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Abstract. Frequency hopping sequences sets are required in frequency
hopping code division multiple access systems. For the anti-jamming
purpose, frequency hopping sequences are required to have a large lin-
ear span. In this paper, by using a permutation polynomial δ(x) over
a finite field, we transform several optimal sets of frequency hopping
sequences with small linear span into ones with large linear span. The
exact values of the linear span are presented by using the methods of
counting the terms of the sequences representations. The results show
that the transformed frequency hopping sequences are optimal with re-
spect to the Peng-Fan bound, and can resist the analysis of Berlekamp-
Massey algorithm.
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1. Introduction

1.1. Optimal frequency-hopping sequences

In modern communication systems, frequency-hopping (FH) spread spectrum
and direct sequence spread spectrum are two main spread spectrum techniques.
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Frequency-hopping sequences are a very important part of FH Code Division Mul-
tiple Access (FH-CDMA) [16].

In an FH spread spectrum system, the interference occurs if two distinct trans-
mitters use the same frequency simultaneously. To reduce the interference, we hope
that both autocorrelation and crosscorrelation functions in an FH sequences set
are as small as possible [7–9].

Let F = {f0, f1, . . . , fγ−1} be a set of available frequencies with alphabet size γ.
Let F be a set of N frequency sequences of length L over F . For any two sequences
X, Y ∈ F , where X = (X(0), X(1), . . . , X(L−1)), Y = (Y (0), Y (1), . . . , Y (L−1)),
we can define their Hamming correlation HX,Y as follows

HX,Y (τ) =
L−1∑
i=0

h[X(i), Y (i + τ)], (1.1)

where 0 ≤ τ < L, h[X(i), Y (i + τ)] = 1 if X(i) = Y (i + τ), and 0 otherwise,
and the addition operations are performed modulo L. If X = Y , HX,X(·) is called
the autocorrelation function of FH sequence X . HX,Y (·) is the crosscorrelation
function of X and Y if X �= Y . For any distinct X, Y ∈ F , we define

H(X) = max
1≤τ<L

{HX,X(τ)}
H(X, Y ) = max

0≤τ<L
{HX,Y (τ)}.

Lempel and Greenberger [13] developed the following lower bound for H(X).

Lemma 1.1. For every FH sequence of length L over an alphabet F of size γ, we
have

H(X) ≥
⌈

(L − ε)(L + ε − γ)
γ(L − 1)

⌉
where ε is the least nonnegative residue of L modulo γ.

The maximum nontrivial Hamming correlation of the FH sequence set F is defined
by M(F) = max{H(X), H(X, Y )}. In 2004, Peng and Fan [15] described the
following bounds on M(F).

Lemma 1.2. Let F be a set containing N FH sequences of length L over an
alphabet of size γ. Define I = �LN/γ�, Then

M(F) ≥
⌈

(LN − γ)L
(LN − 1)γ

⌉

and

M(F) ≥
⌈

2ILN − (I + 1)Iγ

(LN − 1)N

⌉
·

From Lemmas 1.1 and 1.2, we can define an optimal sequence and an optimal set
as follows:
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(1) an FH sequence X ∈ F is called optimal if the Lempel-Greenberger bound in
Lemma 1.1 is met;

(2) an FH sequences set F is an optimal set if either of the bounds in Lemma 1.2
is met.

In this paper, let (L, H(X); γ) denote an FH sequence X of length L over an alpha-
bet F of size γ with the maximum nontrivial Hamming autocorrelation H(X). Let
(L, N, M(F); γ) denote a set of N FH sequences F of length L over an alphabet
F of size γ with the maximum nontrivial Hamming correlation M(F).

1.2. Linear span of a sequence

From the viewpoint of engineering, a linear span of a sequence is the length of the
shortest linear feedback shift register (LFSR) which can produce the sequence [10].
Let p be a prime and q = pr, r is a positive integer. Fq denotes the finite field with
q elements. Let s = (s0, s1, . . .), si ∈ Fq, be a sequence produced by the LFSR and
satisfy the following linear recurrence relation

sn+l = c1sn+l−1 + c2sn+l−2 + . . . + clsn

where n ≥ 0. c(x) = clx
l + cl−1x

l−1 + . . .+ c1x+1 ∈ Fq[x] is called the connection
polynomial of the LFSR or a connection polynomial of sequence s. The connection
polynomial of s with the least degree is called the minimal polynomial of s. The
minimal polynomial of a periodic sequence s is uniquely defined. The linear span
of a sequence s is defined as the degree of the minimal polynomial of s. If c(x) is
a primitive polynomial then the sequence s is called an m-sequence [11]. In this
case, the linear span of s equals l.

In some applications, the FH sequences are required to have a large linear
span, which ensures that the code sequences underlying the FH pattern can not
be reconstructed by a vicious attacker. A large linear span is desired for a more
robust FH sequence design and is a necessary condition for the security of sequences
applied in cryptography. There are several optimal sets of FH sequences with large
linear spans [12, 17].

1.3. Our contributions

In [18], the power permutation, x → xσ over Fq, where gcd(σ, q − 1) = 1,
was employed to improve the linear span of three classes of optimal sets of FH
sequences. It was shown that the obtained FH sequences have much larger lin-
ear span compared with the primary ones. Wang [18] mentioned that ‘the other
type of permutation polynomials over Fq may be employed in the same way for
improving the linear spans of FH sequences in some optimal sets, but calculating
the linear spans of the transformed sequences may not be easy’. The objective of
this paper is to obtain new optimal sets of FH sequences with large linear span
by using another type of permutation polynomials, which is different from power
permutations. By using the method of counting terms in the root representation
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of FH sequences, we give the exact values of the linear span of the transformed
optimal sets of FH sequences. The obtained FH sequences have not only optimal
Hamming correlations, but also large linear span to resist the Berlekamp-Massey
algorithm. The results show that, besides the power permutation, the permuta-
tion polynomial used here can also be employed to improve the linear span of the
optimal sets of FH sequences and we can calculating the exact values of the linear
span.

2. Preliminaries

We begin this section by introducing some notations that will be used through-
out this paper.

• p is an odd prime. r ≥ 1 is a positive integer and q = pr;
• Fqm : the finite field with qm elements, and F ∗

qm=Fqm − {0};
• α is a generator of F ∗

qm ;
• m, n: two positive integers with n|m;
• Trm

n (x) =
∑m

n −1
i=0 xqni

for x ∈ Fqm . Trm
n (·) denotes the trace function from Fqm

to Fqn ;
• Nm

n (x) = xq ·xqn

. . . xqn(m/n−1)
for x ∈ Fqm . Nm

n (x) denotes the norm function
from Fqm to Fqn . In this paper, we abbreviate the Nm

n (x) as N (x).

The following Theorem 2.1 comes from [14].

Theorem 2.1. Let q be an odd integer, and δ(x) = x(q+1)/2 + bx ∈ Fq[x]. δ(x)
is a permutation polynomial over Fq if and only if b = (c2 + 1)(c2 − 1)−1, where
c ∈ Fq, c �= 0 and c2 �= 1.

Obviously, the permutation polynomial δ(x) is different from the power permuta-
tion. Note that (q + 1)/2 may not be coprime with q − 1.

Let q > 3, then (q + 1)/2 < q − 1. Let s = {si} be a sequence over Fq, where si

can be expressed as

si =
n−1∑
j=0

λjα
ej i

where λj �= 0 for all j, and 0 ≤ ej < q−1 for all j. The linear span of the sequence
s is easily determined by n, i.e., the number of nonzero coefficients in the powers-
of-α representation [1,16]. In the following, we will determine the linear span of the
transformed sequences by counting the terms of the powers-of-α representation of
the transformed sequences.

3. Transformed optimal sets of FH sequences by δ(x)

3.1. The first optimal class of FH sequences

In [4], Ding et al., presented a construction of optimal set of q-ary FH sequences
of length qm − 1. It is described as follows.
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Let d be a positive integer with 1 ≤ d ≤ q − 2. ∀ u, v ∈ Fqm , we define a
function fu,v(x) from Fqm to Fq as follows

fu,v(x) = Trm
1

(
uN (

xd
)

+ vx
)

(3.1)

we define the following vector

su,v =
(
fu,v

(
α0
)
, fu,v

(
α1
)
, . . . , fu,v

(
αqm−2

))
. (3.2)

The parameter d plays a role of determining different sequences. Given a specific
value of d, we obtain a specific function fu,v(x), furthermore, the sequence su,v.
If the parameter d satisfies some condition, the sequence su,v will be an optimal
frequency hopping sequence. The following theorem comes from [4].

Theorem 3.1. With the same notation as above, define

F = {su′u,1 : u ∈ Fq}. (3.3)

Assume gcd(dm − 1, q − 1) = 1 for 1 ≤ d ≤ q − 2 and u′ is an element in F ∗
q with

Trm
1 (u′) �= 0. Then for u ∈ Fq, su′u,1 is a (qm − 1, qm−1; q) optimal FH sequence

meeting the bound in Lemma 1.1. F is a (qm − 1, q, qm−1; q) optimal FH sequence
set with respect to the first bound of Lemma 1.2.

In [18], Wang showed that the linear span of su′u,1 is equal to m for u = 0
and m + 1 for u �= 0. Obviously, the linear span of su′u,1 is very small compared
with its length qm − 1. Following the work in [18], we can significantly improve
the linear span of the FH sequences in F by using the permutation polynomial in
Theorem 2.1.

The following Theorem 3.3 gives the linear spans of the transformed sequences
set by δ(x).

Theorem 3.2. Let d = 1, then su′u,1(x) = Trm
1 (u′uN (x) + x). Let p be a prime,

q = pr and q > 3. Assume that gcd(m− 1, q− 1) = 1, u′ is an element of F ∗
qm and

Tr(u′) �= 0. For 0 ≤ t ≤ qm − 2, define

δ(su′u,1(t)) =
(
Trm

1

(
u′uN (

αt
)

+ αt
))(q+1)/2 + bTrm

1

(
u′uN (

αt
)

+ αt
)

where α is a generator of F ∗
qm , u ∈ Fq and b is the parameter in δ(x) in Theo-

rem 2.1. Then we have

(1) δ(F) = {δ(su′u,1) : u ∈ Fq} is a

(qm − 1, q, qm−1; q)

optimal set of FH sequences with respect to the first bound of Lemma 1.2. Each
sequence in δ(F) for u ∈ Fq is optimal with respect to the Lempel-Greenberg
bound;
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(2) for the transformed FH sequences, if u = 0, the linear span is

r−1∏
i=0

(
m + ηi − 1

ηi

)
+ m

and if u �= 0, the linear span is

r−1∏
i=0

(
m + ηi

ηi

)
+ m + 1

where (q + 1)/2 =
∑r−1

i=0 ηip
i and η0 = (p + 1)/2, ηi = (p − 1)/2 for i ∈

{1, 2, . . . , r − 1}.
Proof. Let d = 1, then

su′u,1(t) = Trm
1 (u′uN (αt) + αt)

for 0 ≤ t ≤ qm − 2. We have

δ(su′u,1(t)) =
(
Trm

1

(
u′uN (

αt
)

+ αt
))(q+1)/2

+ bTrm
1

(
u′uN (

αt
)

+ αt
)
.

Note that q = pr, according to the p-ary representation, (q +1)/2 can be uniquely
written as follows

(q + 1)/2 =
r−1∑
i=0

ηip
i

where η0 = (p + 1)/2, ηi = (p − 1)/2 for i ∈ {1, 2, . . . , r − 1}. Since u ∈ Fq,

N (αt) = α
qm−1

q−1 t ∈ Fq, so we have

(
Trm

1

(
u′uN (

αt
)

+ αt
))(q+1)/2 =

(
uTrm

1 (u′)
(
α

qm−1
q−1 t

)
+ Trm

1

(
αt
))(q+1)/2

=
(
uTrm

1 (u′)
(
α

qm−1
q−1 t

)
+ Trm

1

(
αt
))∑ r−1

i=0 ηip
i

=
r−1∏
i=0

(
upi

Trm
1 (u′)pi

(
α

qm−1
q−1 pit

)
+ Trm

1

(
αt
)pi)ηi

.

According to the definition of the trace function, we have

(
upi

Trm
1 (u′)pi

(
α

qm−1
q−1 pit

)
+Trm

1

(
αt
)pi)ηi

=

⎛
⎝upi

Trm
1 (u′)pi

(
α

qm−1
q−1 pit

)
+

m−1∑
j=0

(
αpit
)qj

⎞
⎠

ηi

.

By using the multinomial formula,(
r∑

i=1

ai

)η

=
∑

k1+k2+...+kr=η

(
η

k1, . . . , kr

)
ak1
1 . . . akr

r
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where 0 ≤ ki ≤ η for i = 1, 2, . . . , r, and(
η

k1, . . . , kr

)
=

η!
k1!k2! . . . kr!

·

For u �= 0, we get⎛
⎝upi

Trm
1 (u′)pi

α
qm−1

q−1 pit +
m−1∑
j=0

(
αpit

)qj

⎞
⎠

ηi

=
∑

λi,0+...+λi,m=ηi

(
ηi

λi,0, . . . , λi,m

)(
αpit

)∑m−1
j=0 qjλi,j ·

(
upi

Trm
1 (u′)pi

α
qm−1

q−1 pit
)λi,m

.

Then we get

(
Trm

1

(
u′uN (

αt
)

+ αt
))(q+1)/2

=
r−1∏
i=0

∑
λi,0+...+λi,m=ηi

(
ηi

λi,0, . . . , λi,m

)
·
(
αpit
)∑m−1

j=0 qjλi,j ·
(
upi

Trm
1 (u′)pi

α
qm−1

q−1 pit
)λi,m

=
∑

∑m
j=0 λ0,j=η0

. . .
∑

∑m
j=0 λr,j=ηr

r−1∏
i=0

(
ηi

λi,0, . . . , λi,m

)
·(uTrm

1 (u′))
∑ r−1

i=0 λi,mpi ·αg(λ,r)t

(3.4)

where

g(λ, r) =
m−1∑
j=0

qj
r−1∑
i=0

λi,jp
i +

qm − 1
q − 1

r−1∑
i=0

λi,mpi.

Since qm−1
q−1 =

∑m−1
j=0 qj , we have

g(λ, r) =
m−1∑
j=0

qj

(
r−1∑
i=0

(λi,j + λi,m)pi

)
.

In the following, we show that the exponents g(λ, r) of α in equation (3.4) are
pairwise distinct. Assuming λ �= λ′, however, they produce the same exponents of
α mod qm − 1, that is,

g(λ, r) ≡ g(λ′, r)mod(qm − 1) (3.5)

Since
r−1∑
i=0

(λi,j + λi,m)pi ≤ (q + 1)/2 < q − 1

Obviously, g(λ, r) is less than qm − 1 and the modulo operation in equation (3.5)
can be omitted.
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The above equation (3.5) is equivalent to

m−1∑
j=0

qj

(
r−1∑
i=0

(λi,j + λi,m)pi

)
=

m−1∑
j=0

qj

(
r−1∑
i=0

(λ′
i,j + λ′

i,m)pi

)
. (3.6)

Firstly, we reduce equation (3.6) modulo q, then we obtain

r−1∑
i=0

(λi,0 + λi,m)pi ≡
r−1∑
i=0

(λ′
i,0 + λ′

i,m)pi mod q. (3.7)

Since both sides in equation (3.7) are less than q, and both λi,0 + λi,m and λ′
i,0 +

λ′
i,m are less than p − 1, we have λi,0 + λi,m = λ′

i,0 + λ′
i,m. Similarly, we reduce

equation (3.6) modulo qj for j = 2, 3, . . . , m − 1, then we have

λi,j + λi,m = λ′
i,j + λ′

i,m (3.8)

for 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ m − 1. Adding both sides of the m equations, we
have

m−1∑
j=0

λi,j + mλi,m =
m−1∑
j=0

λ′
i,j + mλ′

i,m

for 0 ≤ i ≤ r − 1. Therefore,

ηi + (m − 1)λi,m = ηi + (m − 1)λ′
i,m

so we have λi,m = λ′
i,m. From the equation (3.8), we have λi,j = λ′

i,j for 0 ≤ i ≤
r − 1 and 0 ≤ j ≤ m − 1. Thus we have shown that all the exponents of α in
equation (3.4) are pairwise distinct.

In the following, we show that the exponents of α in Trm
1 (u′uN (αt) + αt) are

pairwise distinct to that of α in equation (3.4). Note that

Trm
1 (u′uN (αt) + αt) = uTrm

1 (u′)(α
qm−1

q−1 t) +
m−1∑
j=0

αqj t. (3.9)

Since qj �= qm−1
q−1 for 0 ≤ j ≤ m−1, all the terms of the powers of α in equation (3.9)

are pairwise distinct. Now we consider the exponent g(λ, r) in equation (3.4) and
the qj for 0 ≤ j ≤ m − 1. Obviously, g(λ, r) �= 1, and we only consider whether
g(λ, r) = qk for k ∈ {1, 2, . . . , m − 1}. Assume that g(λ, r) is equal to some qk,
k ∈ {1, 2, . . . , m − 1}, that is,

m−1∑
j=0

qj

(
r−1∑
i=0

(λi,j + λi,m)pi

)
= qk.

Both sides of the above equation are taken modulo qk, we get

k−1∑
j=0

qj

(
r−1∑
i=0

(λi,j + λi,m)pi

)
≡ 0 mod qk. (3.10)



LINEAR SPANS OF OPTIMAL SETS OF FREQUENCY HOPPING SEQUENCES 351

It implies that the left side of equation (3.10) is a multiple of qk. However,∑r−1
i=0 (λi,j + λi,m)pi < q − 1, which implies that the left side of equation (3.10) is

less than qk, a contradiction. Therefore g(λ, r) and all of the qj for 0 ≤ j ≤ m− 1
are pairwise distinct.

In the following, we consider the exponents of g(λ, r) and qm−1
q−1 =

∑m−1
j=0 qj .

Assume that
m−1∑
j=0

qj

(
r−1∑
i=0

(λi,j + λi,m)pi

)
=

m−1∑
j=0

qj .

Since
∑r−1

i=0 (λi,j + λi,m)pi < q − 1, we know that
∑r−1

i=0 (λi,j + λi,m)pi = 1 for
0 ≤ j ≤ m − 1. It implies that{

λ0,j + λ0,m = 1 0 ≤ j ≤ m − 1
λi,j + λi,m = 0 0 ≤ j ≤ m − 1 and 1 ≤ i ≤ r − 1.

Therefore, we have η0 = 1, and ηi = 0 for 1 ≤ i ≤ r − 1, which is a contradiction
to η0 = (p + 1)/2, ηi = (p− 1)/2. It follows that the exponents of α in δ(su′u,1(t))
are pairwise distinct. Since there are(

m + ηi

ηi

)

possibilities to represent ηi as

ηi =
m∑

j=0

λi,j

for 0 ≤ λi,j ≤ ηi. By applying the results to all ηi’s, we have, if u �= 0, the linear
span of δ(su′u,1(t)) is

LS =
r−1∏
i=0

(
m + ηi

ηi

)
+ m + 1.

If u = 0, then

δ(su′u,1(t)) = Trm
1 (αt)(q+1)/2 + bTrm

1 (αt).

We have the linear span is

LS =
r−1∏
i=0

(
m + ηi − 1

ηi

)
+ m

which completes the proof. �

Remarks 3.3. Our proof is similar with that in [18], and our Theorem is only
suitable for the case of d = 1. If d > 1, from equations (3.7) and (3.8), we know
that the exponents of α may be the same in (3.4), which leads to a decrease of
the linear span of the transformed frequency hopping sequences. The permutation
polynomial δ(x) also applies to other two classes of optimal sets of FH sequences
presented by Ding et al. in [4].
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3.2. Two other optimal classes of FH sequences with large linear

span

Let n = (qm − 1)/2, and let d be an integer with gcd(d, qm − 1) = 1. Define
β = α2d. For any a ∈ Fqm , we define a vector

sa = (Trm
1 (a), Trm

1 (aβ), . . . , Trm
1 (aβn−1)). (3.11)

Note that for any a, a′ ∈ Fqm , we have sa + sa′=sa+a′ . The following theorem
comes from [4].

Theorem 3.4. Let m ≥ 3 be odd, then for a ∈ F ∗
qm , sa is an optimal

((qm − 1)/2, (qm−1 − 1)/2; q) FH sequence with the bound of Lemma 1.1. Let a
be a square in F ∗

qm and a′ be a nonsquare in F ∗
qm , then {sa, sa′} consists of a

((qm − 1)/2, 2, (qm−1 − 1)/2; q) optimal set of FH sequences with respect to the
bound of Lemma 3.1.

Though {sa, sa′} consists of an optimal set of FH sequences, the linear span
of each of sequence in {sa, sa′} is equal to m, which is very small compared with
with their length (qm − 1)/2. We can improve the linear span of sa and sa′ by
employing the permutation polynomial δ(x). The transformed set is still optimal
with respect to the first bound of Lemma 1.2. By using a similar method to prove
Theorem 3.3, we can obtain the following theorem.

Theorem 3.5. Let sa be defined by (3.11) and b = (c2 + 1)(c2 − 1)−1, where
c ∈ Fq, c �= 0 and c2 �= 1. Let δ(x) = x(q+1)/2 + bx ∈ Fq[x]. Define

δ(sa(t)) = Trm
1 (aβt)(q+1)/2 + bTrm

1 (aβt).

Then

(1) (δ(sa), δ(sa′)) constitutes a ((qm − 1)/2, 2, (qm−1 − 1)/2; q) optimal set of FH
sequences over Fq, meeting the first bound of Lemma 1.2. Furthermore, both
sequences are optimal with respect to the bound of Lemma 1.1;

(2) the linear span of the transformed FH sequences is

(
m + (p + 1)/2 − 1

(p + 1)/2

)(
m + (p − 1)/2 − 1

(p − 1)/2

)r−1

+ m.

In the following, we discuss the linear span of the third optimal set of FH sequences.
This construction can be viewed as a generalization of the second optimal set of
FH sequences. The linear span is still very small compared with their lengths [18].
The original construction is as follows. Suppose that m and d are two positive
integers satisfying d|(qm − 1) and gcd(d, (qm − 1)/(q − 1)) = 1, which implies that
d|(q − 1). Define β = αμd, where μ is a positive integer with gcd(μ, qm − 1) = 1,
and let n = (qm − 1)/d. For each 0 ≤ i ≤ d− 1, we define the following sequence,

si(t) = Trm
1 (αiβt), 0 ≤ t ≤ n − 1 (3.12)
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Each si is a sequence of length n over Fq. The set of FH sequences is defined as

F = {si : 0 ≤ i ≤ d − 1}.

Theorem 3.6 ([3,9]). If gcd(d,
∑m−1

i=0 qi) = 1, then F is a ((qm−1)/d, d, (qm−1−
1)/d; q) optimal set of FH sequences over Fq, meeting the first bound of Lemma 1.2.
Furthermore, each sequence is optimal with respect to the bound of Lemma 1.1.

Similarly, we can obtain the following theorem by applying the permutation
polynomial δ(x) to the sequence si.

Theorem 3.7. Let si(t) be defined by (3.12) and b = (c2 + 1)(c2 − 1)−1, where
c ∈ Fq, c �= 0 and c2 �= 1. Let δ(x) = x(q+1)/2 + bx ∈ Fq[x]. Define

δ(si(t)) = Trm
1 (αiβt)(q+1)/2 + bTrm

1 (αiβt).

Then

(1) If gcd(d,
∑m−1

i=0 qi) = 1, then {δ(si)|0 ≤ i ≤ d − 1} constitutes a ((qm −
1)/d, d, (qm−1−1)/d; q) optimal set of FH sequences over Fq, meeting the first
bound of Lemma 1.2. Furthermore, each sequence is optimal with respect to
the bound of Lemma 1.1.

(2) The linear span of the transformed FH sequences is

(
m + (p + 1)/2 − 1

(p + 1)/2

)(
m + (p − 1)/2 − 1

(p − 1)/2

)r−1

+ m.

Remarks 3.8. From Theorem 3.3, Theorems 3.5 and 3.7, we find that the linear
spans of three classes of frequency hopping sequences are significantly improved.
For example, for q = 34, m = 5 and d = 2, the linear span of the third class
sequences is only 5. However, from Theorem 3.7, the linear span of the transformed
sequences is 1880.

4. Conclusions

In this paper, we transform several classes of optimal sets of FH sequences with
small linear span into ones with large linear span by applying a permutation poly-
nomial δ(x) over the finite field Fq with q > 3. The transformed sequence sets
are not only optimal for the Peng-Fan bound, but can also resist the cryptanaly-
sis of the Berlekamp-Massey algorithm. Furthermore, our results confirm Wang’s
proposition, that other type of permutation polynomial different from the power
permutation polynomial, can also be employed for improving the linear span of
optimal sets of FH sequences. Note that the permutation polynomial δ(x) can be
employed for other optimal sets of FH sequences, such as the optimal sets of FH
sequences from linear cyclic codes considered in [5, 6].
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