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THE FIBONACCI AUTOMORPHISM
OF FREE BURNSIDE GROUPS

ASHOT S. PAHLEVANYAN!

Abstract. We prove that the Fibonacci morphism is an automor-
phism of infinite order of free Burnside groups for all odd n > 665 and
even n = 16k > 8000.

Mathematics Subject Classification. 20F28, 20E36, 20F50,
20MO5.

1. INTRODUCTION

The question of study of automorphisms of free Burnside groups was stated
by Ol'shanskii in the Kourovka Notebook [7]. The first results were obtained by
Cherepanov in [4,5] and by Atabekyan in [2,3]. In paper [4] it was proved that the
Fibonacci morphism is an automorphism of infinite order of free Burnside groups
for all odd n > 109 and even n = 16k > 8000.

This paper shows that the bound of odd n can be decreased from n > 10'° to
n > 665.

Consider an automorphism ¢ : F5, — F5 of the absolutely free group F» of rank
two with free generators {a, b}, given on generators by formulae

w:ar—b, @:b— ab.

This automorphism is called after Fibonacci since the lengths of words ¢*(a)
are equal to corresponding members of the numerical Fibonacci sequence. If we
consider the sequence of mirror copies of words ¢*(a), we obtain the iterations of
the following morphism

h:ar—b, ¢:b— ba.
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This morphism is also called after Fibonacci. All the statements of this paper that
we prove for the first morphism hold for the second morphism either.

Automorphism ¢ naturally induces an automorphism of free the Burnside group
B(2,n), which we denote by the same letter . Let us remember that a free
Burnside group B(2,n) is the quotient Fh/F5", where Fy" is the subgroup gener-
ated by all possible n-powers of elements of F». Obviously the group B(2,n) has
a presentation B(2,n) = (a1, az|A" =1, for all words A = A(ay,az)).

Theorem 1.1. For arbitrary odd n > 665 and arbitrary even n = 16k > 8000 the
Fibonacci automorphism ¢ has infinite order in the group Aut(B(2,n)).

Theorem 1.1 strengthens the similar result of paper [4], decreasing the bound
of odd n to n > 665.

To prove Theorem 1.1 we prove the following result that is individually inter-
esting.

Proposition 1.2. For any natural k no forth power of a non-empty word occurs
in a cyclic word ¢*(a).

As usual, by a cyclic word we mean a word written on a circle without fixing its
start. Proposition 1.2 strengthens one of the results of paper [6] by Karhuméki,
where a similar statement is proved without the assumption that the word ¢*(a) is
cyclic. Our proof of Proposition 1.2 does not depend on paper [6] by Karhuméki.

Proposition 1.2 also strengthens the Lemma 1.3 of paper [4] by Cherepanov,
according to which no 24th power of a non-empty word occurs in a cyclic Fibonacci
sequence. Bearing on paper [6] by Karhumaéki in [9] Mignosi and Pirillo proved
the following interesting result:

Proposition 1.3. The Fibonacci infinite word contains no fractional power with
an exponent grater than 2 + ((v/5 4 1)/2) and, for any real number ¢ > 0, it
contains a fractional power with an exponent grater than 2+ ((v/5+1)/2) —e.

Theorem 1.1 implies

Corollary 1.4. For arbitrary odd n > 665 the quotient group
Aut(B(2,n))/Inn(B(2,n))
1s infinite.

Proof. According to the famous theorem of S. I. Adian (see Thm. VI.3.4 of [1])
the center of B(m,n) is trivial for n > 665 and m > 1. Therefore Inn(B(2,n))
is isomorphic to B(2,n). Since any inner automorphism of the group B(2,n) has
a finite order, from Theorem 1.1 it follows that for any natural number [ each
automorphism ¢! is not inner. Hence the quotient Aut(B(2,n))/Inn(B(2,n)) is
infinite. O
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2. THE PROOF OF PROPOSITION 1.2

We adhere to the following notions and notations of monograph [1].

Definition 2.1. The word A is called primitive if it cannot be presented in a form
D" for r > 1.

We say that the word E occurs in a word X, if there exist words R and @ such
that X = REQ holds. If the word R (word Q) is empty, then E is a prefix (suffix)
of X. If X is a word over the alphabet that does not contain the letter * and
X = REQ, the word R * E x @ is called an occurrence of word E in a word X.
F is called a base of the occurrence R x F * (). For a given word X we denote by
X the cyclic word generated by X, that is the word X written on a circle without
fixing its start. For a given word X by 9(X) we denote the length of X, that is
the number of its letters over the alphabet {a, b}. For the equality by definition
of two words or two occurrences in a same word we use the symbol =.

Consider an automorphism ¢ : a — b, ¢ : b +— ab of the group B(2,n). Let us
first write out a few images

©"(a) : a— b+ ab— bab— _ab_bab +— bab abbab — abbabbababbab .
NN NN N

Denote

Xo=¢%a) =a, Xp = ¢"), k=1,2,...
Since Xy11 = X1 - Xk, the lengths of words of the sequence Xi, k = 1,2,...
form a Fibonacci sequence. Let us denote

A= Xk,B — Xk—l; C= Xk_Q,D - Xk_g,

E= Xk_4,F — Xk_5,G — Xk_(;,H = Xk_7.
Then A = CDC, B = DC,C = ED and Xj;1 = BA = DCCDC.

Let us recall the following statements from [1], that we often refer to.

Lemma 2.2 (see Lem. 1.2.2 in [1]). If AB = BA, then there exists a word D,
such that A = D', B = D", for some t,r > 0.

Lemma 2.3 (see Lem. 1.2.9 in [1]). Suppose A'A; = B" By, where O(A'A;) >
0(AB), Ay is a suffix of A, By - a prefiz of B. If A is a primitive word, then for
some k, B = A* holds.

Lemma 2.4 (see Lem. IV.2.16 in [1]). If no elementary a-power of rank 1 occurs
inaword X, then X 8Y = X =Y.

Definition 2.5 (see Def. 1.4.34 in [1]). Suppose A = ;= A;, where
XeAs X eRo1&Norm(a, X,9) = 2.

Elements of the set A are called absolutely reduced.
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From Propositions 1.2 and 1.3 follows

Corollary 2.6. For any natural k the cyclic word ©*(a) contains no fractional
power 2+ ((v/5+1)/2) of a non-empty word.

Proof. Let us prove it by induction on k. The base of induction is obvious.
Suppose the statement is true for all natural [ < k and prove it for k& + 1.
Since all cyclic shifts of the word Xy4; = DCCDC occur in a Fibonacci word
X413 = DCCDCCDCDCCDC that contains no 2+ ((v/5+1)/2) fractional power
according to proposition 1.3, the word X} contains no fractional 2+ ((v/5+1)/2)
power of a non-empty word either. (]

Lemma 2.7. None of the words X}, is a proper power, that is Xj, # Zt,t > 2, for
k=1,2,...

Proof. Since the cyclic shift of a proper power is itself a proper power, it is enough
to prove that X} is not a proper power. We prove this by induction on k. For
k < 5 the proof is obvious. Suppose that the lemma is proved for all numbers
I < k, and prove it for kK + 1. We can assume that the word Z is primitive. Let
Xiy1 = DCCDC = Zt,t > 2. Then CDCDC = (CD)QC’ = 7' for some cyclic
shift Z; of Z. Since t > 2, (Z1) + 0(CD) < 9(CDCDC) and by Lemma 2.3 we
obtain B = CD = Z,P. Therefore B = ZP and A = Z9, p,q > 1, p # q. This
contradicts the inductive assumption. O

Lemma 2.8. If X}, contains a power Z' then t < 4.

Proof. The proof is by induction on k. For & < 5 the proof is obvious since
the word X5 = bababbab does not contain Z*. For k = 6 we have the word
X = abbabbababbab that does not contain a subword Z4 with 9(Z) < 3. Fork =7
no word Z* with 9(Z) < 3 occurs in X; = bababbababbabbababbab. The word X7
does not contain Z* with 9(Z) = 4,5 either. Let k > 7. Suppose the statement is
proved for all [ < k and prove it for k + 1. Let Z* occur in Xi+1 = DCCDC. Z4
does not occur in a word A = CDC by inductive assumption. Since D is a suffix
of C, any subword of word DCCDC' of length three over the alphabet {C, D}
occurs in CDC. Therefore Z* does not occur in a subword of word DCCDC' of
length three over the alphabet {C, D}.

Let us prove that Z* does not occur in a subword of DCCDC of length four
over the alphabet {C, D} either. Let us write out subwords of length four of word
DCCDC over the alphabet {C, D}:

DCCD,CCDC,CDCD,DCDC,CDCC.

Since the word DCDC' is a suffix of CCDC, it is enough to consider the case of
the occurrence of Z4 in words DCCD,CCDC,CDCC,CDCD.

I. Suppose Z* occurs in DCCD. Then it contains the base C'C of the occurrence
D« CC « D. We have obvious inequalities 20(C) < 40(Z) < 20(D) + 20(C).
Therefore 9(Z) < 9(C) and 0(Z) + 0(C) < 20(C). By Lemma 2.3 we obtain
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C = Z?,p > 1. According to Lemma 2.7 we have p # 2, and using 9(D) < 9(C) =
0(Z) we obtain p # 1.

II. Suppose Z* occurs in CDCC = EDDEDED. Then it contains the base
DED = DC of the occurrence ED « DED x ED. We have 0(Z) < 9(C). Let us
consider the following cases:

(1) If Z* contains the suffix E of the base of the occurrence ED * DEDE x D,
then from 0(Z) < 9(D) + 9(F) = 9(C) follows (DE)2 =7Z2"Z/ t1 > 2
for some cyclic shift Z; of Z. According to Lemma 2.3 we obtain DE =
ZP,p > 1. Hence ED = C = Z5”. By Lemma 2.7 we have p # 2 and by
0(Z) < 0(C) the inequality p # 1 holds.

Thus, we can assume that Z* is contained in the base EDDEDE of
the occurrence *x EDDEDFE % D in a word C DCC' and, at the same time,
contains the base of the occurrence ED « DED % ED.

(2) If Z* contains the base DDED of the occurrence E + DDED % ED, then
from equality DDED = FEDED = FCC, where F' is a suffix of C, and
inequality 9(Z) < 9(C) follows that Z,'Z,"* = FC? t; > 2 for some cyclic
shift Z; of Z. Therefore C = ED = Z,P, for some cyclic shift Z, of Z.
Since (CDCC) < 40(C), the case p = 1 is impossible, and p > 1. This
contradicts the Lemma 2.7.

(3) Thus, one can assume that Z* occurs in the base DDEDE of occurrence
Ex«DDEDFE D and at the same time does not contain the prefix D and
suffix E of that base. Then Z* occurs in A = EDDED. This contradicts
the inductive assumption.

III. Now let Z* occur in CDCD = EDDEDD. Then it contains the base
DED = DC of the occurrence ED x+ DED % D. First note that Z* # CDCD
holds, since in the contrary case 9(Z) < 9(CD), hence CD = ZP,p > 2. Thus,
B = DC = Z;? for some cyclic shift Z; of Z. This is a contradiction to inductive
assumption. According to the case above the word Z* does not occur in the base
DDED of the occurrence Ex DDED x D since that base is equal to the base of the
occurrence Ex DDED % C in an already considered word CDCC'. Let us consider
the following cases:

(1) If Z* contains the base of the occurrence EF * EFEEFE + FE in a word
CDCD then EFEEFE = (C)? = Z,"' Z,’ and in view of 3(Z;) < 9(C)
we have C = Z;P. This contradicts the Lemma 2.7 for p > 2 and the
inequality 9(D) < 9(C) for p = 1.

(2) Thus Z* occurs in the base FEEFEFE of the occurrence EFEx
FEEFEFEx in a word CDCD and contains the base of the occurrence
EFE x« FEEFE x FE. Then 0(Z) < O(E) + 0(F) holds. If Z* con-
tains the base of the occurrence FFE x FEEFEF x E then the word
E(EF)? = GFEFEF is periodic with period EF and E(EF)? = Z,'Z,".
According to Lemma 2.3 we have EF = Z1F and FE = Z;’ = D. In view
of Lemma 2.7 p # 2 holds and by 9(Z) < d(E) + 9(F) we have p # 1.
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(3) It remains to consider the case when Z* strictly occurs in the base of
the occurrence FF « EFEFEFEF x E and at the same time does not
contain the prefix E and suffix F' of that base. Then 9(Z) < (FFE) and
EEFE = G(FE)? = Z,'Z;" where t; > 2. According to Lemma 2.3 we
have D = FE = Z5" for some cyclic shift Zs of Z, in spite of Lemma 2.7.

IV. Now suppose Z* occurs in a word CCDC'. Then it contains the base EDD =
CD of the occurrence ED x EDD x ED in a word CCDC. Since 9(D) < 9(C)
we have d(Z) < 9(C). Therefore Z,'Z,"* = EDD = CD for some cyclic shift
Zy of Z, where t1 > 2, E is a suffix of D and 9(Z1) < 9(D) + O(E). According
to Lemma 2.3 we obtain that D = Z1P,p > 1. By Lemma 2.7 we have p = 1
and Z1 = D. The base of the occurrence ED x EDD x ED in a word CCDC' is
non-continuable to the right relative to period Z; = D since the first letters of
words D and E are different by definition of words Xj. Then Z* occurs in a word
A= CCD = EDEDD that contradicts the inductive assumption.

Thus we have proved that no word of form Z* occurs in a subword of length
four of cyclic word DC'CDC' over the alphabet {C, D}. Let us now prove that
it does not occur in a cyclic word DCCDC' either. Assuming the contrary we
obtain that Z! contains one of the words CCD,CDC,DCC and DCD. In view
of obvious inequalities 20(C') < 20(D) + 9(C) and 9(C) + I(D) < 20(C) + 9(D)
we obtain that more than half of the word Z* occurs in one of the following words
CCD,CDC,DCC,DCD.

(1) Let Z* contain the base of the occurrence

DxCCD«+C=Dx FEHGGFEFEFE xC

in a word DCCDC'. Since 9(D) + 0(EH) + 0(C) < 0(GGFEFEFE),
we have GG(FE)3 = Z,'Z," for some cyclic shift Z; of Z, where t; > 2.
Using the Lemma 2.3 we obtain that D = FE = Z5P for some cyclic shift
Z1 of Z. By Lemma 2.7 we have p = 1 and D = Z5. Since the first
letters of C' and D are different, the word D * FEHGGFEFEFE x C is
non-continuable to the right relative to period D = Z5. Then D* is a suffix
of the occurrence xDCCD+«C = «xDEFGFEFEFE xC. Therefore FG is
a suffix of the word D = FE = FGF, hence FG = GF. By Lemma 2.2 we
get £ = TP for some word T and p > 2. This contradicts the Lemma 2.7.

(2) Suppose Z* contains the base of the occurrence C'* DCC % D in a cyclic
word CDCCD. Since D is a suffix of C', we have DCC = 7/ Z1 for
some cyclic shift Z; of Z, and, obviously, ¢t; > 2 holds. Then, according
to Lemma 2.3, the word C' = Z5? is a proper power. By Lemma 2.7 we
have p =1 and C' = Z5. But since C' is non-continuable to the right and
to the left side one cannot count the word C* because of the inequality
d(D) < 0(C), we obtain a contradiction.

(3) Let Z* contain the base of the occurrence

C*CDC*D =EFE*GHGF(EFE)? « FE
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or

D+xCDC*C =FE*GHGF(EFE)*+« EFE

in a cyclic word CCDCD or DCDCC respectively. One has E = GF =
GHG. In view of the obvious inequality

O(F(EFE)?) > 0(EFE) + 0(FE) + 0(E)

by Lemma 2.3 and Lemma 2.7 we obtain C' = EFE = Zs. The suffix
C' of the base of the occurrence C' « CDC * D is not continuable to the
right relative to period C because the first letters of words C' and D are
different. In view of the inequality 9(D) < 9(C) the base of the occurrence
*CCDC * D does not end with word C*. Now let Z4 contain the base of
the occurrence D « CDC * C. Consider the maximal power of the word C'
that occurs in a word DC'DCC, where one C of that power coincides with
the suffix C' of the base of the occurrence D x CDC x C'. We can continue
the occurrence D « CDC * C' to the right relative to period C' = Z5. Now
let us count from right to left the maximal power of C' that occurs in a
word DC'DCC'. We have the equalities

DCDCC = FEEFEFEEFEEFE = FEEFCCC.

It is obvious that the equality EEF = EFE = C has to hold, and therefore
EF =FFE. Then D = FE =TP?, p > 2 that contradicts the Lemma 2.7.
(4) Finally suppose Z* contains the base of the occurrence

CxDCDxC=FEFxEDCD xC

in a cyclic word CDCDC'. Let us repeat the reasoning of case one. Having
changed only the occurrence D« CC D« C' by the occurrence EF « EDC D
C =EF+«CCDxC in a word CDCDC, we can assume, that Z* does not
contain the base of the occurrence EF « CCD % C. Therefore Z* occurs in
a base of the occurrence EF «* EDCDCx* and at the same time contains
the base of the occurrence

EFExDCD«+«C=FFExGFEDD «C = EFExGDDD % ED.

We have the inequality 20(D) + 9(E) < 9(GD?). Then GD? = Z,'Z;"* for some
cyclic shift Z; of Z, and t; > 2. Hence D = Z3P. By Lemma 2.7 we have p = 1
and D = Z,. Since the first letters of words C' and D are different, the occurrence
EFE « GFEDD * C is not continuable to the right relative to period D. If D*
is a suffix of the base of occurrence *CDCD x C' = xCFGFEDD % C then from
right to left we read D?, D = FE, and the equality FG = GF = E must hold.
Therefore E = TP, p > 2 that contradicts the Lemma 2.7. Thus we proved that
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no word of form Z* ¢+ > 4 can occur in a word X1 = DCCDC. The Lemma is
proved completely. O

It remains to note that the Lemma 2.8 is a reformulation of Proposition 1.2.

3. PROOF OF THE MAIN RESULT

Now turn to the proof of Theorem 1.1.

Proof. Suppose that ¢ has a finite order in Aut(B(2,n)), that is ¢* = id. Then,
particularly ¢*(a) = a, that is the word X}, = a. Therefore a~! X}, is equal to the
empty word in B(2,n). Consider two possible cases:

(1) If X}, starts with the letter b, then a~* X} is not reducible and obviously
contains no forth power of a non-empty word by Proposition 1.2 since all
letters in X}, are positive.

(2) If X}, starts with the letter a, then we reduce a"'a and the result X}’
contains no fourth power by Lemma 1.2. Hence, by definition 2.5 the irre-
ducible word a~ !X}, is absolutely reduced for odd n > 665 and according
to Lemma 2.4 it cannot be equal to the empty word in B(2,n). This proves
the Theorem 1.1 for odd n.

To prove the Theorem 1.1 for even n = 16k > 8000 (as in [4]) we use Theorem 2(i)
of [8] according to which if a non-empty freely non-reducible word X is equal to one
in B(m,n), then X contains a non-empty subword of the form A("/2)=1240 " Again
by Proposition 1.2 the word a~!X}, contains no subword of the form A"/2-1240
hence it cannot be equal to the empty word in B(2,n). O

APPENDIX

The author thanks the Referee for suggesting the following much shorter proof
of Proposition 1.2 using some well-known properties of Fibonacci words.

Proof. Let h denote the Fibonacci morphism given by
h:aw—b, h:b+— ba.

It is well-known that the reversal of h(b) is a conjugate of h(b) for all k£ > 0. Thus
the square of the reversal of h"~1(b) is a factor of the cube h"~1(b)3, which is a
factor of the Fibonacci infinite word limy_, h¥(b) for all n > 3. Therefore the
square of h"~1(b) does not contain 4th powers (see [6], Thm. 2). The claim now
follows from the fact that the word ¢™(a) equals the reversal of h"~1(b), which
can be proved by induction. O
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