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ON THE JOINT 2-ADIC COMPLEXITY OF BINARY
MULTISEQUENCES ∗

Lu Zhao
1

and Qiao-Yan Wen
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Abstract. Joint 2-adic complexity is a new important index of the
cryptographic security for multisequences. In this paper, we extend the
usual Fourier transform to the case of multisequences and derive an
upper bound for the joint 2-adic complexity. Furthermore, for the mul-
tisequences with pn-period, we discuss the relation between sequences
and their Fourier coefficients. Based on the relation, we determine a
lower bound for the number of multisequences with given joint 2-adic
complexity.
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1. Introduction

Many modern stream ciphers combine the output of several linear feedback shift
registers (LFSR) in various nonlinear fashions. Since 1955, a large amount of effort
has been spent on other feedback architectures to generate nonlinear sequences. In
1994, Klapper and Goresky [5] introduced a new feedback shift register with carry
operation, called feedback with carry shift register (FCSR). Some basic properties
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of sequences generated by an FCSR were also discussed, which showed FCSR
sequences share many important properties with linear recurring sequences.

2-adic complexity, as one of the properties of FCSR sequences, was proposed
by Klapper and Goresky [5]. It is used to measure how large an FCSR is required
to output the sequence. As with the linear complexity, a large 2-adic complexity
should be possessed for binary periodic sequences to thwart an attack by the ratio-
nal approximation algorithm (an analog of the Berlakamp-Massey algorithm) [5].
However, since 2-adic complexity and linear complexity represent two different se-
quence generating architectures, sequences with high linear complexity may have
low 2-adic complexity, and vice versa [9]. Thus, the 2-adic complexity is an im-
portant index of the cryptographic security for sequences used in cryptosystems.

The complexity of multisequences is required in the theory of word-based stream
ciphers which has aroused people’s interest of study in recent years. A lot of re-
search has been on the linear complexity of multisequences [2,7,8], but not much on
the 2-adic complexity. Hu and Feng proposed the concept of joint 2-adic complex-
ity [4], then they obtained the form of the joint 2-adic complexity of multisequence
with period L and the number of multisequences with given joint 2-adic complexity,
where L is positive and the canonical factorization of 2L − 1 is known. However,
the factoring of 2L − 1 is very difficult when L is large. So, to avoid factoring
large integers, it is necessary to look for another method to study the joint 2-adic
complexity of such multisequences.

The usual (complex) Fourier transform is a useful tool to investigate the prop-
erties of complexity measures for sequences [3, 6]. In this paper, we extend the
relationship between the 2-adic complexity of an L-periodic binary sequence and
the usual (complex) Fourier transform of L-tuples to the case of multisequences,
where L is odd. Using the usual Fourier transform, we give the form of the upper
bound for joint 2-adic complexity of any L-periodic multisequence with the canon-
ical factorization of L, which is much easier to obtain than that of 2L − 1. For the
case of L = pn, (p prime, p > 2), we also determine a lower bound for the number
of multisequences with given joint 2-adic complexity. Our results may be helpful
to further study and design stream cipher generation.

2. Preliminaries

An FCSR (Fig. 1) is determined by r coefficients q1, q2, . . . , qr, where qi ∈
{0, 1}, i = 1, 2, . . . , r, and an initial memory mr−1. The contents of the register at
any given time consist of r bits, denotes (an−1, an−2, . . . , an−r+1, an−r) and the
memory is mn−1. The operation of the shift register is defined as follows:

(1) form the integer sum σn =
∑r

k=1 qkan−k + mn−1;
(2) shift the contents one step to the right, while outputting the rightmost bit

an−r;
(3) put an ≡ σn mod 2 into the leftmost cell of the shift register;
(4) replace the memory integer mn−1 with σn−an

2 .
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div 2 mod 2

mn−1 an−1 ... an−r+1 an−r

q1 qr−1 qr

∑

Figure 1. Feedback with carry shift register.

The integer q = −1 + q12 + q222 + . . . + qr2r is called the connection integer of
the FCSR.

Any infinite binary sequence S = {ai}∞i=0 can be presented by a formal power
series α =

∑∞
i=0 ai2i called a 2-adic number. Such power series forms the ring of

2-adic numbers, denoted as Z2. If S is strictly periodic with minimal period L,
then α =

∑∞
i=0 ai2i = −

∑L−1
i=0 ai2

i

2L−1 = − p
q , where 0 ≤ p ≤ q. If gcd(p, q) = 1,− p

q is
called the reduced rational expression of S.

Definition 2.1 ([5]). Let S be a periodic binary sequence with reduced rational
expression − p

q , then the 2-adic complexity λ2(S) is the real number log2 q.
Consider m periodic sequences S1, S2, . . . , Sm. Let Si = {ai,0, ai,1, . . .} be a

periodic binary sequence with period L, and the reduced rational expression of Si

be − pi

qi
, where 1 ≤ i ≤ m. Then q = lcm(q1, q2, . . . , qm) is the smallest integer

such that there exists an FCSR with connection integer q which can generate
S1, S2, . . . , Sm simultaneously, where lcm denotes the least common multiple.

Definition 2.2 ([4]). log2 lcm(q1, q2, . . . , qm) is called the joint 2-adic complexity
of the m sequences S1, S2, . . . , Sm, and is denoted by λ2(S1, S2, . . . , Sm).

Definition 2.3. For k = 0, 1, . . . , L − 1, gcd(L, 2) = 1, the kth Fourier co-
efficient of the m L-tuples S1, S2, . . . , Sm is âk = (â1,k, â2,k, . . . , âm,k), where
âi,k =

∑L−1
j=0 ai,jζ

kj , 0 ≤ k ≤ L − 1, 1 ≤ i ≤ m, and ζ ∈ C is a complex primitive
Lth root of unity.

The set of Fourier coefficients {â0, â1, . . . , âL−1} is the usual Fourier transform
of S1, S2, . . . , Sm. We denote by σ(S1, S2, . . . , Sm) the number of nonzero Fourier
coefficients of S1, S2, . . . , Sm, that is σ(S1, S2, . . . , Sm) = |{âk �= 0, 0 ≤ k ≤ L−1}|,
where 0 = (0, 0, . . . , 0).

For any 1 ≤ i ≤ m, let SL
i = {ai,0, ai,1, . . . , ai,L−1}, AL

i = {âi,0, âi,1, . . . , âi,L−1}.
If SL

i and AL
i are written as row vectors, then we can describe the usual Fourier
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transform of Si in matrix form by AL
i = SL

i T , where

T =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ζ ζ2 . . . ζL−1

1 ζ2 ζ4 . . . ζ2(L−1)

...
...

... . . .
...

1 ζL−1 ζ2(L−1) . . . ζ(L−1)2

⎞
⎟⎟⎟⎟⎟⎠ .

Evidently, the matrix T is nonsingular, so the usual Fourier transform of
S1, S2, . . . , Sm is a bijection.

Let Q denote the field of rational numbers, the splitting field of xL − 1 over Q

is called a cyclotomic field extension and denoted by Q(ζ).

Definition 2.4 ([1]). The Lth cyclotomic polynomial is defined to be that poly-
nomial whose roots are exactly the primitive Lth roots of unity, denoted by ΦL(x).

Obviously, the degree of ΦL(x) is ϕ(L), where ϕ(·) is the Euler function.

Lemma 2.5 ([1]). ΦL(x) is irreducible over the rationals.

Lemma 2.6 ([1]). Let F be a field, n an integer and η a primitive nth root of unity.
If Φn(x) is irreducible over F, then F(η) is a vector space over F of dimension ϕ(n),
and {1, η, η2, . . . , ηϕ(n)−1} is a basis.

Corollary 2.7. {1, ζ, ζ2, . . . , ζϕ(L)−1} is a basis of Q(ζ) over Q.

3. The upper bound for joint 2-adic complexity

of multisequences

In this section, we introduce the usual Fourier transform of binary multise-
quences, and then by using it, we derive the form of an upper bound for joint
2-adic complexity of multisequences with period L, where gcd(L, 2) = 1.

Let SL
i (x) =

∑L−1
j=0 ai,jx

j = ui(x)fi(x), xL − 1 = ui(x)gi(x) and
gcd(fi(x), gi(x)) = 1, where 1 ≤ i ≤ m. Put g(x) = lcm(g1(x), g2(x), . . . , gm(x)).
Note that fi(2) and gi(2) are not always relatively prime even if gcd(fi(x), gi(x)) =
1. Then q ≤ g(2), that is λ2(S1, S2, . . . , Sm) ≤ log2(g(2)).

Lemma 3.1. deg(g(x)) = σ(S1, S2, . . . , Sm).

Proof. For all k, 0 ≤ k ≤ L − 1, âk �= 0, then there exists an i, 1 ≤ i ≤ m, such
that âi,k �= 0, that is SL

i (ζk) �= 0. Hence ui(ζk) �= 0, that is gi(ζk) = 0. So
g(ζk) = 0. Conversely, if g(ζk) = 0, then there also exists an i, 1 ≤ i ≤ m, such
that gi(ζk) = 0. Because xL − 1 has no multiple roots, we have ui(ζk) �= 0. Hence
SL

i (ζk) �= 0, that is âi,k �= 0. So âk �= 0. In a word, for all k, 0 ≤ k ≤ L− 1, âk �= 0



ON THE JOINT 2-ADIC COMPLEXITY OF BINARY MULTISEQUENCES 405

if and only if g(ζk) = 0. On the other hand, g(x) has deg(g(x)) complex roots and
all are of the form ζk. Hence deg(g(x)) = σ(S1, S2, . . . , Sm). �

Since g(x) divides xL − 1, let g(x) =
∏t

j=1 Φnj (x), where nj |L. Let n be a
positive integer and let m =

∏
p|n p = s(n) denote the largest square-free integer

dividing n. For any positive integer n, the Moebius function is defined by:

ν(n) =
{

(−1)k, if n is square-free and has k distinct positive prime factors,
0, otherwise.

Lemma 3.2 ([3]). Fix a positive square-free integer m ≥ 1. Then∑
s(n)=m

log2

(
Φn(2)
2ϕ(n)

)
= −ν(m)

and all terms in the sum have the same sign.

Similar to the reduction of Theorem II.2 in [3], we derive an upper bound for
the joint 2-adic complexity of multisequences with period L.

Theorem 3.3. Let S1, S2, . . . , Sm be m binary sequences with period L, where
gcd(L, 2) = 1. Then the 2-adic complexity λ2(S1, S2, . . . , Sm) is bounded as follows:

λ2(S1, S2, . . . , Sm) < σ(S1, S2, . . . , Sm) + 2ω(L)−1

where ω(L) denotes the number of distinct positive prime divisions of L.

Proof. We have log2 (g (2)) =
t∑

j=1

log2

(
Φnj (2)

)
=

t∑
j=1

(
ϕ (nj) + log2

(
Φnj

(2)

2ϕ(nj)

))
=

deg (g (x)) +
t∑

j=1

log2

(
Φnj

(2)

2ϕ(nj)

)
. Let O = {nj|s (nj) = mj and ν (mj) = −1}.

Then log2 (g (2)) ≤ deg (g (x)) +
∑

mj∈O

log2

(
Φnj

(2)

2ϕ(nj)

)
, from Lemma 2.2, we have

log2 (g (2)) < deg (g (x)) + 2ω(L)−1, that is log2 (g (2)) < σ (S1, S2, . . . , Sm) +
2ω(L)−1. �

Next we obtain a simpler form of the upper bound in Theorem 3.3. From the
definition of Fourier coefficient, we have âi,t = SL

i (ζt). Consider SL
i (x) as a poly-

nomial whose coefficients belong to Q.

Lemma 3.4. Let 0 ≤ t1, t2 < L, for gcd(t1, L) = gcd(t2, L), then ât1 = 0 if and
only if ât2 = 0, where 0 = (0, 0, . . . , 0).

Proof. For any i, 1 ≤ i ≤ m, we have âi,t1 = SL
i (ζt1 ) and âi,t2 = SL

i (ζt2). Let
gcd(t1, L) = gcd(t2, L) = d, then ζt1 and ζt2 are both primitive L

d th roots of
unity. From Lemma 2.5, ΦL

d
(x) is irreducible over Q. Hence ζt1 and ζt2 are Galois

conjugates and have the same minimal polynomial. Let q(x) be the minimal poly-
nomial of ζt1 and ζt2 over Q. Then SL

i (ζt1) = 0 if and only if q(x) | SL
i (x) if and
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only if SL
i (ζt2) = 0, that is âi,t1 = 0 if and only if âi,t2 = 0. So ât1 = 0 if and only

if ât2 = 0. �

Let Cj = {t| gcd(t, L) = j, 0 ≤ t < L}, h be an integer. Let {j1, j2, . . . , jh} be the
set of positive divisors of L. The Cj1 ∪Cj2 ∪ . . .∪Cjh

= {0, 1, . . . , L−1} and these
sets are pairwise disjoint. Let |Cji | = lji , 1 ≤ i ≤ h. We choose any h numbers from
{0, 1, . . . , L − 1},denoted by tj1 , tj2 , . . . , tjh

, which satisfy gcd(tji , L) = ji, that is
tji ∈ Cji , 1 ≤ i ≤ h. From Lemma 3.4, we know that â0, â1, . . . , âL−1 are not
independent, and σ(S1, S2, . . . , Sm) =

∑
âtji

�=0,1≤i≤h lji . So the upper bound for
joint 2-adic complexity of S1, S2, . . . , Sm can be written as a linear combination of
the cardinalities of Cj1 , Cj2 , . . . , Cjh

, exactly as described in the following theorem.

Theorem 3.5. Let S1, S2, . . . , Sm be m L-tuples binary sequences, where
gcd(L, 2) = 1. Put Cji = {t| gcd(t, L) = ji, 0 ≤ t < L}, 1 ≤ i ≤ h, and |Cji | = lji .
Then the joint 2-adic complexity λ2(S1, S2, . . . , Sm) is bounded as follows:

λ2(S1, S2, . . . , Sm) <

h∑
i=1

μilji + 2ω(L)−1, μi ∈ {0, 1},

where ω(L) denotes the number of distinct positive prime divisors of L.

Remark 3.6. We keep the above notation, in Theorem 3.5,

μi =
{

1, âtji
�= 0, tji ∈ Cji

0, âtji
= 0, tji ∈ Cji

, 0 ≤ tji < L, 1 ≤ i ≤ h.

The above theorem shows that the upper bound of joint 2-adic complexity is
determined by h vectors âtji

, 1 ≤ i ≤ h, one vector corresponding to each Cji .

4. The upper bound for joint 2-adic complexity

and counting function of pn
-periodic binary

multisequences

In this section, we study the joint 2-adic complexity of multisequences with
period pn, where p is a prime and p > 2. A sufficient and necessary condi-
tion for zero Fourier coefficient is firstly given out, and with the condition, we
derive a lower bound for the number of pn-periodic multisequences with given
joint 2-adic complexity. Define NL,σ(c) and NL,λ2(c

′) to be the number of m
L-tuples S1, S2, . . . , Sm with σ(S1, S2, . . . , Sm) = c and λ2(S1, S2, . . . , Sm) = c′,
respectively.
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Theorem 4.1. Let L = pn, p is a prime and p > 2, for any t with gcd(t, L) =
pn−d, 0 < t < L, 0 < d ≤ n, ât = 0 if and only if

∑pn−d−1
l=0 (ai,lpd+(k−1)pd−1+j−

ai,(l+1)pd−pd−1+j) = 0, for all 1 ≤ i ≤ m, 0 ≤ j ≤ pd−1 − 1, 1 ≤ k ≤ p − 1. Also
â0 = 0 if and only if (ai,0, ai,1, . . . , ai,L−1) = (0, 0, . . . , 0), 1 ≤ i ≤ m.

Proof. Since gcd(t, L) = pn−d, 0 < d ≤ n, it follows that ζt is a pdth primitive
root of unity. From Lemmas 2.5 and 2.6, we have {1, ζt, ζ2t, . . . , ζ(pd−pd−1−1)t} is
a basis of Q(ζt). Let

Spn

i (x) = ai,0 + ai,1x + . . . + ai,pn−1x
pn−1

=
pn−d−1∑

l=0

xlpd

(ai,lpd + ai,lpd+1x + . . . + ai,lpd+(pd−1)x
pd−1).

Since Φpd(x) = 1+xpd−1
+x2pd−1

+ . . .+x(p−1)pd−1
, we have xlpd ≡ 1 mod Φpd(x)

and

ai,lpd + ai,lpd+1x + . . . + ai,lpd+(pd−1)x
pd−1

≡
pd−1−1∑

j=0

p−1∑
k=1

(ai,lpd+(k−1)pd−1+j − ai,(l+1)pd−pd−1+j)x
(k−1)pd−1+j mod Φpd(x),

then

Spn

i (x) mod Φpd(x)

≡
pd−1−1∑

j=0

p−1∑
k=1

⎡
⎣pn−d−1∑

l=0

(
ai,lpd+(k−1)pd−1+j − ai,(l+1)pd−pd−1+j

)⎤⎦x(k−1)pd−1+j .

So, for each 1 ≤ i ≤ m, Spn

i (ζt) = 0 if and only if for all 0 ≤ j ≤ pd−1 − 1 and

1 ≤ k ≤ p − 1, we have
pn−d−1∑

l=0

(ai,lpd+(k−1)pd−1+j − ai,(l+1)pd−pd−1+j) = 0.

For ai,j ∈ {0, 1}, 1 ≤ i ≤ m, 0 ≤ j < L, then â0 = 0 if and only if

âi,0 =
L−1∑
j=0

ai,j = 0, 1 ≤ i ≤ m if and only if ai,j = 0. So â0 = 0 if and only

if (ai,0, ai,1, . . . , ai,L−1) = (0, 0, . . . , 0), 1 ≤ i ≤ m. �

From the proof of Theorem 4.1, we have â0 = 0 if and only if
σ(S1, S2, . . . , Sm) = 0.

Lemma 4.2. If Cpd = {t| gcd(t, pn) = pd, 0 < t < pn}, 0 ≤ d < n, then |Cpd | =
pn−d − pn−d−1. Also, |Cpn | = 1.

Hence, for m pn-tuples, σ(S1, S2, . . . , Sm) = 0 or 1 +
∑

d∈A(pn−d −
pn−d−1), where A ⊂ {0, 1, . . . , n − 1}. For 1 < u ≤ n − 1, we have∑u−1

i=1 (pi − pi−1) = pu− 1 − 1 < pu − pu−1. Thus, the representation of each
possible σ(S1, S2, . . . , Sm) as a partial sum of |Cpd |, (0 ≤ d ≤ n) is unique.
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Let O = {0, 1, . . . , n−1}. If σ(S1, S2, . . . , Sm) =
∑

d∈A(pn−d−pn−d−1)+1 = c,
where A ⊂ O. Then L − σ(S1, S2, . . . , Sm) =

∑
d∈O\A(pn−d − pn−d−1). We have

{
âpn−d �= 0, d ∈ A
âpn−d = 0, d ∈ O \ A.

With the above analysis, we establish a lower bound for Npn,λ2(c′). For 0 < d ≤ n,
let

Apn−d =

⎧⎨
⎩(S1, S2, . . . , Sm) |Si = (ai,0, ai,1, . . . , ai,L−1) ∈ {0, 1}L,

pn−d−1∑
l=0

(ai,lpd+(k−1)pd−1+j − ai,(l+1)pd−pd−1+j) = 0,

1 ≤ i ≤ m, 0 ≤ j ≤ pd−1 − 1, 1 ≤ k ≤ p − 1

⎫⎬
⎭ ,

Apn = {(S1, S2, . . . , Sm)|Si = (0, 0, . . . , 0), 1 ≤ i ≤ m} .

Theorem 4.3. Let c′ be an integer, c = min{∑d∈A(pn−d − pn−d−1) +
1|∑d∈A(pn−d − pn−d−1) + 1 ≥ c′ − 1,A ⊂ O}, then Npn,λ2(c′) ≥ Npn,σ(c).

Proof. Obviously, | Apn−d |≤| Āpn−d |, where Āpn−d denotes the complementary
set of Apn−d . So, if c1 ≥ c2, then Npn,σ(c1) ≥ Npn,σ(c2). From Theorem 3.3,
λ2(S1, S2, . . . , Sm) < σ(S1, S2, . . . , Sm) + 2ω(pn)−1, λ2(S1, S2, . . . , Sm) = c′, then
σ(S1, S2, . . . , Sm) > c′ − 1, so σ(S1, S2, . . . , Sm) ≥ c. Hence we have Npn,λ2(c′) ≥
Npn,σ(c). �

In the following, we obtain the value of Npn,σ(c). From Theorem 3.5, Npn,σ(c) =
|⋂d∈O\A Apn−d

⋂
d∈A Āpn−d |. Firstly, we calculate |A

p
n−dj1

⋂
A

p
n−dj2

⋂
. . .⋂

Apn−dje
|, where n ≥ dj1 > dj2 > . . . > dje ≥ 1. If (S1, S2, . . . , Sm) ∈ Apn−dj1 ,

then for any i, 1 ≤ i ≤ m, and j, 0 ≤ j ≤ pdj1−1 − 1, we have

p
n−dj1−1∑

l=0

a
i,lp

dj1 +j
=

p
n−dj1 −1∑

l=0

a
i,lp

dj1 +p
dj1−1

+j

= . . . =
p

n−dj1−1∑
l=0

a
i,lp

dj1 +(p−1)p
dj1−1−p

dj1−1
+j

=
p

n−dj1 −1∑
l=0

a
i,(l+1)p

dj1 −p
dj1−1

+j
.
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Similarly, if (S1, S2, . . . , Sm) ∈ Apn−djr , 2 ≤ r ≤ e, then for any i, 1 ≤ i ≤ m, and
j, 0 ≤ j ≤ pdjr−1 − 1, we have

pn−djr −1∑
l=0

ai,lpdjr +j = . . . =
pn−djr −1∑

l=0

ai,(l+1)pdjr −pdjr
−1+j. (4.1)

Obviously, for i, 1 ≤ i ≤ m, and j, 0 ≤ j ≤ pdjr−1 − 1,

pn−djr −1∑
l=0

ai,lpdjr +j =

⎛
⎝p

n−dj1 −1∑
l=0

a
i,lp

dj1 +j
+

p
n−dj1 −1∑

l=0

a
i,lp

dj1 +p
dj1−1

+j
+ . . .

+
p

n−dj1 −1∑
l=0

a
i,lp

dj1 +(p−1)p
dj1−1

+j

⎞
⎠

+

⎛
⎝p

n−dj1−1∑
l=0

a
i,lp

dj1 +pdjr +j
+

p
n−dj1 −1∑

l=0

a
i,lp

dj1 +pdjr +p
dj1−1

+j
+ . . .

+
p

n−dj1 −1∑
l=0

a
i,lp

dj1 +pdjr +(p−1)p
dj1−1

+j

⎞
⎠+ . . .

+

⎛
⎝p

n−dj1−1∑
l=0

a
i,lp

dj1 +
(

p
dj1−djr

−1−1
)

pdjr +j

+
p

n−dj1 −1∑
l=0

a
i,lp

dj1 +
(

p
dj1−djr

−1−1
)

pdjr p
dj1−1

+j
. . .

+
p

n−dj1−1∑
l=0

a
i,lp

dj1 +
(

p
dj1−djr

−1−1
)

pdjr +(p−1)p
dj1−1

+j

⎞
⎠ ,

. . .

pn−djr −1∑
l=0

ai,lpdjr +pdjr
−1+j

=

⎛
⎝p

n−dj1 −1∑
l=0

a
i,lp

dj1 +pdjr
−1+j

+ . . . +
p

n−dj1−1∑
l=0

a
i,lp

dj1 +pdjr
−1+(p−1)p

dj1−1
+j

⎞
⎠

+ . . .

+

⎛
⎝p

n−dj1−1∑
l=0

a
i,lp

dj1 +pdjr
−1+
(

p
dj1−djr

−1−1
)

pdjr +j
+ . . .

+
p

n−dj1 −1∑
l=0

a
i,lp

dj1 +pdjr
−1+
(

p
dj1−djr

−1−1
)

pdjr +(p−1)p
dj1−1

+j

⎞
⎠ .
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For any i, 1 ≤ i ≤ m, and k, 1 ≤ k ≤ p, let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
n−dj1 −1∑

l=0

a
i,lp

dj1 +(k−1)p
dj1−1 = ki,1

p
n−dj1 −1∑

l=0

a
i,lp

dj1 +(k−1)p
dj1−1

+pdje
−1 = ki,2

...
p

n−dj1 −1∑
l=0

a
i,lp

dj1 +kp
dj1−1−pdje

−1 = k
i,p

dj1−dje
.

From equation (4.1), if (S1, S2, . . . , Sm) ∈ Apn−dj1

⋂
Apn−djr , then ki,1, ki,2, . . . ,

k
i,p

dj1−dje
should satisfy:

p
dj1−djr

−1−1∑
l=0

ki,lpdjr
−dje

+1+s =
p

dj1−djr
−1−1∑

l=0

ki,lpdjr
−dje

+1+pdjr
−dje +s

= . . .

=
p

dj1−djr
−1−1∑

l=0

ki,lpdjr
−dje

+1+(p−1)pdjr
−dje +s,

where 1 ≤ s ≤ pdjr−dje .
We denote the above set of equations as B(dj1 , djr ). Let N be the number

of (ki,1, ki,2, . . . , ki,p
dj1−dje

) which satisfies equations B(dj1 , dj2), . . . , B(dj1 , dje)
simultaneously, where 1 ≤ i ≤ m. From the above analysis, we know
|A

p
n−dj1

⋂
. . .
⋂

Apn−dje
| = Npdje

−1
. So

∣∣∣Ap
n−dj1

⋂
. . .
⋂

Apn−dje

∣∣∣ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
B(dj1 ,dj2),...,B(dj1 ,dje ),

0≤ki,t≤p
n−dj1 ,1≤i≤m,

1≤t≤p
dj1−dje

p
dj1−dje∏

t=1

[(
pn−dj1

ki,t

)]p
⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

pdje
−1

.

(4.2)
In particular, |A

p
n−dj1

⋂
A

p
n−dj2

⋂
. . .
⋂

Apn | = 1. Then according to the
Inclusion-Exclusion Principle,

Npn,σ(c) =

∣∣∣∣∣∣
⋂

d∈O\A
Apn−d

∣∣∣∣∣∣−
∑
s∈A

∣∣∣∣∣∣
⋂

d∈O\A
Apn−d

⋂
Apn−s

∣∣∣∣∣∣+
∑

s,t∈A

∣∣∣∣∣∣
⋂

d∈O\A
Apn−d

⋂

Apn−s

⋂
Apn−t

∣∣∣∣∣∣− . . . + (−1)|A|
∣∣∣∣∣
⋂

d∈O
Apn−d

∣∣∣∣∣ .
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Example 4.4. Let L = 32, m = 2. We have C1 = {1, 2, 4, 5, 7, 8}, C3 =
{3, 6}, C9 = {0}. Then σ(S1, S2) is the form 6μ1 + 2μ2 + 1 or 0, where μ1, μ2 ∈
{0, 1}. If σ(S1, S2) = 7 = 1 + 6, and â3 = â6 = 0, â1 �= 0, â2 �= 0, â4 �= 0, â5 �=
0, â7 �= 0, â8 �= 0. Let

A1 = {(S1, S2)|Si = (ai,0, ai,1, . . . , ai,8) ∈ {0, 1}9,

ai,0 = ai,3 = ai,6, ai,1 = ai,4 = ai,7, ai,2 = ai,5 = ai,8,

1 ≤ i ≤ 2},
A3 = {(S1, S2)|Si = (ai,0, ai,1, . . . , ai,8) ∈ {0, 1}9,

ai,0 + ai,3 + ai,6 = ai,1 + ai,4 + ai,7 = ai,2 + ai,5 + ai,8,

1 ≤ i ≤ 2},
A9 = {(S1, S2)|Si = (0, 0, . . . , 0), 1 ≤ i ≤ 2}.

From Theorem 4.1, we have N9,σ(7) = |A3 ∩ Ā1 ∩ Ā9|. Obviously, |A3| =[
3∑

t=0

((
3
t

))3
]2

= 3136, |A3 ∩ A9| = 1, |A1 ∩ A3 ∩ A9| = 1. In the following

we calculate |A1 ∩ A3|. Let⎧⎪⎪⎨
⎪⎪⎩

ai,0 = ai,3 = ai,6 = ki,1

ai,1 = ai,4 = ai,7 = ki,2

ai,2 = ai,5 = ai,8 = ki,3.

, 1 ≤ i ≤ 2

If (S1, S2) ∈ A3, then ki,1 = ki,2 = ki,3. So

|A1 ∩ A3| =
∑

ki,1=ki,2=ki,3,
1≤i≤2,

0≤ki,1,ki,2,ki,3≤1

3∏
t=1

[(
1

ki,t

)]3
= 22 = 4.

Hence |A3 ∩ Ā1 ∩ Ā9| = |A3| − (|A1 ∩ A3| + |A3 ∩ A9|) + |A1 ∩ A3 ∩ A9| = 3132,
that is N9,σ(7) = 3132.

5. Conclusion

In this paper, we extend the usual Fourier transformation to the case of multise-
quences. Firstly, we define the Fourier coefficients of multisequences. By analyzing
properties of Fourier coefficients, these coefficients can be divided into certain sets.
Then an upper bound for joint 2-adic complexity can be written as a linear com-
bination of the cardinalities of these sets. Focusing on binary multisequences with
pn-period, we obtain a sufficient and necessary condition for the Fourier coefficient
to be zero. Based on the condition, we determine a lower bound for the number of
sequences with given joint 2-adic complexity. In this correspondence, our analysis
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is based on the canonical factorization of the period L of a sequence, which is
simpler than that of 2L − 1.
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