MORPHISMS PRESERVING THE SET OF WORDS CODING THREE INTERVAL EXCHANGE*,**

$Tomáš Hejda^1$

Abstract. Any amicable pair φ , ψ of Sturmian morphisms enables a construction of a ternary morphism η which preserves the set of infinite words coding 3-interval exchange. We determine the number of amicable pairs with the same incidence matrix in $\mathrm{SL}^{\pm}(2,\mathbb{N})$ and we study incidence matrices associated with the corresponding ternary morphisms η .

Mathematics Subject Classification. 68R15.

1. INTRODUCTION

Sturmian words are well-described objects in combinatorics on words. They can be defined in several equivalent ways [5], e.g. as words coding a two-interval exchange transformation with irrational ratio of lengths of the intervals. Morphisms preserving the set of Sturmian words are called *Sturmian* and they form a monoid generated by three of its elements (see [6, 12]). Let us denote this monoid by \mathcal{M}_{Sturm} .

In this paper, we consider morphisms preserving the set of words coding a three-interval exchange transformation with permutation (3, 2, 1), the so-called *3iet*

Keywords and phrases. Interval exchange, three interval exchange, amicable Sturmian morphisms, incidence matrix of morphism.

 $^{^{\}ast}$ We acknowledge financial support by the Czech Science Foundation grant 201/09/0584 and by the grants MSM6840770039 and LC06002 of the Ministry of Education, Youth, and Sports of the Czech Republic. We also thank the CTU student grant SGS10/085/OHK4/1T/14 and SGS11/162/OHK4/3T/14.

^{**} We would like to thank the organizers of the conference 13^{ièmes} Journées Montoises d'Informatique Théorique for a financial support of the author's stay at the conference.

¹ Department of Mathematics FNSPE, Czech Technical University in Prague, Trojanova 13, 120 00 Prague, Czech Republic. tohecz@gmail.com

words. We call these morphisms *3iet-preserving*. Monoid of these morphisms, denoted by \mathcal{M}_{3iet} , is not fully described. It is shown (see [10]) that the monoid \mathcal{M}_{3iet} is not finitely generated. Recently, in [2], pairs of amicable Sturmian morphisms were defined. The authors used this notion to describe morphisms that have as a fixed point a non-degenerate 3iet word, *i.e.* word with complexity $\mathcal{C}(n) = 2n + 1$. Using the operation of "ternarization", we can assign a morphism $\eta = \text{ter}(\varphi, \psi)$ over a ternary alphabet to a pair of amicable Sturmian morphisms. We show that such η is a 3iet-preserving morphism. Moreover, we show that the set

$$\mathcal{M}_{\text{ter}} = \left\{ \text{ter}(\varphi, \psi) \middle| \varphi, \psi \text{ amicable morphisms} \right\}$$

is a monoid, but it does not cover the whole monoid \mathcal{M}_{3iet} .

We also study the incidence matrices of morphisms $\eta \in \mathcal{M}_{\text{ter}}$. From the definition of amicable Sturmian morphisms φ, ψ we can derive that φ and ψ have the same incidence matrix $\mathbf{A} \in \mathbb{N}^{2\times 2}$, where det $\mathbf{A} = \pm 1$. As shown in [14], for every matrix $\mathbf{A} = \begin{pmatrix} p_0 & q_0 \\ p_1 & q_1 \end{pmatrix}$ with det $\mathbf{A} = \pm 1$, there exist $p_0 + p_1 + q_0 + q_1 - 1$ Sturmian morphisms. We will show the following theorem concerning the number of pairs of amicable Sturmian morphisms with a given matrix.

Theorem 1.1. Let $\mathbf{A} = \begin{pmatrix} p_0 & q_0 \\ p_1 & q_1 \end{pmatrix} \in \mathbb{N}^{2 \times 2}$ be a matrix with det $\mathbf{A} = \pm 1$. Then there exist exactly

$$m(\|\mathbf{A}\| - 1) + \frac{m}{2}(\det \mathbf{A} - m)$$
(1.1)

pairs of amicable Sturmian morphisms with incidence matrix \mathbf{A} , where $m = \min\{p_0 + p_1, q_0 + q_1\}$ and $\|\mathbf{A}\| = p_0 + p_1 + q_0 + q_1$.

Moreover, for a given matrix \mathbf{A} , we will describe all matrices $\mathbf{B} \in \mathbb{N}^{3\times 3}$ such that \mathbf{B} is an incidence matrix of $\eta = \operatorname{ter}(\varphi, \psi)$ for amicable Sturmian morphisms φ, ψ with incidence matrix \mathbf{A} .

2. Preliminaries

2.1. Words over finite Alphabet

Besides the infinite words, we consider *finite words* over the alphabet A. We write $w = w_0 w_1 \dots w_{n-1}$, where $w_i \in \mathbb{A}$ for all $i \in \mathbb{N}$, i < n. We denote by |w| the length n of the finite word w. We denote by $|w|_a$ the number of occurrences of a letter $a \in \mathbb{A}$ in the word w. The set of all finite words on the alphabet \mathbb{A} including the empty word is denoted by \mathbb{A}^* . The set \mathbb{A}^* with the operation of concatenation is a monoid. On the set \mathbb{A}^* we define a relation of *conjugation*: $w \sim w'$, if there exists $v \in \mathbb{A}^*$ such that wv = vw'. A morphism from \mathbb{A}^* to \mathbb{B}^* is a mapping $\varphi : \mathbb{A}^* \to \mathbb{B}^*$ such that $\varphi(vw) = \varphi(v)\varphi(w)$ for all $v, w \in \mathbb{A}^*$. It is clear that a morphism is well defined by images of letters $\varphi(a)$ for all $a \in \mathbb{A}$. If $\mathbb{A} = \mathbb{B}$, then φ is called a morphism over \mathbb{A} .

The set of *infinite words* over the alphabet \mathbb{A} is denoted by $\mathbb{A}^{\mathbb{N}}$. The action of a morphism can be naturally extended to an infinite word $(u_i)_{i \in \mathbb{N}}$ putting

 $\varphi(u) = \varphi(u_0)\varphi(u_1)\varphi(u_2)\dots$ If an infinite word $u \in \mathbb{A}^{\mathbb{N}}$ satisfies $\varphi(u) = u$, we call it a *fixed point* of the morphism φ over \mathbb{A} .

To a morphism φ over \mathbb{A} we assign an *incidence matrix* \mathbf{M}_{φ} defined by $(\mathbf{M}_{\varphi})_{ab} = |\varphi(a)|_{b}$ for all $a, b \in \mathbb{A}$. To a finite word $v \in \mathbb{A}^{*}$ we assign a *Parikh vector* $\Psi(v)$ defined by $\Psi(v)_{b} = |v|_{b}$ for all $b \in \mathbb{A}$.

The *language* of an infinite word u is the set of all its factors. Let us recall that a finite word $w \in \mathbb{A}^*$ is a *factor* of $u = (u_i)_{i \in \mathbb{N}}$, if there exist indices $n, j \in \mathbb{N}$ such that $w = u_n u_{n+1} \dots u_{n+j-1}$. The language of an infinite word is denoted by $\mathcal{L}(u)$.

It is known that the language of neither Sturmian nor 3iet word depends on the point $x_0 \in [0, 1)$, the orbit of which the infinite word codes. It depends only on slope ε or parameters α, β .

The *(factor) complexity* of an infinite word u is a mapping $C_u : \mathbb{N} \to \mathbb{N}$, which returns the number of factors of u of the length n, thus $C_u(n) = \#\{w \in \mathcal{L}(u) | |w| = n\}$. It is easy to see that a word u is periodic if and only if there exists $n_0 \in \mathbb{N}$ such that $C_u(n_0) \leq n_0$.

2.2. INTERVAL EXCHANGE

We consider Sturmian words, *i.e.* aperiodic words given by exchange of 2 intervals with permutation (2, 1), and words given by exchange of 3 intervals with permutation (3, 2, 1). Let us recall that general *r*-interval exchange transformations were introduced already in [11].

The 2-interval exchange transformation S is a mapping $S : [0, 1) \to [0, 1)$. It is determined by its slope $\varepsilon \in [0, 1]$ and is given by

$$Sx = \begin{cases} x + 1 - \varepsilon & \text{if } x \in [0, \varepsilon) \\ x - \varepsilon & \text{if } x \in [\varepsilon, 1). \end{cases}$$

The orbit of a point $x_0 \in [0,1)$ with respect to the transformation S, *i.e.* the sequence $x_0, Sx_0, S^2x_0, \ldots$ can be coded by an infinite word $u = (u_i)_{i=0}^{\infty}$ on the binary alphabet $\{0,1\}$. The infinite word is given by

$$u_i = \begin{cases} 0 & \text{if } S^i x_0 \in [0, \varepsilon), \\ 1 & \text{if } S^i x_0 \in [\varepsilon, 1). \end{cases}$$
(2.1)

It is a well-known fact that for an irrational ε , the word u is Sturmian. Using the same construction on the partition of the interval (0, 1] into $(0, \varepsilon] \cup (\varepsilon, 1]$, we again obtain a Sturmian word. On the other hand, every Sturmian word can be obtained by one of the above two constructions. The set of Sturmian words will be denoted by \mathcal{W}_{Sturm} .

In [12] (the original results can be found in [8, 13]), the authors show that Sturmian words are the aperiodic words with minimal complexity, *i.e.* $C_u(n) = n+1$ for all $u \in \mathcal{W}_{\text{Sturm}}$ and $n \in \mathbb{N}$. We can see that

$$S^{i}x_{0} = \{x_{0} - i\varepsilon\}$$
 for all $x_{0} \in [0, 1),$ (2.2)

where $\{x\} = x - \lfloor x \rfloor$ denotes the *fractional part* of a number $x \in \mathbb{R}$. Then $u_i = \lfloor x_0 - i\varepsilon \rfloor - \lfloor x_0 - (i+1)\varepsilon \rfloor$, which is exactly the formula how [12] define mechanical words.

We will use another fact about the two-interval exchanges. Let $\varphi \in \mathcal{M}_{\text{Sturm}}$ be a Sturmian morphism. Then the word $v = \varphi(a)$ for $a \in \{0, 1\}$ codes two-interval exchange with the slope $\frac{|v|_0}{|v|}$. We should see this from [12], Lemma 2.1.15. The word a^k is a factor of some Sturmian word, hence the word $\varphi(a)^k$ is balanced for any $k \in \mathbb{N}$, which means that the infinite word $u = \varphi(a)^{\omega} = \varphi(a)\varphi(a)\varphi(a)\ldots$ is balanced and periodic, thus it is rational mechanical. In our terms, this means that it codes a rational 2-interval exchange; it is as well shown there that the slope of the transformation is exactly $\frac{|v|_0}{|v|}$.

The 3-interval exchange transformation T is determined by two parameters $\alpha, \beta \in (0, 1)$ satisfying $\alpha + \beta < 1$. Using parameters α, β and $\gamma = 1 - \alpha - \beta$ we partition the interval [0, 1) into $I_A = [0, \alpha), I_B = [\alpha, \alpha + \beta)$ and $I_C = [\alpha + \beta, 1)$. The mapping T is given by

$$Tx = \begin{cases} x + \beta + \gamma & \text{if } x \in I_A, \\ x - \alpha + \gamma & \text{if } x \in I_B, \\ x - \alpha - \beta & \text{if } x \in I_C. \end{cases}$$

The orbit of a point $x_0 \in [0, 1)$ with respect to the transformation T is coded by a word $u = (u_i)_{i=0}^{\infty}$ over the ternary alphabet $\{A, B, C\}$:

$$u_i = X$$
 if $T^i x_0 \in I_X$.

Similarly to the case of 2-interval exchange transformation, we can define the exchange of 3 intervals using the partition $(0, 1] = (0, \alpha] \cup (\alpha, \alpha + \beta] \cup (\alpha + \beta, 1]$. If $\frac{1-\alpha}{1+\beta}$ is irrational, the infinite word u is aperiodic, and we call it a *3iet word*; the set of these words is denoted by \mathcal{W}_{3iet} . For combinatorial properties of 3iet words, see [9].

Aperiodic words coding 3-interval exchange transformations, called here 3iet words, have the complexity $C_u(n) \leq 2n+1$ for all $n \in \mathbb{N}$. If a 3iet word $u \in \mathcal{W}_{3iet}$ satisfies $C_u(n) = 2n+1$ for all $n \in \mathbb{N}$, we call it a *non-degenerate* 3iet word; otherwise we call it a *degenerate* 3iet word and it is a quasi-Sturmian word (see [7]).

2.3. Standard pairs and standard morphisms

In [14], the notion of standard pairs is introduced. If we define two operators on pairs of words $L, R : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^* \times \{0,1\}^*$ as

$$L(x,y) = (x,xy), \qquad R(x,y) = (yx,y),$$

we say that a pair (x, y) is a *standard pair*, if it can be obtained from the pair (0, 1) by applying the operators L and R finitely many times. For every standard pair (x, y) there exists a word $v \in \{0, 1\}^*$ such that

$$xy = v01$$
 and $yx = v10$. (2.3)

We say that a binary morphism φ is *standard*, if there exists a standard pair (x, y) such that

$$\begin{aligned} \varphi(0) &= x, & \varphi(0) &= y, \\ \varphi(1) &= y, & \text{or} & \varphi(1) &= x. \end{aligned}$$

The authors of [14] show the close connection between the standard morphisms and all the Sturmian morphisms:

- (1) Every standard morphism is Sturmian.
- (2) For every matrix $\mathbf{A} \in \mathbb{N}^{2 \times 2}$ with det $\mathbf{A} = \pm 1$, there exists exactly one standard morphism φ with incidence matrix $\mathbf{M}_{\varphi} = \mathbf{A}$.
- (3) Every Sturmian morphism $\psi \in \mathcal{M}_{\text{Sturm}}$ is a right conjugate to some standard morphism φ . Let us recall that a morphism ψ over \mathbb{A} is a *right conjugate* to φ , if there exists a finite word $v \in \mathbb{A}^*$ such that

$$\varphi(a)v = v\psi(a)$$
 for all letters $a \in \mathbb{A}$.

2.4. Amicable words and morphisms

In the article [4], authors show the close connection between 3iet and Sturmian words using morphisms $\sigma_{01}, \sigma_{10} : \{A, B, C\}^* \to \{0, 1\}^*$ given by

$$\begin{aligned} \sigma_{01}(A) &= 0, & \sigma_{10}(A) &= 0, \\ \sigma_{01}(B) &= 01, & \sigma_{10}(B) &= 10, \\ \sigma_{01}(C) &= 1, & \sigma_{10}(C) &= 1. \end{aligned}$$

In [4], the following theorem is proved.

Theorem 2.1. An infinite ternary word $u \in \{A, B, C\}^{\mathbb{N}}$ is a 3iet word if and only if the words $\sigma_{01}(u)$ and $\sigma_{10}(u)$ are Sturmian.

This theorem motivated the authors of [3] to introduce the relation of amicability of words.

Definition 2.2. Let $w, w' \in \{0, 1\}^*$, let $b \in \mathbb{N}$. We say that w is *b*-amicable to w', if there exists a factor $v \in \{A, B, C\}^*$ of some 3iet word such that

$$w = \sigma_{01}(v),$$
 $w' = \sigma_{10}(v)$ and $|v|_B = b.$

We say that w is *amicable* to w', if w is b-amicable to w' for some $b \in \mathbb{N}$, and we denote it by $w \propto w'$.

The ternary word v is called a *ternarization* of w and w', and we write v = ter(w, w').

It is easy to see that if $w \propto w'$, then they are factors of the same Sturmian word and their Parikh vectors coincide.

The ternarization is given uniquely for a pair w, w'. For, let us see that if ternary words $v^{(1)}, v^{(2)}$ differ, then either $\sigma_{01}(v^{(1)}) \neq \sigma_{01}(v^{(2)})$ or $\sigma_{10}(v^{(1)}) \neq \sigma_{10}(v^{(2)})$.

T. HEJDA

In [3], the notion of amicable words plays a crucial role in the enumeration of words with length n occurring in a 3iet word. In [2], the authors investigate ternary morphisms that have a non-degenerate 3iet fixed point using the following notion of amicability of two Sturmian morphisms.

Definition 2.3. Let φ, ψ be Sturmian morphisms over the alphabet $\{0, 1\}$. We say that φ is *amicable* to ψ , if

$$\begin{aligned} \varphi(0) \propto \psi(0), \\ \varphi(01) \propto \psi(10) \\ \text{and} \quad \varphi(1) \propto \psi(1). \end{aligned}$$

We denote this relation by $\varphi \propto \psi$. The morphism η over the ternary alphabet $\{A, B, C\}$, given by

$$\eta(A) = \operatorname{ter}(\varphi(0), \psi(0)),$$

$$\eta(B) = \operatorname{ter}(\varphi(01), \psi(10)),$$

$$\eta(C) = \operatorname{ter}(\varphi(1), \psi(1)),$$

is called the *ternarization* of morphisms φ and ψ , and is denoted by $\eta = \text{ter}(\varphi, \psi)$. The set of these η is denoted by \mathcal{M}_{ter} .

The ternarization of words is given uniquely by the words $u \propto v$, hence the ternarization of morphisms is given uniquely as well.

Example 2.4. Consider Sturmian morphisms φ, ψ given by

 $\varphi(0) = 001, \qquad \varphi(1) = 00101, \qquad \psi(0) = 010, \qquad \psi(1) = 01001.$

Then $\varphi \propto \psi$ and their ternarization $\eta = ter(\varphi, \psi)$ satisfies

$$\eta(A) = AB,$$
 $\eta(B) = ABABB,$ $\eta(C) = ABAC.$

The article [2] states the following theorem:

Theorem 2.5. Let η be a ternary morphism with non-degenerate 3iet fixed point. Then $\eta \in \mathcal{M}_{ter}$ or $\eta^2 \in \mathcal{M}_{ter}$.

3. Main results

Analogously to the terminology introduced for Sturmian words and morphisms in [6], the ternarization η , having a 3iet fixed point, is *locally 3iet-preserving*, *i.e.* there exists $u \in W_{3iet}$ such that $\eta(u) \in W_{3iet}$. We now prove a partial result about (globally) 3iet-preserving morphisms, *i.e.* ternary morphisms η such that

$$\eta(u) \in \mathcal{W}_{3\text{iet}}$$
 for all $u \in \mathcal{W}_{3\text{iet}}$.

Proposition 3.1. Let $\eta = ter(\varphi, \psi)$ for amicable Sturmian morphisms $\varphi \propto \psi$. Then η is a globally 3iet-preserving morphism.

Proof. Directly from definitions we see that

 $\sigma_{01}\eta(A) = \varphi(0), \qquad \sigma_{01}\eta(B) = \varphi(01), \qquad \sigma_{01}\eta(C) = \varphi(1), \\ \sigma_{10}\eta(A) = \psi(0), \qquad \sigma_{10}\eta(B) = \psi(10), \qquad \sigma_{10}\eta(C) = \psi(1).$

Therefore

 $\sigma_{01}\eta(v) = \varphi\sigma_{01}(v) \quad \text{and} \quad \sigma_{10}\eta(v) = \psi\sigma_{10}(v) \quad (3.1)$

for any factor v of a 3iet word $u \in \mathcal{W}_{3iet}$. According to Theorem 2.1 we get that $\sigma_{01}(u)$ and $\sigma_{10}(u)$ are Sturmian words, and since φ and ψ are Sturmian morphisms, we obtain that $\sigma_{01}\eta(u)$ and $\sigma_{10}\eta(u)$ are Sturmian words as well, which means, according to the same theorem, that the word $\eta(u)$ is 3iet. \Box

Proposition 3.2. Let $\varphi_i \propto \psi_i$ be Sturmian morphisms, for i = 1, 2. Then

$$\operatorname{ter}(\varphi_1,\psi_1)\circ\operatorname{ter}(\varphi_2,\psi_2)=\operatorname{ter}(\varphi_1\circ\varphi_2,\psi_1\circ\psi_2).$$

Proof. It can be shown that the relation of amicability is preserved by composition of morphisms. More precisely $\varphi_1\varphi_2 \propto \psi_1\psi_2$. Denote $\eta_1 = \text{ter}(\varphi_1, \psi_1)$, $\eta_2 = \text{ter}(\varphi_2, \psi_2)$. Using the relation (3.1), we see that for all $v \in \{A, B, C\}^*$

$$\sigma_{01}\eta_{1}\eta_{2}(v) = \varphi_{1}\sigma_{01}\eta_{2}(v) = \varphi_{1}\varphi_{2}\sigma_{01}(v)$$

and $\sigma_{10}\eta_{1}\eta_{2}(v) = \psi_{1}\sigma_{10}\eta_{2}(v) = \psi_{1}\psi_{2}\sigma_{10}(v).$

But this means that $\eta_1 \eta_2 = ter(\varphi_1 \varphi_2, \psi_1 \psi_2)$.

As a consequence of previous two propositions, we can state the following theorem.

Theorem 3.3. The set \mathcal{M}_{ter} of all ternarizations of amicable Sturmian morphisms with the operation of composition of morphisms is a sub-monoid of the monoid \mathcal{M}_{3iet} of all globally 3iet-preserving morphisms.

Unfortunately, $\mathcal{M}_{ter} \subsetneqq \mathcal{M}_{3iet}$. Consider for example the morphism

$$\eta(A) = B, \qquad \eta(B) = CAC, \qquad \eta(C) = C. \qquad (3.2)$$

As shown in [10], this morphism is 3iet-preserving, but it can be easily verified that it is not a ternarization of any pair of Sturmian morphisms, using the following statement.

Proposition 3.4. A ternary morphism η is a ternarization, i.e. $\eta \in \mathcal{M}_{ter}$, if and only if it satisfies

$$\sigma_{01}\eta(B) = \sigma_{01}\eta(AC) \quad and \quad \sigma_{10}\eta(B) = \sigma_{10}\eta(CA).$$

Proof. The implication (\Rightarrow). Suppose $\eta = ter(\varphi, \psi)$. According to (3.1) we get

$$\sigma_{01}\eta(B) = \varphi\sigma_{01}(B) = \varphi(01) = \varphi\sigma_{01}(AC) = \sigma_{01}\eta(AC), \sigma_{10}\eta(B) = \psi\sigma_{10}(B) = \psi(10) = \psi\sigma_{10}(CA) = \sigma_{10}\eta(CA).$$

The implication (\Leftarrow). Define morphisms φ, ψ as

$$\varphi(0) = \sigma_{01}\eta(A), \qquad \qquad \psi(0) = \sigma_{10}\eta(A),$$

$$\varphi(1) = \sigma_{01}\eta(C), \qquad \qquad \psi(1) = \sigma_{10}\eta(C).$$

Immediately we get $\operatorname{ter}(\varphi(0), \psi(0)) = \eta(A)$ and $\operatorname{ter}(\varphi(1), \psi(1)) = \eta(C)$. The words $\varphi(01)$ and $\psi(10)$ satisfy

$$\varphi(01) = \sigma_{01}\eta(AC) = \sigma_{01}\eta(B)$$
 and $\psi(10) = \sigma_{10}\eta(CA) = \sigma_{10}\eta(B)$,

which means that $\operatorname{ter}(\varphi(01), \psi(10)) = \eta(B)$.

For the morphism (3.2), we get $\sigma_{01}\eta(B) = 010 \neq 011 = \sigma_{01}\eta(AC)$. Another even simpler example of a 3iet-preserving morphism that is not a ternarization is the morphism interchanging the letters A and C.

Now, our goal will be to determine the number of amicable pairs of morphisms with incidence matrix **A** of det $\mathbf{A} = \pm 1$. We will use the notion of *b*-amicable morphisms.

Definition 3.5. Let φ and ψ be binary morphisms and let $b \in \mathbb{N}$. We say that φ is *b*-amicable to ψ , if φ is amicable to ψ and the number of occurrences of B in $\operatorname{ter}(\varphi(01), \psi(10))$ is b.

We now determine the numbers of pairs of b-amicable Sturmian morphisms.

Proposition 3.6. Let $\mathbf{A} = \begin{pmatrix} p_0 & q_0 \\ p_1 & q_1 \end{pmatrix} \in \mathbb{N}^{2 \times 2}$ be a matrix with det $\mathbf{A} = \pm 1$ and $b \in \mathbb{N}$. Put $p = p_0 + p_1$, $q = q_0 + q_1$. Then the number $c_{\mathbf{A}}(b)$ of pairs of b-amicable morphisms with matrix \mathbf{A} is equal to

$$c_{\mathbf{A}}(b) = \begin{cases} \|\mathbf{A}\| - b & \text{if } \det \mathbf{A} = +1 \text{ and } 1 \le b \le \min\{p, q\}, \\ \|\mathbf{A}\| - b - 2 & \text{if } \det \mathbf{A} = -1 \text{ and } 0 \le b \le \min\{p, q\} - 1, \\ 0 & \text{otherwise,} \end{cases}$$

where $\|\mathbf{A}\| = p + q$.

First, let us state the following lemma.

Lemma 3.7. Let $\mathbf{A} = \begin{pmatrix} p_0 & q_0 \\ p_1 & q_1 \end{pmatrix} \in \mathbb{N}^{2 \times 2}$ be a matrix with det $\mathbf{A} = \pm 1$ and $b \in \mathbb{N}$. Put $p = p_0 + p_1$, $q = q_0 + q_1$ and $N = ||\mathbf{A}|| = p + q$. Let S be a two-interval exchange with the slope p/N. Let $w^{(k)}$ be a word of the length N that codes S with the start point k/N, for $k \in \{0, \ldots, N-1\}$.

Then $w^{(k)}$ is b-amicable to $w^{(\bar{k})}$ if and only if $0 \le b \le \min\{p,q\}$ and $\bar{k} - k = b$.

Proof. Using (2.2), we see that $S^i(k/N) \equiv (k-ip)/N \pmod{1}$, which is equivalent to $NS^i(k/N) \equiv k-ip \pmod{N}$. We know that the numbers p and N are co-prime, thus the mapping $f_k : \{0, \ldots, N-1\} \rightarrow \{0, \ldots, N-1\}$ given by the congruence $f_k(i) \equiv k - ip \pmod{N}$ is a bijection. As well, $f_{\bar{k}}(i) - f_k(i) \equiv \bar{k} - k \pmod{N}$. Denote $m = \min\{p, q\}$ and $b = \bar{k} - k$. Consider the following cases:

- Case b < 0. We shall see that $w^{(k)}$ is lexicographically larger than $w^{(\bar{k})}$, *i.e.* if $i \in \mathbb{N}$ is the first position such that $w_i^{(k)} \neq w_i^{(\bar{k})}$, then $w_i^{(k)} = 1$ and $w_i^{(\bar{k})} = 0$. Directly from the definition of amicability, if $w^{(k)} \propto w^{(\bar{k})}$ and $w^{(k)} \neq w^{(\bar{k})}$, then $w^{(k)}$ is lexicographically smaller than $w^{(\bar{k})}$. These two facts make a contradiction.
- Case $b \in \{0, \ldots, m\}$. Let $\mathcal{I}_a \subset \{0, \ldots, N-1\}$ be a set of indices i such that $w_i^{(k)} = a$ and $w_i^{(\bar{k})} \neq a$, for both a = 0, 1. To show that $w^{(k)}$ is *b*-amicable to $w^{(\bar{k})}$, we need to show that $i \in \mathcal{I}_0$ implies $i + 1 \in \mathcal{I}_1$ and $\#\mathcal{I}_0 = \#\mathcal{I}_1 = b$. The fact that $|w^{(k)}|_0 = |w^{(\bar{k})}|_0$ follows to $\#\mathcal{I}_0 = \#\mathcal{I}_1$.

Let *i* be an index such that $f_k(i) \in [p-b, p)$, thus $w_i^{(k)} = 0$. Then $f_{\bar{k}}(i) \in [p, p+b)$, thus $w_i^{(\bar{k})} = 1$. This means $i \in \mathcal{I}_0$. For these *i*, we have $f_k(i+1) \in [N-b, N)$ and $f_{\bar{k}}(i+1) \in [0,b)$, which means $i \in \mathcal{I}_1$. There are exactly *b* such indices *i*. It remains to show that we covered the whole set \mathcal{I}_0 . Suppose $f_k(i) , then <math>f_{\bar{k}}(i) < p$ and $w_i^{(\bar{k})} = 0$, which means $i \notin \mathcal{I}_0$. Suppose $f_k(i) \ge p$, then $w_i^{(k)} = 1$, which means $i \notin \mathcal{I}_0$.

- Case $b \in \{m+1, \ldots, N-m-1\}$. Let *i* be such index that $f_k(i) = p-1$. Then $f_k(i+1) = N-1$. If $p \leq q$, then $f_{\bar{k}}(i) = b + p - 1$ and $f_{\bar{k}}(i+1) = b - 1$, which means that $w_i^{(k)} w_{i+1}^{(k)} = 01$ and $w_i^{(\bar{k})} w_{i+1}^{(\bar{k})} = 11$. If p > q, then $f_{\bar{k}}(i) = b - q - 1$ and $f_{\bar{k}}(i+1) = b - 1$, which means that $w_i^{(k)} w_{i+1}^{(k)} = 01$ and $w_i^{(\bar{k})} w_{i+1}^{(\bar{k})} = 00$. Both these are in contradiction with $w^{(k)} \propto w^{(\bar{k})}$.
- Case $b \in \{N m, \dots, N 1\}$. Suppose p < q. Then j = 2p solves the inequalities

$$\begin{aligned} p &\leq j < N, \\ p &\leq j - p < N, \end{aligned} \qquad \qquad p &\leq j + b - N < N, \\ 0 &\leq j + b - p - N < p. \end{aligned}$$

Let *i* be an index such that $f_k(i) = j$. Then the previous inequalities give $w_i^{(k)}w_{i+1}^{(k)} = 11$ and $w_i^{(\bar{k})}w_{i+1}^{(\bar{k})} = 10$, which is in a contradiction with $w^{(k)} \propto w^{(\bar{k})}$. Suppose p > q. Then j = 2p - b - 1 solves the inequalities

$$\begin{split} 0 &\leq j < p, \\ p &\leq j - p + N < N, \end{split} \qquad \begin{array}{l} 0 &\leq j + b - N < p, \\ 0 &\leq j + b - p < p. \end{split}$$

Let *i* be an index such that $f_k(i) = j$. Then the previous inequalities give $w_i^{(k)}w_{i+1}^{(k)} = 01$ and $w_i^{(\bar{k})}w_{i+1}^{(\bar{k})} = 00$, which is a contradiction with $w^{(k)} \propto w^{(\bar{k})}$.

Proof of Proposition 3.6. Let S be a 2-interval exchange transformation with the slope $\varepsilon = p/N$. Let $k \in \mathbb{Z}$ and denote $w^{(k)}$ the word of the length $N = ||\mathbf{A}||$ that codes the orbit of the point $\{k/N\}$ with respect to S. From [14] we know that for every Sturmian morphism φ with $\mathbf{M}_{\varphi} = \mathbf{A}$, there exists $k \in \{0, \ldots, N-1\}$ such that $\varphi(01) = w^{(k)}$, we will denote this morphism $\varphi^{(k)}$.

Let φ_{std} be a standard morphism with $\mathbf{M}_{\varphi_{\text{std}}} = \mathbf{A}$. Every Sturmian morphism $\varphi^{(k)}$ is a right conjugate to φ_{std} , which means that there exist words $v, v' \in \{0, 1\}$ * such that

$$\varphi^{(k)}(aa') = v01v'$$
 and $\varphi^{(k)}(a'a) = v10v',$

where letters a, a' satisfy aa' = 01 for det $\mathbf{A} = +1$ and aa' = 10 for det $\mathbf{A} = -1$. This gives that $\varphi(aa')$ is 1-amicable to $\varphi(a'a)$.

Morphism $\varphi^{(k)}$ is *b*-amicable to $\varphi^{(\bar{k})}$ if and only if the following conditions are satisfied:

- 1. $\varphi^{(k)}(01)$ is *b*-amicable to $\varphi^{(\bar{k})}(10)$;
- 2. $\varphi^{(k)}(01)$ is amicable to $\varphi^{(\bar{k})}(01)$;
- 3. Parikh vectors satisfy $\Psi(\varphi^{(k)}(0)) = \Psi(\varphi^{(\bar{k})}(0)).$

The 2nd and 3rd conditions assures that $\varphi^{(k)}(0) \propto \varphi^{(\bar{k})}(0)$ and $\varphi^{(k)}(1) \propto \varphi^{(\bar{k})}(1)$. Let us discuss the cases det $\mathbf{A} = +1$ and det $\mathbf{A} = -1$.

- Case det $\mathbf{A} = +1$. We know that $\varphi^{(k)}(01)$ is 1-amicable to $\varphi^{(k)}(10)$, implying by Lemma 3.7 that $\varphi^{(k)}(10) = w^{(k+1)}$. This excludes k = N - 1. The 3rd condition is immediately satisfied by $\mathbf{M}_{\varphi^{(k)}} = \mathbf{M}_{\varphi^{(\bar{k})}}$. To satisfy the 1st condition, we need $(\bar{k} + 1) - k = b$. To satisfy the 2nd condition, we need $0 \leq \bar{k} - k \leq \min\{p, q\}$. These facts gives $0 \leq k \leq \bar{k} \leq N - 2$ and $1 \leq b \leq \min\{p, q\}$, because the value $b = \min\{p, q\} + 1$ is denied by Lemma 3.7. For each admissible b, we have exactly N - b pairs of indices (k, \bar{k}) .
- Case det $\mathbf{A} = -1$. We know that $\varphi^{(k)}(10)$ is 1-amicable to $\varphi^{(k)}(01)$, implying by Lemma 3.7 that $\varphi^{(k)}(10) = w^{(k-1)}$. This excludes k = 0. The 3rd condition is immediately satisfied by $\mathbf{M}_{\varphi^{(k)}} = \mathbf{M}_{\varphi^{(\bar{k})}}$. To satisfy the 1st condition, we need $(\bar{k} - 1) - k = b$. To satisfy the 2nd condition, we need $0 \leq \bar{k} - k \leq \min\{p, q\}$. These facts gives $1 \leq k \leq \bar{k} \leq N - 1$ and $0 \leq b \leq$ $\min\{p, q\} - 1$, because the value b = -1 is denied by Lemma 3.7. For each admissible b, we have exactly N - b - 2 pairs of indices (k, \bar{k}) .

Remark 3.8. The proof shows an interesting fact: suppose that

the word
$$\varphi^{(k)}(01)$$
 is $(b - \Delta)$ -amicable to $\varphi^{(\bar{k})}(01)$ (3.3)

and $c_{\mathbf{A}}(b) \neq 0$. Then the morphism $\varphi^{(k)}$ is *b*-amicable to $\varphi^{(\bar{k})}$. The reason is as follows: In the proof we considered all pairs of (k, \bar{k}) and to satisfy (3.3) there is no other choice but $\bar{k} - k = b - \Delta$. The condition $c_{\mathbf{A}}(b) \neq 0$ is what we needed in the proof to show that $\varphi^{(k)}(01)$ is *b*-amicable to $\varphi^{(\bar{k})}(10)$. Thus the conditions 1, 2 from the proof are true; the condition 3 is straightforward.

Proof of Theorem 1.1. The formula (1.1) can be obtained by summation of numbers $c_{\mathbf{A}}(b)$ from the previous proposition. \Box

To each pair of amicable Sturmian morphisms, an incidence matrix of its ternarization is assigned. We now fully describe which matrices from $\mathbb{N}^{3\times 3}$ are matrices of ternarizations.

Theorem 3.9. A matrix $\mathbf{B} \in \mathbb{N}^{3 \times 3}$ is the incidence matrix of the ternarization of a pair of amicable Sturmian morphisms if and only if there exists a matrix $\mathbf{A} = \begin{pmatrix} p_0 & q_0 \\ p_1 & q_1 \end{pmatrix} \in \mathbb{N}^{2 \times 2}$ with det $\mathbf{A} = \Delta = \pm 1$ and numbers $b_0, b_1 \in \mathbb{N}$ such that

- (a) $\left| \frac{b_0(p_1+q_1)-b_1(p_0+q_0)}{p_0+q_0+p_1+q_1} \right| < 1;$ (b) $\frac{1-\Delta}{2} \le b_0 + b_1 \le \min\{p_0 + p_1, q_0 + q_1\} \frac{\Delta+1}{2};$ (c) $\mathbf{B} = \mathbf{P} \begin{pmatrix} \mathbf{A} & b_0 \\ 0 & 0 & \Delta \end{pmatrix} \mathbf{P}^{-1}, \text{ where } \mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$

Proof of the implication (\Rightarrow) . Let us denote $p = p_0 + p_1$, $q = q_0 + q_1$, $N = p + q_1$ and $b = b_0 + b_1 + \Delta$. Then we can see that condition (c) gives

$$\mathbf{B} = \begin{pmatrix} p_0 - b_0 \ b_0 \ q_0 - b_0 \\ p - b \ b \ q - b \\ p_1 - b_1 \ b_1 \ q_1 - b_1 \end{pmatrix}.$$
(3.4)

The fact that (c) is necessary for \mathbf{B} to be an incidence matrix of a ternarization is shown in [1], Remark 13. Condition (b) is necessary according to Proposition 3.6, so we only need to show that (a) is satisfied for the matrix of the ternarization $\eta = \operatorname{ter}(\varphi, \psi)$ of a pair of amicable Sturmian morphisms $\varphi \propto \psi$.

We can see that $\mathbf{A} = \begin{pmatrix} p_0 & q_0 \\ p_1 & q_1 \end{pmatrix}$ is necessarily an incidence matrix of both φ and ψ . Let S be a 2-interval exchange transformation with a rational slope $\varepsilon =$ p/N. Then there exist numbers $k, \bar{k} \in \{0, \ldots, N-2\}$ such that $\varphi(01), \psi(01)$ code transformation S with start points $x_0 = k/N$, $\bar{x}_0 = k/N$, respectively; moreover, $\bar{k} - k = b - \Delta$. We need to determine the value of $b_0 = |\operatorname{ter}(\varphi(0), \psi(0))|_B$. The number b_0 is equal to the number of indices $i \in \{0, 1, \dots, p_0 + q_0 - 1\}$ such that $S^i x_0 \in [(p-b+\Delta)/N, p/N)$, because for exactly these *i*, we have $S^i x_0 < p/N \le 1$ $S^i \bar{x}_0$.

Let $X = \{\{x_0 - ip/N\} | i \in \mathbb{N}, 0 \le i < p_0 + q_0\}$. Put $p' = p + \Delta/(p_0 + q_0)$, and let $Y = \{\{x_0 - ip'/N\} | i \in \mathbb{N}, 0 \le i < p_0 + q_0\}$. We can see that $0 \le i < p_0 + q_0\}$. $\Delta((x_0 - ip/N) - (x_0 - ip'/N)) = i/(p_0 + q_0)N < 1/N. \text{ Thus } x_0 - ip/N \in \left[\frac{p - b + \Delta}{N}, \frac{p}{N}\right]$ if and only if

$$x_0 - ip'/N \in \begin{cases} \left(\frac{p-b}{N}, \frac{p-1}{N}\right) & \text{in the case } \Delta = +1, \\ \left[\frac{p-b-1}{N}, \frac{p}{N}\right) & \text{in the case } \Delta = -1. \end{cases}$$
(3.5)

In both cases, the length of the interval is $\frac{b-\Delta}{N}$. From $\Delta = \det \left(\begin{array}{c} p_0 & p_0+q_0 \\ p & N \end{array} \right)$, it is easy to see that

$$\frac{p'}{N} = \frac{p + \Delta/(p_0 + q_0)}{N} = \frac{p}{N} + \frac{p_0 N - p(p_0 + q_0)}{N(p_0 + q_0)} = \frac{p_0}{p_0 + q_0}.$$

Because p_0 is co-prime to $p_0 + q_0$, we get $\{\{ip_0/(p_0 + q_0)\} | i \in \mathbb{N}, 0 \le i < p_0 + q_0\} = \{i/(p_0 + q_0) | i \in \mathbb{N}, 0 \le i < p_0 + q_0\}$. But this means that the set Y is uniformly distributed on the interval [0, 1), therefore

$$b_0 = \#\left(X \cap \left[\frac{p-b+\Delta}{N}, \frac{p}{N}\right)\right) \in \left\{\lfloor\beta\rfloor, \lceil\beta\rceil\right\},\$$

where $\beta = (p_0 + q_0) \frac{b-\Delta}{N}$ is number of elements of Y multiplied by the length of the interval (3.5). Together we get

$$|\beta - b_0| < 1, \tag{3.6}$$

which is equivalent to condition (a).

The proof of the other implication is divided into several lemmas.

Lemma 3.10. Let $\mathbf{A} = \begin{pmatrix} p_0 & q_0 \\ p_1 & q_1 \end{pmatrix} \in \mathbb{N}^{2 \times 2}$ with det $\mathbf{A} = \Delta = \pm 1$, let $b \in \mathbb{N}$ with $\frac{1+\Delta}{2} \leq b \leq \min\{p_0 + p_1, q_0 + q_1\} - \frac{1-\Delta}{2}$.

Denote $N = ||\mathbf{A}||$, $p = p_0 + p_1$ and $q = q_0 + q_1$ integers, $I = \left[\frac{p-b+\Delta}{N}, \frac{p}{N}\right)$ an interval, $X_k = \{\{k/N\}, S\{k/N\}, S^2\{k/N\}, \ldots, S^{p_0+q_0-1}\{k/N\}\}$ a set of numbers for any $k \in \mathbb{Z}$, where S is the 2-interval exchange with the slope $\varepsilon = p/N$, and denote $\beta = \frac{p_0+q_0}{N}(b-\Delta)$.

Then for all $b_0 \in \{\lfloor \beta \rfloor, \lceil \beta \rceil\}$ such that

$$b_0 \le \min\{p_0, q_0\}$$
 and $b - \Delta - b_0 \le \min\{p_1, q_1\},$ (3.7)

there exist $k', k'' \in \{0, \dots, N-1\}, k' \neq k''$ such that

$$#(X_{k'} \cap I) = #(X_{k''} \cap I) = b_0.$$
(3.8)

Proof. Denote $r(k) = \#(X_k \cap I)$ for $k \in \mathbb{Z}$. We can see that $\sum_{k=0}^{N-1} r(k) = (b - \Delta)(p_0 + q_0)$. According to (3.6), we know that $r(k) \in \{\lfloor \beta \rfloor, \lceil \beta \rceil\}$ for all $k \in \mathbb{Z}$. Let

$$C_L = \# \{ k \in \{0, \dots, N-1\} | r(k) = \lfloor \beta \rfloor \},\$$

$$C_U = \# \{ k \in \{0, \dots, N-1\} | r(k) = \lceil \beta \rceil \}.$$

These numbers satisfy the equations

$$C_L[\beta] + C_U[\beta] = N\beta$$

and $C_L + C_U = N.$ (3.9)

If $C_L = 0$ or $C_U = 0$, necessarily $\beta \in \mathbb{N}$ and (3.8) is satisfied for all $k \in \mathbb{Z}$.

If $C_L \ge 2$, we have two different $k \in \mathbb{Z}$ satisfying (3.8) for $b_0 = \lfloor \beta \rfloor$. Similarly if $C_U \ge 2$, we have two different $k \in \mathbb{Z}$ satisfying (3.8) for $b_0 = \lceil \beta \rceil$.

We will show that $C_L = 1$ implies $\lfloor \beta \rfloor$ not to satisfy the condition (3.7), and similarly for C_U and $\lceil \beta \rceil$.

118

If C_U and C_L are non-zero then there is a unique solution

$$C_L = N\{-\beta\}$$
 and $C_U = N\{\beta\}.$

Using relation $p_0N - (p_0 + p_1)(p_0 + q_0) = \Delta$, we get

$$C_U \equiv (p_0 + q_0)(b - \Delta) \pmod{N}$$

$$b - \Delta \equiv -\Delta(p_0 + p_1)C_U \pmod{N}.$$
 (3.10)

Let us suppose $C_U = 1$ or $C_L = 1$, *i.e.* $C_U \equiv \pm 1 \pmod{N}$ due to (3.9). Then (3.9) and (3.10) lead to $b = (p_0 + p_1) + \Delta$ or $b = (q_0 + q_1) + \Delta$. For $\Delta = +1$, this is in contradiction with the conditions. For $\Delta = -1$, discuss the following two cases.

- Case $b = (p_0 + p_1) + \Delta$. This happens when $C_U = 1$. But it means that $b_0 = \lceil \beta \rceil$ is equal to $\lceil \frac{p_0 N \Delta}{N} \rceil = p_0 + 1$ and this case is excluded by the condition (3.7).
- Case $b = (q_0 + q_1) + \Delta$. This happens when $C_L = 1$. But it means that $b_0 = \lfloor \beta \rfloor$ is equal to $q_0 1$ hence $b \Delta b_0 = q_1 + 1$, which is excluded by (3.7). \Box

Lemma 3.11. Let us have the same hypothesis as in Lemma 3.10. Define morphisms φ_k for $k \in \mathbb{Z}$ in the following way:

- the word $\varphi_k(0)$ codes $\{k/N\}, S\{k/N\}, \ldots, S^{p_0+q_0-1}\{k/N\};$
- the word $\varphi_k(1)$ codes $S^{p_0+q_0}\{k/N\}, \ldots, S^{N-1}\{k/N\}$.

Let $k_0 \in \mathbb{Z}$ be such integer that $\#(X_{k_0} \cap I) = \#(X_{k_0-p} \cap I)$. Then

 $\varphi_{k_0} \propto \varphi_{k_0+b-\Delta}$ or $\varphi_{k_0-p} \propto \varphi_{k_0-p+b-\Delta}$,

and the number of B's in the ternarization of the images of the letter 0 is $\#(X_{k_0} \cap I)$.

Proof. Let $k \in \mathbb{Z}$ and let us consider the orbit

$$\{k/N\}, S\{k/N\}, \dots, S^{p_0+q_0-1}\{k/N\}.$$
 (3.11)

Let $t^{(k)}$ be a word of the length p_0+q_0 that codes (3.11) to the alphabet $\{0, 0', 1, 1'\}$ with the following code:

$$t_{i}^{(k)} = \begin{cases} 0 & \text{if } S^{i}\{k/N\} \in \left[0, \frac{p-b+\Delta}{N}\right), \\ 0' & \text{if } S^{i}\{k/N\} \in \left[\frac{p-b+\Delta}{N}, \frac{p}{N}\right) = I, \\ 1 & \text{if } S^{i}\{k/N\} \in \left[\frac{p}{N}, \frac{N-b+\Delta}{N}\right), \\ 1' & \text{if } S^{i}\{k/N\} \in \left[\frac{N-b+\Delta}{N}, 1\right). \end{cases}$$
(3.12)

From definition of S, we see that $t_i^{(k)} = 0' \Leftrightarrow t_{i+1}^{(k)} = 1'$. Define two morphisms $\tau, \tau' : \{0, 0', 1, 1'\}^* \to \{0, 1\}^*$ as

$$\begin{aligned} \tau(0) &= 0, & \tau(0') = 0, & \tau(1) = 1, & \tau(1') = 1, \\ \tau'(0) &= 0, & \tau'(0') = 1, & \tau'(1) = 1, & \tau(1') = 0. \end{aligned}$$

If $t^{(k)}$ does not start with 1' and does not end with 0', then the word $\varphi_k(0) = \tau(t^{(k)})$ is $|t^{(k)}|_{0'}$ -amicable to $\tau'(t^{(k)}) = \varphi_{k+b-\Delta}(0)$. Moreover, $|t^{(k)}|_{0'} = \#(X_k \cap I)$. To show this, notice that $S\{k_0/N\} = \{(k_0 - p)/N\}$, which means that there exist letters $a, a' \in \{0, 0', 1, 1'\}$ such that $t^{(k_0)}a = a't^{(k_0-p)}$ and $a = 0' \Leftrightarrow a' = 0'$, because the numbers of letters 0' in the words $t^{(k_0)}$ and $t^{(k_0-p)}$ coincide.

Consider these two cases:

- If a = 0' then the last letter of $t^{(k_0)}$ is not 0' since this implies a' = 1'. This yields $\varphi_k(0) \propto \varphi_{k+b-\Delta}(0)$ for $k = k_0$.
- If $a \neq 0'$ then $t^{(k_0-p)}$ does not start with 1' and does not end with 0'. This yields $\varphi_k(0) \propto \varphi_{k+b-\Delta}(0)$ for $k = k_0 p$.

Similar reasoning leads to the amicability of the images of the letter 1. Thus by concatenation $\varphi_k(01) \propto \varphi_{k+b-\Delta}(01)$. The condition on b is the same as in Proposition 3.6, hence Remark 3.8 applies.

Lemma 3.12. Let us have the same hypothesis as in Lemma 3.10. Let $k_0 \in \mathbb{Z}$ be a number such that if $\Delta = -1$ and $b = \min\{p, q\} - 1$ then

$$k_0 \not\equiv \begin{cases} -1 \pmod{N} & \text{in the case } p > q, \\ p - b - 1 \pmod{N} & \text{in the case } p < q. \end{cases}$$
(3.13)

Then

$$\#(X_{k_0} \cap I) = \#(X_{k_0+p} \cap I) \quad or \quad \#(X_{k_0} \cap I) = \#(X_{k_0-p} \cap I).$$

Proof. Define the words $t^{(k)}$ by (3.12) in the same way as in the previous proof. Denote $\ell = p_0 + q_0$. Then we know that there exist letters $a_0, \ldots, a_{\ell+1} \in \{0, 0', 1, 1'\}$ such that

$$t^{(k_0+p)} = a_0 a_1 a_2 \dots a_{\ell-1},$$

$$t^{(k_0)} = a_1 a_2 \dots a_{\ell-1} a_\ell,$$

$$t^{(k_0-p)} = a_2 \dots a_{\ell-1} a_\ell a_{\ell+1}$$

Let us remind that $\#(X_k \cap I) = |t^{(k)}|_{0'}$. The proof will be done by contradiction. Suppose that $|t^{(k_0+p)}|_{0'} \neq |t^{(k_0)}|_{0'} \neq |t^{(k_0-p)}|_{0'}$. There are only two possible values of these numbers, thus $|t^{(k_0+p)}|_{0'} = |t^{(k_0-p)}|_{0'}$. This together gives either $a_0 = a_{\ell+1} = 0'$ or $a_1 = a_{\ell} = 0'$. It means that there exist $\xi \in I = \left[\frac{p-b+\Delta}{N}, \frac{p}{N}\right)$ and $\omega \in \{+1, -1\}$ such that $S^{\ell+\omega}\xi \in I$. Without the loss of generality $\xi \in \frac{1}{N}\mathbb{Z}$. Since $\ell p = p_0 N - \Delta$, we have

$$S^{\ell+\omega}\xi \equiv \xi - \frac{(\ell+\omega)p}{N} \equiv \xi + \frac{\Delta - \omega p}{N} \pmod{1}.$$

Because $\left|S^{\ell+\omega}\xi - \xi\right| < 1$ we have

$$S^{\ell+\omega}\xi - \xi = \frac{\Delta - \omega p}{N}$$

or $S^{\ell+\omega}\xi - \xi = \frac{\Delta - \omega p}{N} + \omega = \frac{\Delta + \omega q}{N},$

since 1 - p/N = q/N. This enforces $b - 1 - \Delta \ge \min\{p, q\} - 1$ for the interval I to be large enough to contain both ξ and $S^{\ell+\omega}\xi$.

For $\Delta = +1$, this is in contradiction with $b \leq \min\{p, q\}$.

For $\Delta = -1$ we get only one admissible $b = \min\{p, q\} - 1$. The case $p = \min\{p, q\}$ means $\omega = -1$ and $\xi = \frac{p-b-1}{N}$, which implies $k_0 \equiv p-b-1 \pmod{N}$. The case $q = \min\{p, q\}$ means $\omega = +1$ and $\xi = \frac{p-1}{N}$, which implies $k_0 \equiv -1 \pmod{N}$. Both these cases are excluded by (3.13).

Proof of the implication (\Leftarrow). From [1], Remark 13, the incidence matrix of the ternarization ter(φ, ψ) is fully described by the matrix **A** and numbers b_0 and $b = b_0 + b_1 + \Delta$. The condition (a) is equivalent to (3.6) and it gives at most two values of b_0 . If $\beta \in \mathbb{N}$, there is nothing to do as we have at least one pair of *b*-amicable morphisms $\varphi \propto \psi$ for **A**, and its incidence matrix satisfies all three conditions.

For $\beta \notin \mathbb{N}$, we want to show that for both $b_0 \in \{\lfloor \beta \rfloor, \lceil \beta \rceil\}$ there exist $\varphi \propto \psi$ with $|\operatorname{ter}(\varphi(0), \psi(0))|_B = b_0$. Because the elements of the matrix **B** are nonnegative, the condition (3.7) of Lemma 3.10 is satisfied and we have two different k', k''. At least one of them satisfies (3.13). Lemma 3.12 then provides k_0 satisfying the conditions of Lemma 3.11 that gives a pair of amicable Sturmian morphisms, ternarization of which has the incidence matrix **B**.

4. Conclusions and open problems

Matrices of 3iet-preserving morphisms were studied in [1]. The authors give a necessary condition on $\mathbf{B} \in \mathbb{N}^{3\times 3}$ to be an incidence matrix of a 3iet-preserving morphism:

$$\mathbf{B}\mathbf{E}\mathbf{B}^{\mathsf{T}} = \pm \mathbf{E}, \quad \text{where} \quad \mathbf{E} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}.$$

However, this condition is not sufficient. In our contribution, we study 3ietpreserving morphisms $\eta = \text{ter}(\varphi, \psi)$ arising from pairs of amicable Sturmian morphisms $\varphi \propto \psi$. Our Theorem 3.9 gives sufficient and necessary condition for any matrix $\mathbf{B} \in \mathbb{N}^{3\times 3}$ to satisfy $\mathbf{B} = \mathbf{M}_{\eta}$ for some ternarization $\eta = \text{ter}(\varphi, \psi)$.

It remains to answer the question about the role of the monoid

$$\mathcal{M}_{ter} = \left\{ ter(\varphi, \psi) \middle| \varphi, \psi \text{ amicable morphisms} \right\}$$

in the whole monoid \mathcal{M}_{3iet} of all 3iet-preserving morphisms. It seems that using similar proof as for Theorem 2.5 (see [2]) we can prove the following statement.

Corollary 4.1. Let $\eta \in \mathcal{M}_{3iet}$. Then one of η , $\eta \circ \xi_1$, $\eta \circ \xi_2$ or $\eta \circ \xi_1 \circ \xi_2$ is in \mathcal{M}_{ter} , where

$$\xi_1(A) = C,$$
 $\xi_1(B) = B,$ $\xi_1(C) = A,$
 $\xi_2(A) = B,$ $\xi_2(B) = ACA,$ $\xi_2(C) = A.$

T. HEJDA

References

- P. Ambrož, Z. Masáková and E. Pelantová, Matrices of 3-iet preserving morphisms. *Theoret. Comput. Sci.* 400 (2008) 113–136.
- [2] P. Ambrož, Z. Masáková and E. Pelantová, Morphisms fixing words associated with exchange of three intervals. RAIRO – Theor. Inf. Appl. 44 (2010) 3–17.
- [3] P. Ambrož, A.E. Frid, Z. Masáková and E. Pelantová, On the number of factors in codings of three interval exchange. *Discrete Math. Theoret. Comput. Sci.* 13 (2011) 51–66.
- [4] P. Arnoux, V. Berthé, Z. Masáková and E. Pelantová, Sturm numbers and substitution invariance of 3iet words. *Integers* 8 (2008) A14, 17.
- [5] J. Berstel, Recent results in Sturmian words, in *Developments in language theory* II. Magdeburg (1995). World Sci. Publ., River Edge, NJ (1996) 13–24.
- [6] J. Berstel and P. Séébold, Morphismes de sturm. Bull. Belg. Math. Soc. 1 (1994) 175-189.
- [7] J. Cassaigne, Sequences with grouped factors, in *Developments in language theory* III. Aristotle University of Thessaloniki, Greece (1998) 211–222.
- [8] E.M. Coven and G.A. Hedlund, Sequences with minimal block growth. Math. Syst. Theor. 7 (1973) 138–153.
- [9] S. Ferenczi, C. Holton and L.Q. Zamboni, Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories. J. Anal. Math. 89 (2003) 239–276.
- [10] L. Háková, Morphisms on generalized sturmian words. Master's thesis, Czech Technical University in Prague (2008).
- [11] A.B. Katok and A.M. Stepin, Approximations in ergodic theory. Uspehi Mat. Nauk 22 (1967) 81–106.
- [12] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge 90 (2002).
- [13] M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1–42.
- [14] P. Séébold, On the conjugation of standard morphisms. Theoret. Comput. Sci. 195 (1998) 91–109.

Communicated by G. Richomme.

Received November 2, 2010. Accepted February 3, 2012.