
ι(1) = ε. Hence, Df (E)k = Df(E1)k which yields the assumption.

Finally, let E = (E∗c
0 ) and, thus, ΔfE = (ΔfE0) ·c (E∗c

0 ). Here, we have
Df (E)k = Df (E0)k ·ι(1) Eσ(1) = Df (E0)k ·c E. Together with the induction
hypothesis this shows the claim for the last case. �

4.2. An algorithm for computing the automaton

We give a sketch of the algorithm which follows mainly the lines of the respective
algorithm for word expressions [5] but makes more use of symbolic computations.

Note that the syntax-tree of a linearization E is obtained from tE by labelling
each g ∈ Σ≥1 additionally with its position. In the sequel, we will mainly work
within this syntax-tree.

Recall that the partial derivatives of E are projections of the partial derivatives
of the linearization E, cf. Theorem 3.14. Moreover, due to Proposition 3.3 the
non-empty partial derivatives ∂wgE depend just on the last symbol g, i.e., the
unique position in the syntax-tree labelled by g. We will calculate the partial
derivatives of E as suggested by Theorem 4.2. Moreover, we compute the Σ0-
semantics (i.e., the constants contained in the semantics of the expression) of the
partial derivatives and their so-called FIRST-sets which will allow us to determine
the transitions of the automaton afterwards. Formally, the set FIRST(E) of a
regular tree expression E is the set of all f ∈ Σ≥1 such that f−1E �= ∅.

Some preliminary computations

Here, we compute some entities needed in the sequel, namely

• the sub-expressions Ep of E for every position p;
• the sets Σ0 ∩ �Ep�;
• the functions κ, ι, and σ from pages 363 and 364.

Using κ and Lemma 4.1 we propagate the information for which symbols f partial
derivatives ΔfE exist to the nodes in the syntax tree. These steps can be done in
O(size(E)2) space and time complexity.
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·cn−1

Np1·cn−2

Np01

·c1

Np0...01Np0...00

Figure 1. Representation Sp of the sub-expression Ep.

Concernig the sub-expressions Ep of E, we do not always need the complete
sub-expression but just its maximal left-aligned factorization, i.e., every sub-
expression Ep is computed in the following form:

Ep = ((. . . (F1 ·c1 F2) ·c2 . . .) ·cn−1 Fn)

where the Fi (i = 1, . . . , n) are sub-expressions of Ep and where F1 is not a
product. Whenever n = 1, we do compute Ep. Otherwise (n > 1) we refer to the
individual Fi in the above factorization just by their position.

Furthermore, we compare all sub-expressions by a lexicographic ordering. We
refer to identical sub-expressions Ep and Eq by a common name Np. This results
in a representation Sp of every sub-expression Ep as follows

Sp =
((

. . .
(
Np0...00 ·c1 Np0...01

) ·c2 . . .
) ·cn−1 Np1

)
,

cf. Figure 1.
Due to [1,18] a list of n strings of size O(t) over an alphabet of size k can be

sorted lexicographically with complexity O(nt+k). Comparing consecutive strings
in this list can be done within O(nt) complexity. Hence, the procedure takes an
O(size(E)2) space and time complexity3.

Computing the states

We proceed by traversing the syntax-tree tE from the leaves to the root and
compute the partial derivatives of E according to Lemma 4.1 and Theorem 4.2.
Hereby, we determine the partial derivatives symbolically, i.e., using for the factors

3Here and in the sequel, we assume a RAM (random access machine) with a uniform cost
measure as the basic machine model, cf. [23].
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the pre-processed names of the sub-expressions. For the first factor we plug in
the symbolic representation. Hence, we do compute instead of the expression in
equation (2) the following

Sf (E)k =
((

. . .
(
Spk ·ι(im) Nσ(im)

)
·ι(im−1) . . .

)
·ι(i1) Nσ(i1)

)
. (3)

At every position p we do the following:

• we start the computation of new symbolic partial derivatives Sf (E) when-
ever the label at p is f ∈ Σ≥1 and ΔfE �= ∅ (an information we have
already processed);
• we update the symbolic partial derivatives Sg(E) computed so far accord-

ing to Theorem 4.2, thereby using the functions ι and σ.

At the root of tE , we have also to add the representation Sε of the whole expression
as a symbolic partial derivative.

Since the number of factors in a partial derivative is bounded by the height of
the syntax tree and since there are at most |E|Σ partial derivatives, we get an
O(size(E) · |E|Σ) space complexity. The time complexity is O(size(E)2) because
we traverse the whole syntax tree and have to update at every position all symbolic
partial derivatives computed so far.

Note that the maximal left-aligned factorization of every partial derivative
Df (E)k is almost given by equation (2). Only Epk has to be replaced by its
maximal left-aligned factorization. But this was already done at the symbolical
level in the definition of Sf (E)k, cf. equation (3). Hence,

Df (E)k = Dg(E)� ⇐⇒ Sf(E)k = Sg(E)�

for all f, g ∈ Σ≥1 and respective k, � ∈ N. Therefore, we just compare and identify
the symbolic partial derivatives Sf (E)k to obtain the states of the automaton.
Again, this is done by a lexicographic ordering with an O(size(E)2) space and
time complexity.

Computing the transitions for c ∈ Σ0

We denote by Dp the partial derivative which belongs to position p. Now we
calculate Σ0 ∩ �Dp� from the sets Σ0 ∩ �Eq� and obtain the respective transitions.
This step has an O(|Σ0| · |E|Σ) space and O(size(E) · |E|Σ) time complexity.

Computing the transitions for f ∈ Σ≥1

Here, we have to compute the sets FIRST(Ep) and FIRST(Dp) for all posi-
tions p. Then we get for every Dp and fq ∈ FIRST(Dp) of rank m + 1 (where q is
the position where f occurs) a transition

Dp
fq−→ (Dq0, Dq1, . . . , Dqm).
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·b

∗a +

f

g g

h

a

b

h

a

h

b

Figure 2. Syntax-tree tE of E.

A projection onto the identified states and the alphabet Σ provides the transitions
of the automaton.

The sets FIRST(Ep) can be computed with an O(size(E)) space and time com-
plexity [5,24]. Then the computation of FIRST(Dp) takes an O(|E|Σ2) space and
an O(|E|Σ · size(E)) time complexity [5,24]. Due to Theorem 3.16, we may get up
to |E|Σ2 transitions where we have to store up to R + 1 states for each transitions
where R is the maximal rank appearing in the ranked alphabet Σ. Hence, we
compute the transitions in an O(R · |E|Σ2) space and time complexity.

Overall complexity

Let R be the maximal rank appearing in the ranked alphabet Σ. Then the
algorithm sketched above runs altogether with an O(R · size(E)2) space and time
complexity.

Example 4.3. Consider the expression E from Example 2.3. Its syntax-tree is
shown in Figure 2. We give a linearization E of E by labelling the letters with
their positions in the syntax-tree:

E =
((

f00

(
g000

(
h0000(a)

)
, g001(b)

)∗a)
·b

(
h10(a) + h11(b)

))
.

We demonstrate the computation of the partial derivatives, together with their
Σ0-semantics and their FIRST-sets in Figure 3. Here, the identification procedure
described above does not conclude into any identification of two Dp. Hence, we
get as state set:

Q = {Dε, D000, D001, D00000, D0000, D0010, D100, D110}.
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p Label Ep Partial derivatives Σ0 FIRST

00000 a E00000 = a
0000 h0000 E0000 = h(a) D00000 := E00000 a ∅
000 g000 E000 = g(h(a)) D0000 := E0000 ∅ h0000

D00000 := D00000 a ∅
0010 b E0010 = b
001 g001 E001 = g(b) D0010 := E0010 b ∅
00 f00 E00 = f(g(h(a)), g(b)) D000 := E000 ∅ g000

D001 := E001 ∅ g001
D00000 := E00000 a ∅
D0000 := E0000 ∅ h0000
D0010 := E0010 b ∅

0 ∗a E0 =
((

f(g(h(a)), g(b))
)∗)

D000 := (E000 ·a E0) ∅ g000

D001 := (E001 ·a E0) ∅ g001
D00000 := (E00000 ·a E0) a f00
D0000 := (E0000 ·a E0) ∅ h0000
D0010 := (E0010 ·a E0) b ∅

100 a E100 = a
10 h10 E10 = h(a) D100 := E100 a ∅
110 b E110 = b
11 h11 D110 := E110 b ∅
1 + E1 = (E10 + E11) D100 := E100 a ∅

D110 := E110 b ∅
ε ·b Eε = E Dε := Eε a f00

D000 := ((E000 ·a E0) ·b E1) ∅ g000
D001 := ((E001 ·a E0) ·b E1) ∅ g001
D00000 := ((E00000 ·a E0) ·b E1) a f00
D0000 := ((E0000 ·a E0) ·b E1) ∅ h0000
D0010 := ((E0010 ·a E0) ·b E1) ∅ h10, h11
D100 := E100 a ∅
D110 := E110 b ∅

Figure 3. Computing the partial derivatives.

Computing the transitions as shown above, we obtain:

Dε
f−→ (D000, D001), D000

g−→ D0000, D001
g−→ D0010,

D0000
h−→ D00000, D0010

h−→ D100, D0010
h−→ D110,

D00000
f−→ (D000, D001), Dε

a−→ ⊥, D00000
a−→ ⊥,

D100
a−→ ⊥, D110

b−→ ⊥.

It is not difficult to verify that this automaton is isomorphic to the one from
Example 2.7.
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