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CLOSURE PROPERTIES OF HYPER-MINIMIZED
AUTOMATA

Andrzej Szepietowski1

Abstract. Two deterministic finite automata are almost equivalent
if they disagree in acceptance only for finitely many inputs. An au-
tomaton A is hyper-minimized if no automaton with fewer states is
almost equivalent to A. A regular language L is canonical if the mini-
mal automaton accepting L is hyper-minimized. The asymptotic state
complexity s∗(L) of a regular language L is the number of states of a
hyper-minimized automaton for a language finitely different from L. In
this paper we show that: (1) the class of canonical regular languages
is not closed under: intersection, union, concatenation, Kleene closure,
difference, symmetric difference, reversal, homomorphism, and inverse
homomorphism; (2) for any regular languages L1 and L2 the asymp-
totic state complexity of their sum L1 ∪ L2, intersection L1 ∩ L2, dif-
ference L1 − L2, and symmetric difference L1 ⊕ L2 can be bounded by
s∗(L1) · s∗(L2). This bound is tight in binary case and in unary case
can be met in infinitely many cases. (3) For any regular language L
the asymptotic state complexity of its reversal LR can be bounded by
2s∗(L). This bound is tight in binary case. (4) The asymptotic state
complexity of Kleene closure and concatenation cannot be bounded.
Namely, for every k ≥ 3, there exist languages K, L, and M such that
s∗(K) = s∗(L) = s∗(M) = 1 and s∗(K∗) = s∗(L · M) = k. These are
answers to open problems formulated by Badr et al. [RAIRO-Theor.
Inf. Appl. 43 (2009) 69–94].
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1. Introduction

Badr et al. in [1] presented a polynomial-time algorithm for reducing a given
deterministic finite automaton (dfa) into hyper-minimized dfa. The resulting au-
tomaton may disagree with the given dfa only on finitely many inputs, and is
the smallest among such almost equivalent automata. The algorithm has been
improved in [3].

The authors of [1] call a regular language canonical if its minimal dfa is hyper-
minimized, and by asymptotic state complexity they mean the size of a hyper-
minimized dfa for the language. They also formulated, among others, two open
problems:

(1) what are the closure properties of canonical regular languages? We only know
that this family forms a proper subset in the class of all regular languages and
that it is closed under complement;

(2) similarly, we know next to nothing about asymptotic state complexity. For
example, having given two regular languages, what can be told about the
asymptotic state complexity of their intersection?

In this paper, we show that the class of canonical regular languages is not closed
under intersection, union, concatenation, difference, symmetric difference, reversal,
Kleene closure, homomorphism, and inverse homomorphism. The second part of
the paper studies the asymptotic state complexity of basic regular operations. We
provide upper bound mn for boolean operations, and 2n for reversal, and show
that both bounds are tight in the binary case. In the unary case, the upper bound
on boolean operations can be met in infinitely many cases. The tight bound for
reversal in the unary case is n since the reversal of every unary language is the
same language. On the other hand, we prove that the asymptotic state complexity
of Kleene closure and concatenation cannot be bounded.

2. Preliminaries

Two languages K and L are almost equivalent if they differ in finitely many
elements, or in other words if their symmetric difference K⊕L = (K−L)∪(L−K)
is finite. Two deterministic finite automata A and B are almost equivalent if they
disagree in acceptance only for finitely many inputs. An automaton A is hyper-
minimized if no automaton with fewer states is almost equivalent to A. A regular
language L is canonical if the minimal automaton accepting L is hyper-minimized.
The asymptotic state complexity of a regular language L, denoted by s∗(L), is the
number of states of a hyper-minimized automaton for a language finitely different
from L. Two states qA and qB are equivalent, if for each w ∈ Σ∗ we have δ(qA, w) ∈
F if and only if δ(qB, w) ∈ F . States qA and qB are almost-equivalent if there exists
k ≥ 0 such that, for each w ∈ Σ∗ of length |w| ≥ k, we have δ(qA, w) ∈ F if and
only if δ(qB , w) ∈ F . A state q is unreachable if it cannot be reached from the
initial state by any input string. The state q is in the preamble, if it is reachable
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from the initial state, but only by finitely many inputs. Two natural numbers p
and q are coprime if they have no common positive divisor other than 1. Note that
for every natural p > 1, the numbers p and p + 1 are coprime.

Lemma 2.1 (see [1], Thm. 3.4). A deterministic finite automaton A is hyper-
minimized if and only if in A:

(a) there does not exists an unreachable state;
(b) there does not exists a pair of equivalent states; and
(c) there does not exists a pair of almost-equivalent states, such that at least one

of them is in the preamble.

Lemma 2.2 (see [1], Cor. 3.11). Let M be a minimal automaton with a cycle be-
ginning and ending in its initial state. Then M is hyper-minimized.

Lemma 2.3 (see [1]). The class of canonical languages is closed under the com-
plement, i.e. for every canonical language L ⊂ Σ∗, its complement Lc = Σ∗ − L
is also canonical. Moreover, s∗(Lc) = s∗(L).

Lemma 2.4 (Chinese remainder theorem, see [2]). Let p and q are two coprime
numbers. Then for every two natural numbers x and y, there exists a natural
number z such that

z = x (mod p) and
z = y (mod q).

3. Canonical regular languages

In this section we consider closure properties of canonical languages. Badr
et al. [1] noted that they are closed under complement. We show that they are not
closed under many other basic operations.

Lemma 3.1. The class of canonical regular languages is not closed under:

(a) intersection;
(b) union;
(c) concatenation;
(d) Kleene closure;
(e) difference;
(f) symmetric difference;
(g) reversal;
(h) homomorphism; and
(i) inverse homomorphism.
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Proof.

(a) Consider two languages La = a∗ and Lb = b∗ over the alphabet {a, b}. The
minimal automaton Aa accepting La has two states and the initial state is
in a loop, so by Lemma 2.2, it is hyper-minimized and the language La is
canonical. Similarly, Lb is canonical. The intersection La ∩ Lb = {λ} is not
canonical over the alphabet {a, b}. The minimal automaton accepting {λ} has
two states and is almost-equivalent to the automaton with one state accepting
the empty set ∅;

(b) follows from (a) and Lemma 2.3;

(c) consider two languages L2 = (aa)∗ and L3 = (aaa)∗ over the alphabet {a}.
The minimal automaton accepting L2 consists of the loop of the length 2
and the minimal automaton accepting L3 consists of the loop of length 3. By
Lemma 2.2, they are both hyper-minimized, hence L2 and L3 are canonical.
The concatenation L2 ·L3 = a∗−{a} is not canonical. The minimal automaton
accepting L2 · L3 has three states and is almost-equivalent to the automaton
with one state accepting a∗;

(d) the empty set over the alphabet {a} is canonical (its minimal automaton uses
just one state), but its Kleene closure ∅∗ = {λ} is not canonical over the
alphabet {a}. The corresponding automaton needs two states and is almost
equivalent to the automaton with one state accepting the empty set. One can
also consider the language a2(a3)∗ which is canonical, but its Kleene closure
a∗ − {a, aaa} is not;

(e) and (f) Consider two canonical languages L = bba(aa)∗ + b and K = bba(aa)∗

over the alphabet {a, b}. They both are accepted by the minimal automata
with five states and it is easy to check that the automata are hyper-minimized.
The difference L − K and the symmetric difference L ⊕ K are both equal to
the non canonical language {b};

(g) consider once again the canonical language L = bba(aa)∗ + b. Its reversal
LR = a(aa)∗bb+ b is not canonical. The minimal automaton accepting LR has
six states and is almost-equivalent to the minimal automaton with five states
accepting a(aa)∗bb;

(h) consider the canonical language Lc
a = a∗b(a + b)∗ – the complement of the

canonical language La = a∗ over the alphabet {a, b}, and the homomorphism
h : (a+ b)∗ → (a+ b)∗ which maps both a and b into a. The image h(Lc

a) = a+

is not canonical over {a, b}. Indeed, it is accepted by the minimal automaton
with three states and is almost-equivalent to the language a∗ accepted with
two states;

(i) consider the canonical language Lb = b∗ over the alphabet {a, b} and the same
homomorphism h as in (h). The inverse image h−1(Lb) = {λ} is not canonical
over the alphabet {a, b}. �
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4. Asymptotic state complexity

In this section we study the asymptotic state complexity of basic regular opera-
tions. We provide upper the bound mn for boolean operations, and 2n for reversal,
and show that the both bounds are tight in the binary case. In the unary case,
the upper bound on boolean operations can be met in infinitely many cases. The
tight bound for reversal in the unary case is n since the reversal of every unary
language is the same language. On the other hand, we prove that the asymptotic
state complexity of Kleene closure and concatenation cannot be bounded.

Lemma 4.1.

(a) For any regular languages L1 and L2, the asymptotic state complexity of their
sum L1∪L2, intersection L1∩L2, difference L1−L2, and symmetric difference
L1 ⊕ L2 are all not greater than s∗(L1) · s∗(L2);

(b) for any two natural numbers m, n > 1, there exist languages Lm and Ln such
that s∗(Lm) = m, s∗(Ln) = n, and

s∗(Lm ∩ Ln) = s∗(Lm ∪ Ln) = s∗(Lm − Ln) = s∗(Lm ⊕ Ln) = m · n.

Proof.
(a) Let A1 = (Q1, Σ, δ1, qI,1, F1) and A2 = (Q2, Σ, δ2, qI,2, F2) be hyper-minimized
automata accepting languages almost equivalent to L1 and L2, respectively. We
can construct their cross-product A = (Q, Σ, δ, qI , F ) with Q = Q1 × Q2, qI =
(qI,1, qI,2), F = F1 × F2 and δ defined by

δ((q1, q2), a) = (δ(q1, a), δ(q2, a)).

The automaton A has s∗(L1) · s∗(L2) states and accepts the intersection L(A1) ∩
L(A2) which is almost equivalent to the language L1 ∩ L2. Hence, there exists a
hyper-minimized automaton accepting a language almost equivalent to L1 ∩ L2

with at most s∗(L1) · s∗(L2) states. Hence, s∗(L1 ∩ L2) ≤ s∗(L1) · s∗(L2).
In order to prove the other cases one only has to change the set of accepting

states. For example, if we change the set of accepting states to F = F1 × Q2 ∪
Q1 × F2, then the automaton A accepts the union L(A1) ∪L(A2) which is almost
equivalent to L1 ∪ L2.

(b) Consider two languages

Lm = ((b∗ab∗)m)∗ and Ln = ((a∗ba∗)n)∗.

The minimal automaton Am accepting Lm has m states, say Qm = {0, . . . , m−1},
0 is the initial and the only accepting state, and the transition function is defined
in the following way:

δ(x, a) = x + 1 (mod m) and δ(x, b) = x, for every state x ∈ Qm.
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The automaton Am counts a-s modulo m and is hyper-minimized, since there
is a loop going through the initial state. Similarly we can construct the hyper-
minimized automaton An with states Qn = {0, . . . , n − 1} which counts b-s and
accepts Ln. Hence s∗(Lm) = m and s∗(Ln) = n. The languages Lm∩Ln, Lm∪Ln,
Lm − Ln, and Lm ⊕ Ln are all accepted by the cross-product of Am and An with
the set of states Q = Qm × Qn and the appropriate set of accepting states. We
shall concentrate on the automaton accepting the union Lm ∪ Ln with the set
of accepting state F = {(0, y) | y ∈ Qn} ∪ {(x, 0) | x ∈ Qm} (other cases can
be proved similarly). There is a loop going through the initial state (0, 0), so by
Lemma 2.2, we only have to show that the automaton is minimal, i.e. that no two
states p and q are equivalent. It is enough to consider the following three cases:

Case 1. Both states p = (p1, p2) and q = (q1, q2) are not accepting, with some
p1, p2, q1, q2 �= 0, p1 �= q1. In this case the state δ(p, am−p1) is accepting and the
state δ(q, am−p1) is not.

Case 2. Both states p and q are accepting with p = (p1, 0), q = (q1, 0), and
p1 �= q1. In this case the state δ(p, am−p1b) is accepting and the state δ(q, am−p1b)
is not.

Case 3. Both states p and q are accepting with p = (p1, 0), q = (0, q2) and
p1, q2 > 0. In this case the state δ(p, a) is accepting and the state δ(q, a) is not.

�

Lemma 4.2. For any two coprime numbers p, q > 2, there exist unary languages
Lp and Lq such that s∗(Lp) = p, s∗(Lq) = q, and

s∗(Lp ∩ Lq) = s∗(Lp ∪ Lq) = s∗(Lp − Lq) = s∗(Lp ⊕ Lq) = p · q.
Proof. Consider two languages

Lp = (ap)∗ = {an | n is divisible by p},
Lq = (aq)∗ = {an | n is divisible by q}.

The minimal automaton accepting Lp consists of the loop of the length p and the
minimal automaton accepting Lq consists of the loop of length q. By Lemma 2.2,
they are both hyper-minimized, hence s∗(Lp) = p and s∗(Lq) = q. The languages
Lp ∩ Lq, Lp ∪ Lq, Lp − Lq, and Lp ⊕ Lq are all accepted by the automata with
one big loop of the length p · q and with different set of accepting states. More
precisely, consider the automaton A with the set of states Q = {0, . . . , pq−1}, the
initial state q0 = 0, and the transition function defined by:

δ(x, a) = x + 1 (mod pq), for every state x ∈ Q.

The set of accepting states is chosen in the following way:

• F1 = {0} for the intersection Lp ∩ Lq;
• F2 = {x ∈ Q | x is divisible by p or by q} for the union Lp ∪ Lq;
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• F3 = {x �= 0 | x is divisible by p} for the difference Lp − Lq; and
• F4 = {x �= 0 | x is divisible by p or by q} for the symmetric difference

Lp ⊕ Lq.

We shall show that in all these cases the automaton A is minimal and so, by
Lemma 2.2, also hyper-minimized. It is easy to see that with F1, every two different
states are not equivalent. In the second case with F = F2, let x and y are two
different states. We may assume that x �= y (mod p). By Lemma 2.4, there exists
a natural number r such that

r = pq − x (mod p) and
r = pq − y + 1 (mod q).

Then the state δ(x, ar) = x + r (mod pq) is divisible by p and is accepting, and
the state δ(y, ar) = y + r (mod pq) is divisible neither by p nor by q and is not
accepting. Hence x and y are not equivalent.

Similarly, one can show that the automaton A with the accepting set F4 is
minimal. If x−y+1 �= 0 (mod q), then take r as in the previous case. If x−y+1 = 0
(mod q), then take r such that

r = pq − x (mod p) and
r = pq − y + 2 (mod q).

Similarly, one can show that the automaton A with the accepting set F3 is
minimal. �
Lemma 4.3.

(a) For any regular language L,

s∗(LR) ≤ 2s∗(L);

(b) furthermore, for every k ≥ 1, there exists language L such that s∗(L) = k and
s∗(LR) = 2k.

Proof.
(a) Let A = (Q, Σ, δ, qI , F ) be the hyper-minimized automaton accepting a lan-
guage almost equivalent to L. The automaton AR = (QR, Σ, δR, qR, FR) accepting
a language almost equivalent to LR and having 2|Q| states can be defined in the
following way:

• the set of states of QR is the power set 2Q, consisting of all subsets of Q;
• the initial state qR = F ;
• the set of accepting states FR = {S ⊂ Q | qI ∈ S};
• the transition function δR is defined by

δR(S, σ) = {s ∈ Q | δ(s, σ) ∈ S}.
(b) Jiraskova and Sebej in [4] show that, for every k ≥ 2, there is a binary lan-
guage L such that minimal automaton accepting L has k states and the mini-
mal automaton accepting the reversal LR has 2k states. Both these automata are
hyper-minimized. Hence s∗(L) = k and s∗(LR) = 2k. �
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Lemma 4.4. For every k ≥ 3, there exist languages K, L, and M , such that
s∗(K) = s∗(L) = s∗(M) = 1 and s∗(K∗) = s∗(L · M) = k.

Proof. Consider the language K = ak over the alphabet {a}. It contains only one
word and is almost equivalent to the empty language ∅, hence, s∗(K) = 1. The
Kleene closure

K∗ = (ak)∗ = {an | n is divisible by k}
is accepted by the hyper-minimized automaton with k states.

Consider the languages L = (a + b)k−3b and M = (a + b)∗ over the alphabet
{a, b}. The language L is finite and is almost equivalent to the empty language ∅,
the language M is accepted by the minimal automaton with one state, so s∗(L) =
s∗(M) = 1. The concatenation

L · M = (a + b)k−3b(a + b)∗

is accepted by the hyper-minimized automaton with k states. �

Lemma 4.5. For every k ≥ 1, there exist two languages K and L over the unary
alphabet {a}, such that s∗(K) = s∗(L) = k and s∗(K∩L) = s∗(K∪L) = s∗(K·L) =
s∗((L)∗) = 1.

Proof. Let K = (ak)∗ and L = Kc∪{λ}. In the proof of Lemma 4.2 we have shown
that s∗(K) = k. The language L is almost equivalent to Kc, so s∗(L) = s∗(K) = k.
On the other hand K ∪ L = a∗, K ∩ L = {λ}, K · L = a∗, and (L)∗ = a∗. Hence,
s∗(K ∩ L) = s∗(K ∪ L) = s∗(K · L) = s∗((L)∗) = 1. �
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