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ON THE STRUCTURE OF (−β)-INTEGERS

Wolfgang Steiner1

Abstract. The (−β)-integers are natural generalisations of the
β-integers, and thus of the integers, for negative real bases. When β is
the analogue of a Parry number, we describe the structure of the set of
(−β)-integers by a fixed point of an anti-morphism.

Mathematics Subject Classification. 11A63, 68R15.

1. Introduction

The aim of this paper is to study the structure of the set of real numbers having
a digital expansion of the form

n−1∑
k=0

ak (−β)k,

where (−β) is a negative real base with β > 1, the digits ak ∈ Z satisfy certain
conditions specified below, and n ≥ 0. These numbers are called (−β)-integers,
and have been recently studied by Ambrož et al. [1].

Before dealing with these numbers, we recall some facts about β-integers, which
are the real numbers of the form

±
n−1∑
k=0

ak β
k such that 0 ≤

m−1∑
k=0

ak β
k < βm for all 1 ≤ m ≤ n,
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i.e.,
∑n−1
k=0 ak β

k is a greedy β-expansion. Equivalently, we can define the set of
β-integers as

Zβ = Z
+
β ∪ (−Z

+
β ) with Z

+
β =

⋃
n≥0

βn T−n
β (0),

where Tβ is the β-transformation, defined by

Tβ : [0, 1) → [0, 1) , x �→ βx− �βx	.

This map and the corresponding β-expansions were first studied by Rényi [20].
The notion of β-integers was introduced in the domain of quasicrystallography,

see for instance [6], and the structure of the β-integers is very well understood
now. We have β Zβ ⊆ Zβ , the set of distances between consecutive elements of Zβ

is
Δβ = {T nβ (1−) | n ≥ 0},

where T nβ (x−) = limy→x− T nβ (y), and the sequence of distances between consecu-
tive elements of Z

+
β is coded by the fixed point of a substition, see [9] for the case

when Δβ is a finite set, that is when β is a Parry number. We give short proofs
of these facts in Section 2. More detailed properties of this sequence can be found
e.g. in [2–4,11, 16].

Closely related to Z
+
β are the sets

Sβ(x) =
⋃
n≥0

βn T−n
β (x) (x ∈ [0, 1)),

which were used by Thurston [21] to define (fractal) tilings of R
d−1 when β is a

Pisot number of degree d, i.e., a root > 1 of a polynomial xd+ p1x
d−1 + · · ·+ pd ∈

Z[x] such that all other roots have modulus < 1, and an algebraic unit, i.e.,
pd = ±1. These tilings allow e.g. to determine the kth digit ak of a number
without knowing the other digits, see [15].

It is widely agreed that the greedy β-expansions are the natural representa-
tions of real numbers in a real base β > 1. For the case of negative bases, the
situation is not so clear. Ito and Sadahiro [14] proposed recently to use the (−β)-
transformation defined by

T−β :

[
−β
β + 1

, 1
β+1

)
, x �→ −βx−

⌊
β

β + 1
− βx

⌋
,

see also [10]. This transformation has the important property that T−β(−x/β) = x
for all x ∈ ( −β

β+1 ,
1

β+1

)
. Some instances are depicted in Figures 1, 3, 4 and 5.

The set of (−β)-integers is therefore defined by

Z−β =
⋃
n≥0

(−β)n T−n
−β (0).
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Figure 1. The (−β)-transformation for β = 2 (left), β = 1+
√

5
2 ≈

1.618 (middle), and β = 1
β + 1

β2 ≈ 1.325 (right).

These are the numbers

n−1∑
k=0

ak (−β)k such that
−β
β + 1

≤
m−1∑
k=0

ak (−β)k−m <
1

β + 1
for all 1 ≤ m ≤ n.

Note that, in the case of β-integers, we have to add −Z
+
β to Z

+
β in order to obtain

a set resembling Z. In the case of (−β)-integers, this is not necessary because the
(−β)-transformation allows to represent positive and negative numbers.

It is not difficult to see that Z−β = Z = Zβ when β ∈ Z, β ≥ 2. Some other
properties of Z−β can be found in [1], mainly for the case when T n−β

( −β
β+1

) ≤ 0 and

T 2n−1
−β

( −β
β+1

) ≥ 1−�β�
β for all n ≥ 1. (Note that T n−β

( −β
β+1

) ∈ (
1

β+1 − �β�
β , 1−�β�

β

) ∪(−β−1

β+1 , 0
)

implies T n+1
−β

( −β
β+1

)
> 0).

The set

Vβ =

{
T n−β

(
−β
β + 1

)
| n ≥ 0

}
plays a similar role for (−β)-expansions as the set {T nβ (1−) | n ≥ 0} for β-
expansions. If Vβ is a finite set, then we call β > 1 an Yrrap number. Note that
these numbers are called Ito–Sadahiro numbers in [18], in reference to [14]. How-
ever, as the generalised β-transformations in [13] with E = (1, . . . , 1) are, up to
conjugation by the map x �→ 1

β+1 −x, the same as our (−β)-transformations, these
numbers were already considered by Góra and perhaps by other authors. There-
fore, the neutral but intricate name (−β)-numbers was chosen in [17], referring to
the original name β-numbers for Parry numbers [19]. The name Yrrap number,
used in the present paper, refers to the connection with Parry numbers and to the
fact that T−β is (locally) orientation-reversing.

For any Yrrap number β ≥ (1+
√

5)/2, we describe the sequence of (−β)-integers
in terms of a two-sided infinite word on a finite alphabet which is a fixed point of
an anti-morphism (Thm. 3.2). Note that the orientation-reversing property of the
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map x �→ −βx imposes the use of an anti-morphism instead of a morphism, and
that anti-morphisms were considered in a similar context by Enomoto [8].

For 1 < β < 1+
√

5
2 , we have Z−β = {0}, as already proved in [1]. However, our

study still makes sense for these bases (−β) because we can also describe the sets

S−β(x) = lim
n→∞(−β)n T−n

−β (x)

(
x ∈

[
−β
β + 1

,
1

β + 1

))
,

where the limit set consists of the numbers lying in all but finitely many sets
(−β)n T−n

−β (x), n ≥ 0. Taking the limit instead of the union over all n ≥ 0
implies that every y ∈ R lies in exactly one set S−β(x), x ∈ [ −β

β+1 ,
1

β+1

)
, see

Lemma 3.1. Note that T 2
−β
(−β−1

β+1

) = −β
β+1 when β ∈ Z. Other properties of the

(−β)-transformation for 1 < β < 1+
√

5
2 are exhibited in [17].

2. β-integers

In this section, we consider the structure of β-integers. The results are not new,
but it is useful to state and prove them in order to understand the differences with
(−β)-integers.

Recall that Δβ = {T nβ (1−) | n ≥ 0}, and let Δ∗
β be the free monoid generated

by Δβ . Elements of Δ∗
β will be considered as words on the alphabet Δβ , and

the operation is the concatenation of words. The β-substitution is the morphism
ϕβ : Δ∗

β → Δ∗
β , defined by

ϕβ(x) = 11 · · · 1︸ ︷︷ ︸
	βx
−1 times

Tβ(x−) (x ∈ Δβ).

Here, 1 is an element of Δβ and not the identity element of Δ∗
β (which is the

empty word). Recall that, as ϕβ is a morphism, we have ϕβ(uv) = ϕβ(u)ϕβ(v)
for all u, v ∈ Δ∗

β . Since ϕn+1
β (1) = ϕnβ(ϕβ(1)) and ϕβ(1) starts with 1, ϕnβ(1) is a

prefix of ϕn+1
β (1) for every n ≥ 0.

Theorem 2.1. For any β > 1, the set of non-negative β-integers takes the form

Z
+
β = {zk | k ≥ 0} with zk =

k∑
j=1

uj ,

where u1u2 · · · is the infinite word with letters in Δβ which has ϕnβ(1) as prefix for
all n ≥ 0.

The set of differences between consecutive β-integers is Δβ.

The main observation for the proof of the theorem is the following. We use the
notation |v| = k and L(v) =

∑k
j=1 vj for any v = v1 · · · vk ∈ Δk

β , k ≥ 0.
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Lemma 2.1. For any n ≥ 0, 1 ≤ k ≤ |ϕnβ(1)|, we have

T nβ

([
zk−1

βn
,
zk
βn

))
= [0, uk),

and z|ϕn
β(1)| = L(ϕnβ(1)) = βn.

Proof. For n = 0, we have |ϕ0
β(1)| = 1, z0 = 0, z1 = 1, u1 = 1, thus the statements

are true. Suppose that they hold for n, and consider

u1u2 · · ·u|ϕn+1
β (1)| = ϕn+1

β (1) = ϕβ(ϕnβ(1)) = ϕβ(u1)ϕβ(u2) · · · ϕβ(u|ϕn
β(1)|).

Let 1 ≤ k ≤ |ϕn+1
β (1)|, and write u1 · · ·uk = ϕβ(u1 · · ·uj−1) v1 · · · vi with 1 ≤ j ≤

|ϕnβ(1)|, 1 ≤ i ≤ |ϕβ(uj)|, i.e., v1 · · · vi is a non-empty prefix of ϕβ(uj).
For any x ∈ (0, 1], we have Tβ(x−) = βx − �βx� + 1, hence L(ϕβ(x)) = βx for

x ∈ Δβ . This yields that

zk = L(u1 · · ·uk) = β L(u1 · · ·uj−1) + L(v1 · · · vi) = βzj−1 + i− 1 + vi

and zk−1 = βzj−1 + i− 1, hence[
zk−1

β
,
zk
β

)
=

[
zj−1 +

i− 1
β

, zj−1 +
i− 1 + vi

β

)
⊆ [zj−1, zj−1 + uj) = [zj−1, zj),

T n+1
β

([
zk−1

βn+1
,
zk
βn+1

))
= Tβ

([
i− 1
β

,
i− 1 + vi

β

))
= [0, vi) = [0, uk).

Moreover, we have L(ϕn+1
β (1)) = β L(ϕnβ(1)) = βn+1, thus the statements hold

for n+ 1. �

Proof of Theorem 2.1. By Lemma 2.1, we have z|ϕn
β(1)| = βn for all n ≥ 0, thus

[0, 1) is split into the intervals [zk−1/β
n, zk/β

n), 1 ≤ k ≤ |ϕnβ(1)|. Therefore,
Lemma 2.1 yields that

T−n
β (0) = {zk−1/β

n | 1 ≤ k ≤ |ϕnβ(1)|},

hence ⋃
n≥0

βn T−n
β (0) = {zk | k ≥ 0}.

Since uk ∈ Δβ for all k ≥ 1 and u|ϕn(1)| = T nβ (1−) for all n ≥ 0, we have

{zk − zk−1 | k ≥ 1} = {uk | k ≥ 1} = Δβ . �

For the sets Sβ(x), Lemma 2.1 gives the following corollary.
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Corollary 2.1. For any x ∈ [0, 1), we have

Sβ(x) = {zk + x | k ≥ 0, uk+1 > x} ⊆ x+ Sβ(0).

In particular, we have Sβ(x) − x = Sβ(y) − y for all x, y ∈ [0, 1) with (x, y] ∩
Δβ = ∅. From the definition of Sβ(x) and since x ∈ β T−1

β (x), we also get that

Sβ(x) =
⋃

y∈T−1
β (x)

β Sβ(y)
(
x ∈ [0, 1)

)
.

This shows that Sβ(x) is the solution of a graph-directed iterated function system
(GIFS) when β is a Parry number, cf. [15], Section 3.2.

3. (−β)-integers

We now turn to the discussion of (−β)-integers and sets S−β(x), x ∈ [ −β
β+1 ,

1
β+1

)
.

Lemma 3.1. For any β > 1, x ∈
[

−β
β+1 ,

1
β+1

)
, we have

S−β(x) =
⋃
n≥0

(−β)n
(
T−n
−β (x) \

{
−β
β + 1

})
=

⋃
y∈T−1

−β (x)

(−β)S−β(y).

For any y ∈ R, there exists a unique x ∈ [ −β
β+1 ,

1
β+1

)
such that y ∈ S−β(x).

If T−β(x) = x, then S−β(x) =
⋃
n≥0(−β)n T−n

−β (x), in particular S−β(0) = Z−β.

Proof. If y ∈ S−β(x), then we have y
(−β)n ∈ T−n

−β (x) for all sufficiently large n,

thus y ∈ (−β)n
(
T−n
−β (x) \ { −β

β+1

})
for some n ≥ 0. On the other hand, y ∈

(−β)n
(
T−n
−β (x)\{ −β

β+1

})
for some n ≥ 0 implies that Tm−β(

y
(−β)m ) = T n−β(

y
(−β)n ) =

x for all m ≥ n, thus y ∈ S−β(x). This shows the first equation. Since x ∈( −β
β+1 ,

1
β+1

)
implies that x ∈ (−β)

(
T−1
−β (x) \ { −β

β+1

})
, we obtain that S−β(x) =⋃

y∈T−1
−β (x)(−β)S−β(y) for all x ∈ [ −β

β+1 ,
1

β+1

)
.

For any y ∈ R, we have y ∈ S−β
(
T n−β

(
y

(−β)n

))
for all n ≥ 0 such that y

(−β)n ∈( −β
β+1 ,

1
β+1

)
, thus y ∈ S−β(x) for some x ∈ [ −β

β+1 ,
1

β+1

)
. To show that this x is

unique, let y ∈ S−β(x) and y ∈ S−β(x′) for some x, x′ ∈ [ −β
β+1 ,

1
β+1

)
. Then we

have y ∈ (−β)n
(
T−n
−β (x)\{ −β

β+1

})
and y ∈ (−β)m

(
T−m
−β (x′)\{ −β

β+1

})
for some

m,n ≥ 0, thus x = T n−β
(

y
(−β)n

)
= Tm−β

(
y

(−β)m

)
= x′.

If T n−β
( −β
β+1

)
= x = T−β(x), then T n+2

−β
(−β−1

β+1

)
= T n+1

−β
( −β
β+1

)
= T−β(x) = x

yields that (−β)n −β
β+1 ∈ S−β(x), which shows that S−β(x) =

⋃
n≥0(−β)n T−n

−β (x)
when T−β(x) = x. �

The first two statements of the following proposition can also be found in [1].
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Proposition 3.1. For any β > 1, we have (−β) Z−β ⊆ Z−β.
If β < (1 +

√
5)/2, then Z−β = {0}.

If β ≥ (1 +
√

5)/2, then

Z−β ∩ (−β)n [−β, 1] =
{
(−β)n, (−β)n+1

} ∪ (−β)n+2

(
T−n−2
−β (0) ∩

(
−1
β
,

1
β2

))
for all n ≥ 0, in particular

Z−β ∩ [−β, 1] =

{
{−β,−β + 1, . . . ,−β + �β	, 0, 1} if β2 ≥ �β	(β + 1),

{−β,−β + 1, . . . ,−β + �β	 − 1, 0, 1} if β2 < �β	(β + 1).

Proof. The inclusion (−β) Z−β ⊆ Z−β is a consequence of Lemma 3.1 and 0 ∈
T−1
−β (0).

If β < 1+
√

5
2 , then −1

β < −β
β+1 , hence T−1

−β (0) = {0} and Z−β = {0}, see Figure 1
(right).

If β ≥ 1+
√

5
2 , then −1

β ∈ T−1
−β (0) implies 1 ∈ Z−β , thus (−β)n ∈ Z−β for all

n ≥ 0. Clearly,

(−β)n+2

(
T−n−2
−β (0) ∩

(
−1
β
,

1
β2

))
⊆ Z−β ∩ (−β)n (−β, 1).

To show the other inclusion, let z ∈ (−β)m T−m
−β (0)∩(−β)n (−β, 1) for somem ≥ 0.

If z = (−β)m −β
β+1 , then z

(−β)m ∈ ( −β
β+1 ,

1
β+1

)
and z

(−β)n+2 ∈ (−1
β ,

1
β2

) ⊆ ( −β
β+1 ,

1
β+1

)
imply that T n+2

−β
(

z
(−β)n+2

)
= Tm−β

(
z

(−β)m

)
= 0. If z = (−β)m −β

β+1 , then

T n+2
−β

(
z

(−β)n+2

)
= T n+2

−β

(
(−β)m−n−1

β + 1

)
= Tm+2

−β

(
−β−1

β + 1

)

= Tm+1
−β

(
−β
β + 1

)
= T−β(0) = 0,

where we have used that z
(−β)n+2 ∈ ( −β

β+1 ,
1

β+1

)
implies m ≤ n. Therefore, we have

z ∈ (−β)n+2 T−n−2
−β (0) for all z ∈ Z−β ∩ (−β)n (−β, 1).

Consider now n = 0, then

Z−β ∩ [−β, 1] = {−β, 1} ∪ {z ∈ (−β, 1) | T 2
−β(z/β

2) = 0}.

Since −�β�
β ≥ −β

β+1 if and only if β2 ≥ �β	(β + 1), we obtain that

(−β)T−1
−β (0) =

{
{0, 1, . . . , �β	} if β2 ≥ �β	(β + 1),

{0, 1, . . . , �β	 − 1} if β2 < �β	(β + 1).

If T 2
−β(z/β

2) = 0, then z = −a1β+a0 with a0 ∈ (−β)T−1
−β (0), a1 ∈ {0, 1, . . . , �β	},

and Z−β ∩ [−β, 1] consists of those numbers −a1β + a0 lying in [−β, 1]. �
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Proposition 3.1 shows that the maximal difference between consecutive (−β)-
integers exceeds 1 whenever β2 < �β	(β+1), i.e., T−β

( −β
β+1

)
< 0. For an example,

this was also proved in [1]. In Examples 3.3 and 3.4, we see that the distance be-
tween two consecutive (−β)-integers can be even greater than 2, and the structure
of Z−β can be quite complicated. Therefore, we adapt a slightly different strategy
as for Zβ .

In the following, we always assume that the set

V ′
β = Vβ ∪ {0} =

{
T n−β

(
−β
β + 1

) ∣∣∣∣∣ n ≥ 0

}
∪ {0}

is finite, i.e., β is an Yrrap number, and let β be fixed. For x ∈ V ′
β , let

rx = min

{
y ∈ V ′

β∪
{

1
β + 1

}∣∣∣∣∣ y > x

}
, x̂ =

x+ rx
2

, Jx = {x} and Jx̂ = (x, rx).

Then {Ja | a ∈ Aβ} forms a partition of
[ −β
β+1 ,

1
β+1

)
, where

Aβ = V ′
β ∪ V̂ ′

β, with V̂ ′
β = {x̂ | x ∈ V ′

β}.
We have T−β(Jx) = JT−β(x) for every x ∈ V ′

β , and the following lemma shows that
the image of every Jx̂, x ∈ V ′

β , is a union of intervals Ja, a ∈ Aβ .

Lemma 3.2. Let x ∈ V ′
β and write

Jx̂ ∩ T−1
−β (V ′

β) = {y1, . . . , ym}, with x = y0 < y1 < · · · < ym < ym+1 = rx.

For any 0 ≤ i ≤ m, we have

T−β
(
(yi, yi+1)

)
= Jx̂i

with xi = lim
y→yi+1−

T−β(y), i.e., x̂i = T−β

(
yi + yi+1

2

)
,

and β(yi+1 − yi) = λ(Jx̂i
), where λ denotes the Lebesgue measure.

Proof. Since T−β maps no point in (yi, yi+1) to −β
β+1 ∈ V ′

β , the map is continuous
on this interval and λ(T−β((yi, yi+1))) = β(yi+1 − yi). We have xi ∈ V ′

β since
xi = T−β(yi+1) in case yi+1 < 1

β+1 , and xi = −β
β+1 in case yi+1 = 1

β+1 . Since
yi = max{y ∈ T−1

−β (V ′
β) | y < yi+1}, we obtain that rxi = limy→yi+ T−β(y), thus

T−β((yi, yi+1)) = (xi, rxi). �

In view of Lemma 3.2, we define an anti-morphism ψβ : A∗
β → A∗

β by

ψβ(x) = T−β(x) and ψβ(x̂) = x̂m T−β(ym) · · · x̂1 T−β(y1) x̂0 (x ∈ V ′
β),

with m, xi and yi as in Lemma 3.2. Here, anti-morphism means that ψβ(uv) =
ψβ(v)ψβ(u) for all u, v ∈ A∗

β . Now, the last letter of ψβ(0̂) is t̂, with t = max{x ∈
Vβ | x < 0}, and the first letter of ψβ(t̂ ) is 0̂. Therefore, ψ2n

β (0̂) is a prefix of
ψ2n+2
β (0̂) = ψ2n

β (ψ2
β(0̂)) and ψ2n+1

β (0̂) is a suffix of ψ2n+3
β (0̂) for every n ≥ 0.
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Theorem 3.1. For any Yrrap number β ≥ (1 +
√

5)/2, we have

Z−β = {zk | k ∈ Z, u2k = 0} with zk =

{ ∑k
j=1 λ(Ju2j−1 ) if k ≥ 0,

−∑|k|
j=1 λ(Ju−2j+1 ) if k ≤ 0,

where · · ·u−1u0u1 · · · is the two-sided infinite word on the finite alphabet Aβ such
that u0 = 0, ψ2n

β (0̂) is a prefix of u1u2 · · · and ψ2n+1
β (0̂) is a suffix of · · ·u−2u−1

for all n ≥ 0.

Note that · · ·u−1u0u1 · · · is a fixed point of ψβ , with u0 being mapped to u0.
The following lemma is the analogue of Lemma 2.1. We use the notation

L(v) =
k∑
j=1

λ(Jvj ) if v = v1 · · · vk ∈ Akβ .

Note that u2k ∈ V ′
β and u2k+1 ∈ V̂ ′

β for all k ∈ Z, thus λ(Ju2k
) = 0 for all k ∈ Z.

Lemma 3.3. For any n ≥ 0, 0 ≤ k < |ψnβ (0̂)|/2, we have

T n−β

(
z(−1)nk

(−β)n

)
= u(−1)n2k, T n−β

((
z(−1)nk

(−β)n
,
z(−1)n(k+1)

(−β)n

))
= Ju(−1)n(2k+1) ,

and z(−1)n(|ψn
β (0̂)|+1)/2 = (−1)n L

(
ψnβ (0̂)

)
= λ(J0̂) (−β)n = r0 (−β)n.

Proof. The statements are true for n = 0 since |ψ0
β(0̂)| = 1, z0 = 0, z1 = λ(J0̂) =

r0.
Suppose that they hold for even n, and consider

u−|ψn+1
β (0̂)| · · ·u−2u−1 = ψn+1

β (0̂) = ψβ
(
ψnβ (0̂)

)
= ψβ(u|ψn

β (0̂)|) · · ·ψβ(u2)ψβ(u1).

Let 0 ≤ k < |ψn+1
β (0̂)|/2, and write

u−2k−1 · · ·u−1 = v−2i−1 · · · v−1 ψβ(u1 · · ·u2j)

with 0 ≤ j < |ψnβ (0̂)|/2, 0 ≤ i < |ψβ(u2j+1)|/2, i.e., u−2i−1 · · ·u−1 is a suffix
of ψβ(u2j+1).

By Lemma 3.2, we have L(ψβ(x̂)) = β λ(Jx̂) for any x ∈ V ′
β . This yields that

−z−k−1 = β L(u1 · · ·u2j) + L(v−2i−1 · · · v−1) = β zj + L(v−2i−1 · · · v−1)

and −z−k = β zj + L(v−2i · · · v−1). By the induction hypothesis, we obtain that

T n+1
−β

(
z−k

(−β)n+1

)
=T n+1

−β

(
zj

(−β)n
−L(v−2i · · · v−1)

(−β)n+1

)

=

⎧⎪⎪⎨⎪⎪⎩
T−β(u2j)=ψβ(u2j)=u−2k

if i=0,

T−β
(
x+ L(v−2i · · · v−1)/β

)
=T−β(yi)=v−2i=u−2k

if i ≥ 1,
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where the yi’s are the numbers from Lemma 3.2 for x̂ = u2j+1, and

T n+1
−β

((
z−k

(−β)n+1
,
z−k−1

(−β)n+1

))
= T−β

(
(yi, yi+1)

)
= Jv−2i−1 = Ju−2k−1 .

Moreover, we have L(ψn+1
β (0̂)) = β L(ψnβ (0̂)) = r0β

n+1, thus the statements hold
for n+ 1.

The proof for odd n runs along the same lines and is therefore omitted. �

Proof of Theorem 3.1. By Lemma 3.3, we have z(−1)n(|ψn
β (0̂)|+1)/2 = r0 (−β)n for

all n ≥ 0, thus [0, r0) splits into the intervals
(
z(−1)nk(−β)−n, z(−1)n(k+1)(−β)−n

)
and points z(−1)nk(−β)−n, 0 ≤ k < |ψnβ (0̂)|/2, hence

T−n
−β (0) ∩ [0, r0) =

{
z(−1)nk(−β)−n | 0 ≤ k < |ψnβ (0̂)|/2, u(−1)n2k = 0

}
.

Let m ≥ 1 be such that β2mr0 ≥ 1
β+1 . Then we have

( −β
β+1 ,

1
β+1

) ⊆
(−β2m+1r0, β

2mr0), and

T−n
−β (0)\

{
−β
β + 1

}
⊆(−β)2m

(
T−n−2m
−β (0)∩[0, r0)

)∪(−β)2m+1
(
T−n−2m−1
−β (0)∩[0, r0)

)
,

thus

⋃
n≥0

(−β)n
(
T−n
−β (0)\

{
−β
β + 1

})
=
⋃
n≥0

(−β)n
(
T−n
−β (0)∩[0, r0)

)
={zk | k ∈ Z, u2k = 0}.

Together with Lemma 3.1, this proves the theorem. �

As in the case of positive bases, the word · · ·u−1u0u1 · · · also describes the sets
S−β(x). Theorem 3.1 and Lemma 3.3 give the following corollary.

Corollary 3.1. For any x ∈ V ′
β, y ∈ Jx̂, we have

S−β(x) = {zk | k ∈ Z, u2k = x} and S−β(y) = {zk + y− x | k ∈ Z, u2k+1 = x̂}.

Lemma 3.1 and Corollary 3.1 imply that S−β(x) is the solution of a GIFS for
any Yrrap number β ≥ (1 +

√
5)/2, x ∈ [ −β

β+1 ,
1

β+1

)
, cf. the end of Section 2.

Recall that our main goal is to understand the structure of Z−β (in case β ≥
(1 +

√
5)/2), i.e., to describe the occurrences of 0 in the word · · ·u−1u0u1 · · ·

defined in Theorem 3.1 and the words between two successive occurrences. Let

Rβ = {u2ku2k+1 · · ·u2s(k)−1 | k ∈ Z, u2k = 0}
with s(k) = min{j ∈ Z | u2j = 0, j > k}

be the set of return words of 0 in · · ·u−1u0u1 · · · .
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Note that s(k) is defined for all k ∈ Z since (−β)n ∈ Z−β for all n ≥ 0 by
Proposition 3.1.

For any w ∈ Rβ , the word ψβ(w0) is a factor of · · ·u−1u0u1 · · · starting and
ending with 0, thus we can write ψβ(w0) = w1 · · ·wm0 with wj ∈ Rβ , 1 ≤ j ≤ m,
and set

ϕ−β(w) = w1 · · ·wm.
This defines an anti-morphism ϕ−β : R∗

β → R∗
β , which plays the role of the

β-substitution.
Since · · ·u−1u0u1 · · · is generated by u1 = 0̂, as described in Theorem 3.1, we

consider wβ = u0u1 · · ·u2s(0)−1. We have

[0, 1] =

[
0,

1
β + 1

)
∪
[

1
β + 1

, 1

]
, T−β

(
(−β)−1

[
1

β + 1
, 1

])
=

[
−β
β + 1

, 0

]
,

thus L(wβ) = 1 and

wβ = 0 0̂x1 x̂1 · · · xm x̂m x−� x̂−� · · ·x−1 ̂x−1,

where the xj are defined by V ′
β = {x−�, . . . , x−1, 0, x1, . . . , xm}, x−� < · · · < x−1 <

0 < x1 < · · · < xm.

Theorem 3.2. For any Yrrap number β ≥ (1 +
√

5)/2, we have

Z−β = {z′k | k ∈ Z} with z′k =

{ ∑k
j=1 L(u′j) if k ≥ 0,

−∑|k|
j=1 L(u′−j) if k ≤ 0,

where · · ·u′−2u
′
−1u

′
1u

′
2 · · · is the two-sided infinite word on the finite alphabet Rβ

such that ϕ2n
−β(wβ) is a prefix of u′1u

′
2 · · · and ϕ2n+1

−β (wβ) is a suffix of · · ·u′−2u
′
−1

for all n ≥ 0.
The set of distances between consecutive (−β)-integers is

Δ−β = {z′k+1 − z′k | k ∈ Z} = {L(w) | w ∈ Rβ}.

Note that the index 0 is omitted in · · ·u′−2u
′
−1u

′
1u

′
2 · · · for reasons of symmetry.

Proof. The definitions of · · ·u−1u0u1 · · · in Theorem 3.1 and of ϕ−β imply that
· · ·u′−2u

′
−1 u

′
1u

′
2 · · · is the derived word of · · ·u−1u0u1 · · · with respect to Rβ , that

is

u′k = u|u′
1···u′

k−1| · · ·u|u′
1···u′

k
|−1, u′−k = u−|u′

−k
···u′

−1| · · ·u−|u′
1−k

···u′
−1|−1 (k ≥ 1)

with

{|u′1 · · ·u′k−1| | k ≥ 1} ∪ {−|u′−k · · ·u′−1| | k ≥ 1} = {k ∈ Z | uk = 0}.
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Here, for any v ∈ R∗
β , |v| denotes the length of v as a word in A∗

β , not in R∗
β. Since

z′k =
k∑
j=1

L(u′j)=
|u′

1···u′
k|−1∑

j=0

λ(Juj )=
|u′

1···u′
k|∑

j=1

λ(Juj ), z′−k=−
k∑
j=1

L(u′−j)=−
|u′

−k···u′
−1|∑

j=1

λ(Ju−j )

for all k ≥ 0, Theorem 3.1 yields that {z′k | k ∈ Z} = Z−β .
It follows from the definition of Rβ that Δ−β = {L(w) | w ∈ Rβ}.
It remains to show that Rβ is a finite set. We first show that the restriction of

ψβ to V̂ ′
β is primitive, which means that there exists some m ≥ 1 such that, for

every x ∈ V ′
β , ψmβ (x̂) contains all elements of V̂ ′

β . The proof is taken from [13],
Proposition 8. If β > 2, then the largest connected pieces of images of Jx̂ under
T−β grow until they cover two consecutive discontinuity points 1

β+1 − a+1
β , 1

β+1 − a
β

of T−β, and the next image covers all intervals Jŷ, y ∈ V ′
β . If 1+

√
5

2 < β ≤ 2, then
β2 > 2 implies that the largest connected pieces of images of Jx̂ under T 2

−β grow
until they cover two consecutive discontinuity points of T 2

−β . Since

T 2
−β

((
−β
β + 1

,
β−2

β + 1
− 1
β

))
=

(
−β3 + β2 + β

β + 1
,

1
β + 1

)
,

T 2
−β

((
β−2

β + 1
− 1
β
,
−β−1

β + 1

))
=

(
−β
β + 1

,
β2 − β − 1
β + 1

)
,

T 2
−β

((
−β−1

β + 1
,
β−2

β + 1

))
=

(
−β
β + 1

,
1

β + 1

)
,

T 2
−β

((
β−2

β + 1
,

1
β + 1

))
=

(
−β
β + 1

,
β2 − β − 1
β + 1

)
,

the next image covers the fixed point 0, and further images grow until after a finite
number of steps they cover all intervals Jŷ, y ∈ V ′

β . The case β = 1+
√

5
2 is treated

in Example 3.1.
If T n−β

( −β
β+1

) = 0 for all n ≥ 0, then T n−β is continuous at all points x ∈( −β
β+1 ,

1
β+1

)
with T n−β(x) = 0, thus u2k = 0 is equivalent to u2k+1 = 0̂ (see also

Prop. 3.2 below). Hence we can consider the return words of 0̂ in · · ·u−1u0u1 · · ·
instead of the return words of 0. Since ψmβ (x̂0 x1 x̂2) has at least two occurrences
of 0̂ for all x0, x1, x2 ∈ V ′

β , there are only finitely many such return words. If
T n−β

( −β
β+1

)
= 0, then ψnβ (x0 x̂1 x2) starts and ends with 0 for all x0, x1, x2 ∈ V ′

β ,
hence Rβ is finite as well. �

For details on derived words of primitive substitutive words, we refer to [7].
We remark that, for practical reasons, the set Rβ can be obtained from the set

R = {wβ} by adding to R iteratively all return words of 0 which appear in ψβ(w0)
for some w ∈ R until R stabilises. The final set R is equal to Rβ .

Now, we apply the theorems in the case of two quadratic examples.



ON THE STRUCTURE OF (−β)-INTEGERS 193

−β3 −β3+β2−β
−β3+β2−β+1

−β −β+1 0 1 β2−β+1
β2
β4−β3+β2−β

β4−β3+β2−β+1
β4−β3+β2

β4−β+1
β4

A A B A B A A B A A B A B

Figure 2. The (−β)-integers in [−β3, β4], β = (1 +
√

5)/2.

Example 3.1. Let β = 1+
√

5
2 , i.e., β2 = β + 1, and t = −β

β+1 = −1
β , then Vβ =

V ′
β = {t, 0}. Since

Jt̂ = (t, 0) =

(
t,
−1
β3

)
∪
{
−1
β3

}
∪
(
−1
β3
, 0

)
, J0̂ =

(
0,

1
β2

)
,

see Figure 1 (middle), the anti-morphism ψβ on A∗
β is defined by

ψβ : t �→ 0, t̂ �→ 0̂ t t̂, 0 �→ 0, 0̂ �→ t̂.

Its two-sided fixed point · · ·u−1u0u1 · · · is

· · · 0︸︷︷︸
ψβ(0)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(t)

t̂︸︷︷︸
ψβ(0̂)

0︸︷︷︸
ψβ(0)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(t)

t̂︸︷︷︸
ψβ(0̂)

0̇︸︷︷︸
ψβ(0̇)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(0)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(t)

t̂︸︷︷︸
ψβ(0̂)

0︸︷︷︸
ψβ(0)

t̂︸︷︷︸
ψβ(0̂)

0︸︷︷︸
ψβ(0)

· · · ,

where 0̇ marks the central letter u0. The return word of 0 starting at u0 is wβ =
0 0̂ t t̂. The image ψβ(wβ0) = 0 0̂ t t̂ 0 t̂ 0 contains the return words wβ and 0 t̂.
Since ψβ(0 t̂ 0) = 0 0̂ t t̂ 0, there are no other return words of 0, i.e., Rβ = {A,B}
with A = 0 0̂ t t̂, B = 0 t̂. Therefore, · · ·u′−2u

′
−1u

′
1u

′
2 · · · is a two-sided fixed point

of the anti-morphism
ϕ−β : A �→ AB, B �→ A,

with

u′−13 · · ·u′−1 u
′
1 · · ·u′21 =

AABAABABAABAB AABAABABAABAABABAABAB.

We have λ(J0̂) = 1
β2 , λ(Jt̂) = 1

β , thus L(A) = 1, L(B) = 1
β = β − 1, and some

(−β)-integers are shown in Figure 2. Note that (−β)n can also be represented as
(−β)n+2 + (−β)n+1.

Example 3.2. Let β = 3+
√

5
2 , i.e., β2 = 3β − 1, then the (−β)-transformation

is depicted in Figure 3, where t0 = −β
β+1 , t1 = T−β(t0) = β2

β+1 − 2 = −β−1

β+1 ,
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0

0t0
t0 1

β+1

1
β+1

t1

t1

Jt0
Jt1

J0

−β3

−β3+1
−β3+β2−2β+1

−β3+β2−β

−β3+β2−β+1
−β3+β2
−β3+β2+1

−β3+2β2−2β+1
−β3+2β2−β
−β3+2β2−β+1

−2β+1
−β
−β+1 0 1 β2−2β+1

β2−β
β2−β+1

β2

A B B A B A B B A B B A B A B B A B

Figure 3. The (−β)-transformation and Z−β ∩ [−β3, β2], β =
(3 +

√
5)/2.

T−β(t1) = 1
β+1 − 1 = t0. Therefore, V ′

β = {t0, t1, 0} and the anti-morphism ψβ :
A∗
β → A∗

β is defined by

ψβ : t0 �→ t1, t̂0 �→ t̂0 t1t̂1 0 0̂ t0 t̂0, t1 �→ t0, t̂1 �→ 0̂, 0 �→ 0, 0̂ �→ t̂0 t1 t̂1,

which has the two-sided fixed point

· · · 0︸︷︷︸
ψβ(0)

0̂︸︷︷︸
ψβ(t̂1)

t0︸︷︷︸
ψβ(t1)

t̂0 t1 t̂1 0 0̂ t0 t̂0︸ ︷︷ ︸
ψβ(t̂0)

t1︸︷︷︸
ψβ(t0)

t̂0 t1 t̂1︸ ︷︷ ︸
ψβ(0̂)

0̇︸︷︷︸
ψβ(0)

0̂︸︷︷︸
ψβ(t̂1)

t0︸︷︷︸
ψβ(t1)

t̂0 t1 t̂1 0 0̂ t0 t̂0︸ ︷︷ ︸
ψβ(t̂0)

· · · ,

where 0̇ marks the central letter u0. We have wβ = 0 0̂ t0 t̂0 t1 t̂1 and

ψβ : 0 0̂ t0 t̂0 t1 t̂1 0 �→ 0 0̂ t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0,

0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 �→ 0 0̂ t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0,

0 0̂ t0 t̂0 t0 t̂0 t1 t̂1 0 �→ 0 0̂ t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0.

Note that 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 and 0 0̂ t0 t̂0 t0 t̂0 t1 t̂1 differ only by a letter in V ′
β , and

correspond therefore to intervals of the same length. Since the letters t0 and t1
are never mapped to 0, we identify these two return words. This means that
Rβ = {A,B} with A = 0 0̂ t0 t̂0 t1 t̂1, B = 0 0̂ t0 t̂0 {t0, t1} t̂0 t1 t̂1, and

· · ·u′−2u
′
−1 u

′
1u

′
2 · · · = · · ·ABBABABBABBAB ABBABABBABBAB · · ·

is a two-sided fixed point of the anti-morphism

ϕ−β : A �→ AB, B �→ ABB.
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0

0t0
t0 1

β+1

1
β+1

t3

t1

t1

t2

t2

t3

Jt0
Jt1

Jt3
J0 Jt2

−β3

−β3+1
−β3+β2−β
−β3+β2−β+1

−β3+β2

−β3+β2+1
−β
−β+1

0 1
β2−β
β2−β+1

β2

β2+1
β4−2β3+β2+1

β4−β3−β
β4−β3−β+1

β4−β3

β4−β3+1
β4−β3+β2−β
β4−β3+β2−β+1

β4−β3+β2

β4−β3+β2+1
β4−β
β4−β+1

β4

A C A B A D A B A C A B A E D A B A C A B A D A B

Figure 4. The (−β)-transformation and Z−β ∩ [−β3, β4] from
Example 3.3.

We have L(A) = 1, L(B) = β − 1 > 1, and some (−β)-integers are shown in
Figure 3.

We remark that it is sufficient to consider the elements of V̂ ′
β when one is only

interested in Z−β . This is made precise in the following proposition.

Proposition 3.2. Let β and · · ·u−1u0u1 · · · be as in Theorem 3.1, t = max{x ∈
Vβ | x < 0}. For any k ∈ Z, u2k = 0 is equivalent to u2k−1 = t̂ or u2k+1 = 0̂.

If 0 ∈ Vβ or the size of Vβ is even, then u2k = 0 is equivalent to u2k−1 = t̂.
If 0 ∈ Vβ or the size of Vβ is odd, then u2k = 0 is equivalent to u2k+1 = 0̂.

Proof. Let k ∈ Z and m ≥ 0 such that zk/β2m ∈ ( −β
β+1 ,

1
β+1

)
. Then we have

• u2k = 0 if and only if T 2m
−β (zk/β2m) = 0,

• u2k−1 = t̂ if and only if limy→zk− T
2m
−β (y/β2m) = 0,

• u2k+1 = 0̂ if and only if limy→zk+ T
2m
−β (y/β2m) = 0.

Thus u2k = 0, u2k−1 = t̂ and u2k+1 = 0̂ are equivalent when T 2m
−β is continuous

at zk/β2m. Assume from now on that zk/β2m is a discontinuity point of T 2m
−β . Then

T �−β(zk/β
2m) = −β

β+1 for some 1 ≤ � ≤ 2m and, if � is minimal with this property,

lim
y→zk−

T
2��/2�+1
−β (y/β2m) =

−β
β + 1

and lim
y→zk+

T
2	�/2

−β (y/β2m) =

−β
β + 1

·
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0

0t0
t0 1

β+1

1
β+1

t1

t1

t2

t2

t3

t3

t4

t4

t5

t5

Jt0
Jt2

Jt3
Jt5

Jt1
J0 Jt4

−β
−β+1

−β+2 0 1 2 β2−3β+1
β2−3β+2

β2−2β
β2−2β+1

β2−2β+2
β2−β

β2−β+1
β2−β+2

β2

A A B A A C A B A A B A A B

Figure 5. The (−β)-transformation and Z−β ∩ [−β, β2] from
Example 3.4.

Hence, if 0 ∈ Vβ , we cannot have u2k = 0, u2k−1 = t̂ or u2k+1 = 0̂ at a discontinuity
point, which proves the proposition in this case. If 0 ∈ Vβ , then T#Vβ−1

−β
( −β
β+1

)
= 0,

thus

• T j−β(zk/β
2m) = 0 if and only if j ≥ �+ #Vβ − 1,

• limy→zk− T
j
−β(y/β

2m) = 0 if and only if j ≥ 2��/2	+ #Vβ ,
• limy→zk+ T

j
−β(y/β

2m) = 0 if and only if j ≥ 2��/2�+ #Vβ − 1.

Since 2��/2	 ≥ � − 1 and 2��/2� ≥ �, we obtain u2k = 0 whenever u2k−1 = t̂
or u2k+1 = 0̂. If #Vβ is even, then u2k = 0 implies that u2k−1 = t̂ since 2m ≥
�+ #Vβ − 1 implies that 2m ≥ 2��/2	+ #Vβ . If #Vβ is odd, then u2k = 0 implies
that u2k+1 = 0̂ since 2m ≥ �+ #Vβ − 1 implies that 2m ≥ 2��/2�+ #Vβ − 1. This
proves the proposition. �

By Proposition 3.2, it suffices to consider the anti-morphism ψ̂β : V̂ ′
β
∗ → V̂ ′

β
∗

defined by

ψ̂β(x̂) = x̂m · · · x̂1 x̂0 when ψβ(x̂) = x̂m T−β(ym) · · · x̂1 T−β(y1) x̂0 (x ∈ V ′
β).

Then Δ−β is given by the set R̂β which consists of the return words of 0̂ when
0 ∈ Vβ or the size of Vβ is odd. When 0 ∈ Vβ and the size of Vβ is even, as in
Example 3.1, then R̂β consists of the words w t̂ such that t̂ w is a return word of t̂.
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Example 3.3. Let β > 1 with β3 = 2β2 + 1, i.e., β ≈ 2.206, and let tn =
T n−β

( −β
β+1

)
for n ≥ 0. Then we have

t0 =
−β
β + 1

, t1 =
β2

β + 1
− 2 =

β−1 − 2
β + 1

, t2 =
2β − 1
β + 1

− 1 =
β−2

β + 1
,

t3 =
−β−1

β + 1
, t4 =

1
β + 1

− 1 = t0,

see Figure 4. The anti-morphism ψ̂β : V̂ ′
β
∗ → V̂ ′

β
∗ is therefore defined by

ψ̂β : t̂0 �→ t̂2 t̂0, t̂1 �→ t̂0 t̂1 t̂3 0̂, t̂3 �→ 0̂ t̂2, 0̂ �→ t̂3, t̂2 �→ t̂0 t̂1.

Since 0 ∈ Vβ , we consider return words of 0̂ in the ψ̂β-images of ŵβ = 0̂ t̂2 t̂0 t̂1 t̂3:

0̂ t̂2 t̂0 t̂1 t̂3 �→ 0̂ t̂2 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂0 t̂1 t̂3,

0̂ t̂2 t̂0 t̂0 t̂1 t̂3 �→ 0̂ t̂2 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂3 ,

0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂3 �→ 0̂ t̂2 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂2 t̂0 t̂0 t̂1 t̂3 ,

0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂2 t̂0 t̂0 t̂1 t̂3 �→ 0̂ t̂2 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂0 t̂1 t̂3
0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂2 t̂0 t̂0 t̂1 t̂3 ,

0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂0 t̂1 t̂3 �→ 0̂ t̂2 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂2 t̂0 t̂0 t̂1 t̂3.

Hence R̂β = {A,B,C,D,E} with A = 0̂ t̂2 t̂0 t̂1 t̂3, B = 0̂ t̂2 t̂0 t̂0 t̂1 t̂3, C =
0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂3, D = 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂2 t̂0 t̂0 t̂1 t̂3, E = 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂0 t̂1 t̂3, and
Z−β is described by the anti-morphism ϕ̂−β : R̂∗

β → R̂∗
β given by

ϕ̂−β : A �→ AB , B �→ AC , C �→ AD , D �→ AED , E �→ ABD.

The (−β)-integers in [−β3, β4] are represented in Figure 4, and we have

L(A) = 1, L(B) = β − 1, L(C) = β2 − β − 1,
L(D) = β2 − β ≈ 2.659, L(E) = β.

Note that L(D) > β > 2. Moreover, the cardinality of Δ−β is larger than that
of Vβ , which in turn is larger than the algebraic degree d of β (#Δ−β = 5, #Vβ = 4,
d = 3).

Example 3.4. Let β > 1 with β6 = 3β5 +2β4 +2β3 +β2−2β−1, i.e., β ≈ 3.695,
then the (−β)-transformation is depicted in Figure 5, where tn = T n−β

( −β
β+1

)
. We

have t5 = −1
β+1 = t6. The anti-morphism ψ̂β : V̂ ′

β
∗ → V̂ ′

β
∗ is therefore given by

ψ̂β : t̂0 �→ t̂3 t̂5 , t̂2 �→ t̂4 t̂0 t̂2 , t̂3 �→ t̂5 t̂1 0̂ t̂4 t̂0 t̂2 t̂3 t̂5 t̂1 0̂ ,

t̂5 �→ t̂2 t̂3 , t̂1 �→ 0̂ t̂4 t̂0 , 0̂ �→ t̂5 t̂1 , t̂4 �→ t̂0 t̂2 t̂3.
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In order to deal with shorter words, we group the letters forming the words

a = 0̂ t̂4, b = t̂0 t̂2 t̂3 t̂5 t̂1, c = t̂0 t̂2 t̂3 t̂5, d = t̂2 t̂3 t̂5 t̂1,

e = t̂0 t̂2, f= t̂4, g = t̂0 t̂2 t̂3, h = t̂5 t̂1,

which correspond to the intervals Ja =
(
0, 1

β+1

)
, Jb = (t0, 0), Jc = (t0, t1), Jd =

(t2, 0), Je = (t0, t3), Jf =
(
t4,

1
β+1

)
, Jg = (t0, t5), Jh = (t5, 0), occurring in iterated

images of Ja. The anti-morphism ψ̂β acts on these words by

ψ̂β : a �→ b , b �→ ababac , c �→ dabac , d �→ ababae ,

e �→ fc , f �→ g , g �→ habac , h �→ ag.

Since 0̂ only occurs at the beginning of a, the return words of 0̂ with their ψ̂β-
images are

ab �→ ab ab acb , aed �→ ab ab aefcb ,

acb �→ ab ab acd ab acb , aefcb �→ ab ab acd ab acgfcb ,

acd �→ ab ab aed ab acb , acgfcb �→ ab ab acd ab acgh︸︷︷︸
=acb

ab acd ab acb.

Therefore, Z−β is described by the anti-morphism ϕ̂−β : R̂∗
β → R̂∗

β which is defined
by

ϕ̂−β : A �→ AAB , L(A) = 1 ,
B �→ AACAB , L(B) = β − 2 ≈ 1.695 ,
C �→ AADAB , L(C) = β2 − 3β − 1 ≈ 1.569 ,

D �→ AAE , L(D) = β3 − 3β2 − 2β − 1 ≈ 1.104 ,
E �→ AACAF , L(E) = β4 − 3β3 − 2β2 − β − 2 ≈ 2.081 ,
F �→ AACABACAB , L(F ) = β5 − 3β4 − 2β3 − 2β2 + β − 2 ≈ 3.12.

4. Conclusions

With every Yrrap number β ≥ (1+
√

5)/2, we have associated an anti-morphism
ϕ−β on a finite alphabet. The distances between consecutive (−β)-integers are
described by a fixed point of ϕ−β . In [1], the anti-morphism is described explicitely
for each β > 1 such that T n−β

( −β
β+1

) ≤ 0 and T 2n−1
−β

( −β
β+1

) ≥ 1−�β�
β for all n ≥ 1.

Examples 3.3 and 3.4 show that the situation can be quite complicated when this
condition is not fulfilled. Although ϕ−β can be obtained by a simple algorithm, it
seems to be difficult to find a priori bounds for the number of different distances
between consecutive (−β)-integers or for their maximal value. Only the case of
quadratic Pisot numbers β is completely solved; here, we know from [1, 14] that
#Vβ = #Δ−β = 2.
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Recall that the maximal distance between consecutive β-integers is 1, and the
number of different distances is equal to the cardinality of the set {T nβ (1−) | n ≥ 0}.
Example 3.3 shows that the (−β)-integers do not satisfy similar properties. By
generalising Example 3.4 to β > 1 with β6 = (m+1)β5+mβ4+mβ3+β2−mβ−1,
m ≥ 2, one sees that the maximal distance can be arbitrarily close to 4 for algebraic
integers of degree 6 and #Vβ = 6.

In a forthcoming paper, we associate anti-morphisms ϕ−β on infinite alphabets
with non-Yrrap numbers β, by considering the intervals occurring in the iter-
ated T−β-images of

(
0, 1

β+1

)
, cf. Example 3.4, and we show that the distances

between consecutive (−β)-integers can be unbounded, e.g. for β > 1 satisfying
−β
β+1 =

∑∞
k=1 ak(−β)−k where a1a2 · · · = 31232 1 2 31232 2 · · · is a fixed point of

the morphism 3 �→ 31232, 2 �→ 2, 1 �→ 1. For Yrrap numbers β, this implies
that there is no bound for the distance between consecutive (−β)-integers which
is independent of β. However, large distances occur probably only far away from 0
and when #Vβ is large, and it would be interesting to quantify these relations.

Another topic that is worth investigating is the structure of the sets S−β(x) for
x = 0, and of the corresponding tilings when β is a Pisot unit. A related question
is whether Z−β can be given by a cut and project scheme, cf. [5, 12].
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