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MORPHISMS PRESERVING THE SET OF WORDS
CODING THREE INTERVAL EXCHANGE ∗, ∗∗

Tomáš Hejda
1

Abstract. Any amicable pair ϕ, ψ of Sturmian morphisms enables
a construction of a ternary morphism η which preserves the set of
infinite words coding 3-interval exchange. We determine the number
of amicable pairs with the same incidence matrix in SL±(2,N) and
we study incidence matrices associated with the corresponding ternary
morphisms η.

Mathematics Subject Classification. 68R15.

1. Introduction

Sturmian words are well-described objects in combinatorics on words. They can
be defined in several equivalent ways [5], e.g. as words coding a two-interval ex-
change transformation with irrational ratio of lengths of the intervals. Morphisms
preserving the set of Sturmian words are called Sturmian and they form a monoid
generated by three of its elements (see [6, 12]). Let us denote this monoid by
MSturm.

In this paper, we consider morphisms preserving the set of words coding a
three-interval exchange transformation with permutation (3, 2, 1), the so-called 3iet
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words. We call these morphisms 3iet-preserving. Monoid of these morphisms, de-
noted by M3iet, is not fully described. It is shown (see [10]) that the monoid M3iet

is not finitely generated. Recently, in [2], pairs of amicable Sturmian morphisms
were defined. The authors used this notion to describe morphisms that have as a
fixed point a non-degenerate 3iet word, i.e. word with complexity C(n) = 2n+ 1.
Using the operation of “ternarization”, we can assign a morphism η = ter(ϕ, ψ)
over a ternary alphabet to a pair of amicable Sturmian morphisms. We show that
such η is a 3iet-preserving morphism. Moreover, we show that the set

Mter =
{
ter(ϕ, ψ)

∣∣ϕ, ψ amicable morphisms
}

is a monoid, but it does not cover the whole monoid M3iet.
We also study the incidence matrices of morphisms η ∈ Mter. From the defini-

tion of amicable Sturmian morphisms ϕ, ψ we can derive that ϕ and ψ have the
same incidence matrix A ∈ N2×2, where detA = ±1. As shown in [14], for every
matrix A = ( p0 q0

p1 q1 ) with detA = ±1, there exist p0 + p1 + q0 + q1 − 1 Sturmian
morphisms. We will show the following theorem concerning the number of pairs of
amicable Sturmian morphisms with a given matrix.

Theorem 1.1. Let A = ( p0 q0
p1 q1 ) ∈ N2×2 be a matrix with detA = ±1. Then there

exist exactly
m

(‖A‖ − 1
)

+
m

2
(
detA−m

)
(1.1)

pairs of amicable Sturmian morphisms with incidence matrix A, where m =
min{p0 + p1, q0 + q1} and ‖A‖ = p0 + p1 + q0 + q1.

Moreover, for a given matrix A, we will describe all matrices B ∈ N3×3 such
that B is an incidence matrix of η = ter(ϕ, ψ) for amicable Sturmian morphisms
ϕ, ψ with incidence matrix A.

2. Preliminaries

2.1. Words over finite alphabet

Besides the infinite words, we consider finite words over the alphabet A. We
write w = w0w1 . . . wn−1, where wi ∈ A for all i ∈ N, i < n. We denote by |w| the
length n of the finite word w. We denote by |w|a the number of occurrences of a
letter a ∈ A in the word w. The set of all finite words on the alphabet A including
the empty word is denoted by A∗. The set A∗ with the operation of concatenation
is a monoid. On the set A∗ we define a relation of conjugation: w ∼ w′, if there
exists v ∈ A∗ such that wv = vw′. A morphism from A∗ to B∗ is a mapping
ϕ : A∗ → B∗ such that ϕ(vw) = ϕ(v)ϕ(w) for all v, w ∈ A∗. It is clear that a
morphism is well defined by images of letters ϕ(a) for all a ∈ A. If A = B, then ϕ
is called a morphism over A.

The set of infinite words over the alphabet A is denoted by AN. The action
of a morphism can be naturally extended to an infinite word (ui)i∈N putting
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ϕ(u) = ϕ(u0)ϕ(u1)ϕ(u2) . . . If an infinite word u ∈ AN satisfies ϕ(u) = u, we
call it a fixed point of the morphism ϕ over A.

To a morphism ϕ over A we assign an incidence matrix Mϕ defined by (Mϕ)ab =
|ϕ(a)|b for all a, b ∈ A. To a finite word v ∈ A∗ we assign a Parikh vector Ψ(v)
defined by Ψ(v)b = |v|b for all b ∈ A.

The language of an infinite word u is the set of all its factors. Let us recall that
a finite word w ∈ A∗ is a factor of u = (ui)i∈N, if there exist indices n, j ∈ N such
that w = unun+1 . . . un+j−1. The language of an infinite word is denoted by L(u).

It is known that the language of neither Sturmian nor 3iet word depends on the
point x0 ∈ [0, 1), the orbit of which the infinite word codes. It depends only on
slope ε or parameters α, β.

The (factor) complexity of an infinite word u is a mapping Cu : N → N, which
returns the number of factors of u of the length n, thus Cu(n) = #

{
w ∈ L(u)

∣∣ |w| =
n
}
. It is easy to see that a word u is periodic if and only if there exists n0 ∈ N

such that Cu(n0) ≤ n0.

2.2. Interval exchange

We consider Sturmian words, i.e. aperiodic words given by exchange of 2 in-
tervals with permutation (2, 1), and words given by exchange of 3 intervals with
permutation (3, 2, 1). Let us recall that general r-interval exchange transformations
were introduced already in [11].

The 2-interval exchange transformation S is a mapping S : [0, 1) → [0, 1). It is
determined by its slope ε ∈ [0, 1] and is given by

Sx =

{
x+ 1 − ε if x ∈ [0, ε)
x− ε if x ∈ [ε, 1).

The orbit of a point x0 ∈ [0, 1) with respect to the transformation S, i.e. the
sequence x0, Sx0, S

2x0, . . . can be coded by an infinite word u = (ui)∞i=0 on the
binary alphabet {0, 1}. The infinite word is given by

ui =

{
0 if Six0 ∈ [0, ε),
1 if Six0 ∈ [ε, 1).

(2.1)

It is a well-known fact that for an irrational ε, the word u is Sturmian. Using the
same construction on the partition of the interval (0, 1] into (0, ε]∪ (ε, 1], we again
obtain a Sturmian word. On the other hand, every Sturmian word can be obtained
by one of the above two constructions. The set of Sturmian words will be denoted
by WSturm.

In [12] (the original results can be found in [8, 13]), the authors show that
Sturmian words are the aperiodic words with minimal complexity, i.e. Cu(n) = n+1
for all u ∈ WSturm and n ∈ N. We can see that

Six0 = {x0 − iε} for all x0 ∈ [0, 1), (2.2)
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where {x} = x − �x	 denotes the fractional part of a number x ∈ R. Then ui =
�x0 − iε	−�x0− (i+1)ε	, which is exactly the formula how [12] define mechanical
words.

We will use another fact about the two-interval exchanges. Let ϕ ∈ MSturm be
a Sturmian morphism. Then the word v = ϕ(a) for a ∈ {0, 1} codes two-interval
exchange with the slope |v|0

|v| . We should see this from [12], Lemma 2.1.15. The
word ak is a factor of some Sturmian word, hence the word ϕ(a)k is balanced for
any k ∈ N, which means that the infinite word u = ϕ(a)ω = ϕ(a)ϕ(a)ϕ(a) . . . is
balanced and periodic, thus it is rational mechanical. In our terms, this means
that it codes a rational 2-interval exchange; it is as well shown there that the slope
of the transformation is exactly |v|0

|v| .
The 3-interval exchange transformation T is determined by two parameters

α, β ∈ (0, 1) satisfying α + β < 1. Using parameters α, β and γ = 1 − α − β we
partition the interval [0, 1) into IA = [0, α), IB = [α, α + β) and IC = [α + β, 1).
The mapping T is given by

Tx =

⎧⎪⎨
⎪⎩
x+ β + γ if x ∈ IA,

x− α+ γ if x ∈ IB ,

x− α− β if x ∈ IC .

The orbit of a point x0 ∈ [0, 1) with respect to the transformation T is coded by
a word u = (ui)∞i=0 over the ternary alphabet {A,B,C}:

ui = X if T ix0 ∈ IX .

Similarly to the case of 2-interval exchange transformation, we can define the
exchange of 3 intervals using the partition (0, 1] = (0, α]∪ (α, α+β]∪ (α+β, 1]. If
1−α
1+β is irrational, the infinite word u is aperiodic, and we call it a 3iet word ; the
set of these words is denoted by W3iet. For combinatorial properties of 3iet words,
see [9].

Aperiodic words coding 3-interval exchange transformations, called here 3iet
words, have the complexity Cu(n) ≤ 2n+ 1 for all n ∈ N. If a 3iet word u ∈ W3iet

satisfies Cu(n) = 2n + 1 for all n ∈ N, we call it a non-degenerate 3iet word;
otherwise we call it a degenerate 3iet word and it is a quasi-Sturmian word (see [7]).

2.3. Standard pairs and standard morphisms

In [14], the notion of standard pairs is introduced. If we define two operators
on pairs of words L,R : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ as

L(x, y) = (x, xy), R(x, y) = (yx, y),

we say that a pair (x, y) is a standard pair, if it can be obtained from the pair
(0, 1) by applying the operators L and R finitely many times. For every standard
pair (x, y) there exists a word v ∈ {0, 1}∗ such that

xy = v01 and yx = v10. (2.3)
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We say that a binary morphism ϕ is standard, if there exists a standard pair
(x, y) such that

ϕ(0) = x,

ϕ(1) = y,
or

ϕ(0) = y,

ϕ(1) = x.

The authors of [14] show the close connection between the standard morphisms
and all the Sturmian morphisms:

(1) Every standard morphism is Sturmian.
(2) For every matrix A ∈ N2×2 with detA = ±1, there exists exactly one standard

morphism ϕ with incidence matrix Mϕ = A.
(3) Every Sturmian morphism ψ ∈ MSturm is a right conjugate to some standard

morphism ϕ. Let us recall that a morphism ψ over A is a right conjugate to
ϕ, if there exists a finite word v ∈ A∗ such that

ϕ(a)v = vψ(a) for all letters a ∈ A.

2.4. Amicable words and morphisms

In the article [4], authors show the close connection between 3iet and Sturmian
words using morphisms σ01, σ10 : {A,B,C}∗ → {0, 1}∗ given by

σ01(A) = 0, σ10(A) = 0,
σ01(B) = 01, σ10(B) = 10,
σ01(C) = 1, σ10(C) = 1.

In [4], the following theorem is proved.

Theorem 2.1. An infinite ternary word u ∈ {A,B,C}N is a 3iet word if and only
if the words σ01(u) and σ10(u) are Sturmian.

This theorem motivated the authors of [3] to introduce the relation of amica-
bility of words.

Definition 2.2. Let w,w′ ∈ {0, 1}∗, let b ∈ N. We say that w is b-amicable to w′,
if there exists a factor v ∈ {A,B,C}∗ of some 3iet word such that

w = σ01(v), w′ = σ10(v) and |v|B = b.

We say that w is amicable to w′, if w is b-amicable to w′ for some b ∈ N, and we
denote it by w ∝ w′.

The ternary word v is called a ternarization of w and w′, and we write v =
ter(w,w′).

It is easy to see that if w ∝ w′, then they are factors of the same Sturmian word
and their Parikh vectors coincide.

The ternarization is given uniquely for a pair w, w′. For, let us see that if ternary
words v(1), v(2) differ, then either σ01(v(1)) �= σ01(v(2)) or σ10(v(1)) �= σ10(v(2)).
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In [3], the notion of amicable words plays a crucial role in the enumeration of
words with length n occurring in a 3iet word. In [2], the authors investigate ternary
morphisms that have a non-degenerate 3iet fixed point using the following notion
of amicability of two Sturmian morphisms.

Definition 2.3. Let ϕ, ψ be Sturmian morphisms over the alphabet {0, 1}. We
say that ϕ is amicable to ψ, if

ϕ(0) ∝ ψ(0),
ϕ(01) ∝ ψ(10)

and ϕ(1) ∝ ψ(1).

We denote this relation by ϕ ∝ ψ. The morphism η over the ternary alphabet
{A,B,C}, given by

η(A) = ter
(
ϕ(0), ψ(0)

)
,

η(B) = ter
(
ϕ(01), ψ(10)

)
,

η(C) = ter
(
ϕ(1), ψ(1)

)
,

is called the ternarization of morphisms ϕ and ψ, and is denoted by η = ter(ϕ, ψ).
The set of these η is denoted by Mter.

The ternarization of words is given uniquely by the words u ∝ v, hence the
ternarization of morphisms is given uniquely as well.

Example 2.4. Consider Sturmian morphisms ϕ, ψ given by

ϕ(0) = 001, ϕ(1) = 00101, ψ(0) = 010, ψ(1) = 01001.

Then ϕ ∝ ψ and their ternarization η = ter(ϕ, ψ) satisfies

η(A) = AB, η(B) = ABABB, η(C) = ABAC.

The article [2] states the following theorem:

Theorem 2.5. Let η be a ternary morphism with non-degenerate 3iet fixed point.
Then η ∈ Mter or η2 ∈ Mter.

3. Main results

Analogously to the terminology introduced for Sturmian words and morphisms
in [6], the ternarization η, having a 3iet fixed point, is locally 3iet-preserving, i.e.
there exists u ∈ W3iet such that η(u) ∈ W3iet. We now prove a partial result about
(globally) 3iet-preserving morphisms, i.e. ternary morphisms η such that

η(u) ∈ W3iet for all u ∈ W3iet.
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Proposition 3.1. Let η = ter(ϕ, ψ) for amicable Sturmian morphisms ϕ ∝ ψ.
Then η is a globally 3iet-preserving morphism.

Proof. Directly from definitions we see that

σ01η(A) = ϕ(0), σ01η(B) = ϕ(01), σ01η(C) = ϕ(1),
σ10η(A) = ψ(0), σ10η(B) = ψ(10), σ10η(C) = ψ(1).

Therefore
σ01η(v) = ϕσ01(v) and σ10η(v) = ψσ10(v) (3.1)

for any factor v of a 3iet word u ∈ W3iet. According to Theorem 2.1 we get that
σ01(u) and σ10(u) are Sturmian words, and since ϕ and ψ are Sturmian morphisms,
we obtain that σ01η(u) and σ10η(u) are Sturmian words as well, which means,
according to the same theorem, that the word η(u) is 3iet. �

Proposition 3.2. Let ϕi ∝ ψi be Sturmian morphisms, for i = 1, 2. Then

ter(ϕ1, ψ1) ◦ ter(ϕ2, ψ2) = ter(ϕ1 ◦ ϕ2, ψ1 ◦ ψ2).

Proof. It can be shown that the relation of amicability is preserved by com-
position of morphisms. More precisely ϕ1ϕ2 ∝ ψ1ψ2. Denote η1 = ter(ϕ1, ψ1),
η2 = ter(ϕ2, ψ2). Using the relation (3.1), we see that for all v ∈ {A,B,C}∗

σ01η1η2(v) = ϕ1σ01η2(v) = ϕ1ϕ2σ01(v)
and σ10η1η2(v) = ψ1σ10η2(v) = ψ1ψ2σ10(v).

But this means that η1η2 = ter(ϕ1ϕ2, ψ1ψ2). �

As a consequence of previous two propositions, we can state the following the-
orem.

Theorem 3.3. The set Mter of all ternarizations of amicable Sturmian mor-
phisms with the operation of composition of morphisms is a sub-monoid of the
monoid M3iet of all globally 3iet-preserving morphisms.

Unfortunately, Mter � M3iet. Consider for example the morphism

η(A) = B, η(B) = CAC, η(C) = C. (3.2)

As shown in [10], this morphism is 3iet-preserving, but it can be easily verified that
it is not a ternarization of any pair of Sturmian morphisms, using the following
statement.

Proposition 3.4. A ternary morphism η is a ternarization, i.e. η ∈ Mter, if and
only if it satisfies

σ01η(B) = σ01η(AC) and σ10η(B) = σ10η(CA).
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Proof. The implication (⇒). Suppose η = ter(ϕ, ψ). According to (3.1) we get

σ01η(B) = ϕσ01(B) = ϕ(01) = ϕσ01(AC) = σ01η(AC),

σ10η(B) = ψσ10(B) = ψ(10) = ψσ10(CA) = σ10η(CA).

The implication (⇐). Define morphisms ϕ, ψ as

ϕ(0) = σ01η(A), ψ(0) = σ10η(A),
ϕ(1) = σ01η(C), ψ(1) = σ10η(C).

Immediately we get ter
(
ϕ(0), ψ(0)

)
= η(A) and ter

(
ϕ(1), ψ(1)

)
= η(C). The words

ϕ(01) and ψ(10) satisfy

ϕ(01) = σ01η(AC) = σ01η(B) and ψ(10) = σ10η(CA) = σ10η(B),

which means that ter
(
ϕ(01), ψ(10)

)
= η(B). �

For the morphism (3.2), we get σ01η(B) = 010 �= 011 = σ01η(AC). Another
even simpler example of a 3iet-preserving morphism that is not a ternarization is
the morphism interchanging the letters A and C.

Now, our goal will be to determine the number of amicable pairs of morphisms
with incidence matrix A of detA = ±1. We will use the notion of b-amicable
morphisms.

Definition 3.5. Let ϕ and ψ be binary morphisms and let b ∈ N. We say that ϕ
is b-amicable to ψ, if ϕ is amicable to ψ and the number of occurrences of B in
ter

(
ϕ(01), ψ(10)

)
is b.

We now determine the numbers of pairs of b-amicable Sturmian morphisms.

Proposition 3.6. Let A = ( p0 q0
p1 q1 ) ∈ N2×2 be a matrix with detA = ±1 and

b ∈ N. Put p = p0 + p1, q = q0 + q1. Then the number cA(b) of pairs of b-amicable
morphisms with matrix A is equal to

cA(b) =

⎧⎪⎨
⎪⎩
‖A‖ − b if detA = +1 and 1 ≤ b ≤ min{p, q},
‖A‖ − b− 2 if detA = −1 and 0 ≤ b ≤ min{p, q} − 1,
0 otherwise,

where ‖A‖ = p+ q.

First, let us state the following lemma.

Lemma 3.7. Let A = ( p0 q0
p1 q1 ) ∈ N2×2 be a matrix with detA = ±1 and b ∈ N.

Put p = p0 + p1, q = q0 + q1 and N = ‖A‖ = p + q. Let S be a two-interval
exchange with the slope p/N . Let w(k) be a word of the length N that codes S with
the start point k/N , for k ∈ {0, . . . , N − 1}.

Then w(k) is b-amicable to w(k̄) if and only if 0 ≤ b ≤ min{p, q} and k̄− k = b.
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Proof. Using (2.2), we see that Si(k/N) ≡ (k−ip)/N (mod 1), which is equivalent
to NSi(k/N) ≡ k−ip (mod N). We know that the numbers p and N are co-prime,
thus the mapping fk : {0, . . . , N − 1} → {0, . . . , N − 1} given by the congruence
fk(i) ≡ k − ip (mod N) is a bijection. As well, fk̄(i) − fk(i) ≡ k̄ − k (mod N).

Denote m = min{p, q} and b = k̄ − k. Consider the following cases:

• Case b < 0. We shall see that w(k) is lexicographically larger than w(k̄), i.e. if
i ∈ N is the first position such that w(k)

i �= w
(k̄)
i , then w

(k)
i = 1 and w

(k̄)
i = 0.

Directly from the definition of amicability, if w(k) ∝ w(k̄) and w(k) �= w(k̄), then
w(k) is lexicographically smaller than w(k̄). These two facts make a contradic-
tion.

• Case b ∈ {0, . . . ,m}. Let Ia ⊂ {0, . . . , N − 1} be a set of indices i such that
w

(k)
i = a and w

(k̄)
i �= a, for both a = 0, 1. To show that w(k) is b-amicable to

w(k̄), we need to show that i ∈ I0 implies i+ 1 ∈ I1 and #I0 = #I1 = b. The
fact that

∣∣w(k)
∣∣
0

=
∣∣w(k̄)

∣∣
0

follows to #I0 = #I1.

Let i be an index such that fk(i) ∈ [p−b, p), thus w(k)
i = 0. Then fk̄(i) ∈ [p, p+

b), thus w(k̄)
i = 1. This means i ∈ I0. For these i, we have fk(i+1) ∈ [N−b,N)

and fk̄(i+ 1) ∈ [0, b), which means i ∈ I1. There are exactly b such indices i.
It remains to show that we covered the whole set I0. Suppose fk(i) < p − b,
then fk̄(i) < p and w

(k̄)
i = 0, which means i /∈ I0. Suppose fk(i) ≥ p, then

w
(k)
i = 1, which means i /∈ I0.

• Case b ∈ {m+ 1, . . . , N −m− 1}. Let i be such index that fk(i) = p− 1. Then
fk(i+ 1) = N − 1.
If p ≤ q, then fk̄(i) = b + p − 1 and fk̄(i + 1) = b − 1, which means that
w

(k)
i w

(k)
i+1 = 01 and w(k̄)

i w
(k̄)
i+1 = 11.

If p > q, then fk̄(i) = b − q − 1 and fk̄(i + 1) = b − 1, which means that
w

(k)
i w

(k)
i+1 = 01 and w(k̄)

i w
(k̄)
i+1 = 00.

Both these are in contradiction with w(k) ∝ w(k̄).
• Case b ∈ {N −m, . . . , N − 1}.

Suppose p < q. Then j = 2p solves the inequalities

p ≤ j < N, p ≤ j + b−N < N,

p ≤ j − p < N, 0 ≤ j + b− p−N < p.

Let i be an index such that fk(i) = j. Then the previous inequalities give
w

(k)
i w

(k)
i+1 = 11 and w(k̄)

i w
(k̄)
i+1 = 10, which is in a contradiction with w(k) ∝ w(k̄).

Suppose p > q. Then j = 2p− b− 1 solves the inequalities

0 ≤ j < p, 0 ≤ j + b−N < p,

p ≤ j − p+N < N, 0 ≤ j + b− p < p.

Let i be an index such that fk(i) = j. Then the previous inequalities
give w

(k)
i w

(k)
i+1 = 01 and w

(k̄)
i w

(k̄)
i+1 = 00, which is a contradiction with

w(k) ∝ w(k̄). �



116 T. HEJDA

Proof of Proposition 3.6. Let S be a 2-interval exchange transformation with the
slope ε = p/N . Let k ∈ Z and denote w(k) the word of the length N = ‖A‖ that
codes the orbit of the point {k/N} with respect to S. From [14] we know that for
every Sturmian morphism ϕ with Mϕ = A, there exists k ∈ {0, . . . , N − 1} such
that ϕ(01) = w(k), we will denote this morphism ϕ(k).

Let ϕstd be a standard morphism with Mϕstd = A. Every Sturmian morphism
ϕ(k) is a right conjugate to ϕstd, which means that there exist words v, v′ ∈ {0, 1}∗
such that

ϕ(k)(aa′) = v01v′ and ϕ(k)(a′a) = v10v′,

where letters a, a′ satisfy aa′ = 01 for detA = +1 and aa′ = 10 for detA = −1.
This gives that ϕ(aa′) is 1-amicable to ϕ(a′a).

Morphism ϕ(k) is b-amicable to ϕ(k̄) if and only if the following conditions are
satisfied:

1. ϕ(k)(01) is b-amicable to ϕ(k̄)(10);
2. ϕ(k)(01) is amicable to ϕ(k̄)(01);
3. Parikh vectors satisfy Ψ(ϕ(k)(0)) = Ψ(ϕ(k̄)(0)).

The 2nd and 3rd conditions assures that ϕ(k)(0) ∝ ϕ(k̄)(0) and ϕ(k)(1) ∝ ϕ(k̄)(1).
Let us discuss the cases detA = +1 and detA = −1.

• Case detA = +1. We know that ϕ(k)(01) is 1-amicable to ϕ(k)(10), implying
by Lemma 3.7 that ϕ(k)(10) = w(k+1). This excludes k = N − 1.
The 3rd condition is immediately satisfied by Mϕ(k) = Mϕ(k̄) . To satisfy the
1st condition, we need (k̄ + 1) − k = b. To satisfy the 2nd condition, we need
0 ≤ k̄ − k ≤ min{p, q}. These facts gives 0 ≤ k ≤ k̄ ≤ N − 2 and 1 ≤ b ≤
min{p, q}, because the value b = min{p, q} + 1 is denied by Lemma 3.7. For
each admissible b, we have exactly N − b pairs of indices (k, k̄).

• Case detA = −1. We know that ϕ(k)(10) is 1-amicable to ϕ(k)(01), implying
by Lemma 3.7 that ϕ(k)(10) = w(k−1). This excludes k = 0.
The 3rd condition is immediately satisfied by Mϕ(k) = Mϕ(k̄) . To satisfy the
1st condition, we need (k̄ − 1) − k = b. To satisfy the 2nd condition, we need
0 ≤ k̄ − k ≤ min{p, q}. These facts gives 1 ≤ k ≤ k̄ ≤ N − 1 and 0 ≤ b ≤
min{p, q} − 1, because the value b = −1 is denied by Lemma 3.7. For each
admissible b, we have exactly N − b− 2 pairs of indices (k, k̄). �

Remark 3.8. The proof shows an interesting fact: suppose that

the word ϕ(k)(01) is (b−Δ)-amicable to ϕ(k̄)(01) (3.3)

and cA(b) �= 0. Then the morphism ϕ(k) is b-amicable to ϕ(k̄). The reason is as
follows: In the proof we considered all pairs of (k, k̄) and to satisfy (3.3) there is
no other choice but k̄ − k = b−Δ. The condition cA(b) �= 0 is what we needed in
the proof to show that ϕ(k)(01) is b-amicable to ϕ(k̄)(10). Thus the conditions 1,
2 from the proof are true; the condition 3 is straightforward.
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Proof of Theorem 1.1. The formula (1.1) can be obtained by summation of num-
bers cA(b) from the previous proposition. �

To each pair of amicable Sturmian morphisms, an incidence matrix of its ternar-
ization is assigned. We now fully describe which matrices from N3×3 are matrices
of ternarizations.

Theorem 3.9. A matrix B ∈ N3×3 is the incidence matrix of the ternarization
of a pair of amicable Sturmian morphisms if and only if there exists a matrix
A = ( p0 q0

p1 q1 ) ∈ N2×2 with detA = Δ = ±1 and numbers b0, b1 ∈ N such that

(a)
∣∣∣ b0(p1+q1)−b1(p0+q0)

p0+q0+p1+q1

∣∣∣ < 1;

(b) 1−Δ
2 ≤ b0 + b1 ≤ min{p0 + p1, q0 + q1} − Δ+1

2 ;

(c) B = P
(
A b0

b1
0 0 Δ

)
P−1, where P =

(
1 0 0
1 1 1
0 1 0

)
.

Proof of the implication (⇒). Let us denote p = p0 + p1, q = q0 + q1, N = p + q
and b = b0 + b1 +Δ. Then we can see that condition (c) gives

B =

⎛
⎝p0 − b0 b0 q0 − b0

p− b b q − b
p1 − b1 b1 q1 − b1

⎞
⎠ . (3.4)

The fact that (c) is necessary for B to be an incidence matrix of a ternarization
is shown in [1], Remark 13. Condition (b) is necessary according to Proposition 3.6,
so we only need to show that (a) is satisfied for the matrix of the ternarization
η = ter(ϕ, ψ) of a pair of amicable Sturmian morphisms ϕ ∝ ψ.

We can see that A = ( p0 q0
p1 q1 ) is necessarily an incidence matrix of both ϕ

and ψ. Let S be a 2-interval exchange transformation with a rational slope ε =
p/N . Then there exist numbers k, k̄ ∈ {0, . . . , N − 2} such that ϕ(01), ψ(01) code
transformation S with start points x0 = k/N , x̄0 = k̄/N , respectively; moreover,
k̄ − k = b − Δ. We need to determine the value of b0 =

∣∣ter(ϕ(0), ψ(0)
)∣∣

B
. The

number b0 is equal to the number of indices i ∈ {0, 1, . . . , p0 + q0 − 1} such that
Six0 ∈ [

(p− b+Δ)/N, p/N
)
, because for exactly these i, we have Six0 < p/N ≤

Six̄0.
Let X =

{{x0 − ip/N}∣∣i ∈ N, 0 ≤ i < p0 + q0
}
. Put p′ = p + Δ/(p0 + q0),

and let Y =
{{x0 − ip′/N}∣∣i ∈ N, 0 ≤ i < p0 + q0

}
. We can see that 0 ≤

Δ
(
(x0−ip/N)−(x0−ip′/N)

)
= i/(p0+q0)N < 1/N . Thus x0−ip/N ∈ [

p−b+Δ
N , p

N

)
if and only if

x0 − ip′/N ∈
{(

p−b
N , p−1

N

]
in the case Δ = +1,[

p−b−1
N , p

N

)
in the case Δ = −1.

(3.5)

In both cases, the length of the interval is b−Δ
N . From Δ = detA = det

(
p0 p0+q0
p N

)
,

it is easy to see that

p′

N
=
p+Δ/(p0 + q0)

N
=

p

N
+
p0N − p(p0 + q0)

N(p0 + q0)
=

p0

p0 + q0
·
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Because p0 is co-prime to p0+q0, we get
{{ip0/(p0+q0)}

∣∣i ∈ N, 0 ≤ i < p0 +q0
}

={
i/(p0 + q0)

∣∣i ∈ N, 0 ≤ i < p0 + q0
}
. But this means that the set Y is uniformly

distributed on the interval [0, 1), therefore

b0 = #
(
X ∩ [

p−b+Δ
N , p

N

))∈ {�β	, �β�},
where β = (p0 + q0) b−Δ

N is number of elements of Y multiplied by the length of
the interval (3.5). Together we get

|β − b0| < 1, (3.6)

which is equivalent to condition (a). �

The proof of the other implication is divided into several lemmas.

Lemma 3.10. Let A = ( p0 q0
p1 q1 ) ∈ N2×2 with detA = Δ = ±1, let b ∈ N with

1+Δ
2 ≤ b ≤ min{p0 + p1, q0 + q1} − 1−Δ

2 .
Denote N = ‖A‖, p = p0 + p1 and q = q0 + q1 integers, I =

[
p−b+Δ

N , p
N

)
an

interval, Xk =
{{k/N}, S{k/N}, S2{k/N}, . . . , Sp0+q0−1{k/N}} a set of numbers

for any k ∈ Z, where S is the 2-interval exchange with the slope ε = p/N , and
denote β = p0+q0

N (b−Δ).
Then for all b0 ∈ {�β	, �β�} such that

b0 ≤ min{p0, q0} and b−Δ− b0 ≤ min{p1, q1}, (3.7)

there exist k′, k′′ ∈ {0, . . . , N − 1}, k′ �= k′′ such that

#(Xk′ ∩ I) = #(Xk′′ ∩ I) = b0. (3.8)

Proof. Denote r(k) = #(Xk ∩ I) for k ∈ Z. We can see that
∑N−1

k=0 r(k) = (b −
Δ)(p0 + q0). According to (3.6), we know that r(k) ∈ {�β	, �β�} for all k ∈ Z. Let

CL = #
{
k ∈ {0, . . . , N − 1}∣∣r(k) = �β	},

CU = #
{
k ∈ {0, . . . , N − 1}∣∣r(k) = �β�}.

These numbers satisfy the equations

CL�β	 + CU�β� = Nβ

and CL + CU = N. (3.9)

If CL = 0 or CU = 0, necessarily β ∈ N and (3.8) is satisfied for all k ∈ Z.
If CL ≥ 2, we have two different k ∈ Z satisfying (3.8) for b0 = �β	. Similarly if

CU ≥ 2, we have two different k ∈ Z satisfying (3.8) for b0 = �β�.
We will show that CL = 1 implies �β	 not to satisfy the condition (3.7), and

similarly for CU and �β�.
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If CU and CL are non-zero then there is a unique solution

CL = N{−β} and CU = N{β}.
Using relation p0N − (p0 + p1)(p0 + q0) = Δ, we get

CU ≡ (p0 + q0)(b −Δ) (mod N)
b−Δ ≡ −Δ(p0 + p1)CU (mod N). (3.10)

Let us suppose CU = 1 or CL = 1, i.e. CU ≡ ±1 (mod N) due to (3.9).
Then (3.9) and (3.10) lead to b = (p0 + p1) +Δ or b = (q0 + q1) +Δ. For Δ = +1,
this is in contradiction with the conditions. For Δ = −1, discuss the following two
cases.

• Case b = (p0+p1)+Δ. This happens when CU = 1. But it means that b0 = �β�
is equal to

⌈
p0N−Δ

N

⌉
= p0 + 1 and this case is excluded by the condition (3.7).

• Case b = (q0 +q1)+Δ. This happens when CL = 1. But it means that b0 = �β	
is equal to q0 − 1 hence b−Δ− b0 = q1 + 1, which is excluded by (3.7). �

Lemma 3.11. Let us have the same hypothesis as in Lemma 3.10.
Define morphisms ϕk for k ∈ Z in the following way:

• the word ϕk(0) codes {k/N}, S{k/N}, . . . , Sp0+q0−1{k/N};
• the word ϕk(1) codes Sp0+q0{k/N}, . . . , SN−1{k/N}.

Let k0 ∈ Z be such integer that #(Xk0 ∩ I) = #(Xk0−p ∩ I). Then

ϕk0 ∝ ϕk0+b−Δ or ϕk0−p ∝ ϕk0−p+b−Δ,

and the number of B’s in the ternarization of the images of the letter 0 is
#(Xk0 ∩ I).

Proof. Let k ∈ Z and let us consider the orbit

{k/N}, S{k/N}, . . . , Sp0+q0−1{k/N}. (3.11)

Let t(k) be a word of the length p0+q0 that codes (3.11) to the alphabet {0, 0′, 1, 1′}
with the following code:

t
(k)
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if Si{k/N} ∈ [
0, p−b+Δ

N

)
,

0′ if Si{k/N} ∈ [
p−b+Δ

N , p
N

)
= I,

1 if Si{k/N} ∈ [
p
N ,

N−b+Δ
N

)
,

1′ if Si{k/N} ∈ [
N−b+Δ

N , 1
)
.

(3.12)

From definition of S, we see that t(k)
i = 0′ ⇔ t

(k)
i+1 = 1′. Define two morphisms

τ, τ ′ : {0, 0′, 1, 1′}∗ → {0, 1}∗ as

τ(0) = 0, τ(0′) = 0, τ(1) = 1, τ(1′) = 1,
τ ′(0) = 0, τ ′(0′) = 1, τ ′(1) = 1, τ(1′) = 0.
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If t(k) does not start with 1′ and does not end with 0′, then the word ϕk(0) =
τ(t(k)) is

∣∣t(k)
∣∣
0′-amicable to τ ′(t(k)) = ϕk+b−Δ(0). Moreover,

∣∣t(k)
∣∣
0′ = #(Xk∩I).

To show this, notice that S{k0/N} = {(k0 − p)/N}, which means that there exist
letters a, a′ ∈ {0, 0′, 1, 1′} such that t(k0)a = a′t(k0−p) and a = 0′ ⇔ a′ = 0′,
because the numbers of letters 0′ in the words t(k0) and t(k0−p) coincide.

Consider these two cases:
• If a = 0′ then the last letter of t(k0) is not 0′ since this implies a′ = 1′.

This yields ϕk(0) ∝ ϕk+b−Δ(0) for k = k0.
• If a �= 0′ then t(k0−p) does not start with 1′ and does not end with 0′. This yields
ϕk(0) ∝ ϕk+b−Δ(0) for k = k0 − p.

Similar reasoning leads to the amicability of the images of the letter 1. Thus
by concatenation ϕk(01) ∝ ϕk+b−Δ(01). The condition on b is the same as in
Proposition 3.6, hence Remark 3.8 applies. �
Lemma 3.12. Let us have the same hypothesis as in Lemma 3.10.

Let k0 ∈ Z be a number such that if Δ = −1 and b = min{p, q} − 1 then

k0 �≡
{

− 1 (mod N) in the case p > q,

p− b− 1 (mod N) in the case p < q.
(3.13)

Then

#(Xk0 ∩ I) = #(Xk0+p ∩ I) or #(Xk0 ∩ I) = #(Xk0−p ∩ I).
Proof. Define the words t(k) by (3.12) in the same way as in the previous proof.
Denote  = p0+q0. Then we know that there exist letters a0, . . . , a�+1 ∈ {0, 0′, 1, 1′}
such that

t(k0+p) = a0a1a2 . . . a�−1,

t(k0) = a1a2 . . . a�−1a�,

t(k0−p) = a2 . . . a�−1a�a�+1.

Let us remind that #(Xk ∩ I) =
∣∣t(k)

∣∣
0′ . The proof will be done by contradiction.

Suppose that
∣∣t(k0+p)

∣∣
0′ �=

∣∣t(k0)
∣∣
0′ �=

∣∣t(k0−p)
∣∣
0′ . There are only two possible values

of these numbers, thus
∣∣t(k0+p)

∣∣
0′ =

∣∣t(k0−p)
∣∣
0′ . This together gives either a0 =

a�+1 = 0′ or a1 = a� = 0′. It means that there exist ξ ∈ I =
[

p−b+Δ
N , p

N

)
and

ω ∈ {+1,−1} such that S�+ωξ ∈ I. Without the loss of generality ξ ∈ 1
N Z. Since

p = p0N −Δ, we have

S�+ωξ ≡ ξ − (+ ω)p
N

≡ ξ +
Δ− ωp

N
(mod 1).

Because
∣∣S�+ωξ − ξ

∣∣ < 1 we have

S�+ωξ − ξ =
Δ− ωp

N

or S�+ωξ − ξ =
Δ− ωp

N
+ ω =

Δ+ ωq

N
,
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since 1− p/N = q/N . This enforces b− 1−Δ ≥ min{p, q}− 1 for the interval I to
be large enough to contain both ξ and S�+ωξ.

For Δ = +1, this is in contradiction with b ≤ min{p, q}.
ForΔ = −1 we get only one admissible b = min{p, q}−1. The case p = min{p, q}

means ω = −1 and ξ = p−b−1
N , which implies k0 ≡ p − b − 1 (mod N). The case

q = min{p, q} means ω = +1 and ξ = p−1
N , which implies k0 ≡ −1 (mod N). Both

these cases are excluded by (3.13). �

Proof of the implication (⇐). From [1], Remark 13, the incidence matrix of the
ternarization ter(ϕ, ψ) is fully described by the matrix A and numbers b0 and
b = b0 + b1 + Δ. The condition (a) is equivalent to (3.6) and it gives at most
two values of b0. If β ∈ N, there is nothing to do as we have at least one pair of
b-amicable morphisms ϕ ∝ ψ for A, and its incidence matrix satisfies all three
conditions.

For β /∈ N, we want to show that for both b0 ∈ {�β	, �β�} there exist ϕ ∝ ψ
with

∣∣ter(ϕ(0), ψ(0)
)∣∣

B
= b0. Because the elements of the matrix B are non-

negative, the condition (3.7) of Lemma 3.10 is satisfied and we have two different
k′, k′′. At least one of them satisfies (3.13). Lemma 3.12 then provides k0 satisfying
the conditions of Lemma 3.11 that gives a pair of amicable Sturmian morphisms,
ternarization of which has the incidence matrix B. �

4. Conclusions and open problems

Matrices of 3iet-preserving morphisms were studied in [1]. The authors give a
necessary condition on B ∈ N3×3 to be an incidence matrix of a 3iet-preserving
morphism:

BEBT = ±E, where E =
(

0 1 1
−1 0 1
−1 −1 0

)
.

However, this condition is not sufficient. In our contribution, we study 3iet-
preserving morphisms η = ter(ϕ, ψ) arising from pairs of amicable Sturmian mor-
phisms ϕ ∝ ψ. Our Theorem 3.9 gives sufficient and necessary condition for any
matrix B ∈ N3×3 to satisfy B = Mη for some ternarization η = ter(ϕ, ψ).

It remains to answer the question about the role of the monoid

Mter =
{
ter(ϕ, ψ)

∣∣ϕ, ψ amicable morphisms
}

in the whole monoid M3iet of all 3iet-preserving morphisms. It seems that using
similar proof as for Theorem 2.5 (see [2]) we can prove the following statement.

Corollary 4.1. Let η ∈ M3iet. Then one of η, η ◦ ξ1, η ◦ ξ2 or η ◦ ξ1 ◦ ξ2 is in
Mter, where

ξ1(A) = C, ξ1(B) = B, ξ1(C) = A,

ξ2(A) = B, ξ2(B) = ACA, ξ2(C) = A.
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