# MORPHISMS PRESERVING THE SET OF WORDS CODING THREE INTERVAL EXCHANGE *,** 

Tomáš Hejda ${ }^{1}$


#### Abstract

Any amicable pair $\varphi, \psi$ of Sturmian morphisms enables a construction of a ternary morphism $\eta$ which preserves the set of infinite words coding 3 -interval exchange. We determine the number of amicable pairs with the same incidence matrix in $\mathrm{SL}^{ \pm}(2, \mathbb{N})$ and we study incidence matrices associated with the corresponding ternary morphisms $\eta$.


Mathematics Subject Classification. 68R15.

## 1. Introduction

Sturmian words are well-described objects in combinatorics on words. They can be defined in several equivalent ways [5], e.g. as words coding a two-interval exchange transformation with irrational ratio of lengths of the intervals. Morphisms preserving the set of Sturmian words are called Sturmian and they form a monoid generated by three of its elements (see [6,12]). Let us denote this monoid by $\mathcal{M}_{\text {Sturm }}$.

In this paper, we consider morphisms preserving the set of words coding a three-interval exchange transformation with permutation (3,2,1), the so-called 3iet

[^0]words. We call these morphisms 3iet-preserving. Monoid of these morphisms, denoted by $\mathcal{M}_{3 \text { iet }}$, is not fully described. It is shown (see [10]) that the monoid $\mathcal{M}_{3 \text { iet }}$ is not finitely generated. Recently, in [2], pairs of amicable Sturmian morphisms were defined. The authors used this notion to describe morphisms that have as a fixed point a non-degenerate 3 iet word, i.e. word with complexity $\mathcal{C}(n)=2 n+1$. Using the operation of "ternarization", we can assign a morphism $\eta=\operatorname{ter}(\varphi, \psi)$ over a ternary alphabet to a pair of amicable Sturmian morphisms. We show that such $\eta$ is a 3iet-preserving morphism. Moreover, we show that the set
$$
\mathcal{M}_{\text {ter }}=\{\operatorname{ter}(\varphi, \psi) \mid \varphi, \psi \text { amicable morphisms }\}
$$
is a monoid, but it does not cover the whole monoid $\mathcal{M}_{3 \text { iet }}$.

We also study the incidence matrices of morphisms $\eta \in \mathcal{M}_{\text {ter }}$. From the definition of amicable Sturmian morphisms $\varphi, \psi$ we can derive that $\varphi$ and $\psi$ have the same incidence matrix $\mathbf{A} \in \mathbb{N}^{2 \times 2}$, where $\operatorname{det} \mathbf{A}= \pm 1$. As shown in [14], for every matrix $\mathbf{A}=\left(\begin{array}{cc}p_{0} \\ p_{1} & q_{0} \\ q_{1}\end{array}\right)$ with $\operatorname{det} \mathbf{A}= \pm 1$, there exist $p_{0}+p_{1}+q_{0}+q_{1}-1$ Sturmian morphisms. We will show the following theorem concerning the number of pairs of amicable Sturmian morphisms with a given matrix.

Theorem 1.1. Let $\mathbf{A}=\left(\begin{array}{cc}p_{0} & q_{0} \\ p_{1} & q_{1}\end{array}\right) \in \mathbb{N}^{2 \times 2}$ be a matrix with $\operatorname{det} \mathbf{A}= \pm 1$. Then there exist exactly

$$
\begin{equation*}
m(\|\mathbf{A}\|-1)+\frac{m}{2}(\operatorname{det} \mathbf{A}-m) \tag{1.1}
\end{equation*}
$$

pairs of amicable Sturmian morphisms with incidence matrix A, where $m=$ $\min \left\{p_{0}+p_{1}, q_{0}+q_{1}\right\}$ and $\|\mathbf{A}\|=p_{0}+p_{1}+q_{0}+q_{1}$.

Moreover, for a given matrix $\mathbf{A}$, we will describe all matrices $\mathbf{B} \in \mathbb{N}^{3 \times 3}$ such that $\mathbf{B}$ is an incidence matrix of $\eta=\operatorname{ter}(\varphi, \psi)$ for amicable Sturmian morphisms $\varphi, \psi$ with incidence matrix $\mathbf{A}$.

## 2. PRELIMINARIES

### 2.1. Words over finite alphabet

Besides the infinite words, we consider finite words over the alphabet $\mathbb{A}$. We write $w=w_{0} w_{1} \ldots w_{n-1}$, where $w_{i} \in \mathbb{A}$ for all $i \in \mathbb{N}, i<n$. We denote by $|w|$ the length $n$ of the finite word $w$. We denote by $|w|_{a}$ the number of occurrences of a letter $a \in \mathbb{A}$ in the word $w$. The set of all finite words on the alphabet $\mathbb{A}$ including the empty word is denoted by $\mathbb{A}^{*}$. The set $\mathbb{A}^{*}$ with the operation of concatenation is a monoid. On the set $\mathbb{A}^{*}$ we define a relation of conjugation: $w \sim w^{\prime}$, if there exists $v \in \mathbb{A}^{*}$ such that $w v=v w^{\prime}$. A morphism from $\mathbb{A}^{*}$ to $\mathbb{B}^{*}$ is a mapping $\varphi: \mathbb{A}^{*} \rightarrow \mathbb{B}^{*}$ such that $\varphi(v w)=\varphi(v) \varphi(w)$ for all $v, w \in \mathbb{A}^{*}$. It is clear that a morphism is well defined by images of letters $\varphi(a)$ for all $a \in \mathbb{A}$. If $\mathbb{A}=\mathbb{B}$, then $\varphi$ is called a morphism over $\mathbb{A}$.

The set of infinite words over the alphabet $\mathbb{A}$ is denoted by $\mathbb{A}^{\mathbb{N}}$. The action of a morphism can be naturally extended to an infinite word $\left(u_{i}\right)_{i \in \mathbb{N}}$ putting
$\varphi(u)=\varphi\left(u_{0}\right) \varphi\left(u_{1}\right) \varphi\left(u_{2}\right) \ldots$ If an infinite word $u \in \mathbb{A}^{\mathbb{N}}$ satisfies $\varphi(u)=u$, we call it a fixed point of the morphism $\varphi$ over $\mathbb{A}$.

To a morphism $\varphi$ over $\mathbb{A}$ we assign an incidence matrix $\mathbf{M}_{\varphi}$ defined by $\left(\mathbf{M}_{\varphi}\right)_{a b}=$ $|\varphi(a)|_{b}$ for all $a, b \in \mathbb{A}$. To a finite word $v \in \mathbb{A}^{*}$ we assign a Parikh vector $\Psi(v)$ defined by $\Psi(v)_{b}=|v|_{b}$ for all $b \in \mathbb{A}$.

The language of an infinite word $u$ is the set of all its factors. Let us recall that a finite word $w \in \mathbb{A}^{*}$ is a factor of $u=\left(u_{i}\right)_{i \in \mathbb{N}}$, if there exist indices $n, j \in \mathbb{N}$ such that $w=u_{n} u_{n+1} \ldots u_{n+j-1}$. The language of an infinite word is denoted by $\mathcal{L}(u)$.

It is known that the language of neither Sturmian nor 3iet word depends on the point $x_{0} \in[0,1)$, the orbit of which the infinite word codes. It depends only on slope $\varepsilon$ or parameters $\alpha, \beta$.

The (factor) complexity of an infinite word $u$ is a mapping $\mathcal{C}_{u}: \mathbb{N} \rightarrow \mathbb{N}$, which returns the number of factors of $u$ of the length $n$, thus $\mathcal{C}_{u}(n)=\#\{w \in \mathcal{L}(u)| | w \mid=$ $n\}$. It is easy to see that a word $u$ is periodic if and only if there exists $n_{0} \in \mathbb{N}$ such that $C_{u}\left(n_{0}\right) \leq n_{0}$.

### 2.2. Interval exchange

We consider Sturmian words, i.e. aperiodic words given by exchange of 2 intervals with permutation $(2,1)$, and words given by exchange of 3 intervals with permutation $(3,2,1)$. Let us recall that general $r$-interval exchange transformations were introduced already in [11].

The 2-interval exchange transformation $S$ is a mapping $S:[0,1) \rightarrow[0,1)$. It is determined by its slope $\varepsilon \in[0,1]$ and is given by

$$
S x= \begin{cases}x+1-\varepsilon & \text { if } x \in[0, \varepsilon) \\ x-\varepsilon & \text { if } x \in[\varepsilon, 1)\end{cases}
$$

The orbit of a point $x_{0} \in[0,1)$ with respect to the transformation $S$, i.e. the sequence $x_{0}, S x_{0}, S^{2} x_{0}, \ldots$ can be coded by an infinite word $u=\left(u_{i}\right)_{i=0}^{\infty}$ on the binary alphabet $\{0,1\}$. The infinite word is given by

$$
u_{i}= \begin{cases}0 & \text { if } S^{i} x_{0} \in[0, \varepsilon)  \tag{2.1}\\ 1 & \text { if } \quad S^{i} x_{0} \in[\varepsilon, 1)\end{cases}
$$

It is a well-known fact that for an irrational $\varepsilon$, the word $u$ is Sturmian. Using the same construction on the partition of the interval $(0,1]$ into $(0, \varepsilon] \cup(\varepsilon, 1]$, we again obtain a Sturmian word. On the other hand, every Sturmian word can be obtained by one of the above two constructions. The set of Sturmian words will be denoted by $\mathcal{W}_{\text {Sturm }}$.

In [12] (the original results can be found in $[8,13]$ ), the authors show that Sturmian words are the aperiodic words with minimal complexity, i.e. $\mathcal{C}_{u}(n)=n+1$ for all $u \in \mathcal{W}_{\text {Sturm }}$ and $n \in \mathbb{N}$. We can see that

$$
\begin{equation*}
S^{i} x_{0}=\left\{x_{0}-i \varepsilon\right\} \quad \text { for all } \quad x_{0} \in[0,1) \tag{2.2}
\end{equation*}
$$

where $\{x\}=x-\lfloor x\rfloor$ denotes the fractional part of a number $x \in \mathbb{R}$. Then $u_{i}=$ $\left\lfloor x_{0}-i \varepsilon\right\rfloor-\left\lfloor x_{0}-(i+1) \varepsilon\right\rfloor$, which is exactly the formula how [12] define mechanical words.

We will use another fact about the two-interval exchanges. Let $\varphi \in \mathcal{M}_{\text {Sturm }}$ be a Sturmian morphism. Then the word $v=\varphi(a)$ for $a \in\{0,1\}$ codes two-interval exchange with the slope $\frac{|v|_{0}}{|v|}$. We should see this from [12], Lemma 2.1.15. The word $a^{k}$ is a factor of some Sturmian word, hence the word $\varphi(a)^{k}$ is balanced for any $k \in \mathbb{N}$, which means that the infinite word $u=\varphi(a)^{\omega}=\varphi(a) \varphi(a) \varphi(a) \ldots$ is balanced and periodic, thus it is rational mechanical. In our terms, this means that it codes a rational 2-interval exchange; it is as well shown there that the slope of the transformation is exactly $\frac{|v|_{0}}{|v|}$.

The 3-interval exchange transformation $T$ is determined by two parameters $\alpha, \beta \in(0,1)$ satisfying $\alpha+\beta<1$. Using parameters $\alpha, \beta$ and $\gamma=1-\alpha-\beta$ we partition the interval $[0,1)$ into $I_{A}=[0, \alpha), I_{B}=[\alpha, \alpha+\beta)$ and $I_{C}=[\alpha+\beta, 1)$. The mapping $T$ is given by

$$
T x= \begin{cases}x+\beta+\gamma & \text { if } x \in I_{A} \\ x-\alpha+\gamma & \text { if } x \in I_{B} \\ x-\alpha-\beta & \text { if } x \in I_{C}\end{cases}
$$

The orbit of a point $x_{0} \in[0,1)$ with respect to the transformation $T$ is coded by a word $u=\left(u_{i}\right)_{i=0}^{\infty}$ over the ternary alphabet $\{A, B, C\}$ :

$$
u_{i}=X \quad \text { if } \quad T^{i} x_{0} \in I_{X}
$$

Similarly to the case of 2-interval exchange transformation, we can define the exchange of 3 intervals using the partition $(0,1]=(0, \alpha] \cup(\alpha, \alpha+\beta] \cup(\alpha+\beta, 1]$. If $\frac{1-\alpha}{1+\beta}$ is irrational, the infinite word $u$ is aperiodic, and we call it a 3iet word; the set of these words is denoted by $\mathcal{W}_{3 i e t}$. For combinatorial properties of 3iet words, see [9].

Aperiodic words coding 3 -interval exchange transformations, called here 3iet words, have the complexity $\mathcal{C}_{u}(n) \leq 2 n+1$ for all $n \in \mathbb{N}$. If a 3iet word $u \in \mathcal{W}_{3 \text { iet }}$ satisfies $\mathcal{C}_{u}(n)=2 n+1$ for all $n \in \mathbb{N}$, we call it a non-degenerate 3 iet word; otherwise we call it a degenerate 3iet word and it is a quasi-Sturmian word (see [7]).

### 2.3. Standard pairs and standard morphisms

In [14], the notion of standard pairs is introduced. If we define two operators on pairs of words $L, R:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*} \times\{0,1\}^{*}$ as

$$
L(x, y)=(x, x y), \quad R(x, y)=(y x, y)
$$

we say that a pair $(x, y)$ is a standard pair, if it can be obtained from the pair $(0,1)$ by applying the operators $L$ and $R$ finitely many times. For every standard pair $(x, y)$ there exists a word $v \in\{0,1\}^{*}$ such that

$$
\begin{equation*}
x y=v 01 \quad \text { and } \quad y x=v 10 \tag{2.3}
\end{equation*}
$$

We say that a binary morphism $\varphi$ is standard, if there exists a standard pair $(x, y)$ such that

$$
\begin{array}{ll}
\varphi(0)=x, & \text { or } \quad \varphi(0)=y \\
\varphi(1)=y, &
\end{array} \quad \varphi(1)=x
$$

The authors of [14] show the close connection between the standard morphisms and all the Sturmian morphisms:
(1) Every standard morphism is Sturmian.
(2) For every matrix $\mathbf{A} \in \mathbb{N}^{2 \times 2}$ with $\operatorname{det} \mathbf{A}= \pm 1$, there exists exactly one standard morphism $\varphi$ with incidence matrix $\mathbf{M}_{\varphi}=\mathbf{A}$.
(3) Every Sturmian morphism $\psi \in \mathcal{M}_{\text {Sturm }}$ is a right conjugate to some standard morphism $\varphi$. Let us recall that a morphism $\psi$ over $\mathbb{A}$ is a right conjugate to $\varphi$, if there exists a finite word $v \in \mathbb{A}^{*}$ such that

$$
\varphi(a) v=v \psi(a) \quad \text { for all letters } \quad a \in \mathbb{A}
$$

### 2.4. Amicable words and morphisms

In the article [4], authors show the close connection between 3iet and Sturmian words using morphisms $\sigma_{01}, \sigma_{10}:\{A, B, C\}^{*} \rightarrow\{0,1\}^{*}$ given by

$$
\begin{array}{ll}
\sigma_{01}(A)=0, & \sigma_{10}(A)=0 \\
\sigma_{01}(B)=01, & \sigma_{10}(B)=10 \\
\sigma_{01}(C)=1, & \sigma_{10}(C)=1
\end{array}
$$

In [4], the following theorem is proved.
Theorem 2.1. An infinite ternary word $u \in\{A, B, C\}^{\mathbb{N}}$ is a 3iet word if and only if the words $\sigma_{01}(u)$ and $\sigma_{10}(u)$ are Sturmian.

This theorem motivated the authors of [3] to introduce the relation of amicability of words.

Definition 2.2. Let $w, w^{\prime} \in\{0,1\}^{*}$, let $b \in \mathbb{N}$. We say that $w$ is $b$-amicable to $w^{\prime}$, if there exists a factor $v \in\{A, B, C\}^{*}$ of some 3iet word such that

$$
w=\sigma_{01}(v), \quad w^{\prime}=\sigma_{10}(v) \quad \text { and } \quad|v|_{B}=b
$$

We say that $w$ is amicable to $w^{\prime}$, if $w$ is $b$-amicable to $w^{\prime}$ for some $b \in \mathbb{N}$, and we denote it by $w \propto w^{\prime}$.

The ternary word $v$ is called a ternarization of $w$ and $w^{\prime}$, and we write $v=$ $\operatorname{ter}\left(w, w^{\prime}\right)$.

It is easy to see that if $w \propto w^{\prime}$, then they are factors of the same Sturmian word and their Parikh vectors coincide.

The ternarization is given uniquely for a pair $w, w^{\prime}$. For, let us see that if ternary words $v^{(1)}, v^{(2)}$ differ, then either $\sigma_{01}\left(v^{(1)}\right) \neq \sigma_{01}\left(v^{(2)}\right)$ or $\sigma_{10}\left(v^{(1)}\right) \neq \sigma_{10}\left(v^{(2)}\right)$.

In [3], the notion of amicable words plays a crucial role in the enumeration of words with length $n$ occurring in a 3 iet word. In [2], the authors investigate ternary morphisms that have a non-degenerate 3iet fixed point using the following notion of amicability of two Sturmian morphisms.

Definition 2.3. Let $\varphi, \psi$ be Sturmian morphisms over the alphabet $\{0,1\}$. We say that $\varphi$ is amicable to $\psi$, if

$$
\begin{aligned}
\varphi(0) & \propto \psi(0), \\
\varphi(01) & \propto \psi(10) \\
\text { and } \quad \varphi(1) & \propto \psi(1)
\end{aligned}
$$

We denote this relation by $\varphi \propto \psi$. The morphism $\eta$ over the ternary alphabet $\{A, B, C\}$, given by

$$
\begin{aligned}
\eta(A) & =\operatorname{ter}(\varphi(0), \psi(0)) \\
\eta(B) & =\operatorname{ter}(\varphi(01), \psi(10)) \\
\eta(C) & =\operatorname{ter}(\varphi(1), \psi(1))
\end{aligned}
$$

is called the ternarization of morphisms $\varphi$ and $\psi$, and is denoted by $\eta=\operatorname{ter}(\varphi, \psi)$. The set of these $\eta$ is denoted by $\mathcal{M}_{\text {ter }}$.

The ternarization of words is given uniquely by the words $u \propto v$, hence the ternarization of morphisms is given uniquely as well.

Example 2.4. Consider Sturmian morphisms $\varphi, \psi$ given by

$$
\varphi(0)=001, \quad \varphi(1)=00101, \quad \psi(0)=010, \quad \psi(1)=01001
$$

Then $\varphi \propto \psi$ and their ternarization $\eta=\operatorname{ter}(\varphi, \psi)$ satisfies

$$
\eta(A)=A B, \quad \eta(B)=A B A B B, \quad \eta(C)=A B A C
$$

The article [2] states the following theorem:
Theorem 2.5. Let $\eta$ be a ternary morphism with non-degenerate 3iet fixed point. Then $\eta \in \mathcal{M}_{\text {ter }}$ or $\eta^{2} \in \mathcal{M}_{\text {ter }}$.

## 3. Main Results

Analogously to the terminology introduced for Sturmian words and morphisms in [6], the ternarization $\eta$, having a 3iet fixed point, is locally 3iet-preserving, i.e. there exists $u \in \mathcal{W}_{3 \text { iet }}$ such that $\eta(u) \in \mathcal{W}_{3 \text { iet }}$. We now prove a partial result about (globally) 3iet-preserving morphisms, i.e. ternary morphisms $\eta$ such that

$$
\eta(u) \in \mathcal{W}_{3 \text { iet }} \quad \text { for all } \quad u \in \mathcal{W}_{3 \text { iet }}
$$

Proposition 3.1. Let $\eta=\operatorname{ter}(\varphi, \psi)$ for amicable Sturmian morphisms $\varphi \propto \psi$. Then $\eta$ is a globally 3iet-preserving morphism.

Proof. Directly from definitions we see that

$$
\begin{array}{lll}
\sigma_{01} \eta(A)=\varphi(0), & \sigma_{01} \eta(B)=\varphi(01), & \sigma_{01} \eta(C)=\varphi(1) \\
\sigma_{10} \eta(A)=\psi(0), & \sigma_{10} \eta(B)=\psi(10), & \sigma_{10} \eta(C)=\psi(1)
\end{array}
$$

Therefore

$$
\begin{equation*}
\sigma_{01} \eta(v)=\varphi \sigma_{01}(v) \quad \text { and } \quad \sigma_{10} \eta(v)=\psi \sigma_{10}(v) \tag{3.1}
\end{equation*}
$$

for any factor $v$ of a 3iet word $u \in \mathcal{W}_{3 \text { iet }}$. According to Theorem 2.1 we get that $\sigma_{01}(u)$ and $\sigma_{10}(u)$ are Sturmian words, and since $\varphi$ and $\psi$ are Sturmian morphisms, we obtain that $\sigma_{01} \eta(u)$ and $\sigma_{10} \eta(u)$ are Sturmian words as well, which means, according to the same theorem, that the word $\eta(u)$ is 3iet.

Proposition 3.2. Let $\varphi_{i} \propto \psi_{i}$ be Sturmian morphisms, for $i=1,2$. Then

$$
\operatorname{ter}\left(\varphi_{1}, \psi_{1}\right) \circ \operatorname{ter}\left(\varphi_{2}, \psi_{2}\right)=\operatorname{ter}\left(\varphi_{1} \circ \varphi_{2}, \psi_{1} \circ \psi_{2}\right)
$$

Proof. It can be shown that the relation of amicability is preserved by composition of morphisms. More precisely $\varphi_{1} \varphi_{2} \propto \psi_{1} \psi_{2}$. Denote $\eta_{1}=\operatorname{ter}\left(\varphi_{1}, \psi_{1}\right)$, $\eta_{2}=\operatorname{ter}\left(\varphi_{2}, \psi_{2}\right)$. Using the relation (3.1), we see that for all $v \in\{A, B, C\}^{*}$

$$
\begin{aligned}
& \sigma_{01} \eta_{1} \eta_{2}(v)
\end{aligned}=\varphi_{1} \sigma_{01} \eta_{2}(v)=\varphi_{1} \varphi_{2} \sigma_{01}(v),
$$

But this means that $\eta_{1} \eta_{2}=\operatorname{ter}\left(\varphi_{1} \varphi_{2}, \psi_{1} \psi_{2}\right)$.
As a consequence of previous two propositions, we can state the following theorem.

Theorem 3.3. The set $\mathcal{M}_{\text {ter }}$ of all ternarizations of amicable Sturmian morphisms with the operation of composition of morphisms is a sub-monoid of the monoid $\mathcal{M}_{3 \text { iet }}$ of all globally 3iet-preserving morphisms.

Unfortunately, $\mathcal{M}_{\text {ter }} \varsubsetneqq \mathcal{M}_{3 \text { iet }}$. Consider for example the morphism

$$
\begin{equation*}
\eta(A)=B, \quad \eta(B)=C A C, \quad \eta(C)=C \tag{3.2}
\end{equation*}
$$

As shown in [10], this morphism is 3iet-preserving, but it can be easily verified that it is not a ternarization of any pair of Sturmian morphisms, using the following statement.

Proposition 3.4. A ternary morphism $\eta$ is a ternarization, i.e. $\eta \in \mathcal{M}_{\mathrm{ter}}$, if and only if it satisfies

$$
\sigma_{01} \eta(B)=\sigma_{01} \eta(A C) \quad \text { and } \quad \sigma_{10} \eta(B)=\sigma_{10} \eta(C A)
$$

Proof. The implication $(\Rightarrow)$. Suppose $\eta=\operatorname{ter}(\varphi, \psi)$. According to (3.1) we get

$$
\begin{aligned}
& \sigma_{01} \eta(B)=\varphi \sigma_{01}(B)=\varphi(01)=\varphi \sigma_{01}(A C)=\sigma_{01} \eta(A C) \\
& \sigma_{10} \eta(B)=\psi \sigma_{10}(B)=\psi(10)=\psi \sigma_{10}(C A)=\sigma_{10} \eta(C A)
\end{aligned}
$$

The implication $(\Leftarrow)$. Define morphisms $\varphi, \psi$ as

$$
\begin{array}{ll}
\varphi(0)=\sigma_{01} \eta(A), & \psi(0)=\sigma_{10} \eta(A) \\
\varphi(1)=\sigma_{01} \eta(C), & \psi(1)=\sigma_{10} \eta(C)
\end{array}
$$

Immediately we get $\operatorname{ter}(\varphi(0), \psi(0))=\eta(A)$ and $\operatorname{ter}(\varphi(1), \psi(1))=\eta(C)$. The words $\varphi(01)$ and $\psi(10)$ satisfy

$$
\varphi(01)=\sigma_{01} \eta(A C)=\sigma_{01} \eta(B) \quad \text { and } \quad \psi(10)=\sigma_{10} \eta(C A)=\sigma_{10} \eta(B)
$$

which means that $\operatorname{ter}(\varphi(01), \psi(10))=\eta(B)$.
For the morphism (3.2), we get $\sigma_{01} \eta(B)=010 \neq 011=\sigma_{01} \eta(A C)$. Another even simpler example of a 3iet-preserving morphism that is not a ternarization is the morphism interchanging the letters $A$ and $C$.

Now, our goal will be to determine the number of amicable pairs of morphisms with incidence matrix $\mathbf{A}$ of $\operatorname{det} \mathbf{A}= \pm 1$. We will use the notion of $b$-amicable morphisms.

Definition 3.5. Let $\varphi$ and $\psi$ be binary morphisms and let $b \in \mathbb{N}$. We say that $\varphi$ is $b$-amicable to $\psi$, if $\varphi$ is amicable to $\psi$ and the number of occurrences of $B$ in $\operatorname{ter}(\varphi(01), \psi(10))$ is $b$.

We now determine the numbers of pairs of $b$-amicable Sturmian morphisms.
Proposition 3.6. Let $\mathbf{A}=\left(\begin{array}{ll}p_{0} & q_{0} \\ p_{1} & q_{1}\end{array}\right) \in \mathbb{N}^{2 \times 2}$ be a matrix with $\operatorname{det} \mathbf{A}= \pm 1$ and $b \in \mathbb{N}$. Put $p=p_{0}+p_{1}, q=q_{0}+q_{1}$. Then the number $c_{\mathbf{A}}(b)$ of pairs of $b$-amicable morphisms with matrix $\mathbf{A}$ is equal to

$$
c_{\mathbf{A}}(b)= \begin{cases}\|\mathbf{A}\|-b & \text { if } \operatorname{det} \mathbf{A}=+1 \text { and } 1 \leq b \leq \min \{p, q\} \\ \|\mathbf{A}\|-b-2 & \text { if } \operatorname{det} \mathbf{A}=-1 \text { and } 0 \leq b \leq \min \{p, q\}-1, \\ 0 & \text { otherwise },\end{cases}
$$

where $\|\mathbf{A}\|=p+q$.
First, let us state the following lemma.
Lemma 3.7. Let $\mathbf{A}=\left(\begin{array}{c}p_{0} q_{0} \\ p_{1} \\ q_{1}\end{array}\right) \in \mathbb{N}^{2 \times 2}$ be a matrix with $\operatorname{det} \mathbf{A}= \pm 1$ and $b \in \mathbb{N}$. Put $p=p_{0}+p_{1}, q=q_{0}+q_{1}$ and $N=\|\mathbf{A}\|=p+q$. Let $S$ be a two-interval exchange with the slope $p / N$. Let $w^{(k)}$ be a word of the length $N$ that codes $S$ with the start point $k / N$, for $k \in\{0, \ldots, N-1\}$.

Then $w^{(k)}$ is $b$-amicable to $w^{(\bar{k})}$ if and only if $0 \leq b \leq \min \{p, q\}$ and $\bar{k}-k=b$.

Proof. Using (2.2), we see that $S^{i}(k / N) \equiv(k-i p) / N(\bmod 1)$, which is equivalent to $N S^{i}(k / N) \equiv k-i p(\bmod N)$. We know that the numbers $p$ and $N$ are co-prime, thus the mapping $f_{k}:\{0, \ldots, N-1\} \rightarrow\{0, \ldots, N-1\}$ given by the congruence $f_{k}(i) \equiv k-i p(\bmod N)$ is a bijection. As well, $f_{\bar{k}}(i)-f_{k}(i) \equiv \bar{k}-k(\bmod N)$.

Denote $m=\min \{p, q\}$ and $b=\bar{k}-k$. Consider the following cases:

- Case $b<0$. We shall see that $w^{(k)}$ is lexicographically larger than $w^{(\bar{k})}$, i.e. if $i \in \mathbb{N}$ is the first position such that $w_{i}^{(k)} \neq w_{i}^{(\bar{k})}$, then $w_{i}^{(k)}=1$ and $w_{i}^{(\bar{k})}=0$. Directly from the definition of amicability, if $w^{(k)} \propto w^{(\bar{k})}$ and $w^{(k)} \neq w^{(\bar{k})}$, then $w^{(k)}$ is lexicographically smaller than $w^{(\bar{k})}$. These two facts make a contradiction.
- Case $b \in\{0, \ldots, m\}$. Let $\mathcal{I}_{a} \subset\{0, \ldots, N-1\}$ be a set of indices $i$ such that $w_{i}^{(k)}=a$ and $w_{i}^{(\bar{k})} \neq a$, for both $a=0,1$. To show that $w^{(k)}$ is $b$-amicable to $w^{(\bar{k})}$, we need to show that $i \in \mathcal{I}_{0}$ implies $i+1 \in \mathcal{I}_{1}$ and $\# \mathcal{I}_{0}=\# \mathcal{I}_{1}=b$. The fact that $\left|w^{(k)}\right|_{0}=\left|w^{(\bar{k})}\right|_{0}$ follows to $\# \mathcal{I}_{0}=\# \mathcal{I}_{1}$.
Let $i$ be an index such that $f_{k}(i) \in[p-b, p)$, thus $w_{i}^{(k)}=0$. Then $f_{\bar{k}}(i) \in[p, p+$ $b)$, thus $w_{i}^{(\bar{k})}=1$. This means $i \in \mathcal{I}_{0}$. For these $i$, we have $f_{k}(i+1) \in[N-b, N)$ and $f_{\bar{k}}(i+1) \in[0, b)$, which means $i \in \mathcal{I}_{1}$. There are exactly $b$ such indices $i$.
It remains to show that we covered the whole set $\mathcal{I}_{0}$. Suppose $f_{k}(i)<p-b$, then $f_{\bar{k}}(i)<p$ and $w_{i}^{(\bar{k})}=0$, which means $i \notin \mathcal{I}_{0}$. Suppose $f_{k}(i) \geq p$, then $w_{i}^{(k)}=1$, which means $i \notin \mathcal{I}_{0}$.
- Case $b \in\{m+1, \ldots, N-m-1\}$. Let $i$ be such index that $f_{k}(i)=p-1$. Then $f_{k}(i+1)=N-1$.
If $p \leq q$, then $f_{\bar{k}}(i)=b+p-1$ and $f_{\bar{k}}(i+1)=b-1$, which means that $w_{i}^{(k)} w_{i+1}^{(k)}=01$ and $w_{i}^{(\bar{k})} w_{i+1}^{(\bar{k})}=11$.
If $p>q$, then $f_{\bar{k}}(i)=b-q-1$ and $f_{\bar{k}}(i+1)=b-1$, which means that $w_{i}^{(k)} w_{i+1}^{(k)}=01$ and $w_{i}^{(\bar{k})} w_{i+1}^{(\bar{k})}=00$.
Both these are in contradiction with $w^{(k)} \propto w^{(\bar{k})}$.
- Case $b \in\{N-m, \ldots, N-1\}$.

Suppose $p<q$. Then $j=2 p$ solves the inequalities

$$
\begin{array}{ll}
p \leq j<N, & p \leq j+b-N<N \\
p \leq j-p<N, & 0 \leq j+b-p-N<p
\end{array}
$$

Let $i$ be an index such that $f_{k}(i)=j$. Then the previous inequalities give $w_{i}^{(k)} w_{i+1}^{(k)}=11$ and $w_{i}^{(\bar{k})} w_{i+1}^{(\bar{k})}=10$, which is in a contradiction with $w^{(k)} \propto w^{(\bar{k})}$. Suppose $p>q$. Then $j=2 p-b-1$ solves the inequalities

$$
\begin{array}{ll}
0 \leq j<p, & 0 \leq j+b-N<p \\
p \leq j-p+N<N, & 0 \leq j+b-p<p
\end{array}
$$

Let $i$ be an index such that $f_{k}(i)=j$. Then the previous inequalities give $w_{i}^{(k)} w_{i+1}^{(k)}=01$ and $w_{i}^{(\bar{k})} w_{i+1}^{(\bar{k})}=00$, which is a contradiction with $w^{(k)} \propto w^{(\bar{k})}$.

Proof of Proposition 3.6. Let $S$ be a 2-interval exchange transformation with the slope $\varepsilon=p / N$. Let $k \in \mathbb{Z}$ and denote $w^{(k)}$ the word of the length $N=\|\mathbf{A}\|$ that codes the orbit of the point $\{k / N\}$ with respect to $S$. From [14] we know that for every Sturmian morphism $\varphi$ with $\mathbf{M}_{\varphi}=\mathbf{A}$, there exists $k \in\{0, \ldots, N-1\}$ such that $\varphi(01)=w^{(k)}$, we will denote this morphism $\varphi^{(k)}$.

Let $\varphi_{\text {std }}$ be a standard morphism with $\mathbf{M}_{\varphi_{\text {std }}}=\mathbf{A}$. Every Sturmian morphism $\varphi^{(k)}$ is a right conjugate to $\varphi_{\text {std }}$, which means that there exist words $v, v^{\prime} \in\{0,1\} *$ such that

$$
\varphi^{(k)}\left(a a^{\prime}\right)=v 01 v^{\prime} \quad \text { and } \quad \varphi^{(k)}\left(a^{\prime} a\right)=v 10 v^{\prime}
$$

where letters $a, a^{\prime}$ satisfy $a a^{\prime}=01$ for $\operatorname{det} \mathbf{A}=+1$ and $a a^{\prime}=10$ for $\operatorname{det} \mathbf{A}=-1$. This gives that $\varphi\left(a a^{\prime}\right)$ is 1 -amicable to $\varphi\left(a^{\prime} a\right)$.

Morphism $\varphi^{(k)}$ is $b$-amicable to $\varphi^{(\bar{k})}$ if and only if the following conditions are satisfied:

1. $\varphi^{(k)}(01)$ is $b$-amicable to $\varphi^{(\bar{k})}(10)$;
2. $\varphi^{(k)}(01)$ is amicable to $\varphi^{(\bar{k})}(01)$;
3. Parikh vectors satisfy $\Psi\left(\varphi^{(k)}(0)\right)=\Psi\left(\varphi^{(\bar{k})}(0)\right)$.

The 2nd and 3rd conditions assures that $\varphi^{(k)}(0) \propto \varphi^{(\bar{k})}(0)$ and $\varphi^{(k)}(1) \propto \varphi^{(\bar{k})}(1)$. Let us discuss the cases $\operatorname{det} \mathbf{A}=+1$ and $\operatorname{det} \mathbf{A}=-1$.

- Case $\operatorname{det} \mathbf{A}=+1$. We know that $\varphi^{(k)}(01)$ is 1 -amicable to $\varphi^{(k)}(10)$, implying by Lemma 3.7 that $\varphi^{(k)}(10)=w^{(k+1)}$. This excludes $k=N-1$.
The 3rd condition is immediately satisfied by $\mathbf{M}_{\varphi^{(k)}}=\mathbf{M}_{\varphi^{(\bar{k})}}$. To satisfy the 1 st condition, we need $(\bar{k}+1)-k=b$. To satisfy the 2nd condition, we need $0 \leq \bar{k}-k \leq \min \{p, q\}$. These facts gives $0 \leq k \leq \bar{k} \leq N-2$ and $1 \leq b \leq$ $\min \{p, q\}$, because the value $b=\min \{p, q\}+1$ is denied by Lemma 3.7. For each admissible $b$, we have exactly $N-b$ pairs of indices $(k, \bar{k})$.
- Case $\operatorname{det} \mathbf{A}=-1$. We know that $\varphi^{(k)}(10)$ is 1-amicable to $\varphi^{(k)}(01)$, implying by Lemma 3.7 that $\varphi^{(k)}(10)=w^{(k-1)}$. This excludes $k=0$.
The 3rd condition is immediately satisfied by $\mathbf{M}_{\varphi^{(k)}}=\mathbf{M}_{\varphi^{(\bar{k})}}$. To satisfy the 1 st condition, we need $(\bar{k}-1)-k=b$. To satisfy the 2 nd condition, we need $0 \leq \bar{k}-k \leq \min \{p, q\}$. These facts gives $1 \leq k \leq \bar{k} \leq N-1$ and $0 \leq b \leq$ $\min \{p, q\}-1$, because the value $b=-1$ is denied by Lemma 3.7. For each admissible $b$, we have exactly $N-b-2$ pairs of indices $(k, \bar{k})$.

Remark 3.8. The proof shows an interesting fact: suppose that

$$
\begin{equation*}
\text { the word } \varphi^{(k)}(01) \text { is }(b-\Delta) \text {-amicable to } \varphi^{(\bar{k})}(01) \tag{3.3}
\end{equation*}
$$

and $c_{\mathbf{A}}(b) \neq 0$. Then the morphism $\varphi^{(k)}$ is $b$-amicable to $\varphi^{(\bar{k})}$. The reason is as follows: In the proof we considered all pairs of $(k, \bar{k})$ and to satisfy (3.3) there is no other choice but $\bar{k}-k=b-\Delta$. The condition $c_{\mathbf{A}}(b) \neq 0$ is what we needed in the proof to show that $\varphi^{(k)}(01)$ is $b$-amicable to $\varphi^{(\bar{k})}(10)$. Thus the conditions 1 , 2 from the proof are true; the condition 3 is straightforward.

Proof of Theorem 1.1. The formula (1.1) can be obtained by summation of numbers $c_{\mathbf{A}}(b)$ from the previous proposition.

To each pair of amicable Sturmian morphisms, an incidence matrix of its ternarization is assigned. We now fully describe which matrices from $\mathbb{N}^{3 \times 3}$ are matrices of ternarizations.
Theorem 3.9. A matrix $\mathbf{B} \in \mathbb{N}^{3 \times 3}$ is the incidence matrix of the ternarization of a pair of amicable Sturmian morphisms if and only if there exists a matrix $\mathbf{A}=\left(\begin{array}{cc}p_{0} & q_{0} \\ p_{1} & q_{1}\end{array}\right) \in \mathbb{N}^{2 \times 2}$ with $\operatorname{det} \mathbf{A}=\Delta= \pm 1$ and numbers $b_{0}, b_{1} \in \mathbb{N}$ such that
(a) $\left|\frac{b_{0}\left(p_{1}+q_{1}\right)-b_{1}\left(p_{0}+q_{0}\right)}{p_{0}+q_{0}+p_{1}+q_{1}}\right|<1$;
(b) $\frac{1-\Delta}{2} \leq b_{0}+b_{1} \leq \min \left\{p_{0}+p_{1}, q_{0}+q_{1}\right\}-\frac{\Delta+1}{2}$;
(c) $\mathbf{B}=\mathbf{P}\left(\begin{array}{cc}\mathbf{A} & b_{0} \\ 0 & 0\end{array} b_{1}\right) \mathbf{P}^{-1}$, where $\mathbf{P}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right)$.

Proof of the implication $(\Rightarrow)$. Let us denote $p=p_{0}+p_{1}, q=q_{0}+q_{1}, N=p+q$ and $b=b_{0}+b_{1}+\Delta$. Then we can see that condition (c) gives

$$
\mathbf{B}=\left(\begin{array}{ccc}
p_{0}-b_{0} & b_{0} & q_{0}-b_{0}  \tag{3.4}\\
p-b & b & q-b \\
p_{1}-b_{1} & b_{1} & q_{1}-b_{1}
\end{array}\right)
$$

The fact that (c) is necessary for $\mathbf{B}$ to be an incidence matrix of a ternarization is shown in [1], Remark 13. Condition (b) is necessary according to Proposition 3.6, so we only need to show that (a) is satisfied for the matrix of the ternarization $\eta=\operatorname{ter}(\varphi, \psi)$ of a pair of amicable Sturmian morphisms $\varphi \propto \psi$.

We can see that $\mathbf{A}=\left(\begin{array}{c}p_{0} q_{0} \\ p_{1} \\ q_{1}\end{array}\right)$ is necessarily an incidence matrix of both $\varphi$ and $\psi$. Let $S$ be a 2 -interval exchange transformation with a rational slope $\varepsilon=$ $p / N$. Then there exist numbers $k, \bar{k} \in\{0, \ldots, N-2\}$ such that $\varphi(01), \psi(01)$ code transformation $S$ with start points $x_{0}=k / N, \bar{x}_{0}=\bar{k} / N$, respectively; moreover, $\bar{k}-k=b-\Delta$. We need to determine the value of $b_{0}=|\operatorname{ter}(\varphi(0), \psi(0))|_{B}$. The number $b_{0}$ is equal to the number of indices $i \in\left\{0,1, \ldots, p_{0}+q_{0}-1\right\}$ such that $S^{i} x_{0} \in[(p-b+\Delta) / N, p / N)$, because for exactly these $i$, we have $S^{i} x_{0}<p / N \leq$ $S^{i} \bar{x}_{0}$.

Let $X=\left\{\left\{x_{0}-i p / N\right\} \mid i \in \mathbb{N}, 0 \leq i<p_{0}+q_{0}\right\}$. Put $p^{\prime}=p+\Delta /\left(p_{0}+q_{0}\right)$, and let $Y=\left\{\left\{x_{0}-i p^{\prime} / N\right\} \mid i \in \mathbb{N}, 0 \leq i<p_{0}+q_{0}\right\}$. We can see that $0 \leq$ $\Delta\left(\left(x_{0}-i p / N\right)-\left(x_{0}-i p^{\prime} / N\right)\right)=i /\left(p_{0}+q_{0}\right) N<1 / N$. Thus $x_{0}-i p / N \in\left[\frac{p-b+\Delta}{N}, \frac{p}{N}\right)$ if and only if

$$
x_{0}-i p^{\prime} / N \in \begin{cases}\left(\frac{p-b}{N}, \frac{p-1}{N}\right] & \text { in the case } \Delta=+1  \tag{3.5}\\ {\left[\frac{p-b-1}{N}, \frac{p}{N}\right)} & \text { in the case } \Delta=-1\end{cases}
$$

In both cases, the length of the interval is $\frac{b-\Delta}{N}$. From $\Delta=\operatorname{det} \mathbf{A}=\operatorname{det}\left(\begin{array}{c}p_{0} \\ p\end{array} \underset{N}{p_{0}+q_{0}}\right)$, it is easy to see that

$$
\frac{p^{\prime}}{N}=\frac{p+\Delta /\left(p_{0}+q_{0}\right)}{N}=\frac{p}{N}+\frac{p_{0} N-p\left(p_{0}+q_{0}\right)}{N\left(p_{0}+q_{0}\right)}=\frac{p_{0}}{p_{0}+q_{0}}
$$

Because $p_{0}$ is co-prime to $p_{0}+q_{0}$, we get $\left\{\left\{i p_{0} /\left(p_{0}+q_{0}\right)\right\} \mid i \in \mathbb{N}, 0 \leq i<p_{0}+q_{0}\right\}=$ $\left\{i /\left(p_{0}+q_{0}\right) \mid i \in \mathbb{N}, 0 \leq i<p_{0}+q_{0}\right\}$. But this means that the set $Y$ is uniformly distributed on the interval $[0,1)$, therefore

$$
b_{0}=\#\left(X \cap\left[\frac{p-b+\Delta}{N}, \frac{p}{N}\right)\right) \in\{\lfloor\beta\rfloor,\lceil\beta\rceil\},
$$

where $\beta=\left(p_{0}+q_{0}\right) \frac{b-\Delta}{N}$ is number of elements of $Y$ multiplied by the length of the interval (3.5). Together we get

$$
\begin{equation*}
\left|\beta-b_{0}\right|<1, \tag{3.6}
\end{equation*}
$$

which is equivalent to condition (a).
The proof of the other implication is divided into several lemmas.
Lemma 3.10. Let $\mathbf{A}=\left(\begin{array}{cc}p_{0} & q_{0} \\ p_{1} & q_{1}\end{array}\right) \in \mathbb{N}^{2 \times 2}$ with $\operatorname{det} \mathbf{A}=\Delta= \pm 1$, let $b \in \mathbb{N}$ with $\frac{1+\Delta}{2} \leq b \leq \min \left\{p_{0}+p_{1}, q_{0}+q_{1}\right\}-\frac{1-\Delta}{2}$.

Denote $N=\|\mathbf{A}\|, p=p_{0}+p_{1}$ and $q=q_{0}+q_{1}$ integers, $I=\left[\frac{p-b+\Delta}{N}, \frac{p}{N}\right)$ an interval, $X_{k}=\left\{\{k / N\}, S\{k / N\}, S^{2}\{k / N\}, \ldots, S^{p_{0}+q_{0}-1}\{k / N\}\right\}$ a set of numbers for any $k \in \mathbb{Z}$, where $S$ is the 2-interval exchange with the slope $\varepsilon=p / N$, and denote $\beta=\frac{p_{0}+q_{0}}{N}(b-\Delta)$.

Then for all $b_{0} \in\{\lfloor\beta\rfloor,\lceil\beta\rceil\}$ such that

$$
\begin{equation*}
b_{0} \leq \min \left\{p_{0}, q_{0}\right\} \quad \text { and } \quad b-\Delta-b_{0} \leq \min \left\{p_{1}, q_{1}\right\}, \tag{3.7}
\end{equation*}
$$

there exist $k^{\prime}, k^{\prime \prime} \in\{0, \ldots, N-1\}, k^{\prime} \neq k^{\prime \prime}$ such that

$$
\begin{equation*}
\#\left(X_{k^{\prime}} \cap I\right)=\#\left(X_{k^{\prime \prime}} \cap I\right)=b_{0} \tag{3.8}
\end{equation*}
$$

Proof. Denote $r(k)=\#\left(X_{k} \cap I\right)$ for $k \in \mathbb{Z}$. We can see that $\sum_{k=0}^{N-1} r(k)=(b-$ $\Delta)\left(p_{0}+q_{0}\right)$. According to (3.6), we know that $r(k) \in\{\lfloor\beta\rfloor,\lceil\beta\rceil\}$ for all $k \in \mathbb{Z}$. Let

$$
\begin{aligned}
& C_{L}=\#\{k \in\{0, \ldots, N-1\} \mid r(k)=\lfloor\beta\rfloor\}, \\
& C_{U}=\#\{k \in\{0, \ldots, N-1\} \mid r(k)=\lceil\beta\rceil\} .
\end{aligned}
$$

These numbers satisfy the equations

$$
\begin{align*}
C_{L}\lfloor\beta\rfloor+C_{U}\lceil\beta\rceil & =N \beta \\
\text { and } \quad C_{L}+C_{U} & =N . \tag{3.9}
\end{align*}
$$

If $C_{L}=0$ or $C_{U}=0$, necessarily $\beta \in \mathbb{N}$ and (3.8) is satisfied for all $k \in \mathbb{Z}$.
If $C_{L} \geq 2$, we have two different $k \in \mathbb{Z}$ satisfying (3.8) for $b_{0}=\lfloor\beta\rfloor$. Similarly if $C_{U} \geq 2$, we have two different $k \in \mathbb{Z}$ satisfying (3.8) for $b_{0}=\lceil\beta\rceil$.

We will show that $C_{L}=1$ implies $\lfloor\beta\rfloor$ not to satisfy the condition (3.7), and similarly for $C_{U}$ and $\lceil\beta\rceil$.

If $C_{U}$ and $C_{L}$ are non-zero then there is a unique solution

$$
C_{L}=N\{-\beta\} \quad \text { and } \quad C_{U}=N\{\beta\} .
$$

Using relation $p_{0} N-\left(p_{0}+p_{1}\right)\left(p_{0}+q_{0}\right)=\Delta$, we get

$$
\begin{align*}
C_{U} & \equiv\left(p_{0}+q_{0}\right)(b-\Delta) \quad(\bmod N) \\
b-\Delta & \equiv-\Delta\left(p_{0}+p_{1}\right) C_{U} \quad(\bmod N) \tag{3.10}
\end{align*}
$$

Let us suppose $C_{U}=1$ or $C_{L}=1$, i.e. $C_{U} \equiv \pm 1(\bmod N)$ due to (3.9). Then (3.9) and (3.10) lead to $b=\left(p_{0}+p_{1}\right)+\Delta$ or $b=\left(q_{0}+q_{1}\right)+\Delta$. For $\Delta=+1$, this is in contradiction with the conditions. For $\Delta=-1$, discuss the following two cases.

- Case $b=\left(p_{0}+p_{1}\right)+\Delta$. This happens when $C_{U}=1$. But it means that $b_{0}=\lceil\beta\rceil$ is equal to $\left\lceil\frac{p_{0} N-\Delta}{N}\right\rceil=p_{0}+1$ and this case is excluded by the condition (3.7).
- Case $b=\left(q_{0}+q_{1}\right)+\Delta$. This happens when $C_{L}=1$. But it means that $b_{0}=\lfloor\beta\rfloor$ is equal to $q_{0}-1$ hence $b-\Delta-b_{0}=q_{1}+1$, which is excluded by (3.7).

Lemma 3.11. Let us have the same hypothesis as in Lemma 3.10.
Define morphisms $\varphi_{k}$ for $k \in \mathbb{Z}$ in the following way:

- the word $\varphi_{k}(0)$ codes $\{k / N\}, S\{k / N\}, \ldots, S^{p_{0}+q_{0}-1}\{k / N\}$;
- the word $\varphi_{k}(1)$ codes $S^{p_{0}+q_{0}}\{k / N\}, \ldots, S^{N-1}\{k / N\}$.

Let $k_{0} \in \mathbb{Z}$ be such integer that $\#\left(X_{k_{0}} \cap I\right)=\#\left(X_{k_{0}-p} \cap I\right)$. Then

$$
\varphi_{k_{0}} \propto \varphi_{k_{0}+b-\Delta} \quad \text { or } \quad \varphi_{k_{0}-p} \propto \varphi_{k_{0}-p+b-\Delta}
$$

and the number of $B$ 's in the ternarization of the images of the letter 0 is $\#\left(X_{k_{0}} \cap I\right)$.

Proof. Let $k \in \mathbb{Z}$ and let us consider the orbit

$$
\begin{equation*}
\{k / N\}, S\{k / N\}, \ldots, S^{p_{0}+q_{0}-1}\{k / N\} . \tag{3.11}
\end{equation*}
$$

Let $t^{(k)}$ be a word of the length $p_{0}+q_{0}$ that codes (3.11) to the alphabet $\left\{0,0^{\prime}, 1,1^{\prime}\right\}$ with the following code:

$$
t_{i}^{(k)}= \begin{cases}0 & \text { if } S^{i}\{k / N\} \in\left[0, \frac{p-b+\Delta}{N}\right)  \tag{3.12}\\ 0^{\prime} & \text { if } S^{i}\{k / N\} \in\left[\frac{p-b+\Delta}{N}, \frac{p}{N}\right)=I \\ 1 & \text { if } S^{i}\{k / N\} \in\left[\frac{p}{N}, \frac{N-b+\Delta}{N}\right) \\ 1^{\prime} & \text { if } S^{i}\{k / N\} \in\left[\frac{N-b+\Delta}{N}, 1\right)\end{cases}
$$

From definition of $S$, we see that $t_{i}^{(k)}=0^{\prime} \Leftrightarrow t_{i+1}^{(k)}=1^{\prime}$. Define two morphisms $\tau, \tau^{\prime}:\left\{0,0^{\prime}, 1,1^{\prime}\right\}^{*} \rightarrow\{0,1\}^{*}$ as

$$
\begin{array}{rlrlrl}
\tau(0) & =0, & \tau\left(0^{\prime}\right) & =0, & & \tau(1)=1, \\
\tau^{\prime}(0) & =0, & \tau^{\prime}\left(0^{\prime}\right)=1, & & \tau\left(1^{\prime}\right)=1, \\
\tau^{\prime}(1)=1, & & \tau\left(1^{\prime}\right)=0 .
\end{array}
$$

If $t^{(k)}$ does not start with $1^{\prime}$ and does not end with $0^{\prime}$, then the word $\varphi_{k}(0)=$ $\tau\left(t^{(k)}\right)$ is $\left|t^{(k)}\right|_{0^{\prime}}$-amicable to $\tau^{\prime}\left(t^{(k)}\right)=\varphi_{k+b-\Delta}(0)$. Moreover, $\left|t^{(k)}\right|_{0^{\prime}}=\#\left(X_{k} \cap I\right)$. To show this, notice that $S\left\{k_{0} / N\right\}=\left\{\left(k_{0}-p\right) / N\right\}$, which means that there exist letters $a, a^{\prime} \in\left\{0,0^{\prime}, 1,1^{\prime}\right\}$ such that $t^{\left(k_{0}\right)} a=a^{\prime} t^{\left(k_{0}-p\right)}$ and $a=0^{\prime} \Leftrightarrow a^{\prime}=0^{\prime}$, because the numbers of letters $0^{\prime}$ in the words $t^{\left(k_{0}\right)}$ and $t^{\left(k_{0}-p\right)}$ coincide.

Consider these two cases:

- If $a=0^{\prime}$ then the last letter of $t^{\left(k_{0}\right)}$ is not $0^{\prime}$ since this implies $a^{\prime}=1^{\prime}$. This yields $\varphi_{k}(0) \propto \varphi_{k+b-\Delta}(0)$ for $k=k_{0}$.
- If $a \neq 0^{\prime}$ then $t^{\left(k_{0}-p\right)}$ does not start with $1^{\prime}$ and does not end with $0^{\prime}$. This yields $\varphi_{k}(0) \propto \varphi_{k+b-\Delta}(0)$ for $k=k_{0}-p$.
Similar reasoning leads to the amicability of the images of the letter 1. Thus by concatenation $\varphi_{k}(01) \propto \varphi_{k+b-\Delta}(01)$. The condition on $b$ is the same as in Proposition 3.6, hence Remark 3.8 applies.
Lemma 3.12. Let us have the same hypothesis as in Lemma 3.10.
Let $k_{0} \in \mathbb{Z}$ be a number such that if $\Delta=-1$ and $b=\min \{p, q\}-1$ then

$$
k_{0} \not \equiv\left\{\begin{array}{rll}
-1 & (\bmod N) & \text { in the case } p>q,  \tag{3.13}\\
p-b-1 & (\bmod N) & \text { in the case } p<q .
\end{array}\right.
$$

Then

$$
\#\left(X_{k_{0}} \cap I\right)=\#\left(X_{k_{0}+p} \cap I\right) \quad \text { or } \quad \#\left(X_{k_{0}} \cap I\right)=\#\left(X_{k_{0}-p} \cap I\right)
$$

Proof. Define the words $t^{(k)}$ by (3.12) in the same way as in the previous proof. Denote $\ell=p_{0}+q_{0}$. Then we know that there exist letters $a_{0}, \ldots, a_{\ell+1} \in\left\{0,0^{\prime}, 1,1^{\prime}\right\}$ such that

$$
\begin{aligned}
t^{\left(k_{0}+p\right)} & =a_{0} a_{1} a_{2} \ldots a_{\ell-1} \\
t^{\left(k_{0}\right)} & =a_{1} a_{2} \ldots a_{\ell-1} a_{\ell} \\
t^{\left(k_{0}-p\right)} & =a_{2} \ldots a_{\ell-1} a_{\ell} a_{\ell+1} .
\end{aligned}
$$

Let us remind that $\#\left(X_{k} \cap I\right)=\left|t^{(k)}\right|_{0^{\prime}}$. The proof will be done by contradiction. Suppose that $\left|t^{\left(k_{0}+p\right)}\right|_{0^{\prime}} \neq\left|t^{\left(k_{0}\right)}\right|_{0^{\prime}} \neq\left|t^{\left(k_{0}-p\right)}\right|_{0^{\prime}}$. There are only two possible values of these numbers, thus $\left|t^{\left(k_{0}+p\right)}\right|_{0^{\prime}}=\left|t^{\left(k_{0}-p\right)}\right|_{0^{\prime}}$. This together gives either $a_{0}=$ $a_{\ell+1}=0^{\prime}$ or $a_{1}=a_{\ell}=0^{\prime}$. It means that there exist $\xi \in I=\left[\frac{p-b+\Delta}{N}, \frac{p}{N}\right)$ and $\omega \in\{+1,-1\}$ such that $S^{\ell+\omega} \xi \in I$. Without the loss of generality $\xi \in \frac{1}{N} \mathbb{Z}$. Since $\ell p=p_{0} N-\Delta$, we have

$$
S^{\ell+\omega} \xi \equiv \xi-\frac{(\ell+\omega) p}{N} \equiv \xi+\frac{\Delta-\omega p}{N} \quad(\bmod 1)
$$

Because $\left|S^{\ell+\omega} \xi-\xi\right|<1$ we have

$$
\begin{aligned}
S^{\ell+\omega} \xi-\xi & =\frac{\Delta-\omega p}{N} \\
\text { or } \quad S^{\ell+\omega} \xi-\xi & =\frac{\Delta-\omega p}{N}+\omega=\frac{\Delta+\omega q}{N}
\end{aligned}
$$

since $1-p / N=q / N$. This enforces $b-1-\Delta \geq \min \{p, q\}-1$ for the interval $I$ to be large enough to contain both $\xi$ and $S^{\ell+\omega} \xi$.

For $\Delta=+1$, this is in contradiction with $b \leq \min \{p, q\}$.
For $\Delta=-1$ we get only one admissible $b=\min \{p, q\}-1$. The case $p=\min \{p, q\}$ means $\omega=-1$ and $\xi=\frac{p-b-1}{N}$, which implies $k_{0} \equiv p-b-1(\bmod N)$. The case $q=\min \{p, q\}$ means $\omega=+1$ and $\xi=\frac{p-1}{N}$, which implies $k_{0} \equiv-1(\bmod N)$. Both these cases are excluded by (3.13).

Proof of the implication $(\Leftarrow)$. From [1], Remark 13, the incidence matrix of the ternarization $\operatorname{ter}(\varphi, \psi)$ is fully described by the matrix $\mathbf{A}$ and numbers $b_{0}$ and $b=b_{0}+b_{1}+\Delta$. The condition (a) is equivalent to (3.6) and it gives at most two values of $b_{0}$. If $\beta \in \mathbb{N}$, there is nothing to do as we have at least one pair of $b$-amicable morphisms $\varphi \propto \psi$ for $\mathbf{A}$, and its incidence matrix satisfies all three conditions.

For $\beta \notin \mathbb{N}$, we want to show that for both $b_{0} \in\{\lfloor\beta\rfloor,\lceil\beta\rceil\}$ there exist $\varphi \propto \psi$ with $|\operatorname{ter}(\varphi(0), \psi(0))|_{B}=b_{0}$. Because the elements of the matrix $\mathbf{B}$ are nonnegative, the condition (3.7) of Lemma 3.10 is satisfied and we have two different $k^{\prime}, k^{\prime \prime}$. At least one of them satisfies (3.13). Lemma 3.12 then provides $k_{0}$ satisfying the conditions of Lemma 3.11 that gives a pair of amicable Sturmian morphisms, ternarization of which has the incidence matrix $\mathbf{B}$.

## 4. Conclusions and open problems

Matrices of 3iet-preserving morphisms were studied in [1]. The authors give a necessary condition on $\mathbf{B} \in \mathbb{N}^{3 \times 3}$ to be an incidence matrix of a 3iet-preserving morphism:

$$
\mathbf{B E B}^{\boldsymbol{\top}}= \pm \mathbf{E}, \quad \text { where } \quad \mathbf{E}=\left(\begin{array}{rrr}
0 & 1 & 1 \\
-1 & 0 & 1 \\
-1 & -1 & 0
\end{array}\right) .
$$

However, this condition is not sufficient. In our contribution, we study 3ietpreserving morphisms $\eta=\operatorname{ter}(\varphi, \psi)$ arising from pairs of amicable Sturmian morphisms $\varphi \propto \psi$. Our Theorem 3.9 gives sufficient and necessary condition for any matrix $\mathbf{B} \in \mathbb{N}^{3 \times 3}$ to satisfy $\mathbf{B}=\mathbf{M}_{\eta}$ for some ternarization $\eta=\operatorname{ter}(\varphi, \psi)$.

It remains to answer the question about the role of the monoid

$$
\mathcal{M}_{\text {ter }}=\{\operatorname{ter}(\varphi, \psi) \mid \varphi, \psi \text { amicable morphisms }\}
$$

in the whole monoid $\mathcal{M}_{3 \text { iet }}$ of all 3iet-preserving morphisms. It seems that using similar proof as for Theorem 2.5 (see [2]) we can prove the following statement.

Corollary 4.1. Let $\eta \in \mathcal{M}_{3 \text { iet }}$. Then one of $\eta, \eta \circ \xi_{1}, \eta \circ \xi_{2}$ or $\eta \circ \xi_{1} \circ \xi_{2}$ is in $\mathcal{M}_{\text {ter }}$, where

$$
\begin{array}{lll}
\xi_{1}(A)=C, & \xi_{1}(B)=B, & \xi_{1}(C)=A \\
\xi_{2}(A)=B, & \xi_{2}(B)=A C A, & \xi_{2}(C)=A
\end{array}
$$

## References

[1] P. Ambrož, Z. Masáková and E. Pelantová, Matrices of 3-iet preserving morphisms. Theoret. Comput. Sci. 400 (2008) 113-136.
[2] P. Ambrož, Z. Masáková and E. Pelantová, Morphisms fixing words associated with exchange of three intervals. RAIRO - Theor. Inf. Appl. 44 (2010) 3-17.
[3] P. Ambrož, A.E. Frid, Z. Masáková and E. Pelantová, On the number of factors in codings of three interval exchange. Discrete Math. Theoret. Comput. Sci. 13 (2011) 51-66.
[4] P. Arnoux, V. Berthé, Z. Masáková and E. Pelantová, Sturm numbers and substitution invariance of 3iet words. Integers 8 (2008) A14, 17.
[5] J. Berstel, Recent results in Sturmian words, in Developments in language theory II. Magdeburg (1995). World Sci. Publ., River Edge, NJ (1996) 13-24.
[6] J. Berstel and P. Séébold, Morphismes de sturm. Bull. Belg. Math. Soc. 1 (1994) 175-189.
[7] J. Cassaigne, Sequences with grouped factors, in Developments in language theory III. Aristotle University of Thessaloniki, Greece (1998) 211-222.
[8] E.M. Coven and G.A. Hedlund, Sequences with minimal block growth. Math. Syst. Theor. 7 (1973) 138-153.
[9] S. Ferenczi, C. Holton and L.Q. Zamboni, Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories. J. Anal. Math. 89 (2003) 239-276.
[10] L. Háková, Morphisms on generalized sturmian words. Master's thesis, Czech Technical University in Prague (2008).
[11] A.B. Katok and A.M. Stepin, Approximations in ergodic theory. Uspehi Mat. Nauk 22 (1967) 81-106.
[12] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge 90 (2002).
[13] M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42.
[14] P. Séébold, On the conjugation of standard morphisms. Theoret. Comput. Sci. 195 (1998) 91-109.

Communicated by G. Richomme.
Received November 2, 2010. Accepted February 3, 2012.


[^0]:    Keywords and phrases. Interval exchange, three interval exchange, amicable Sturmian morphisms, incidence matrix of morphism.

    * We acknowledge financial support by the Czech Science Foundation grant 201/09/0584 and by the grants MSM6840770039 and LC06002 of the Ministry of Education, Youth, and Sports of the Czech Republic. We also thank the CTU student grant SGS10/085/OHK4/1T/14 and SGS11/162/OHK4/3T/14.
    ** We would like to thank the organizers of the conference $13^{\text {ièmes }}$ Journées Montoises d'Informatique Théorique for a financial support of the author's stay at the conference.
    ${ }^{1}$ Department of Mathematics FNSPE, Czech Technical University in Prague, Trojanova 13, 12000 Prague, Czech Republic. tohecz@gmail.com

