ON THE STRUCTURE OF $(-\beta)$ -INTEGERS

WOLFGANG STEINER¹

Abstract. The $(-\beta)$ -integers are natural generalisations of the β -integers, and thus of the integers, for negative real bases. When β is the analogue of a Parry number, we describe the structure of the set of $(-\beta)$ -integers by a fixed point of an anti-morphism.

Mathematics Subject Classification. 11A63, 68R15.

1. INTRODUCTION

The aim of this paper is to study the structure of the set of real numbers having a digital expansion of the form

$$\sum_{k=0}^{n-1} a_k \left(-\beta\right)^k,$$

where $(-\beta)$ is a negative real base with $\beta > 1$, the digits $a_k \in \mathbb{Z}$ satisfy certain conditions specified below, and $n \ge 0$. These numbers are called $(-\beta)$ -integers, and have been recently studied by Ambrož *et al.* [1].

Before dealing with these numbers, we recall some facts about β -integers, which are the real numbers of the form

$$\pm \sum_{k=0}^{n-1} a_k \beta^k \quad \text{such that} \quad 0 \le \sum_{k=0}^{m-1} a_k \beta^k < \beta^m \quad \text{for all } 1 \le m \le n,$$

Keywords and phrases. Beta expansion, Parry number, beta-integer, morphism, substitution. ¹ LIAFA, CNRS, Université Paris Diderot – Paris 7, Case 7014, 75205 Paris Cedex 13, France. steiner@liafa.jussieu.fr

i.e., $\sum_{k=0}^{n-1} a_k \beta^k$ is a greedy β -expansion. Equivalently, we can define the set of β -integers as

$$\mathbb{Z}_{\beta} = \mathbb{Z}_{\beta}^{+} \cup (-\mathbb{Z}_{\beta}^{+}) \quad \text{with} \quad \mathbb{Z}_{\beta}^{+} = \bigcup_{n \ge 0} \beta^{n} T_{\beta}^{-n}(0),$$

where T_{β} is the β -transformation, defined by

$$T_{\beta}: [0,1) \to [0,1), \quad x \mapsto \beta x - \lfloor \beta x \rfloor.$$

This map and the corresponding β -expansions were first studied by Rényi [20].

The notion of β -integers was introduced in the domain of quasicrystallography, see for instance [6], and the structure of the β -integers is very well understood now. We have $\beta \mathbb{Z}_{\beta} \subseteq \mathbb{Z}_{\beta}$, the set of distances between consecutive elements of \mathbb{Z}_{β} is

$$\Delta_{\beta} = \{ T^n_{\beta}(1^-) \mid n \ge 0 \},\$$

where $T^n_{\beta}(x^-) = \lim_{y\to x^-} T^n_{\beta}(y)$, and the sequence of distances between consecutive elements of \mathbb{Z}^+_{β} is coded by the fixed point of a substitution, see [9] for the case when Δ_{β} is a finite set, that is when β is a *Parry number*. We give short proofs of these facts in Section 2. More detailed properties of this sequence can be found *e.g.* in [2–4, 11, 16].

Closely related to \mathbb{Z}^+_{β} are the sets

$$S_{\beta}(x) = \bigcup_{n \ge 0} \beta^n T_{\beta}^{-n}(x) \qquad (x \in [0, 1)),$$

which were used by Thurston [21] to define (fractal) tilings of \mathbb{R}^{d-1} when β is a Pisot number of degree d, *i.e.*, a root > 1 of a polynomial $x^d + p_1 x^{d-1} + \cdots + p_d \in \mathbb{Z}[x]$ such that all other roots have modulus < 1, and an algebraic unit, *i.e.*, $p_d = \pm 1$. These tilings allow *e.g.* to determine the *k*th digit a_k of a number without knowing the other digits, see [15].

It is widely agreed that the greedy β -expansions are the natural representations of real numbers in a real base $\beta > 1$. For the case of negative bases, the situation is not so clear. Ito and Sadahiro [14] proposed recently to use the $(-\beta)$ transformation defined by

$$T_{-\beta}: \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right), x \mapsto -\beta x - \left\lfloor\frac{\beta}{\beta+1} - \beta x\right\rfloor,$$

see also [10]. This transformation has the important property that $T_{-\beta}(-x/\beta) = x$ for all $x \in \left(\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$. Some instances are depicted in Figures 1, 3, 4 and 5.

The set of $(-\beta)$ -integers is therefore defined by

$$\mathbb{Z}_{-\beta} = \bigcup_{n \ge 0} (-\beta)^n T_{-\beta}^{-n}(0).$$

FIGURE 1. The $(-\beta)$ -transformation for $\beta = 2$ (left), $\beta = \frac{1+\sqrt{5}}{2} \approx 1.618$ (middle), and $\beta = \frac{1}{\beta} + \frac{1}{\beta^2} \approx 1.325$ (right).

These are the numbers

$$\sum_{k=0}^{n-1} a_k \left(-\beta\right)^k \quad \text{such that} \quad \frac{-\beta}{\beta+1} \le \sum_{k=0}^{m-1} a_k \left(-\beta\right)^{k-m} < \frac{1}{\beta+1} \quad \text{for all } 1 \le m \le n.$$

Note that, in the case of β -integers, we have to add $-\mathbb{Z}_{\beta}^+$ to \mathbb{Z}_{β}^+ in order to obtain a set resembling \mathbb{Z} . In the case of $(-\beta)$ -integers, this is not necessary because the $(-\beta)$ -transformation allows to represent positive and negative numbers.

It is not difficult to see that $\mathbb{Z}_{-\beta} = \mathbb{Z} = \mathbb{Z}_{\beta}$ when $\beta \in \mathbb{Z}, \beta \geq 2$. Some other properties of $\mathbb{Z}_{-\beta}$ can be found in [1], mainly for the case when $T_{-\beta}^{n}\left(\frac{-\beta}{\beta+1}\right) \leq 0$ and $T_{-\beta}^{2n-1}\left(\frac{-\beta}{\beta+1}\right) \geq \frac{1-\lfloor\beta\rfloor}{\beta}$ for all $n \geq 1$. (Note that $T_{-\beta}^{n}\left(\frac{-\beta}{\beta+1}\right) \in \left(\frac{1}{\beta+1} - \frac{\lfloor\beta\rfloor}{\beta}, \frac{1-\lfloor\beta\rfloor}{\beta}\right) \cup \left(\frac{-\beta^{-1}}{\beta+1}, 0\right)$ implies $T_{-\beta}^{n+1}\left(\frac{-\beta}{\beta+1}\right) > 0$).

The set

$$V_{\beta} = \left\{ T_{-\beta}^{n} \left(\frac{-\beta}{\beta + 1} \right) \mid n \ge 0 \right\}$$

plays a similar role for $(-\beta)$ -expansions as the set $\{T^n_{\beta}(1^-) \mid n \geq 0\}$ for β expansions. If V_{β} is a finite set, then we call $\beta > 1$ an Yrrap number. Note that these numbers are called *Ito-Sadahiro numbers* in [18], in reference to [14]. However, as the generalised β -transformations in [13] with $E = (1, \ldots, 1)$ are, up to conjugation by the map $x \mapsto \frac{1}{\beta+1} - x$, the same as our $(-\beta)$ -transformations, these numbers were already considered by Góra and perhaps by other authors. Therefore, the neutral but intricate name $(-\beta)$ -numbers was chosen in [17], referring to the original name β -numbers for Parry numbers [19]. The name Yrrap number, used in the present paper, refers to the connection with Parry numbers and to the fact that $T_{-\beta}$ is (locally) orientation-reversing.

For any Yrrap number $\beta \ge (1+\sqrt{5})/2$, we describe the sequence of $(-\beta)$ -integers in terms of a two-sided infinite word on a finite alphabet which is a fixed point of an anti-morphism (Thm. 3.2). Note that the orientation-reversing property of the map $x \mapsto -\beta x$ imposes the use of an anti-morphism instead of a morphism, and that anti-morphisms were considered in a similar context by Enomoto [8].

For $1 < \beta < \frac{1+\sqrt{5}}{2}$, we have $\mathbb{Z}_{-\beta} = \{0\}$, as already proved in [1]. However, our study still makes sense for these bases $(-\beta)$ because we can also describe the sets

$$S_{-\beta}(x) = \lim_{n \to \infty} (-\beta)^n T_{-\beta}^{-n}(x) \qquad \left(x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right]\right),$$

where the limit set consists of the numbers lying in all but finitely many sets $(-\beta)^n T_{-\beta}^{-n}(x), n \geq 0$. Taking the limit instead of the union over all $n \geq 0$ implies that every $y \in \mathbb{R}$ lies in exactly one set $S_{-\beta}(x), x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$, see Lemma 3.1. Note that $T_{-\beta}^2\left(\frac{-\beta^{-1}}{\beta+1}\right) \neq \frac{-\beta}{\beta+1}$ when $\beta \notin \mathbb{Z}$. Other properties of the $(-\beta)$ -transformation for $1 < \beta < \frac{1+\sqrt{5}}{2}$ are exhibited in [17].

2. β -integers

In this section, we consider the structure of β -integers. The results are not new, but it is useful to state and prove them in order to understand the differences with $(-\beta)$ -integers.

Recall that $\Delta_{\beta} = \{T^{n}_{\beta}(1^{-}) \mid n \geq 0\}$, and let Δ^{*}_{β} be the free monoid generated by Δ_{β} . Elements of Δ^{*}_{β} will be considered as words on the alphabet Δ_{β} , and the operation is the concatenation of words. The β -substitution is the morphism $\varphi_{\beta}: \Delta^{*}_{\beta} \to \Delta^{*}_{\beta}$, defined by

$$\varphi_{\beta}(x) = \underbrace{11\cdots 1}_{\lceil \beta x \rceil - 1 \text{ times}} T_{\beta}(x^{-}) \qquad (x \in \Delta_{\beta}).$$

Here, 1 is an element of Δ_{β} and not the identity element of Δ_{β}^{*} (which is the empty word). Recall that, as φ_{β} is a morphism, we have $\varphi_{\beta}(uv) = \varphi_{\beta}(u)\varphi_{\beta}(v)$ for all $u, v \in \Delta_{\beta}^{*}$. Since $\varphi_{\beta}^{n+1}(1) = \varphi_{\beta}^{n}(\varphi_{\beta}(1))$ and $\varphi_{\beta}(1)$ starts with 1, $\varphi_{\beta}^{n}(1)$ is a prefix of $\varphi_{\beta}^{n+1}(1)$ for every $n \geq 0$.

Theorem 2.1. For any $\beta > 1$, the set of non-negative β -integers takes the form

$$\mathbb{Z}_{\beta}^{+} = \{ z_k \mid k \ge 0 \} \quad with \quad z_k = \sum_{j=1}^k u_j,$$

where $u_1u_2\cdots$ is the infinite word with letters in Δ_β which has $\varphi_\beta^n(1)$ as prefix for all $n \ge 0$.

The set of differences between consecutive β -integers is Δ_{β} .

The main observation for the proof of the theorem is the following. We use the notation |v| = k and $L(v) = \sum_{j=1}^{k} v_j$ for any $v = v_1 \cdots v_k \in \Delta_{\beta}^k$, $k \ge 0$.

Lemma 2.1. For any $n \ge 0$, $1 \le k \le |\varphi_{\beta}^n(1)|$, we have

$$T^n_{\beta}\left(\left\lfloor \frac{z_{k-1}}{\beta^n}, \frac{z_k}{\beta^n} \right)\right) = [0, u_k),$$

and $z_{|\varphi_{\beta}^{n}(1)|} = L(\varphi_{\beta}^{n}(1)) = \beta^{n}$.

Proof. For n = 0, we have $|\varphi_{\beta}^{0}(1)| = 1$, $z_{0} = 0$, $z_{1} = 1$, $u_{1} = 1$, thus the statements are true. Suppose that they hold for n, and consider

$$u_1 u_2 \cdots u_{|\varphi_{\beta}^{n+1}(1)|} = \varphi_{\beta}^{n+1}(1) = \varphi_{\beta}(\varphi_{\beta}^n(1)) = \varphi_{\beta}(u_1) \varphi_{\beta}(u_2) \cdots \varphi_{\beta}(u_{|\varphi_{\beta}^n(1)|}).$$

Let $1 \leq k \leq |\varphi_{\beta}^{n+1}(1)|$, and write $u_1 \cdots u_k = \varphi_{\beta}(u_1 \cdots u_{j-1}) v_1 \cdots v_i$ with $1 \leq j \leq |\varphi_{\beta}^n(1)|$, $1 \leq i \leq |\varphi_{\beta}(u_j)|$, *i.e.*, $v_1 \cdots v_i$ is a non-empty prefix of $\varphi_{\beta}(u_j)$.

For any $x \in (0, 1]$, we have $T_{\beta}(x^{-}) = \beta x - \lceil \beta x \rceil + 1$, hence $L(\varphi_{\beta}(x)) = \beta x$ for $x \in \Delta_{\beta}$. This yields that

$$z_k = L(u_1 \cdots u_k) = \beta L(u_1 \cdots u_{j-1}) + L(v_1 \cdots v_i) = \beta z_{j-1} + i - 1 + v_i$$

and $z_{k-1} = \beta z_{j-1} + i - 1$, hence

$$\left[\frac{z_{k-1}}{\beta}, \frac{z_k}{\beta} \right) = \left[z_{j-1} + \frac{i-1}{\beta}, z_{j-1} + \frac{i-1+v_i}{\beta} \right) \subseteq [z_{j-1}, z_{j-1} + u_j) = [z_{j-1}, z_j),$$

$$T_{\beta}^{n+1} \left(\left[\frac{z_{k-1}}{\beta^{n+1}}, \frac{z_k}{\beta^{n+1}} \right] \right) = T_{\beta} \left(\left[\frac{i-1}{\beta}, \frac{i-1+v_i}{\beta} \right] \right) = [0, v_i) = [0, u_k).$$

Moreover, we have $L(\varphi_{\beta}^{n+1}(1)) = \beta L(\varphi_{\beta}^{n}(1)) = \beta^{n+1}$, thus the statements hold for n+1.

Proof of Theorem 2.1. By Lemma 2.1, we have $z_{|\varphi_{\beta}^{n}(1)|} = \beta^{n}$ for all $n \geq 0$, thus [0,1) is split into the intervals $[z_{k-1}/\beta^{n}, z_{k}/\beta^{n}), 1 \leq k \leq |\varphi_{\beta}^{n}(1)|$. Therefore, Lemma 2.1 yields that

$$T_{\beta}^{-n}(0) = \{ z_{k-1}/\beta^n \mid 1 \le k \le |\varphi_{\beta}^n(1)| \},\$$

hence

$$\bigcup_{n \ge 0} \beta^n T_{\beta}^{-n}(0) = \{ z_k \mid k \ge 0 \}.$$

Since $u_k \in \Delta_\beta$ for all $k \ge 1$ and $u_{|\varphi^n(1)|} = T^n_\beta(1^-)$ for all $n \ge 0$, we have

$$\{z_k - z_{k-1} \mid k \ge 1\} = \{u_k \mid k \ge 1\} = \Delta_\beta.$$

For the sets $S_{\beta}(x)$, Lemma 2.1 gives the following corollary.

Corollary 2.1. For any $x \in [0,1)$, we have

$$S_{\beta}(x) = \{ z_k + x \mid k \ge 0, \ u_{k+1} > x \} \subseteq x + S_{\beta}(0).$$

In particular, we have $S_{\beta}(x) - x = S_{\beta}(y) - y$ for all $x, y \in [0, 1)$ with $(x, y] \cap \Delta_{\beta} = \emptyset$. From the definition of $S_{\beta}(x)$ and since $x \in \beta T_{\beta}^{-1}(x)$, we also get that

$$S_{\beta}(x) = \bigcup_{y \in T_{\beta}^{-1}(x)} \beta S_{\beta}(y) \qquad (x \in [0, 1)).$$

This shows that $S_{\beta}(x)$ is the solution of a graph-directed iterated function system (GIFS) when β is a Parry number, *cf.* [15], Section 3.2.

3.
$$(-\beta)$$
-integers

We now turn to the discussion of $(-\beta)$ -integers and sets $S_{-\beta}(x), x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$.

Lemma 3.1. For any $\beta > 1$, $x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$, we have

$$S_{-\beta}(x) = \bigcup_{n \ge 0} (-\beta)^n \left(T_{-\beta}^{-n}(x) \setminus \left\{ \frac{-\beta}{\beta+1} \right\} \right) = \bigcup_{y \in T_{-\beta}^{-1}(x)} (-\beta) S_{-\beta}(y).$$

For any $y \in \mathbb{R}$, there exists a unique $x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$ such that $y \in S_{-\beta}(x)$. If $T_{-\beta}(x) = x$, then $S_{-\beta}(x) = \bigcup_{n \ge 0} (-\beta)^n T_{-\beta}^{-n}(x)$, in particular $S_{-\beta}(0) = \mathbb{Z}_{-\beta}$.

Proof. If $y \in S_{-\beta}(x)$, then we have $\frac{y}{(-\beta)^n} \in T_{-\beta}^{-n}(x)$ for all sufficiently large n, thus $y \in (-\beta)^n \left(T_{-\beta}^{-n}(x) \setminus \left\{\frac{-\beta}{\beta+1}\right\}\right)$ for some $n \ge 0$. On the other hand, $y \in (-\beta)^n \left(T_{-\beta}^{-n}(x) \setminus \left\{\frac{-\beta}{\beta+1}\right\}\right)$ for some $n \ge 0$ implies that $T_{-\beta}^m(\frac{y}{(-\beta)^m}) = T_{-\beta}^n(\frac{y}{(-\beta)^n}) = x$ for all $m \ge n$, thus $y \in S_{-\beta}(x)$. This shows the first equation. Since $x \in \left(\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$ implies that $x \in (-\beta) \left(T_{-\beta}^{-1}(x) \setminus \left\{\frac{-\beta}{\beta+1}\right\}\right)$, we obtain that $S_{-\beta}(x) = \bigcup_{y \in T_{-\beta}^{-1}(x)} (-\beta) S_{-\beta}(y)$ for all $x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right]$.

For any $y \in \mathbb{R}$, we have $y \in S_{-\beta}\left(T_{-\beta}^{n}\left(\frac{y}{(-\beta)^{n}}\right)\right)$ for all $n \geq 0$ such that $\frac{y}{(-\beta)^{n}} \in \left(\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$, thus $y \in S_{-\beta}(x)$ for some $x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$. To show that this x is unique, let $y \in S_{-\beta}(x)$ and $y \in S_{-\beta}(x')$ for some $x, x' \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$. Then we have $y \in (-\beta)^{n}\left(T_{-\beta}^{-n}(x) \setminus \left\{\frac{-\beta}{\beta+1}\right\}\right)$ and $y \in (-\beta)^{m}\left(T_{-\beta}^{-m}(x') \setminus \left\{\frac{-\beta}{\beta+1}\right\}\right)$ for some $m, n \geq 0$, thus $x = T_{-\beta}^{n}\left(\frac{y}{(-\beta)^{n}}\right) = T_{-\beta}^{m}\left(\frac{y}{(-\beta)^{m}}\right) = x'$.

If $T_{-\beta}^n\left(\frac{-\beta}{\beta+1}\right) = x = T_{-\beta}(x)$, then $T_{-\beta}^{n+2}\left(\frac{-\beta^{-1}}{\beta+1}\right) = T_{-\beta}^{n+1}\left(\frac{-\beta}{\beta+1}\right) = T_{-\beta}(x) = x$ yields that $(-\beta)^n \frac{-\beta}{\beta+1} \in S_{-\beta}(x)$, which shows that $S_{-\beta}(x) = \bigcup_{n\geq 0} (-\beta)^n T_{-\beta}^{-n}(x)$ when $T_{-\beta}(x) = x$.

The first two statements of the following proposition can also be found in [1].

186

Proposition 3.1. For any $\beta > 1$, we have $(-\beta) \mathbb{Z}_{-\beta} \subseteq \mathbb{Z}_{-\beta}$. If $\beta < (1 + \sqrt{5})/2$, then $\mathbb{Z}_{-\beta} = \{0\}$. If $\beta \geq (1+\sqrt{5})/2$, then

$$\mathbb{Z}_{-\beta} \cap (-\beta)^n \left[-\beta, 1\right] = \left\{ (-\beta)^n, (-\beta)^{n+1} \right\} \cup (-\beta)^{n+2} \left(T_{-\beta}^{-n-2}(0) \cap \left(\frac{-1}{\beta}, \frac{1}{\beta^2}\right) \right)$$

for all n > 0, in particular

$$\mathbb{Z}_{-\beta} \cap [-\beta, 1] = \begin{cases} \{-\beta, -\beta + 1, \dots, -\beta + \lfloor \beta \rfloor, 0, 1\} & \text{if } \beta^2 \ge \lfloor \beta \rfloor (\beta + 1), \\ \{-\beta, -\beta + 1, \dots, -\beta + \lfloor \beta \rfloor - 1, 0, 1\} & \text{if } \beta^2 < \lfloor \beta \rfloor (\beta + 1). \end{cases}$$

Proof. The inclusion $(-\beta)\mathbb{Z}_{-\beta} \subseteq \mathbb{Z}_{-\beta}$ is a consequence of Lemma 3.1 and $0 \in$ $T_{-\beta}^{-1}(0).$

If $\beta < \frac{1+\sqrt{5}}{2}$, then $\frac{-1}{\beta} < \frac{-\beta}{\beta+1}$, hence $T_{-\beta}^{-1}(0) = \{0\}$ and $\mathbb{Z}_{-\beta} = \{0\}$, see Figure 1

If $\beta \geq \frac{1+\sqrt{5}}{2}$, then $\frac{-1}{\beta} \in T_{-\beta}^{-1}(0)$ implies $1 \in \mathbb{Z}_{-\beta}$, thus $(-\beta)^n \in \mathbb{Z}_{-\beta}$ for all $n \geq 0$. Clearly,

$$(-\beta)^{n+2}\left(T_{-\beta}^{-n-2}(0)\cap\left(\frac{-1}{\beta},\frac{1}{\beta^2}\right)\right)\subseteq\mathbb{Z}_{-\beta}\cap(-\beta)^n\left(-\beta,1\right)$$

To show the other inclusion, let $z \in (-\beta)^m T_{-\beta}^{-m}(0) \cap (-\beta)^n (-\beta, 1)$ for some $m \ge 0$. If $z \neq (-\beta)^m \frac{-\beta}{\beta+1}$, then $\frac{z}{(-\beta)^m} \in \left(\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$ and $\frac{z}{(-\beta)^{n+2}} \in \left(\frac{-1}{\beta}, \frac{1}{\beta^2}\right) \subseteq \left(\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$ imply that $T^{n+2}_{-\beta}\left(\frac{z}{(-\beta)^{n+2}}\right) = T^m_{-\beta}\left(\frac{z}{(-\beta)^m}\right) = 0$. If $z = (-\beta)^m \frac{-\beta}{\beta+1}$, then

$$T_{-\beta}^{n+2}\left(\frac{z}{(-\beta)^{n+2}}\right) = T_{-\beta}^{n+2}\left(\frac{(-\beta)^{m-n-1}}{\beta+1}\right) = T_{-\beta}^{m+2}\left(\frac{-\beta^{-1}}{\beta+1}\right)$$
$$= T_{-\beta}^{m+1}\left(\frac{-\beta}{\beta+1}\right) = T_{-\beta}(0) = 0,$$

where we have used that $\frac{z}{(-\beta)^{n+2}} \in \left(\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$ implies $m \leq n$. Therefore, we have $z \in (-\beta)^{n+2} T_{-\beta}^{-n-2}(0)$ for all $z \in \mathbb{Z}_{-\beta} \cap (-\beta)^n (-\beta, 1)$.

Consider now n = 0, then

$$\mathbb{Z}_{-\beta} \cap [-\beta, 1] = \{-\beta, 1\} \cup \{z \in (-\beta, 1) \mid T^2_{-\beta}(z/\beta^2) = 0\}.$$

Since $\frac{-\lfloor\beta\rfloor}{\beta} \ge \frac{-\beta}{\beta+1}$ if and only if $\beta^2 \ge \lfloor\beta\rfloor(\beta+1)$, we obtain that

$$(-\beta) T_{-\beta}^{-1}(0) = \begin{cases} \{0, 1, \dots, \lfloor\beta\rfloor\} & \text{if } \beta^2 \ge \lfloor\beta\rfloor(\beta+1), \\ \{0, 1, \dots, \lfloor\beta\rfloor - 1\} & \text{if } \beta^2 < \lfloor\beta\rfloor(\beta+1). \end{cases}$$

If $T^2_{-\beta}(z/\beta^2) = 0$, then $z = -a_1\beta + a_0$ with $a_0 \in (-\beta) T^{-1}_{-\beta}(0), a_1 \in \{0, 1, \dots, \lfloor\beta\rfloor\}$, and $\mathbb{Z}_{-\beta} \cap [-\beta, 1]$ consists of those numbers $-a_1\beta + a_0$ lying in $[-\beta, 1]$.

W. STEINER

Proposition 3.1 shows that the maximal difference between consecutive $(-\beta)$ -integers exceeds 1 whenever $\beta^2 < \lfloor \beta \rfloor (\beta + 1)$, *i.e.*, $T_{-\beta} \left(\frac{-\beta}{\beta+1}\right) < 0$. For an example, this was also proved in [1]. In Examples 3.3 and 3.4, we see that the distance between two consecutive $(-\beta)$ -integers can be even greater than 2, and the structure of $\mathbb{Z}_{-\beta}$ can be quite complicated. Therefore, we adapt a slightly different strategy as for \mathbb{Z}_{β} .

In the following, we always assume that the set

$$V_{\beta}' = V_{\beta} \cup \{0\} = \left\{ T_{-\beta}^n \left(\frac{-\beta}{\beta + 1} \right) \middle| n \ge 0 \right\} \cup \{0\}$$

is finite, *i.e.*, β is an Yrrap number, and let β be fixed. For $x \in V'_{\beta}$, let

$$r_x = \min\left\{y \in V'_{\beta} \cup \left\{\frac{1}{\beta+1}\right\} \mid y > x\right\}, \ \hat{x} = \frac{x+r_x}{2}, \ J_x = \{x\} \text{ and } J_{\hat{x}} = (x, r_x).$$

Then $\{J_a \mid a \in A_\beta\}$ forms a partition of $\left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$, where

$$A_{\beta} = V_{\beta}' \cup \widehat{V}_{\beta}' \quad \text{with} \quad \widehat{V}_{\beta}' = \{\widehat{x} \mid x \in V_{\beta}'\}.$$

We have $T_{-\beta}(J_x) = J_{T_{-\beta}(x)}$ for every $x \in V'_{\beta}$, and the following lemma shows that the image of every $J_{\hat{x}}, x \in V'_{\beta}$, is a union of intervals $J_a, a \in A_{\beta}$.

Lemma 3.2. Let $x \in V'_{\beta}$ and write

$$J_{\hat{x}} \cap T_{-\beta}^{-1}(V_{\beta}') = \{y_1, \dots, y_m\}, \quad with \quad x = y_0 < y_1 < \dots < y_m < y_{m+1} = r_x.$$

For any $0 \leq i \leq m$, we have

$$T_{-\beta}\Big((y_i, y_{i+1})\Big) = J_{\widehat{x}_i} \quad with \quad x_i = \lim_{y \to y_{i+1}} T_{-\beta}(y), \ i.e., \ \widehat{x}_i = T_{-\beta}\left(\frac{y_i + y_{i+1}}{2}\right),$$

and $\beta(y_{i+1} - y_i) = \lambda(J_{\widehat{x}_i})$, where λ denotes the Lebesgue measure.

Proof. Since $T_{-\beta}$ maps no point in (y_i, y_{i+1}) to $\frac{-\beta}{\beta+1} \in V'_{\beta}$, the map is continuous on this interval and $\lambda(T_{-\beta}((y_i, y_{i+1}))) = \beta(y_{i+1} - y_i)$. We have $x_i \in V'_{\beta}$ since $x_i = T_{-\beta}(y_{i+1})$ in case $y_{i+1} < \frac{1}{\beta+1}$, and $x_i = \frac{-\beta}{\beta+1}$ in case $y_{i+1} = \frac{1}{\beta+1}$. Since $y_i = \max\{y \in T_{-\beta}^{-1}(V'_{\beta}) \mid y < y_{i+1}\}$, we obtain that $r_{x_i} = \lim_{y \to y_i+} T_{-\beta}(y)$, thus $T_{-\beta}((y_i, y_{i+1})) = (x_i, r_{x_i})$.

In view of Lemma 3.2, we define an anti-morphism $\psi_{\beta}: A_{\beta}^* \to A_{\beta}^*$ by

$$\psi_{\beta}(x) = T_{-\beta}(x) \text{ and } \psi_{\beta}(\widehat{x}) = \widehat{x_m} T_{-\beta}(y_m) \cdots \widehat{x_1} T_{-\beta}(y_1) \widehat{x_0} \quad (x \in V'_{\beta}),$$

with m, x_i and y_i as in Lemma 3.2. Here, anti-morphism means that $\psi_{\beta}(uv) = \psi_{\beta}(v)\psi_{\beta}(u)$ for all $u, v \in A^*_{\beta}$. Now, the last letter of $\psi_{\beta}(\widehat{0})$ is \widehat{t} , with $t = \max\{x \in V_{\beta} \mid x < 0\}$, and the first letter of $\psi_{\beta}(\widehat{t})$ is $\widehat{0}$. Therefore, $\psi^{2n}_{\beta}(\widehat{0})$ is a prefix of $\psi^{2n+2}_{\beta}(\widehat{0}) = \psi^{2n}_{\beta}(\psi^2_{\beta}(\widehat{0}))$ and $\psi^{2n+1}_{\beta}(\widehat{0})$ is a suffix of $\psi^{2n+3}_{\beta}(\widehat{0})$ for every $n \ge 0$.

188

Theorem 3.1. For any Yrrap number $\beta \ge (1 + \sqrt{5})/2$, we have

$$\mathbb{Z}_{-\beta} = \{ z_k \mid k \in \mathbb{Z}, \, u_{2k} = 0 \} \quad with \quad z_k = \begin{cases} \sum_{j=1}^k \lambda(J_{u_{2j-1}}) & \text{if } k \ge 0, \\ -\sum_{j=1}^{|k|} \lambda(J_{u_{-2j+1}}) & \text{if } k \le 0, \end{cases}$$

where $\cdots u_{-1}u_0u_1\cdots$ is the two-sided infinite word on the finite alphabet A_β such that $u_0 = 0$, $\psi_{\beta}^{2n}(\widehat{0})$ is a prefix of $u_1u_2\cdots$ and $\psi_{\beta}^{2n+1}(\widehat{0})$ is a suffix of $\cdots u_{-2}u_{-1}$ for all $n \ge 0$.

Note that $\cdots u_{-1}u_0u_1\cdots$ is a fixed point of ψ_β , with u_0 being mapped to u_0 . The following lemma is the analogue of Lemma 2.1. We use the notation

$$L(v) = \sum_{j=1}^{k} \lambda(J_{v_j}) \quad \text{if } v = v_1 \cdots v_k \in A_{\beta}^k.$$

Note that $u_{2k} \in V'_{\beta}$ and $u_{2k+1} \in \widehat{V'_{\beta}}$ for all $k \in \mathbb{Z}$, thus $\lambda(J_{u_{2k}}) = 0$ for all $k \in \mathbb{Z}$. **Lemma 3.3.** For any $n \ge 0$, $0 \le k < |\psi^n_{\beta}(\widehat{0})|/2$, we have

 $T^{n}_{-\beta} \left(\frac{z_{(-1)^{n}k}}{(-\beta)^{n}} \right) = u_{(-1)^{n}2k}, \quad T^{n}_{-\beta} \left(\left(\frac{z_{(-1)^{n}k}}{(-\beta)^{n}}, \frac{z_{(-1)^{n}(k+1)}}{(-\beta)^{n}} \right) \right) = J_{u_{(-1)^{n}(2k+1)}},$

and $z_{(-1)^n(|\psi_{\beta}^n(\widehat{0})|+1)/2} = (-1)^n L(\psi_{\beta}^n(\widehat{0})) = \lambda(J_{\widehat{0}})(-\beta)^n = r_0(-\beta)^n.$

Proof. The statements are true for n = 0 since $|\psi_{\beta}^{0}(\widehat{0})| = 1$, $z_{0} = 0$, $z_{1} = \lambda(J_{\widehat{0}}) = r_{0}$.

Suppose that they hold for even n, and consider

$$u_{-|\psi_{\beta}^{n+1}(\widehat{0})|} \cdots u_{-2} u_{-1} = \psi_{\beta}^{n+1}(\widehat{0}) = \psi_{\beta} \big(\psi_{\beta}^{n}(\widehat{0}) \big) = \psi_{\beta} (u_{|\psi_{\beta}^{n}(\widehat{0})|}) \cdots \psi_{\beta} (u_{2}) \psi_{\beta} (u_{1}).$$

Let $0 \le k < |\psi_{\beta}^{n+1}(\widehat{0})|/2$, and write

$$u_{-2k-1}\cdots u_{-1} = v_{-2i-1}\cdots v_{-1}\psi_{\beta}(u_1\cdots u_{2j})$$

with $0 \leq j < |\psi_{\beta}^{n}(\widehat{0})|/2$, $0 \leq i < |\psi_{\beta}(u_{2j+1})|/2$, *i.e.*, $u_{-2i-1} \cdots u_{-1}$ is a suffix of $\psi_{\beta}(u_{2j+1})$.

By Lemma 3.2, we have $L(\psi_{\beta}(\hat{x})) = \beta \lambda(J_{\hat{x}})$ for any $x \in V'_{\beta}$. This yields that

$$-z_{-k-1} = \beta L(u_1 \cdots u_{2j}) + L(v_{-2i-1} \cdots v_{-1}) = \beta z_j + L(v_{-2i-1} \cdots v_{-1})$$

and $-z_{-k} = \beta z_j + L(v_{-2i} \cdots v_{-1})$. By the induction hypothesis, we obtain that

$$\begin{split} T^{n+1}_{-\beta} \left(\frac{z_{-k}}{(-\beta)^{n+1}} \right) &= T^{n+1}_{-\beta} \left(\frac{z_j}{(-\beta)^n} - \frac{L(v_{-2i} \cdots v_{-1})}{(-\beta)^{n+1}} \right) \\ &= \begin{cases} T_{-\beta}(u_{2j}) = \psi_\beta(u_{2j}) = u_{-2k} \\ T_{-\beta} \left(x + L(v_{-2i} \cdots v_{-1})/\beta \right) = T_{-\beta}(y_i) = v_{-2i} = u_{-2k} \\ & \text{if } i \ge 1, \end{cases} \end{split}$$

where the y_i 's are the numbers from Lemma 3.2 for $\hat{x} = u_{2j+1}$, and

$$T_{-\beta}^{n+1}\left(\left(\frac{z_{-k}}{(-\beta)^{n+1}}, \frac{z_{-k-1}}{(-\beta)^{n+1}}\right)\right) = T_{-\beta}\left((y_i, y_{i+1})\right) = J_{v_{-2i-1}} = J_{u_{-2k-1}}.$$

Moreover, we have $L(\psi_{\beta}^{n+1}(\widehat{0})) = \beta L(\psi_{\beta}^{n}(\widehat{0})) = r_0\beta^{n+1}$, thus the statements hold for n+1.

The proof for odd n runs along the same lines and is therefore omitted. \Box

Proof of Theorem 3.1. By Lemma 3.3, we have $z_{(-1)^n(|\psi_{\beta}^n(\widehat{0})|+1)/2} = r_0(-\beta)^n$ for all $n \ge 0$, thus $[0, r_0)$ splits into the intervals $(z_{(-1)^nk}(-\beta)^{-n}, z_{(-1)^n(k+1)}(-\beta)^{-n})$ and points $z_{(-1)^nk}(-\beta)^{-n}, \ 0 \le k < |\psi_{\beta}^n(\widehat{0})|/2$, hence

$$T_{-\beta}^{-n}(0) \cap [0, r_0) = \left\{ z_{(-1)^n k} (-\beta)^{-n} \mid 0 \le k < |\psi_{\beta}^n(\widehat{0})|/2, \, u_{(-1)^n 2k} = 0 \right\}.$$

Let $m \geq 1$ be such that $\beta^{2m}r_0 \geq \frac{1}{\beta+1}$. Then we have $\left(\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right) \subseteq (-\beta^{2m+1}r_0, \beta^{2m}r_0)$, and

$$T_{-\beta}^{-n}(0) \setminus \left\{ \frac{-\beta}{\beta+1} \right\} \subseteq (-\beta)^{2m} \left(T_{-\beta}^{-n-2m}(0) \cap [0,r_0) \right) \cup (-\beta)^{2m+1} \left(T_{-\beta}^{-n-2m-1}(0) \cap [0,r_0) \right),$$

thus

$$\bigcup_{n\geq 0} (-\beta)^n \left(T^{-n}_{-\beta}(0) \setminus \left\{ \frac{-\beta}{\beta+1} \right\} \right) = \bigcup_{n\geq 0} (-\beta)^n \left(T^{-n}_{-\beta}(0) \cap [0,r_0) \right) = \{ z_k \mid k \in \mathbb{Z}, u_{2k} = 0 \}.$$

Together with Lemma 3.1, this proves the theorem.

As in the case of positive bases, the word $\cdots u_{-1}u_0u_1\cdots$ also describes the sets $S_{-\beta}(x)$. Theorem 3.1 and Lemma 3.3 give the following corollary.

Corollary 3.1. For any $x \in V'_{\beta}$, $y \in J_{\hat{x}}$, we have

$$S_{-\beta}(x) = \{z_k \mid k \in \mathbb{Z}, u_{2k} = x\} \text{ and } S_{-\beta}(y) = \{z_k + y - x \mid k \in \mathbb{Z}, u_{2k+1} = \widehat{x}\}.$$

Lemma 3.1 and Corollary 3.1 imply that $S_{-\beta}(x)$ is the solution of a GIFS for any Yrrap number $\beta \ge (1 + \sqrt{5})/2$, $x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$, cf. the end of Section 2.

Recall that our main goal is to understand the structure of $\mathbb{Z}_{-\beta}$ (in case $\beta \geq (1 + \sqrt{5})/2$), *i.e.*, to describe the occurrences of 0 in the word $\cdots u_{-1}u_0u_1\cdots$ defined in Theorem 3.1 and the words between two successive occurrences. Let

$$R_{\beta} = \{ u_{2k} u_{2k+1} \cdots u_{2s(k)-1} \mid k \in \mathbb{Z}, u_{2k} = 0 \}$$

with $s(k) = \min\{j \in \mathbb{Z} \mid u_{2j} = 0, j > k \}$

be the set of return words of 0 in $\cdots u_{-1}u_0u_1\cdots$.

Note that s(k) is defined for all $k \in \mathbb{Z}$ since $(-\beta)^n \in \mathbb{Z}_{-\beta}$ for all $n \ge 0$ by Proposition 3.1.

For any $w \in R_{\beta}$, the word $\psi_{\beta}(w0)$ is a factor of $\cdots u_{-1}u_{0}u_{1}\cdots$ starting and ending with 0, thus we can write $\psi_{\beta}(w0) = w_{1}\cdots w_{m}0$ with $w_{j} \in R_{\beta}$, $1 \leq j \leq m$, and set

$$\varphi_{-\beta}(w) = w_1 \cdots w_m$$

This defines an anti-morphism $\varphi_{-\beta} : R^*_{\beta} \to R^*_{\beta}$, which plays the role of the β -substitution.

Since $\cdots u_{-1}u_0u_1\cdots$ is generated by $u_1=\hat{0}$, as described in Theorem 3.1, we consider $w_\beta = u_0u_1\cdots u_{2s(0)-1}$. We have

$$[0,1] = \left[0,\frac{1}{\beta+1}\right) \cup \left[\frac{1}{\beta+1},1\right], \quad T_{-\beta}\left((-\beta)^{-1}\left[\frac{1}{\beta+1},1\right]\right) = \left[\frac{-\beta}{\beta+1},0\right],$$

thus $L(w_{\beta}) = 1$ and

$$w_{\beta} = 0\,\widehat{0}\,x_1\,\widehat{x_1}\,\cdots\,x_m\,\widehat{x_m}\,x_{-\ell}\,\widehat{x_{-\ell}}\,\cdots\,x_{-1}\,\widehat{x_{-\ell}}$$

where the x_j are defined by $V'_{\beta} = \{x_{-\ell}, \dots, x_{-1}, 0, x_1, \dots, x_m\}, x_{-\ell} < \dots < x_{-1} < 0 < x_1 < \dots < x_m$.

Theorem 3.2. For any Yrrap number $\beta \ge (1 + \sqrt{5})/2$, we have

$$\mathbb{Z}_{-\beta} = \{ z'_k \mid k \in \mathbb{Z} \} \quad with \quad z'_k = \begin{cases} \sum_{j=1}^k L(u'_j) & \text{if } k \ge 0, \\ -\sum_{j=1}^{|k|} L(u'_{-j}) & \text{if } k \le 0, \end{cases}$$

where $\cdots u'_{-2}u'_{-1}u'_{1}u'_{2}\cdots$ is the two-sided infinite word on the finite alphabet R_{β} such that $\varphi_{-\beta}^{2n}(w_{\beta})$ is a prefix of $u'_{1}u'_{2}\cdots$ and $\varphi_{-\beta}^{2n+1}(w_{\beta})$ is a suffix of $\cdots u'_{-2}u'_{-1}$ for all $n \geq 0$.

The set of distances between consecutive $(-\beta)$ -integers is

$$\Delta_{-\beta} = \{ z'_{k+1} - z'_k \mid k \in \mathbb{Z} \} = \{ L(w) \mid w \in R_\beta \}.$$

Note that the index 0 is omitted in $\cdots u'_{-2} u'_{-1} u'_1 u'_2 \cdots$ for reasons of symmetry.

Proof. The definitions of $\cdots u_{-1}u_0u_1\cdots$ in Theorem 3.1 and of $\varphi_{-\beta}$ imply that $\cdots u'_{-2}u'_{-1}u'_1u'_2\cdots$ is the derived word of $\cdots u_{-1}u_0u_1\cdots$ with respect to R_{β} , that is

$$u'_{k} = u_{|u'_{1}\cdots u'_{k-1}|}\cdots u_{|u'_{1}\cdots u'_{k}|-1}, \quad u'_{-k} = u_{-|u'_{-k}\cdots u'_{-1}|}\cdots u_{-|u'_{1-k}\cdots u'_{-1}|-1} \quad (k \ge 1)$$

with

$$\{|u'_1 \cdots u'_{k-1}| \mid k \ge 1\} \cup \{-|u'_{-k} \cdots u'_{-1}| \mid k \ge 1\} = \{k \in \mathbb{Z} \mid u_k = 0\}.$$

Here, for any $v \in R^*_{\beta}$, |v| denotes the length of v as a word in A^*_{β} , not in R^*_{β} . Since

$$z'_{k} = \sum_{j=1}^{k} L(u'_{j}) = \sum_{j=0}^{|u'_{1}\cdots u'_{k}|-1} \lambda(J_{u_{j}}) = \sum_{j=1}^{|u'_{1}\cdots u'_{k}|} \lambda(J_{u_{j}}), \quad z'_{-k} = -\sum_{j=1}^{k} L(u'_{-j}) = -\sum_{j=1}^{|u'_{-k}\cdots u'_{-1}|} \lambda(J_{u_{-j}})$$

for all $k \ge 0$, Theorem 3.1 yields that $\{z'_k \mid k \in \mathbb{Z}\} = \mathbb{Z}_{-\beta}$.

It follows from the definition of R_{β} that $\Delta_{-\beta} = \{L(w) \mid w \in R_{\beta}\}.$

It remains to show that R_{β} is a finite set. We first show that the restriction of ψ_{β} to \widehat{V}'_{β} is primitive, which means that there exists some $m \geq 1$ such that, for every $x \in V'_{\beta}$, $\psi^m_{\beta}(\widehat{x})$ contains all elements of \widehat{V}'_{β} . The proof is taken from [13], Proposition 8. If $\beta > 2$, then the largest connected pieces of images of $J_{\widehat{x}}$ under $T_{-\beta}$ grow until they cover two consecutive discontinuity points $\frac{1}{\beta+1} - \frac{a+1}{\beta}, \frac{1}{\beta+1} - \frac{a}{\beta}$ of $T_{-\beta}$, and the next image covers all intervals $J_{\widehat{y}}, y \in V'_{\beta}$. If $\frac{1+\sqrt{5}}{2} < \beta \leq 2$, then $\beta^2 > 2$ implies that the largest connected pieces of images of $J_{\widehat{x}}$ under $T^2_{-\beta}$ grow until they cover two consecutive discontinuity points of $T^2_{-\beta}$. Since

$$\begin{split} T^2_{-\beta} \Biggl(\Biggl(\frac{-\beta}{\beta+1}, \frac{\beta^{-2}}{\beta+1} - \frac{1}{\beta} \Biggr) \Biggr) &= \Biggl(\frac{-\beta^3 + \beta^2 + \beta}{\beta+1}, \frac{1}{\beta+1} \Biggr), \\ T^2_{-\beta} \Biggl(\Biggl(\frac{\beta^{-2}}{\beta+1} - \frac{1}{\beta}, \frac{-\beta^{-1}}{\beta+1} \Biggr) \Biggr) &= \Biggl(\frac{-\beta}{\beta+1}, \frac{\beta^2 - \beta - 1}{\beta+1} \Biggr), \\ T^2_{-\beta} \Biggl(\Biggl(\frac{-\beta^{-1}}{\beta+1}, \frac{\beta^{-2}}{\beta+1} \Biggr) \Biggr) &= \Biggl(\frac{-\beta}{\beta+1}, \frac{1}{\beta+1} \Biggr), \\ T^2_{-\beta} \Biggl(\Biggl(\frac{\beta^{-2}}{\beta+1}, \frac{1}{\beta+1} \Biggr) \Biggr) &= \Biggl(\frac{-\beta}{\beta+1}, \frac{\beta^2 - \beta - 1}{\beta+1} \Biggr), \end{split}$$

the next image covers the fixed point 0, and further images grow until after a finite number of steps they cover all intervals $J_{\hat{y}}, y \in V'_{\beta}$. The case $\beta = \frac{1+\sqrt{5}}{2}$ is treated in Example 3.1.

If $T_{-\beta}^{n}\left(\frac{-\beta}{\beta+1}\right) \neq 0$ for all $n \geq 0$, then $T_{-\beta}^{n}$ is continuous at all points $x \in \left(\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$ with $T_{-\beta}^{n}(x) = 0$, thus $u_{2k} = 0$ is equivalent to $u_{2k+1} = \hat{0}$ (see also Prop. 3.2 below). Hence we can consider the return words of $\hat{0}$ in $\cdots u_{-1}u_{0}u_{1}\cdots$ instead of the return words of 0. Since $\psi_{\beta}^{m}(\widehat{x_{0}} x_{1} \widehat{x_{2}})$ has at least two occurrences of $\hat{0}$ for all $x_{0}, x_{1}, x_{2} \in V_{\beta}'$, there are only finitely many such return words. If $T_{-\beta}^{n}\left(\frac{-\beta}{\beta+1}\right) = 0$, then $\psi_{\beta}^{n}(x_{0} \widehat{x_{1}} x_{2})$ starts and ends with 0 for all $x_{0}, x_{1}, x_{2} \in V_{\beta}'$, hence R_{β} is finite as well.

For details on derived words of primitive substitutive words, we refer to [7].

We remark that, for practical reasons, the set R_{β} can be obtained from the set $R = \{w_{\beta}\}$ by adding to R iteratively all return words of 0 which appear in $\psi_{\beta}(w_0)$ for some $w \in R$ until R stabilises. The final set R is equal to R_{β} .

Now, we apply the theorems in the case of two quadratic examples.

FIGURE 2. The $(-\beta)$ -integers in $[-\beta^3, \beta^4], \beta = (1 + \sqrt{5})/2$.

Example 3.1. Let $\beta = \frac{1+\sqrt{5}}{2}$, *i.e.*, $\beta^2 = \beta + 1$, and $t = \frac{-\beta}{\beta+1} = \frac{-1}{\beta}$, then $V_{\beta} = V_{\beta}' = \{t, 0\}$. Since

$$J_{\widehat{t}} = (t,0) = \left(t,\frac{-1}{\beta^3}\right) \cup \left\{\frac{-1}{\beta^3}\right\} \cup \left(\frac{-1}{\beta^3},0\right), \quad J_{\widehat{0}} = \left(0,\frac{1}{\beta^2}\right),$$

see Figure 1 (middle), the anti-morphism ψ_{β} on A_{β}^{*} is defined by

 $\psi_{\beta}: \quad t \mapsto 0, \quad \widehat{t} \mapsto \widehat{0} \, t \, \widehat{t}, \quad 0 \mapsto 0, \quad \widehat{0} \mapsto \widehat{t}.$

Its two-sided fixed point $\cdots u_{-1}u_0u_1\cdots$ is

$$\cdots \underbrace{0}_{\psi_{\beta}(0)} \underbrace{\widehat{0}t\widehat{t}}_{\psi_{\beta}(t)} \underbrace{0}_{\psi_{\beta}(t)} \underbrace{\widehat{t}}_{\psi_{\beta}(0)} \underbrace{0}_{\psi_{\beta}(0)} \underbrace{\widehat{0}t\widehat{t}}_{\psi_{\beta}(0)} \underbrace{0}_{\psi_{\beta}(t)} \underbrace{\psi_{\beta}(t)}_{\psi_{\beta}(0)} \underbrace{0}_{\psi_{\beta}(t)} \underbrace{0}_{\psi_{\beta}(t)} \underbrace{0}_{\psi_{\beta}(t)} \underbrace{0}_{\psi_{\beta}(t)} \underbrace{0}_{\psi_{\beta}(t)} \underbrace{0}_{\psi_{\beta}(0)} \underbrace{0}_{\psi_{\beta}(0)}$$

where $\dot{0}$ marks the central letter u_0 . The return word of 0 starting at u_0 is $w_\beta = 0 \,\hat{0} t \,\hat{t}$. The image $\psi_\beta(w_\beta 0) = 0 \,\hat{0} t \,\hat{t} \, 0 \,\hat{t} \, 0$ contains the return words w_β and $0 \,\hat{t}$. Since $\psi_\beta(0 \,\hat{t} \, 0) = 0 \,\hat{0} t \,\hat{t} \, 0$, there are no other return words of 0, *i.e.*, $R_\beta = \{A, B\}$ with $A = 0 \,\hat{0} t \,\hat{t}$, $B = 0 \,\hat{t}$. Therefore, $\cdots u'_{-2} u'_{-1} u'_1 u'_2 \cdots$ is a two-sided fixed point of the anti-morphism

$$\varphi_{-\beta}: \quad A \mapsto AB, \quad B \mapsto A,$$

with

We have $\lambda(J_{\hat{0}}) = \frac{1}{\beta^2}$, $\lambda(J_{\hat{t}}) = \frac{1}{\beta}$, thus L(A) = 1, $L(B) = \frac{1}{\beta} = \beta - 1$, and some $(-\beta)$ -integers are shown in Figure 2. Note that $(-\beta)^n$ can also be represented as $(-\beta)^{n+2} + (-\beta)^{n+1}$.

Example 3.2. Let $\beta = \frac{3+\sqrt{5}}{2}$, *i.e.*, $\beta^2 = 3\beta - 1$, then the $(-\beta)$ -transformation is depicted in Figure 3, where $t_0 = \frac{-\beta}{\beta+1}$, $t_1 = T_{-\beta}(t_0) = \frac{\beta^2}{\beta+1} - 2 = \frac{-\beta^{-1}}{\beta+1}$,

FIGURE 3. The $(-\beta)$ -transformation and $\mathbb{Z}_{-\beta} \cap [-\beta^3, \beta^2], \beta = (3 + \sqrt{5})/2.$

 $T_{-\beta}(t_1) = \frac{1}{\beta+1} - 1 = t_0$. Therefore, $V'_{\beta} = \{t_0, t_1, 0\}$ and the anti-morphism ψ_{β} : $A^*_{\beta} \to A^*_{\beta}$ is defined by

$$\psi_{\beta}: \quad t_0 \mapsto t_1, \quad \widehat{t_0} \mapsto \widehat{t_0} t_1 \widehat{t_1} 0 \ \widehat{0} t_0 \ \widehat{t_0}, \quad t_1 \mapsto t_0, \quad \widehat{t_1} \mapsto \widehat{0}, \quad 0 \mapsto 0, \quad \widehat{0} \mapsto \widehat{t_0} t_1 \ \widehat{t_1},$$

which has the two-sided fixed point

$$\cdots \underbrace{0}_{\psi_{\beta}(0)} \underbrace{\widehat{0}}_{\psi_{\beta}(\widehat{t}_{1})} \underbrace{t_{0}}_{\psi_{\beta}(t_{1})} \underbrace{\widehat{t_{0}} t_{1} \widehat{t_{1}} 0 \, \widehat{0} t_{0} \, \widehat{t_{0}}}_{\psi_{\beta}(\widehat{t_{0}})} \underbrace{t_{1}}_{\psi_{\beta}(t_{0})} \underbrace{\widehat{t_{0}} t_{1} \widehat{t_{1}}}_{\psi_{\beta}(\widehat{0})} \underbrace{\widehat{0}}_{\psi_{\beta}(\widehat{t_{1}})} \underbrace{t_{0}}_{\psi_{\beta}(\widehat{t_{1}})} \underbrace{\widehat{t_{0}} t_{1} \widehat{t_{1}} 0 \, \widehat{0} t_{0} \, \widehat{t_{0}}}_{\psi_{\beta}(\widehat{t_{0}})} \cdots,$$

where $\dot{0}$ marks the central letter u_0 . We have $w_\beta = 0 \,\hat{0} \, t_0 \, \hat{t_0} \, t_1 \, \hat{t_1}$ and

$$\begin{split} \psi_{\beta} : & 0 \,\widehat{0} \,t_0 \,\widehat{t_0} \,t_1 \,\widehat{t_1} \,0 \mapsto 0 \,\,\widehat{0} \,t_0 \,\,\widehat{t_0} \,t_1 \,\widehat{t_1} \,0 \,\widehat{0} \,t_0 \,\,\widehat{t_0} \,t_1 \,\,\widehat{t_0} \,t_1 \,\,\widehat{t_1} \,\,0, \\ & 0 \,\widehat{0} \,t_0 \,\,\widehat{t_0} \,t_1 \,\,\widehat{t_0} \,t_1 \,\,\widehat{t_1} \,\,0 \mapsto 0 \,\,\widehat{0} \,\,t_0 \,\,\widehat{t_0} \,\,t_1 \,\,\widehat{t_1} \,\,0 \,\,\widehat{0} \,t_0 \,\,\widehat{t_0} \,\,t_1 \,\,\widehat{t_1} \,\,0 \,\,\widehat{0} \,\,t_0 \,\,\overline{t_1} \,\,\widehat{t_1} \,\,0 \,\,\overline{0} \,\,t_0 \,\,\overline{t_1} \,\,\overline{t_1} \,\,0 \,\,\overline{0} \,\,t_0 \,\,\overline{t_1} \,\,\overline{t_1} \,\,\overline{t_1} \,\,0 \,\,\overline{t_1} \,\,\overline{t_1$$

Note that $0 \ \hat{0} t_0 \ \hat{t_0} t_1 \ \hat{t_0} t_1 \ \hat{t_1}$ and $0 \ \hat{0} t_0 \ \hat{t_0} \ \hat{t_0} \ \hat{t_1} \ \hat{t_1}$ differ only by a letter in V'_{β} , and correspond therefore to intervals of the same length. Since the letters t_0 and t_1 are never mapped to 0, we identify these two return words. This means that $R_{\beta} = \{A, B\}$ with $A = 0 \ \hat{0} \ t_0 \ \hat{t_0} \ t_1 \ \hat{t_1}$, $B = 0 \ \hat{0} \ t_0 \ \hat{t_0} \ \{t_0, t_1\} \ \hat{t_0} \ t_1 \ \hat{t_1}$, and

$$\cdots u'_{-2}u'_{-1} u'_{1}u'_{2}\cdots = \cdots ABBABABBABBAB ABBABBABBABBABBABBAB \cdots$$

is a two-sided fixed point of the anti-morphism

$$\varphi_{-\beta}: \quad A \mapsto AB, \quad B \mapsto ABB.$$

FIGURE 4. The $(-\beta)$ -transformation and $\mathbb{Z}_{-\beta} \cap [-\beta^3, \beta^4]$ from Example 3.3.

We have L(A) = 1, $L(B) = \beta - 1 > 1$, and some $(-\beta)$ -integers are shown in Figure 3.

We remark that it is sufficient to consider the elements of \widehat{V}'_{β} when one is only interested in $\mathbb{Z}_{-\beta}$. This is made precise in the following proposition.

Proposition 3.2. Let β and $\cdots u_{-1}u_0u_1 \cdots$ be as in Theorem 3.1, $t = \max\{x \in V_\beta \mid x < 0\}$. For any $k \in \mathbb{Z}$, $u_{2k} = 0$ is equivalent to $u_{2k-1} = \hat{t}$ or $u_{2k+1} = \hat{0}$. If $0 \notin V_\beta$ or the size of V_β is even, then $u_{2k} = 0$ is equivalent to $u_{2k-1} = \hat{t}$. If $0 \notin V_\beta$ or the size of V_β is odd, then $u_{2k} = 0$ is equivalent to $u_{2k+1} = \hat{0}$.

Proof. Let $k \in \mathbb{Z}$ and $m \ge 0$ such that $z_k/\beta^{2m} \in \left(\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$. Then we have

- $u_{2k} = 0$ if and only if $T^{2m}_{-\beta}(z_k/\beta^{2m}) = 0$,
- $u_{2k-1} = \hat{t}$ if and only if $\lim_{y \to z_k} T^{2m}_{-\beta}(y/\beta^{2m}) = 0$,
- $u_{2k+1} = \widehat{0}$ if and only if $\lim_{y \to z_k+} T^{2m}_{-\beta}(y/\beta^{2m}) = 0$.

Thus $u_{2k} = 0$, $u_{2k-1} = \hat{t}$ and $u_{2k+1} = \hat{0}$ are equivalent when $T^{2m}_{-\beta}$ is continuous at z_k/β^{2m} . Assume from now on that z_k/β^{2m} is a discontinuity point of $T^{2m}_{-\beta}$. Then $T^{\ell}_{-\beta}(z_k/\beta^{2m}) = \frac{-\beta}{\beta+1}$ for some $1 \leq \ell \leq 2m$ and, if ℓ is minimal with this property,

$$\lim_{y \to z_k -} T^{2\lfloor \ell/2 \rfloor + 1}_{-\beta}(y/\beta^{2m}) = \frac{-\beta}{\beta + 1} \quad \text{and} \quad \lim_{y \to z_k +} T^{2\lceil \ell/2 \rceil}_{-\beta}(y/\beta^{2m}) = \frac{-\beta}{\beta + 1}.$$

FIGURE 5. The $(-\beta)$ -transformation and $\mathbb{Z}_{-\beta} \cap [-\beta, \beta^2]$ from Example 3.4.

Hence, if $0 \notin V_{\beta}$, we cannot have $u_{2k} = 0$, $u_{2k-1} = \hat{t}$ or $u_{2k+1} = \hat{0}$ at a discontinuity point, which proves the proposition in this case. If $0 \in V_{\beta}$, then $T_{-\beta}^{\#V_{\beta}-1}\left(\frac{-\beta}{\beta+1}\right) = 0$, thus

- $T^{j}_{-\beta}(z_k/\beta^{2m}) = 0$ if and only if $j \ge \ell + \#V_\beta 1$,
- $\lim_{y\to z_k} T^j_{-\beta}(y/\beta^{2m}) = 0$ if and only if $j \ge 2\lfloor \ell/2 \rfloor + \#V_{\beta}$,
- $\lim_{y \to z_k+} T^j_{-\beta}(y/\beta^{2m}) = 0$ if and only if $j \ge 2\lceil \ell/2 \rceil + \#V_\beta 1$.

Since $2\lfloor \ell/2 \rfloor \geq \ell - 1$ and $2\lceil \ell/2 \rceil \geq \ell$, we obtain $u_{2k} = 0$ whenever $u_{2k-1} = \hat{t}$ or $u_{2k+1} = \hat{0}$. If $\#V_{\beta}$ is even, then $u_{2k} = 0$ implies that $u_{2k-1} = \hat{t}$ since $2m \geq \ell + \#V_{\beta} - 1$ implies that $2m \geq 2\lfloor \ell/2 \rfloor + \#V_{\beta}$. If $\#V_{\beta}$ is odd, then $u_{2k} = 0$ implies that $u_{2k+1} = \hat{0}$ since $2m \geq \ell + \#V_{\beta} - 1$ implies that $2m \geq 2\lceil \ell/2 \rceil + \#V_{\beta} - 1$. This proves the proposition.

By Proposition 3.2, it suffices to consider the anti-morphism $\widehat{\psi}_{\beta} : \widehat{V}_{\beta}^{\prime *} \to \widehat{V}_{\beta}^{\prime *}$ defined by

$$\widehat{\psi}_{\beta}(\widehat{x}) = \widehat{x_m} \cdots \widehat{x_1} \, \widehat{x_0} \quad \text{when} \quad \psi_{\beta}(\widehat{x}) = \widehat{x_m} \, T_{-\beta}(y_m) \cdots \widehat{x_1} \, T_{-\beta}(y_1) \, \widehat{x_0} \quad (x \in V_{\beta}').$$

Then $\Delta_{-\beta}$ is given by the set \widehat{R}_{β} which consists of the return words of $\widehat{0}$ when $0 \notin V_{\beta}$ or the size of V_{β} is odd. When $0 \in V_{\beta}$ and the size of V_{β} is even, as in Example 3.1, then \widehat{R}_{β} consists of the words $w \widehat{t}$ such that $\widehat{t} w$ is a return word of \widehat{t} .

Example 3.3. Let $\beta > 1$ with $\beta^3 = 2\beta^2 + 1$, *i.e.*, $\beta \approx 2.206$, and let $t_n = T^n_{-\beta} \left(\frac{-\beta}{\beta+1}\right)$ for $n \ge 0$. Then we have

$$t_0 = \frac{-\beta}{\beta+1}, \quad t_1 = \frac{\beta^2}{\beta+1} - 2 = \frac{\beta^{-1} - 2}{\beta+1}, \quad t_2 = \frac{2\beta - 1}{\beta+1} - 1 = \frac{\beta^{-2}}{\beta+1}, \\ t_3 = \frac{-\beta^{-1}}{\beta+1}, \quad t_4 = \frac{1}{\beta+1} - 1 = t_0,$$

see Figure 4. The anti-morphism $\widehat{\psi}_{\beta}$: $\widehat{V}_{\beta}^{\prime *} \to \widehat{V}_{\beta}^{\prime *}$ is therefore defined by

$$\widehat{\psi}_{\beta}: \quad \widehat{t_0} \mapsto \widehat{t_2} \, \widehat{t_0}, \quad \widehat{t_1} \mapsto \widehat{t_0} \, \widehat{t_1} \, \widehat{t_3} \, \widehat{0}, \quad \widehat{t_3} \mapsto \widehat{0} \, \widehat{t_2}, \quad \widehat{0} \mapsto \widehat{t_3}, \quad \widehat{t_2} \mapsto \widehat{t_0} \, \widehat{t_1}$$

Since $0 \notin V_{\beta}$, we consider return words of $\hat{0}$ in the $\hat{\psi}_{\beta}$ -images of $\hat{w}_{\beta} = \hat{0} \hat{t}_2 \hat{t}_0 \hat{t}_1 \hat{t}_3$:

$$\begin{split} \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3} &\mapsto \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3},\\ \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3} &\mapsto \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,,\\ \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3} &\mapsto \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,,\\ \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3} &\mapsto \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_1}\,\widehat{t_3}\,,\\ \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,,\\ \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_1}\,\widehat{t_3} &\mapsto \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,,\\ \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3} &\mapsto \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,,\\ \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3} &\mapsto \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,,\\ \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3} &\mapsto \widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{0}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{t_1}\,\widehat{t_2}\,\widehat{t_0}\,\widehat{t_0}\,\widehat{t_1}\,\widehat{t_3}\,\widehat{t_1}\,\widehat{t_$$

Hence $\widehat{R}_{\beta} = \{A, B, C, D, E\}$ with $A = \widehat{0} \, \widehat{t_2} \, \widehat{t_0} \, \widehat{t_1} \, \widehat{t_3}, B = \widehat{0} \, \widehat{t_2} \, \widehat{t_0} \, \widehat{t_1} \, \widehat{t_3}, C = \widehat{0} \, \widehat{t_2} \, \widehat{t_0} \, \widehat{t_1} \, \widehat{t_3}, D = \widehat{0} \, \widehat{t_2} \, \widehat{t_0} \, \widehat{t_2} \, \widehat{t_0} \, \widehat{t_1} \, \widehat{t_2} \, \widehat{t_0} \, \widehat{t_0} \, \widehat{t_1} \, \widehat{t_3}, E = \widehat{0} \, \widehat{t_2} \, \widehat{t_0} \, \widehat{t_0} \, \widehat{t_1} \, \widehat{t_3}, A = \mathbb{Z}_{-\beta}$ is described by the anti-morphism $\widehat{\varphi}_{-\beta} : \widehat{R}^*_{\beta} \to \widehat{R}^*_{\beta}$ given by

 $\widehat{\varphi}_{-\beta}: \quad A\mapsto AB\,, \quad B\mapsto AC\,, \quad C\mapsto AD\,, \quad D\mapsto AED\,, \quad E\mapsto ABD.$

The $(-\beta)$ -integers in $[-\beta^3, \beta^4]$ are represented in Figure 4, and we have

$$L(A) = 1, \quad L(B) = \beta - 1, \quad L(C) = \beta^2 - \beta - 1,$$

 $L(D) = \beta^2 - \beta \approx 2.659, \quad L(E) = \beta.$

Note that $L(D) > \beta > 2$. Moreover, the cardinality of $\Delta_{-\beta}$ is larger than that of V_{β} , which in turn is larger than the algebraic degree d of β ($\#\Delta_{-\beta} = 5, \#V_{\beta} = 4, d = 3$).

Example 3.4. Let $\beta > 1$ with $\beta^6 = 3\beta^5 + 2\beta^4 + 2\beta^3 + \beta^2 - 2\beta - 1$, *i.e.*, $\beta \approx 3.695$, then the $(-\beta)$ -transformation is depicted in Figure 5, where $t_n = T^n_{-\beta} \left(\frac{-\beta}{\beta+1}\right)$. We have $t_5 = \frac{-1}{\beta+1} = t_6$. The anti-morphism $\widehat{\psi}_{\beta} : \widehat{V}_{\beta}^{\prime*} \to \widehat{V}_{\beta}^{\prime*}$ is therefore given by

$$\begin{aligned} \widehat{\psi}_{\beta} : \quad \widehat{t_0} \mapsto \widehat{t_3} \, \widehat{t_5} \,, \qquad \widehat{t_2} \mapsto \widehat{t_4} \, \widehat{t_0} \, \widehat{t_2} \,, \qquad \widehat{t_3} \mapsto \widehat{t_5} \, \widehat{t_1} \, \widehat{0} \, \widehat{t_4} \, \widehat{t_0} \, \widehat{t_2} \, \widehat{t_3} \, \widehat{t_5} \, \widehat{t_1} \, \widehat{0} \,, \\ \widehat{t_5} \mapsto \widehat{t_2} \, \widehat{t_3} \,, \qquad \widehat{t_1} \mapsto \widehat{0} \, \widehat{t_4} \, \widehat{t_0} \,, \qquad \widehat{0} \mapsto \widehat{t_5} \, \widehat{t_1} \,, \qquad \widehat{t_4} \mapsto \widehat{t_0} \, \widehat{t_2} \, \widehat{t_3} \,. \end{aligned}$$

In order to deal with shorter words, we group the letters forming the words

$$\begin{split} a &= \widehat{0}\,\widehat{t_4},\, b = \widehat{t_0}\,\widehat{t_2}\,\widehat{t_3}\,\widehat{t_5}\,\widehat{t_1},\, c = \widehat{t_0}\,\widehat{t_2}\,\widehat{t_3}\,\widehat{t_5},\, d = \widehat{t_2}\,\widehat{t_3}\,\widehat{t_5}\,\widehat{t_1},\\ e &= \widehat{t_0}\,\widehat{t_2},\, f = \widehat{t_4},\, g = \widehat{t_0}\,\widehat{t_2}\,\widehat{t_3},\, h = \widehat{t_5}\,\widehat{t_1}, \end{split}$$

which correspond to the intervals $J_a = \left(0, \frac{1}{\beta+1}\right)$, $J_b = (t_0, 0)$, $J_c = (t_0, t_1)$, $J_d = (t_2, 0)$, $J_e = (t_0, t_3)$, $J_f = \left(t_4, \frac{1}{\beta+1}\right)$, $J_g = (t_0, t_5)$, $J_h = (t_5, 0)$, occurring in iterated images of J_a . The anti-morphism $\widehat{\psi}_{\beta}$ acts on these words by

$$\begin{array}{ccc} \psi_{\beta}: & a \mapsto b \,, & b \mapsto ababac \,, & c \mapsto dabac \,, & d \mapsto ababae \,, \\ & e \mapsto fc \,, & f \mapsto g \,, & g \mapsto habac \,, & h \mapsto ag. \end{array}$$

Since $\hat{0}$ only occurs at the beginning of a, the return words of $\hat{0}$ with their $\hat{\psi}_{\beta}$ images are

Therefore, $\mathbb{Z}_{-\beta}$ is described by the anti-morphism $\widehat{\varphi}_{-\beta}$: $\widehat{R}^*_{\beta} \to \widehat{R}^*_{\beta}$ which is defined by

$\widehat{\varphi}_{-\beta}$:	$A \mapsto AAB$,	L(A) = 1 ,
	$B \mapsto AACAB$,	$L(B) = \beta - 2 \approx 1.695 ,$
	$C \mapsto AADAB$,	$L(C) = \beta^2 - 3\beta - 1 \approx 1.569 ,$
	$D \mapsto AAE$,	$L(D) = \beta^3 - 3\beta^2 - 2\beta - 1 \approx 1.104,$
	$E \mapsto AACAF$,	$L(E) = \beta^4 - 3\beta^3 - 2\beta^2 - \beta - 2 \approx 2.081,$
	$F \mapsto AACABACAB$,	$L(F) = \beta^5 - 3\beta^4 - 2\beta^3 - 2\beta^2 + \beta - 2 \approx 3.12.$

4. Conclusions

With every Yrrap number $\beta \geq (1+\sqrt{5})/2$, we have associated an anti-morphism $\varphi_{-\beta}$ on a finite alphabet. The distances between consecutive $(-\beta)$ -integers are described by a fixed point of $\varphi_{-\beta}$. In [1], the anti-morphism is described explicitly for each $\beta > 1$ such that $T_{-\beta}^n \left(\frac{-\beta}{\beta+1}\right) \leq 0$ and $T_{-\beta}^{2n-1}\left(\frac{-\beta}{\beta+1}\right) \geq \frac{1-\lfloor\beta\rfloor}{\beta}$ for all $n \geq 1$. Examples 3.3 and 3.4 show that the situation can be quite complicated when this condition is not fulfilled. Although $\varphi_{-\beta}$ can be obtained by a simple algorithm, it seems to be difficult to find a priori bounds for the number of different distances between consecutive $(-\beta)$ -integers or for their maximal value. Only the case of quadratic Pisot numbers β is completely solved; here, we know from [1, 14] that $\#V_{\beta} = \#\Delta_{-\beta} = 2$.

Recall that the maximal distance between consecutive β -integers is 1, and the number of different distances is equal to the cardinality of the set $\{T_{\beta}^{n}(1^{-}) \mid n \geq 0\}$. Example 3.3 shows that the $(-\beta)$ -integers do not satisfy similar properties. By generalising Example 3.4 to $\beta > 1$ with $\beta^{6} = (m+1)\beta^{5} + m\beta^{4} + m\beta^{3} + \beta^{2} - m\beta - 1$, $m \geq 2$, one sees that the maximal distance can be arbitrarily close to 4 for algebraic integers of degree 6 and $\#V_{\beta} = 6$.

In a forthcoming paper, we associate anti-morphisms $\varphi_{-\beta}$ on infinite alphabets with non-Yrrap numbers β , by considering the intervals occurring in the iterated $T_{-\beta}$ -images of $\left(0, \frac{1}{\beta+1}\right)$, cf. Example 3.4, and we show that the distances between consecutive $(-\beta)$ -integers can be unbounded, e.g. for $\beta > 1$ satisfying $\frac{-\beta}{\beta+1} = \sum_{k=1}^{\infty} a_k (-\beta)^{-k}$ where $a_1 a_2 \cdots = 3123212312322 \cdots$ is a fixed point of the morphism $3 \mapsto 31232, 2 \mapsto 2, 1 \mapsto 1$. For Yrrap numbers β , this implies that there is no bound for the distance between consecutive $(-\beta)$ -integers which is independent of β . However, large distances occur probably only far away from 0 and when $\#V_\beta$ is large, and it would be interesting to quantify these relations.

Another topic that is worth investigating is the structure of the sets $S_{-\beta}(x)$ for $x \neq 0$, and of the corresponding tilings when β is a Pisot unit. A related question is whether $\mathbb{Z}_{-\beta}$ can be given by a cut and project scheme, *cf.* [5, 12].

References

- P. Ambrož, D. Dombek, Z. Masáková and E. Pelantová, Numbers with integer expansion in the numeration system with negative base. arXiv:0912.4597v3 [math.NT].
- [2] L. Balková, J.-P. Gazeau and E. Pelantová, Asymptotic behavior of beta-integers. Lett. Math. Phys. 84 (2008) 179–198.
- [3] L. Balková, E. Pelantová and W. Steiner, Sequences with constant number of return words. Monatsh. Math. 155 (2008) 251–263.
- [4] J. Bernat, Z. Masáková and E. Pelantová, On a class of infinite words with affine factor complexity. *Theoret. Comput. Sci.* 389 (2007) 12–25.
- [5] V. Berthé and A. Siegel, Tilings associated with beta-numeration and substitutions. *Integers* 5 (2005) 46 (electronic only).
- [6] Č. Burdík, C. Frougny, J.P. Gazeau and R. Krejcar, Beta-integers as natural counting systems for quasicrystals. J. Phys. A 31 (1998) 6449–6472.
- [7] F. Durand, A characterization of substitutive sequences using return words. Discrete Math. 179 (1998) 89–101.
- [8] F. Enomoto, AH-substitution and Markov partition of a group automorphism on T^d. Tokyo J. Math. 31 (2008) 375–398.
- [9] S. Fabre, Substitutions et β -systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219–236.
- [10] C. Frougny and A.C. Lai, On negative bases, Proceedings of DLT 09. Lect. Notes Comput. Sci. 5583 (2009) 252–263.
- [11] C. Frougny, Z. Masáková and E. Pelantová, Complexity of infinite words associated with beta-expansions. *RAIRO-Theor. Inf. Appl.* **38** (2004) 163–185; Corrigendum: *RAIRO-Theor. Inf. Appl.* **38** (2004) 269–271.
- [12] J.-P. Gazeau and J.-L. Verger-Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux 16 (2004) 125–149.
- [13] P. Góra, Invariant densities for generalized β-maps. Ergod. Theory Dyn. Syst. 27 (2007) 1583–1598.
- [14] S. Ito and T. Sadahiro, Beta-expansions with negative bases. Integers 9 (2009) 239–259.

W. STEINER

- [15] C. Kalle and W. Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Am. Math. Soc., to appear.
- [16] K. Klouda and E. Pelantová, Factor complexity of infinite words associated with non-simple Parry numbers. *Integers* 9 (2009) 281–310.
- [17] L. Liao and W. Steiner, Dynamical properties of the negative beta-transformation. To appear in Ergod. Theory Dyn. Syst. arXiv:1101.2366v2.
- [18] Z. Masáková and E. Pelantová, Ito-Sadahiro numbers vs. Parry numbers. Acta Polytech. 51 (2011) 59–64.
- [19] W. Parry, On the β -expansions of real numbers. Acta Math. Acad. Sci. Hung. **11** (1960) 401–416.
- [20] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8 (1957) 477–493.
- [21] W. Thurston, Groups, tilings and finite state automata. AMS Colloquium Lectures (1989).

Communicated by G. Richomme. Received November 5, 2010. Accepted July 11, 2011.