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MULTI-DIMENSIONAL SETS RECOGNIZABLE
IN ALL ABSTRACT NUMERATION SYSTEMS

Émilie Charlier1, Anne Lacroix1 and Narad Rampersad1

Abstract. We prove that the subsets of N
d that are S-recognizable for

all abstract numeration systems S are exactly the 1-recognizable sets.
This generalizes a result of Lecomte and Rigo in the one-dimensional
setting.

Mathematics Subject Classification. 68Q45.

1. Introduction

In this paper we characterize the subsets of N
d that are simultaneously recog-

nizable in all abstract numeration systems (numeration systems that represent a
natural number n by the (n + 1)-th word of a genealogically ordered regular lan-
guage – see below for the precise definition). Lecomte and Rigo [11] provided such
a characterization for the case d = 1 based on the well-known correspondence be-
tween unary regular languages and ultimately periodic subsets of N. When d > 1
we no longer have such a nice correspondence and the situation becomes some-
what more complicated. To obtain our characterization we instead use a classical
decomposition theorem due to Eilenberg et al. [7]. The motivation for studying
such sets comes from the well-known result of Cobham (and its multi-dimensional
generalization due to Semenov) concerning the sets recognizable in integer bases.

Let k ≥ 2 be an integer. A set X ⊆ N is k-recognizable (or k-automatic)
if the language consisting of the base-k representations of the elements of X is
accepted by a finite automaton. A celebrated result of Cobham [5] characterizes
the sets that are recognizable in all integer bases k ≥ 2. Two numbers k and �
are multiplicatively independent if km = �n implies m = n = 0. A subset of the
integers is ultimately periodic if it is a finite union of arithmetic progressions.
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Theorem 1.1 (Cobham). Let k, � ≥ 2 be two multiplicatively independent integers
and let X ⊆ N. The set X is both k-recognizable and �-recognizable if and only if
it is ultimately periodic.

We say that a set X ⊆ N is 1-recognizable if the language {an : n ∈ X}
consisting of the unary representations of the elements of X is accepted by a finite
automaton. It is well-known [6], Proposition V.1.1, that a set is 1-recognizable if
and only if it is ultimately periodic.

Lecomte and Rigo [11] introduced the following generalization of the standard
integer base numeration systems.

Definition 1.2. An abstract numeration system is a triple S = (L, Σ, <) where L
is an infinite regular language over a totally ordered finite alphabet (Σ, <). The
map repS : N → L is a bijection mapping n ∈ N to the (n + 1)-th word of L
ordered genealogically. The inverse map is denoted by valS : L → N. A set X ⊆ N

is S-recognizable if the language repS(X) = {repS(n) : n ∈ X} is regular.

Lecomte and Rigo [11] proved that any ultimately periodic set is S-recognizable
for any abstract numeration system S. Suppose on the other hand that X ⊆ N is
S-recognizable for every abstract numeration system S. Then in particular, the set
X must be 1-recognizable, and hence must be ultimately periodic. We therefore
have the following characterization of the sets that are recognizable in all abstract
numeration systems.

Theorem 1.3 (Lecomte and Rigo). A set X ⊆ N is S-recognizable for all abstract
numeration systems S if and only if it is ultimately periodic.

Rigo and Maes [14] considered S-recognizability in a multi-dimensional setting.
This concept was further studied by Charlier et al. [4]. For the formal definitions
we need to introduce the following “padding” function.

Definition 1.4. If w1, . . . , wd are finite words over the alphabet Σ, the padding
map

(·)# : (Σ∗)d → ((Σ ∪ {#})d)∗

is defined by

(w1, . . . , wd)# := (w1#m−|w1|, . . . , wd#m−|wd|)

where m = max{|w1|, . . . , |wd|}. Here we write (ac, bd) to denote the concatenation
(a, b)(c, d).

If R ⊆ (Σ∗)d, then

R# = {(w1, . . . , wd)# : (w1, . . . , wd) ∈ R}.

Note that R is not necessarily a language, whereas R# is; that is, the set R consists
of d-tuples of words over Σ, whereas R# consists of words over the alphabet
(Σ ∪ {#})d.
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Definition 1.5. Let S = (L, Σ, <) be an abstract numeration system. Let X ⊆
N

d. The set X is S-recognizable (or S-automatic) if the language repS(X)# is
regular, where

repS(X) = {(repS(n1), . . . , repS(nd)) : (n1, . . . , nd) ∈ X}.

Let k ≥ 2 be an integer. The notions of k-recognizability and 1-recognizability
are special cases of S-recognizability. The set X is k-recognizable (or k-automatic)
if it is S-recognizable for the abstract numeration system S built on the lan-
guage consisting of the base-k representations of the elements of X . The set X is
1-recognizable (or 1-automatic) if it is S-recognizable for the abstract numeration
system S built on a∗.

The multi-dimensional analogue of Cobham’s theorem, due to Semenov [16],
requires an analogous notion of ultimate periodicity in the multi-dimensional set-
ting.

Definition 1.6. A set X ⊆ N
d is linear if there exists v0,v1, . . . ,vt ∈ N

d such
that

X = {v0 + n1v1 + n2v2 + . . . + ntvt : n1, . . . , nt ∈ N}.
A set X ⊆ N

d is semi-linear if it is a finite union of linear sets.

For more on semi-linear sets see [10]. We can now state the multi-dimensional
version of Cobham’s Theorem [16].

Theorem 1.7 (Cobham-Semenov). Let k, � ≥ 2 be two multiplicatively indepen-
dent integers and let X ⊆ N

d. The set X is both k-recognizable and �-recognizable
if and only if it is semi-linear.

In other words, the semi-linear sets are precisely the sets recognizable in all
integer bases k ≥ 2. One might therefore expect that, as in Theorem 1.3, the
semi-linear sets are recognizable in all abstract numeration systems. However,
this fails to be the case, as the following example shows.

Example 1.8. The semi-linear set X = {n(1, 2) : n ∈ N} = {(n, 2n) : n ∈ N} is
not 1-recognizable. Consider the language {(an#n, a2n) : n ∈ N}, consisting of the
unary representations of the elements of X . An easy application of the pumping
lemma shows that this is not a regular language.

Observe that in the one-dimensional case, we have the following equivalences:
semi-linear ⇔ ultimately periodic ⇔ 1-recognizable. However, Example 1.8 shows
that these equivalences no longer hold in the multi-dimensional setting. In order
to get a multi-dimensional analogue of Theorem 1.3, we must consider the class of
1-recognizable sets, which form a proper subclass of the class of semi-linear sets.

Another well-studied subclass of the class of semi-linear sets is the class of
recognizable sets. A subset X of N

d is recognizable if there exists a finite monoid
M , a monoid homomorphism ϕ : N

d → M , and a subset B ⊆ M such that
X = ϕ−1(B). When d = 1, we have again the following equivalences: recognizable
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Figure 1. The set X of Example 1.10.

⇔ ultimately periodic ⇔ 1-recognizable. However, for d > 1 these equivalences no
longer hold. An unpublished result of Mezei (see [6], Prop. III.12.2) demonstrates
that the recognizable subsets of N

2 are precisely finite unions of sets of the form Y ×
Z, where Y and Z are ultimately periodic subsets of N. In particular, the diagonal
set D = {(n, n) : n ∈ N} is not recognizable [6], Exercise III.12.7. However, the
set D is clearly a 1-recognizable subset of N

2. So we see that for d > 1, the class
of 1-recognizable sets corresponds neither to the class of semi-linear sets, nor to
the class of recognizable sets. For further information on recognizable sets, their
different characterizations and the classical Cobham-Semenov Theorem, see [3].

Our main result is the following, which generalizes the result of Lecomte and
Rigo (Thm. 1.3).

Theorem 1.9. Let X ⊆ N
d. Then X is S-recognizable for all abstract numeration

systems S if and only if X is 1-recognizable.

To illustrate this theorem, we give the following example.

Example 1.10. Let

X = {(2n, 3m + 1) : n, m ∈ N and 2n ≥ 3m + 1} ∪
{(n, 2m) : n, m ∈ N and n < 2m}

(see Fig. 1). It is clear that X is 1-recognizable. Let S = (L, Σ, <) be an abstract
numeration system. By Theorem 1.3, the sets {2n : n ∈ N} and {3m+1 : m ∈ N}
are both S-recognizable, and so the set {(2n, 3m + 1) : n, m ∈ N} is also S-
recognizable. In other words, the set {(repS(2n), repS(3m+1))# : n, m ∈ N} is ac-
cepted by a finite automaton. Furthermore, the set {(x, y)# : x, y ∈ L and x ≥ y}
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is also accepted by a finite automaton, and so by taking the product of these two
automata we obtain an automaton accepting

{(repS(2n), repS(3m + 1))# : n, m ∈ N and 2n ≥ 3m + 1}.

In the same way we can construct an automaton to accept the set

{(repS(n), repS(2m))# : n, m ∈ N and n < 2m}.

Since the union of two regular languages is regular, we see that X is S-recognizable.

2. Proof of our main result

In order to obtain our main result, we will need a classical result of Eilenberg
et al. [7], Theorem 11.1 (see also [15], Thm. C.1.1). We first need the following
definition.

Definition 2.1. Let A be a non-empty subset of {1, . . . , d}. Define the subalpha-
bet

ΣA = {x ∈ (Σ ∪ {#})d : the i-th component of x is # exactly when i /∈ A}.

Example 2.2. Let Σ = {a, b} and d = 4. If A = {1, 2, 3, 4}, then ΣA =
{(σ1, σ2, σ3, σ4) :σi ∈ Σ for i=1, 2, 3, 4}. If A = {2, 3}, then ΣA = {(#, σ2, σ3, #) :
σi ∈ Σ for i ∈ {2, 3}}. If A = {3}, then ΣA = {(#, #, a, #), (#, #, b, #)}.
Theorem 2.3 (Decomposition [7]). Let R ⊆ (Σ∗)d. The language R# ⊆ ((Σ ∪
{#})d)∗ is regular if and only if it is a finite union of languages of the form

R0 . . . Rt, t ∈ N,

where each factor Ri ⊆ (ΣAi)∗ is regular and At ⊆ . . . ⊆ A0 ⊆ {1, . . . , d}.
Remark 2.4. Theorem 2.3 does not hold if R# is replaced by an arbitrary lan-
guage over (Σ ∪ {#})d. It is only valid due to the definition of the map (·)#.

Example 2.5. Let R = {(a5n, a6m) : n, m ∈ N}. Then R# is regular, since one
can easily construct an automaton that simultaneously checks that the length of
the first component of its input is a multiple of 5 and that the length of the second
component is a multiple of 6. Moreover, we have

R# =
5⋃

�=0

(a30, a30)∗(a5�#�, a6�)(#6, a6)∗ ∪

4⋃
�=0

(a30, a30)∗(a5(�+1), a6�#5−�)(a5, #5)∗.

Observe that each of the languages appearing in the unions above are products of
the form described in Theorem 2.3.
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Lemma 2.6. Let X ⊆ N
d. Then X is 1-recognizable if and only if X is a finite

union of sets of the form

{
t∑

�=0

(c�(n�,1, . . . , n�,d) + (b�,1, . . . , b�,d)) : (∀�)(∀i) n�,i ∈ N and

(∀�)(∀i) (i /∈ A� ⇒ n�,i = 0) and (∀�)(∀i)(∀j)(i, j ∈ A� ⇒ n�,i = n�,j)

}
(2.1)

where

• t ∈ N;
• At ⊆ . . . ⊆ A0 ⊆ {1, . . . , d};
• c0, . . . , ct ∈ N;
• (∀�)(∀i) b�,i ∈ N;
• (∀�)(∀i) (i /∈ A� ⇒ b�,i = 0); and
• (∀�)(∀i)(∀j) (i, j ∈ A� ⇒ b�,i = b�,j).

Proof. Let Σ = {a} and let S = (Σ∗, Σ, <). We define

R := repS(X) = {(an1 , . . . , and) : (n1, . . . , nd) ∈ X}.

The set X is 1-recognizable if and only if the language R# is regular. By Theo-
rem 2.3, the language R# is regular if and only if it is a finite union of languages
of the form

R0 . . . Rt, t ∈ N,

where each factor R� ⊆ (ΣA�
)∗ is regular and At ⊆ . . . ⊆ A0 ⊆ {1, . . . , d}. Since

|Σ| = 1, we have |ΣA�
| = 1. Let ΣA�

= {x}. It is well-known [6], Prop. V.1.1,
that R� is a finite union of languages of the form {xpi+q : i ∈ N}, where p, q ∈ N.
Without loss of generality we can assume that R� is exactly of this form. Hence,
the language R� consists of the representations of a set of the form

{c�(n�,1, . . . , n�,d) + (b�,1, . . . , b�,d) : (∀i)(n�,i ∈ N)}.

The conditions At ⊆ . . . ⊆ A0 ⊆ {1, . . . , d} impose the restrictions on the n�,i’s
and the constants b�,i in the statement of the lemma. The concatenation of the
R�’s gives the sum described above. �

Remark 2.7. We can give an alternative description of the 1-recognizable sets.
Let v = (v1, . . . , vd) ∈ N

d. We define Supp(v) = {i ∈ {1, . . . , d} : vi 
= 0}. Let
X ⊆ N

d. Then X is a finite union of sets of the form described in Lemma 2.6 if
and only if X is a finite union of sets of the form

(b0 + c0 N)v0 + . . . + (bt + ct N)vt,
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where
• t ∈ N;
• bi, ci ∈ N for i = 1, . . . , t;
• vi ∈ {0, 1}d for i = 1, . . . , t;
• Supp(vt) ⊆ . . . ⊆ Supp(v0).

Example 2.8. Let X = {(5n, 5n+4m+6�+1, 5n+4m+6�+3, 5n) : n, m, � ∈ N}.
The unary representation of X is

R# = ((a, a, a, a)5)∗((#, a, a, #)4)∗((#, a, a, #)6)∗(#, a, a, #)(#, #, a, #)2.

Since R# is regular the set X is 1-recognizable. The set X can be written as

X = {5(n, n, n, n)+4(0, m, m, 0)+6(0, �, �, 0)+(0, 1, 1, 0)+(0, 0, 2, 0) : n, m, � ∈ N},

which is an expression of the form (2.1) where t = 3; A0 = {1, 2, 3, 4}, A1 = A2 =
{2, 3}, A3 = {3}; c0 = 5, c1 = 4, c2 = 6, c3 = 0; and b0,i = b1,i = 0 for all i,
(b2,1, b2,2, b2,3, b2,4) = (0, 1, 1, 0), (b3,1, b3,2, b3,3, b3,4) = (0, 0, 2, 0).

Alternatively, by Remark 2.7 we can write

X = 5 N(1, 1, 1, 1) + 4 N(0, 1, 1, 0) + (1 + 6 N)(0, 1, 1, 0) + (2 + 0 N)(0, 0, 1, 0).

Furthermore, we have a factorization of R# as given in Theorem 2.3: that is,
R# = R0R1R2R3, where R0 = ((a, a, a, a)5)∗, R1 = ((#, a, a, #)4)∗, R2 =
((#, a, a, #)6)∗(#, a, a, #), and R3 = (#, #, a, #)2, with the same A�’s as those
defined above. The term 5(n, n, n, n) corresponds to R0, the term 4(0, m, m, 0)
corresponds to R1, the term 6(0, �, �, 0) + (0, 1, 1, 0) corresponds to R2, and the
term (0, 0, 2, 0) corresponds to R3.

We need the following classical number-theoretic result (see [13], Thm. 1.0.1).

Theorem 2.9. Let a1, . . . , an be integers with ai ≥ 2 for i = 1, . . . , n. If

gcd(a1, . . . , an) = 1,

then there exists a positive integer F (a1, . . . , an) such that F (a1, . . . , an) cannot
be expressed as a non-negative linear combination of a1, . . . , an, but all integers
greater than F (a1, . . . , an) can be so expressed.

In the sequel we write ei to denote the element of N
d that contains a 1 in its

i-th component and 0’s in all others.

Lemma 2.10. A set X ⊆ N
d of the form (2.1) can be written as a union A ∪ B,

where A is made up of finite unions and intersections of sets having one of the
forms (2.2)–(2.5) below and B is a finite intersection of sets of the form (2.2)
or (2.3) below: ⎧⎪⎨

⎪⎩
d∑

i=1
i�=j

niei + (rnj + s)ej : n1, . . . , nd ∈ N, nj ≥ N

⎫⎪⎬
⎪⎭ (2.2)
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where 1 ≤ j ≤ d, and r, s, N ∈ N;⎧⎪⎨
⎪⎩

d∑
i=1
i�=j

niei + (nk + rnj + s)ej : n1, . . . , nd ∈ N, nj ≥ N

⎫⎪⎬
⎪⎭ (2.3)

where 1 ≤ j, k ≤ d, j 
= k, and r, s, N ∈ N;⎧⎪⎨
⎪⎩

d∑
i=1
i�=j

niei + (rnj + s)ej : n1, . . . , nd ∈ N, nj ∈ C

⎫⎪⎬
⎪⎭ (2.4)

where 1 ≤ j ≤ d, r, s ∈ N, and C ⊆ N is a finite set; or⎧⎪⎨
⎪⎩

d∑
i=1
i�=j

niei + (nk + rnj + s)ej : n1, . . . , nd ∈ N, nj ∈ C

⎫⎪⎬
⎪⎭ (2.5)

where 1 ≤ j, k ≤ d, j 
= k, and r, s ∈ N, and C ⊆ N is a finite set.

Proof. Let X be a set of the form (2.1) where t, the A�’s, the c�’s, and the b�,i’s
are fixed and satisfy the conditions listed in Lemma 2.6. We will write X = A∪B,
where

B =
d⋂

j=1

Yj ,

where each Yj is either of the form (2.2) or (2.3), and A is made up of finite unions
and intersections of sets of the forms (2.2)–(2.5).

First observe that if j ∈ {1, . . . , d} \ A0 the set X contains only vectors whose
j-th component is always 0. For each such j, we define

Yj =

⎧⎪⎨
⎪⎩

d∑
i=1
i�=j

niei + 0ej : n1, . . . , nd ∈ N

⎫⎪⎬
⎪⎭ ,

which is of the form (2.2).
First consider the case where A0 = . . . = At. Define j1 < . . . < j|A0| to be the

elements of A0. Define

Yj1 =

⎧⎪⎨
⎪⎩

d∑
i=1
i�=j1

niei + (rnj1 + s)ej1 : n1, . . . , nd ∈ N, nj1 ≥ N

⎫⎪⎬
⎪⎭ ,

where r = gcd(c0, . . . , ct), s =
∑t

�=0 b�,j1 , and N − 1 is the largest integer n
such that rn cannot be written as a nonnegative integer linear combination of
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c0, . . . , ct (note that by Theorem 2.9, N exists and is finite). Note that Yj1 is of
the form (2.2).

Define

Y ′
j1 =

⎧⎪⎨
⎪⎩

d∑
i=1
i�=j1

niei + (rnj1 + s)ej1 : n1, . . . , nd ∈ N, nj1 ∈ C

⎫⎪⎬
⎪⎭ ,

where C is the set of all nonnegative integers n < N such that rn can be written
as a nonnegative integer linear combination of c0, . . . , ct. Note that Y ′

j1 is of the
form (2.4).

For k ∈ {2, . . . , |A0|}, define

Yjk
=

⎧⎪⎨
⎪⎩

d∑
i=1
i�=jk

niei + njk−1ejk
: n1, . . . , nd ∈ N

⎫⎪⎬
⎪⎭ ,

which is of the form (2.3).
The set X can be written as the union A ∪ B where

B =
⋂

j∈{1,...,d}\A0

Yj ∩
⋂

k∈{1,...,|A0|}
Yjk

and
A =

⋂
j∈{1,...,d}\A0

Yj ∩
⋂

k∈{2,...,|A0|}
Yjk

∩ Y ′
j1 .

Now consider the case where there is at least one index � such that A� \A�+1 
= ∅.
Define �1 < . . . < �t′ to be the indices of the sets A� satisfying A�k

\A�k+1 
= ∅ for
each k ∈ {1, . . . , t′}. We clearly have 1 ≤ t′ ≤ t and 0 ≤ �t′ < t.

Define d1 = |A�1 \A�1+1| and j1,1 < . . . < j1,d1 to be the elements of A�1 \A�1+1.
Define

Yj1,1 =

⎧⎪⎨
⎪⎩

d∑
i=1

i�=j1,1

niei + (r1nj1,1 + s1)ej1,1 : n1, . . . , nd ∈ N, nj1,1 ≥ N1

⎫⎪⎬
⎪⎭ ,

where r1 = gcd(c0, . . . , c�1), s1 =
∑�1

�=0 b�,j1,1 , and N1 − 1 is the largest integer
n such that r1n cannot be written as a nonnegative integer linear combination of
c0, . . . , c�1 . Note that Yj1,1 is of the form (2.2).

Define

Y ′
j1,1

=

{
d∑

i=1
i�=j1,1

niei + (r1nj1,1 + s1)ej1,1 : n1, . . . , nd ∈ N, nj1,1 ∈ C1

}
,
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where C1 is the set of all nonnegative integers n < N1 such that r1n can be written
as a nonnegative integer linear combination of c0, . . . , c�1 . Note that Y ′

j1,1
is of the

form (2.4).
For k ∈ {2, . . . , d1}, define

Yj1,k
=

⎧⎪⎨
⎪⎩

d∑
i=1

i�=j1,k

niei + nj1,k−1ej1,k
: n1, . . . , nd ∈ N

⎫⎪⎬
⎪⎭ ,

which is of the form (2.3).
Define d2 = |A�2 \A�2+1| and j2,1 < . . . < j2,d2 to be the elements of A�2 \A�2+1.

Define

Yj2,1 =

⎧⎪⎨
⎪⎩

d∑
i=1

i�=j2,1

niei + (nj1,1 + r2nj2,1 + s2)ej2,1 : n1, . . . , nd ∈ N, nj2,1 ≥ N2

⎫⎪⎬
⎪⎭ ,

where r2 = gcd(c�1+1, . . . , c�2), s2 =
∑�2

�=�1+1 b�,j2,1 , and N2−1 is the largest inte-
ger n such that r2n cannot be written as a nonnegative integer linear combination
of c�1+1, . . . , c�2 . Note that Yj2,1 is of the form (2.3).

Define

Y ′
j2,1

=

⎧⎪⎨
⎪⎩

d∑
i=1

i�=j2,1

niei + (nj1,1 + r2nj2,1 + s2)ej2,1 : n1, . . . , nd ∈ N, nj2,1 ∈ C2

⎫⎪⎬
⎪⎭ ,

where C2 is the set of all nonnegative integers n < N2 such that r2n can be written
as a nonnegative integer linear combination of c�1+1, . . . , c�2 . Note that Y ′

j2,1
is of

the form (2.5).
For k ∈ {2, . . . , d2}, define

Yj2,k
=

⎧⎪⎨
⎪⎩

d∑
i=1

i�=j2,k

niei + nj2,k−1ej2,k
: n1, . . . , nd ∈ N

⎫⎪⎬
⎪⎭ ,

which is of the form (2.3).
We continue in this manner to define dp, Yjp,k

, and Y ′
jp,1

for all p ∈ {1, . . . , t′}
and k ∈ {1, . . . , dp}. Finally observe that we have A�t′ \ A�t′+1 
= ∅ and A�t′+1 =
. . . = At. Define dt′+1 = |At| and jt′+1,1 < . . . < jt′+1,dt′+1

to be the elements of
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At. Define

Yjt′+1,1
=

⎧⎪⎪⎨
⎪⎪⎩

d∑
i=1

i�=jt′+1,1

niei + (njt′,1
+ rt′+1njt′+1,1

+ st′+1)ejt′+1,1
:

n1, . . . , nd ∈ N, njt′+1,1
≥ Nt′+1

⎫⎪⎪⎬
⎪⎪⎭ ,

where rt′+1 = gcd(c�t′+1, . . . , ct), st′+1 =
∑�t

�=�t′+1 b�,jt′+1,1
, and Nt′+1 − 1 is the

largest integer n such that rt′+1n cannot be written as a nonnegative integer linear
combination of c�t′+1, . . . , ct. Again note that Yjt′+1,1

is of the form (2.3).
Define

Y ′
jt′+1,1

=

⎧⎪⎪⎨
⎪⎪⎩

d∑
i=1

i�=jt′+1,1

niei + (njt′,1
+ rt′+1njt′+1,1

+ st′+1)ejt′+1,1
:

n1, . . . , nd ∈ N, njt′+1,1
∈ Ct′+1

⎫⎪⎪⎬
⎪⎪⎭ ,

where Ct′+1 is the set of all nonnegative integers n < Nt′+1 such that rt′+1n can
be written as a nonnegative integer linear combination of c�t′+1, . . . , ct. Note that
Y ′

jt′+1,1
is of the form (2.5).

For k ∈ {2, . . . , dt′+1}, define

Yjt′+1,k
=

⎧⎪⎪⎨
⎪⎪⎩

d∑
i=1

i�=jt′+1,k

niei + njt′+1,k−1
ejt′+1,k

: n1, . . . , nd ∈ N

⎫⎪⎪⎬
⎪⎪⎭ ,

which is of the form (2.3).
The set X can be written as the union A ∪ B where

B =
⋂

j∈{1,...,d}\A0

Yj ∩
⋂

p∈{1,...,t′+1}
k∈{1,...,dp}

Yjp,k
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and

A =
⋂

j∈{1,...,d}\A0

Yj ∩

⋃
p∈{1,...,t′+1}

⎛
⎜⎜⎝Y ′

jp,1
∩

⋂
q∈{1,...,t′+1}\{p}

k∈{1,...,dq}

Yjq,k
∩

⋂
k∈{2,...,dp}

Yjp,k

⎞
⎟⎟⎠ . �

Example 2.11. We continue Example 2.8. We will write X = A ∪ B as in
Lemma 2.10. The A�’s are not all the same, so we can define t′ = 2, �1 = 0 < �2 = 2
as in the proof of Lemma 2.10.

We have d1 = |A0 \A1| = 2, j1,1 = 1 and j1,2 = 4. We also have r1 = gcd(c0) =
gcd(5) = 5 and s1 = 0, and hence N1 = 0. Therefore,

Y1 = {n2e2 + n3e3 + n4e4 + (5n1 + 0)e1 : n1, n2, n3, n4 ∈ N, n1 ≥ 0},

Y ′
1 = {n2e2 + n3e3 + n4e4 + (5n1 + 0)e1 : n2, n3, n4 ∈ N, n1 ∈ C1} = ∅,

since C1 = ∅, and

Y4 = {n1e1 + n2e2 + n3e3 + n1e4 : n1, n2, n3 ∈ N}.

Next we have d2 = |A2 \ A3| = 1 and j2,1 = 2. We also have r2 = gcd(c1, c2) =
gcd(4, 6) = 2 and s2 = b1,2 + b2,2 = 0 + 1 = 1, and hence N2 = 2. Therefore,

Y2 = {n1e1 + n3e3 + n4e4 + (n1 + 2n2 + 1)e2 : n1, n2, n3 ∈ N, n2 ≥ 2},

and

Y ′
2 = {n1e1 + n3e3 + n4e4 + (n1 + 2n2 + 1)e2 : n1, n3 ∈ N, n2 ∈ C2}

= {n1e1 + n3e3 + n4e4 + (n1 + 1)e2 : n1, n3 ∈ N},

since C2 = {0}.
Finally, we have d3 = |A3| = 1 and j3,1 = 3. We also have r3 = gcd(c3) =

gcd(0) = 0 and s3 = b3,3 = 2, and hence N3 = 0. Therefore,

Y3 = {n1e1 + n2e2 + n4e4 + (n2 + 0n3 + 2)e3 : n1, n2, n3 ∈ N, n3 ≥ 0},

and

Y ′
3 = {n1e1 + n2e2 + n4e4 + (n2 + 0n3 + 2)e3 : n1, n2 ∈ N, n3 ∈ C3} = ∅,

since C3 = ∅.
Hence A = Y1 ∩ Y ′

2 ∩ Y3 ∩ Y4 and B = Y1 ∩ Y2 ∩ Y3 ∩ Y4.
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Lemma 2.12. Let k ∈ N and let S be an abstract numeration system. The set
X = {(n, n + k) : n ∈ N} is S-recognizable.

Proof. The proof follows easily from known results and so we only give a sketch
of the proof. Let R = repS(X). To show that X is S-recognizable we must show
that R# is a regular language. Consider first the set Y = {(repS(n), repS(n+1)) :
n ∈ N}. If we interpret Y as the function mapping repS(n) to repS(n + 1), then
Y is the so-called successor function (see [1] or [11] for more on the successor
function). From [2], Proposition 3 (see also [9], Prop. 2.6.7), we have that Y is a
synchronous relation. In [9] synchronous relations are defined in terms of letter-to-
letter transducers, but this definition is equivalent to the fact that the language Y #

is accepted by a finite automaton. Moreover, from [8] (see also [9], Thm. 2.6.6), we
have that the composition of synchronous relations is again a synchronous relation.
Hence R, which is the k-fold composition of Y with itself, is a synchronous relation.
We conclude that R# is a regular language, as required. �
Lemma 2.13. A set X ⊆ N

d having one of the forms (2.2)–(2.5) defined in Lem-
ma 2.10 is S-recognizable for any abstract numeration system S.

Proof. We will give the proof for the cases where X is either of the form (2.2)
or (2.3) (the other two cases are similar).

Let S = (L, Σ, <) be an abstract numeration system and let T be a finite
automaton accepting L. Let R = repS(X). We will show that R# is regular.
That is, we will define a (nondeterministic) finite automaton M that accepts R#.
Let (w1, . . . , wd)# be an arbitrary input to the automaton M.

Suppose that X is of the form (2.2). That is,

X =

⎧⎪⎨
⎪⎩

d∑
i=1
i�=j

niei + (rnj + s)ej : n1, . . . , nd ∈ N, nj ≥ N

⎫⎪⎬
⎪⎭ ,

where 1 ≤ j ≤ d, and r, s, N ∈ N. Suppose first that r = 0. In this case,
the automaton M simulates T on w1, . . . , wj−1, wj+1, . . . , wd. The automaton M
accepts its input if and only if T accepts w1, . . . , wj−1, wj+1, . . . , wd and wj =
repS(s).

Now suppose that r > 0. By increasing the value of N , we may, without loss
of generality, assume that s < r. By Theorem 1.3 the language {repS(rnj + s) :
nj ≥ N} is regular. Let T ′ be an automaton accepting {repS(rnj + s) : nj ≥ N}.
As before, the automaton M simulates T on w1, . . . , wj−1, wj+1, . . . , wd, but now
also simulates T ′ on wj . The automaton M accepts its input if and only if T
accepts w1, . . . , wj−1, wj+1, . . . , wd and T ′ accepts wj .

Next suppose that X is of the form (2.3). That is,⎧⎪⎨
⎪⎩

d∑
i=1
i�=j

niei + (nk + rnj + s)ej : n1, . . . , nd ∈ N, nj ≥ N

⎫⎪⎬
⎪⎭ ,
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where 1 ≤ j, k ≤ d, j 
= k, and r, s, N ∈ N. Again, suppose first that r = 0. By
Lemma 2.12, the language {(repS(nk), repS(nk +s))# : nk ∈ N} is regular. Let T ′′

be a finite automaton accepting this language. The automaton M simulates T on
each of the words in {w1, . . . , wd} \ {wj , wk}. Simultaneously, the automaton M
simulates T ′′ on the pair (wk, wj)#. The automaton M accepts its input if and
only if T accepts {w1, . . . , wd} \ {wj , wk} and T ′′ accepts (wk, wj)#.

Now suppose that r > 0. Again, without loss of generality, we may assume that
s < r. Using the same ideas as in the proof of [12], Theorem 3.3.1, it is not hard
to see that the language

{(repS(m), repS(n))# : m, n ∈ N and (n − m) ≡ s (mod r)}

is regular. Let Z be an automaton accepting this language. Let Z ′ be an au-
tomaton accepting the language {(repS(nk), repS(nk + rN + s))# : nk ∈ N} (since
rN + s is a constant, we may apply Lem. 2.12).

The automaton M simulates T on each of the words in {w1, . . . , wd}\{wj , wk}.
Simultaneously, the automaton M simulates Z on the pair (wk, wj)#.

The automaton M also nondeterministically “guesses” a word v = b1 . . . b|v|
and simulates Z ′ on the pair (wk, v)#. This “guess” works as follows. Let
wk = a1 . . . a|wk|, where each ai ∈ Σ. For each i = 1, . . . , |wk|, we simulate Z ′

by nondeterministically choosing to follow one of the transitions of Z ′ labeled
(ai, bi), where bi ∈ Σ; and for i > |wk| (i.e., wk has been completely read), the
simulation may make a nondeterministic choice among transitions of the form
(#, bi), where bi ∈ Σ. This nondeterministic choice of bi at each step of the simu-
lation is what defines the “guessed” word v. Note that if Z ′ accepts (wk, v)#, then
vals(v) = valS(wk) + rN + s. As this nondeterministic simulation is performed,
the automaton M also simultaneously verifies that wj is greater than or equal to
(in the radix order) the guessed word v.

The automaton M accepts its input if and only if
• T accepts each of the words in {w1, . . . , wd} \ {wj , wk};
• Z accepts (wk, wj)# (and hence val(wj) − val(wk) ≡ s (mod r));
• Z ′ accepts (wk, v)# for some guessed word v as described above (and hence

valS(v) = valS(wk) + rN + s); and
• wj is greater than or equal to v in the radix order (and hence valS(wj) ≥

valS(v)).
The last three of these conditions guarantee that valS(wj) = valS(wk) + rnj + s
for some nj ≥ N .

This completes the proof for the cases where X is either of the form (2.2)
or (2.3). As previously stated, we omit the details for the other two cases since
they are similar. �

We are ready for the proof of Theorem 1.9.

Proof of Theorem 1.9. One direction is clear: if X is S-recognizable for all abstract
numeration systems S, then it is certainly 1-recognizable.
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To prove the other direction, suppose that X is 1-recognizable. The result now
follows from Lemmas 2.6, 2.10, and 2.13. �
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