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ON BIAUTOMATA ∗

Ondřej Kĺıma
1

and Libor Polák
1

Abstract. We initiate the theory and applications of biautomata.
A biautomaton can read a word alternately from the left and from the
right. We assign to each regular language L its canonical biautomaton.
This structure plays, among all biautomata recognizing the language
L, the same role as the minimal deterministic automaton has among
all deterministic automata recognizing the language L. We expect that
from the graph structure of this automaton one could decide the mem-
bership of a given language for certain significant classes of languages.
We present the first two results of this kind: namely, a language L
is piecewise testable if and only if the canonical biautomaton of L is
acyclic. From this result Simon’s famous characterization of piecewise
testable languages easily follows. The second class of languages char-
acterizable by the graph structure of their biautomata are prefix-suffix
testable languages.
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1. Introduction

Regular languages are recognized, among others, by deterministic automata.
A regular language L possesses, up to isomorphism, a unique minimal complete
deterministic automaton. There is a construction due to Brzozowski [1] where the
states are constructed as left derivatives (sometimes also called left quotients) of L.
A useful property of this canonical automaton is that each state q is a language
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Czech Republic. polak@math.muni.cz

Article published by EDP Sciences c© EDP Sciences 2012

http://dx.doi.org/10.1051/ita/2012014
http://www.rairo-ita.org
http://www.edpsciences.org


574 O. KLÍMA AND L. POLÁK

and it is exactly the set of all words transforming q into a terminal state. A similar
view concerning the states was also applied in the theory of universal automata,
see Lombardy and Sakarovitch [5] and Polák [8]. Namely, the states of the univer-
sal automaton are exactly the finite intersections of left derivatives. This led the
authors to consider the so-called meet automata [3]. In this setting the universal
automaton of a language L can be viewed as the canonical meet automaton for L.
The algebraic approach uses other structures for a language L, namely the syn-
tactic monoid and the syntactic semiring of L. It is well-known that the syntactic
monoid is isomorphic to the transformation monoid of the minimal automaton
of L. Similarly, the syntactic semiring of L is isomorphic to the transformation
semiring of the canonical meet automaton.

One of the major goals in regular language theory is to determine whether
a given language is a member of certain significant classes of languages. All the
above mentioned structures turned out to be appropriate tools for answering such
kind of problems. In this paper we introduce a new structure, called a biautomaton,
and we claim that this structure can also clarify some aspects of these questions.
Notice that the term “biautomaton” was used by other authors having different
meanings. Moreover, our notion is not related to two-way automata.

Motivated by Brzozowski’s construction, we consider two-sided derivatives of L,
to get the states of a new type of automaton. Now each letter determines two inde-
pendent actions on states, namely the derivative from the left and the derivative
from the right. In such a way, we get the so-called canonical biautomaton and
a natural generalization leads to an abstract notion of biautomata. The canonical
biautomaton of the language L plays, among all biautomata recognizing L, the
same role as the minimal deterministic automaton has among all deterministic
automata recognizing L.

As the first application of the theory of biautomata we give an effective char-
acterization of piecewise testable languages via their canonical biautomata. The
class of piecewise testable languages is a prominent one in the algebraic theory of
regular languages. Simon [9,10] showed that a language is piecewise testable if and
only if its syntactic monoid is J -trivial. This characterization is based on one of
Green’s relations, a basic concept of semigroup theory. Similar classes of monoids
related to other of Green’s relations are classes of R-trivial monoids and L-trivial
monoids, two classes which are right-left dual. It is well-known that a finite monoid
is J -trivial if and only if it is simultaneously R-trivial and L-trivial. Apart from
the combinatorial characterization of regular languages having R-trivial syntactic
monoids, it is known that these languages are those which have acyclic minimal
automata (see Sect. 4.3 in [6] for more details). From this point of view, a lan-
guage L is piecewise testable if and only if both the minimal automaton of L
and the minimal automaton of L (the left-right dual of the language of L) are
acyclic. Since both these automata can be found in the canonical biautomaton of
L, this leads us to the claim that the canonical biautomaton of a piecewise testable
language is acyclic as well. We show that this is true and that also the opposite
implication is valid.
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Theorem 1.1. Let L ⊆ A∗ be a regular language. Then L is piecewise testable if
and only if the canonical biautomaton of L is acyclic.

It is possible to complete the previous arguments into a proof of the theorem as
a consequence of known results. Instead of such a proof we show in Section 4 an
elementary, direct proof of the theorem. On few pages we give a complete proof
which is self-contained. This could demonstrate that there is a certain potential
for finding further applications of biautomata in the algebraic theory of regular
languages.

Another quite significant type of languages are the so-called prefix-suffix testable
languages. We obtain here the following characterization. (Notice that a state is
absorbing if it is a fixed point for all actions).

Theorem 1.2. Let L ⊆ A∗ be a regular language and let CL be its canonical
biautomaton with the set of states Q and the actions · and ◦. Then L is prefix-
suffix testable if and only if CL satisfies the following condition

(for each q ∈ Q, u, v ∈ A+) q · u = q ◦ v = q implies that q is absorbing. (†)
After this introductory section we collect necessary definitions and notation

in Section 2. The next section is an introduction to the theory of biautomata.
Section 4 characterizes piecewise testable languages in terms of their canonical
biautomata. We also derive here the original theorem of Simon from our results.
The final section is devoted to a characterization of prefix-suffix testable languages.

2. Preliminaries

We fix a finite non-empty alphabet A consisting of letters. Let A∗ be the free
monoid over A with the neutral element λ, i.e. A∗ is the set of all words over A
equipped with the operation of concatenation. For u = a1a2 . . . an ∈ A∗ where
n is a positive integer and a1, a2, . . . , an ∈ A, we write u = an . . . a2a1, |u| = n
and c(u) = {a1, . . . , an}, i.e. the set of all letters occurring in u. Moreover, we put
λ = λ, |λ| = 0 and c(λ) = ∅. Also, for L ⊆ A∗, we write L = { u | u ∈ L } and
Lc = A∗ \ L.

A complete deterministic finite automaton over the alphabet A is a five-tuple
A = (Q, A, ·, i, T ) where

• Q is a nonempty set of states;
• · : Q × A → Q, extended to · : Q × A∗ → Q by q · λ = q, q · (ua) = (q · u) · a,

where q ∈ Q, u ∈ A∗, a ∈ A;
• i ∈ Q is the initial state;
• T ⊆ Q is the set of terminal states.

The automaton A accepts the word u ∈ A∗ if i ·u ∈ T . The right language L (A, q)
of a state q ∈ Q with respect to the automaton A is the set {w ∈ A∗ | q ·w ∈ T }.
The language recognized by A is the set L (A) = L (A, i) of all words accepted
by A.
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For a language L ⊆ A∗ and u ∈ A∗, we define u−1L = {w ∈ A∗ | uw ∈ L }.
Moreover, we put DL = { u−1L | u ∈ A∗ }. This set is finite for each regular
language L. Further, let DL = (DL, A, ·, L, TL), where q · a = a−1q, for each
q ∈ DL, a ∈ A, and TL = { q ∈ DL | λ ∈ q }. This automaton is called the
canonical automaton for L and it is well-known that it is a minimal complete
deterministic automaton for L – see [1].

For a language L ⊆ A∗, we define the relation ≡L on A∗ as follows: for u, v ∈ A∗

we have

u ≡L v if and only if ( ∀ p, r ∈ A∗ ) ( pur ∈ L ⇐⇒ pvr ∈ L ).

The relation ≡L is a congruence on A∗; it is called the syntactic congruence of
L and the quotient structure M(L) = A∗/≡L = { [u]≡L | u ∈ A∗ } is called
the syntactic monoid of L. Moreover, the monoid M(L) is finite whenever L is a
regular language. The natural mapping ηL : A∗ → M(L) given by ηL(u) = [u]≡L is
called the syntactic homomorphism. The language L is a union of certain classes
of the partition A∗/≡L. If we denote F = ηL(L) the set of these classes, then
L = { u ∈ A∗ | ηL(u) ∈ F }. When L is fixed, we will write simply M and [u]
instead of M(L) and [u]≡L .

In a monoid N , the elements a and b are J -related if NaN = NbN . The monoid
N is J -trivial if for each pair of J -related elements a, b ∈ N , we have a = b. We
often denote the neutral element of N by 1.

3. Biautomata

In this section we initiate a general theory of biautomata. We define this new
structure, we introduce the acceptance condition, we consider congruences and
quotient biautomata, We present several possible constructions of biautomata for
a given language, their minimalization and we equip them with a graph structure.

3.1. General definition, congruences, quotient biautomaton,

isomorphism

Definition 3.1. A biautomaton over a finite non-empty alphabet A is a six-tuple
B = (Q, A, ·, ◦, i, T ) where
• Q is a nonempty set of states;
• · : Q × A → Q, extended to · : Q × A∗ → Q by q · λ = q, q · (ua) = (q · u) · a,

where q ∈ Q, u ∈ A∗, a ∈ A;
• ◦ : Q×A → Q, extended to ◦ : Q×A∗ → Q by q ◦λ = q, q ◦ (av) = (q ◦ v) ◦ a,

where q ∈ Q, v ∈ A∗, a ∈ A;
• i ∈ Q is the initial state;
• T ⊆ Q is the set of terminal states;
• for each q ∈ Q, a, b ∈ A, we have (q · a) ◦ b = (q ◦ b) · a;
• for each q ∈ Q, a ∈ A, we have q · a ∈ T if and only if q ◦ a ∈ T .

The last two conditions from the definition are generalized below.
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Lemma 3.2. Let B = (Q, A, ·, ◦, i, T ) be a biautomaton. Then

• for each q ∈ Q, u, v ∈ A∗, we have (q · u) ◦ v = (q ◦ v) · u,
• for each q ∈ Q, u ∈ A∗, we have q · u ∈ T if and only if q ◦ u ∈ T .

Proof. We use induction with respect to |u| + |v| to get the first statement. For
|u|, |v| ≤ 1, the statement is clear. Induction step: let a ∈ A, then

(q · au) ◦ v = ((q · a) · u) ◦ v = ((q · a) ◦ v) · u = ((q ◦ v) · a) · u = (q ◦ v) · au ,

(q · u) ◦ av = ((q · u) ◦ v) ◦ a = ((q ◦ v) · u) ◦ a = ((q ◦ v) ◦ a) · u = (q ◦ av) · u.

In the proof of the second statement use the first one and induction with respect
to |u|. �

In contrast to deterministic automata, where we can take a finite non-empty set
of states, choose the actions of letters, the initial and the terminal states arbitrarily,
the situation for biautomata is more delicate due to the last two conditions from
Definition 3.1.

The biautomaton B accepts a given word u ∈ A∗ if i · u ∈ T . This is equivalent
to i ◦ u ∈ T . In the definition of acceptance we read u from the left-hand side
and transform states according to ·, in the equivalent condition we read u from
the right-hand side and transform states according to ◦. Moreover, it allows us an
impatient reading as described below.

Lemma 3.3. Having a biautomaton B = (Q, A, ·, ◦, i, T ), p ∈ Q and u ∈ A+

dividing u = u1 . . . ukvk . . . v1 arbitrarily, where u1, . . . , uk, vk, . . . , v1 ∈ A∗, when
reading from p, the words u1 first, then v1, then u2, and so on, i.e. we move from
p to the state

q = ((. . . ((((p · u1) ◦ v1) · u2) ◦ v2) . . . ) · uk) ◦ vk ,

then q ∈ T if and only if p · u ∈ T .

Proof. Using the first part of Lemma 3.2 repeatedly, we get

q = (. . . ((((. . . ((p·u1)·u2) . . . )·uk)◦v1)◦v2) . . . )◦vk = (p·u1u2 . . . uk)◦vk . . . v2v1.

Now q ∈ T if and only if (p ·u1u2 . . . uk) · vk . . . v2v1 = p ·u ∈ T by the second part
of Lemma 3.2. �

Both lemmas will be used in what follows without explicit mentioning.
The right language L (B, q) of a state q with respect to the biautomaton B is the

set {w ∈ A∗ | q ·w ∈ T }. The language recognized by B is the set L (B) = L (B, i).
The state q ∈ Q of the biautomaton B is reachable if there exist u, v ∈ A∗ such
that q = (i · u) ◦ v.

A relation ∼ is a congruence relation of the biautomaton B = (Q, A, ·, ◦, i, T ) if

• ∼ is an equivalence relation on the set Q;
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• for each p, q ∈ Q, a ∈ A, the assumption p ∼ q implies that both p · a ∼ q · a
and p ◦ a ∼ q ◦ a;

• for each p ∈ T, q ∈ Q, the assumption p ∼ q yields q ∈ T .

We define the quotient biautomaton B/ ∼ = (Q/ ∼, A, ·∼, ◦∼, [i]∼, T/ ∼) where
([q]∼) ·∼ a = [q · a]∼ and ([q]∼) ◦∼ a = [q ◦ a]∼ (here [p]∼ = {r ∈ Q | r ∼ p}).
This structure is again a biautomaton. Moreover, it recognizes the same language
as B does.

Two biautomata B = (Q, A, ·, ◦, i, T ) and B′ = (Q′, A, ·′, ◦′, i′, T ′) are isomor-
phic if there exists a bijection ϕ : Q → Q′, called an isomorphism, such that

• for each q ∈ Q, a ∈ A, we have that ϕ(q ·a) = ϕ(q) ·′ a and ϕ(q ◦ a) = ϕ(q) ◦′ a;
• ϕ(i) = i′;
• for each q ∈ Q, we have that q ∈ T if and only if ϕ(q) ∈ T ′.

Clearly, isomorphic biautomata recognize the same languages.

3.2. Constructions of biautomata

The next construction shows how one can naturally convert a deterministic
automaton into a biautomaton recognizing the same language.

Given a complete deterministic automaton A = (Q, A, ·, i, T ), we define the
structure AB = (QB, A, ·B, ◦B, iB, T B), where

• QB = { (q, P ) | q ∈ Q, P ⊆ Q };
• for each q ∈ Q, P ⊆ Q, we have (q, P ) ·B a = (q · a, P );
• for each q ∈ Q, P ⊆ Q, we have (q, P ) ◦B a = ( q, { p ∈ Q | p · a ∈ P } );
• iB = (i, T );
• T B = { (q, P ) | q ∈ Q, P ⊆ Q, q ∈ P }.

Lemma 3.4. For each complete deterministic automaton A, the structure AB is
a biautomaton recognizing the same language as A does.

Proof. Let q ∈ Q, P ⊆ Q, u, v ∈ A∗. Then

(q, P ) ·B u = (q · u, P ) and (q, P ) ◦B u = ( q, { p ∈ Q | p · u ∈ P } ).

Each of the above states is terminal if and only if q · u ∈ P .
Moreover, ((q, P ) ·B u) ◦B v = ( q · u, { p ∈ Q | p · v ∈ P } ) = ((q, P ) ◦B v) ·B u

and therefore AB is a biautomaton.
Finally,

L (AB) = {w ∈ A∗ | (i, T ) ·B w ∈ T B } = {w ∈ A∗ | (i · w, T ) ∈ T B }
= {w ∈ A∗ | i · w ∈ T } = L (A). �

The biautomaton AB is called the reverse biautomaton of the automaton A.
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The following construction yields another model for a biautomaton accepting a
given regular language L ⊆ A∗. For v ∈ A∗, we define

Lv−1 = {w ∈ A∗ | wv ∈ L }, EL = {Lv−1 | v ∈ A∗ }, PL = DL × EL.

Now we define PL = (PL, A, ·, ◦, (L, L), T ), where

(s, t) ·a = (a−1s, t), (s, t)◦a = (s, ta−1), T = { (u−1L, Lv−1) | u, v ∈ A∗, uv ∈ L }.
Lemma 3.5. The above structure PL is a biautomaton isomorphic to the biau-
tomaton of all reachable states of (DL)B.

Proof. Recall the definition of the automaton DL from Section 2. In PL we have
((L, L) · u) ◦ v = (u−1L, Lv−1) and in (DL)B we have

((L, TL) · u) ◦ v = (u−1L, {w−1L | w−1L · v ∈ TL } )
= (u−1L, {w−1L | (wv)−1L ∈ TL })
= (u−1L, {w−1L | wv ∈ L } )
= (u−1L, {w−1L | w ∈ Lv−1 } ).

Let Q be the set of all reachable states in (DL)B. Denoting Sv = {w−1L | w ∈
Lv−1 } we see that Sv is fully determined by Lv−1. Thus the mapping α : PL → Q
given by (u−1L, Lv−1) → (u−1L, Sv ), u, v ∈ A∗, is correctly defined. We show
that β : Q → PL given by (u−1L, Sv ) → (u−1L, Lv−1), u, v ∈ A∗, is also correctly
defined. Indeed, let v, v′, w ∈ A∗ be such that Sv ⊆ Sv′ and w ∈ Lv−1. We will
show that w ∈ Lv′−1. Now w−1L ∈ Sv and hence w−1L ∈ Sv′ . Therefore there
exists w′ ∈ A∗ such that w−1L = w′−1L and w′ ∈ Lv′−1, i.e. w′v′ ∈ L. Hence
v′ ∈ w′−1L = w−1L and we obtain wv′ ∈ L from which w ∈ Lv′−1 follows. We can
interchange v and v′ to get the second inclusion in Lv−1 = Lv′−1. Clearly α and
β are mutually inverse bijections and α respects the actions of letters. One can
check that α maps the initial state onto the initial state and q ∈ PL is terminal if
and only if α(q) is terminal. �

The biautomaton PL is called the product biautomaton of the language L.

3.3. Canonical biautomaton

Now we present a construction analogous to Brzozowski’s procedure producing
the minimal deterministic automaton of a given regular language. Here we use
two-sided derivatives.

For a language L ⊆ A∗ and u, v ∈ A∗, we define

u−1Lv−1 = {w ∈ A∗ | uwv ∈ L }, CL = { u−1Lv−1 | u, v ∈ A∗ }.
We define CL = (CL, A, ·, ◦, L, T ), where

q · a = a−1q, q ◦ a = qa−1 and T = { u−1Lv−1 | λ ∈ u−1Lv−1 }.
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Lemma 3.6. For each regular language L over A, the structure CL is a biau-
tomaton. Moreover, for each state q, the right language L (CL, q) is equal to q. In
particular, the biautomaton CL recognizes the language L.

Proof. Let u, v, w ∈ A∗. Realize that each of the states u−1Lv−1·w and u−1Lv−1◦w
is terminal if and only if uwv ∈ L. Since the other defining conditions are trivially
satisfied the structure CL is a biautomaton. Furthermore, for q = u−1Lv−1 we
have

L (CL, q) = {w ∈ A∗ | u−1Lv−1 ·w ∈ T } = {w ∈ A∗ | uwv ∈ L } = u−1Lv−1. �

The biautomaton CL is called the canonical biautomaton of the language L.

Example 3.7. Let L = {a, b}∗ca{b, c}∗ be a language over the alphabet A =
{a, b, c}. In Figure 1, the “right” actions by letters are drawn by dashed arrows.
We omit here the empty set state and arrows leading there. The initial state i is
the language L and the terminal states are f1 = {a, b}∗, f2 = {b, c}∗ and f3 = {λ}.
The last two states are p = {a, b}∗c and q = a{b, c}∗. The reader could try to read
the word acab from the state i in various ways: i · acab, i ◦ acab or, for example,
((i · a) ◦ ab) · c.

3.4. Minimalization of biautomata

The minimalization procedure for biautomata is similar to that for deterministic
automata:

Lemma 3.8. Let B = (Q, A, ·, ◦, i, T ) be an arbitrary biautomaton where all states
are reachable. Then the relation ∼ defined on Q by

p ∼ q if and only if L (B, p) = L (B, q)

is a congruence relation on B. Moreover, the mapping

ϕ : [(i · u) ◦ v]∼ → u−1Lv−1

is an isomorphism of the quotient biautomaton B/∼ onto the canonical biautoma-
ton for the language L = L (B).

Proof. Let L = L (B). An arbitrary state p ∈ Q is of the form p = (i · u) ◦ v,
u, v ∈ A∗. Then

L (B, (i · u) ◦ v) = {w ∈ A∗ | ((i · u) ◦ v) · w ∈ T }
= {w ∈ A∗ | i · uwv ∈ T }
= {w ∈ A∗ | uwv ∈ L } = u−1Lv−1.

Thus for u, v, u′, v′ ∈ A∗, we have

p = (i · u) ◦ v ∼ q = (i · u′) ◦ v′ if and only if u−1Lv−1 = (u′)−1L(v′)−1.
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i p f1

q f3

f2

a c

a

c c

a

a, b

a, ba, ba, b

b, c

b, c

b, c

b, c

Figure 1. The canonical biautomaton of the language L =
{a, b}∗ca{b, c}∗.

Now, for each a ∈ A, we have p·a = ((i·u)·a)◦v = (i·ua)◦v and p◦a = (i·u)◦(av)
and similarly for q. Thus p ∼ q yields both p · a ∼ q · a and p ◦ a ∼ q ◦ a.

Furthermore, the following statements are equivalent:

(i · u) ◦ v ∈ T ; i · uv = (i · u) · v ∈ T ; uv ∈ L; λ ∈ u−1Lv−1.

Thus p ∈ T, p ∼ q implies q ∈ T .
The second part of our statement follows also from the considerations

above. �

A biautomaton B = (Q, A, ·, ◦, i, T ) is minimal for a language L if the congru-
ence ∼ from the previous lemma is the diagonal relation on Q. We saw that the
canonical biautomaton for L is minimal for L. Moreover each minimal biautomaton
for L is isomorphic to the canonical one.

3.5. From syntactic monoid to canonical biautomaton

Here we present another construction of the canonical biautomaton of L. We
will see its usefulness in applications.
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Keeping the notation from Section 2, notice that also every derivative u−1Lv−1

of L ⊆ A∗ is a union of classes of the partition A∗/≡L. Indeed,

u−1Lv−1 = {w ∈ A∗ | uwv ∈ L } = {w ∈ A∗ | [u][w][v] ∈ F }.

If we denote m = [u] and n = [v] then for the set m−1Fn−1 = { s ∈ M | msn ∈ F }
we have

u−1Lv−1 = {w ∈ A∗ | [u][w][v] ∈ F } = {w ∈ A∗ | [w] ∈ m−1Fn−1}. (∗)

These basic observations lead us to an alternative description of the canonical
biautomaton of the language L.

We denote BL = (BL, A, ·, ◦, i, T ) where

• BL = {m−1Fn−1 | m, n ∈ M};
• m−1Fn−1 · a = [a]−1(m−1Fn−1) = (m[a])−1Fn−1;
• m−1Fn−1 ◦ a = m−1F ([a]n)−1;
• i = F = 1−1F1−1;
• T = {m−1Fn−1 | 1 ∈ m−1Fn−1} = {m−1Fn−1 | mn ∈ F}.

Proposition 3.9. Let L be a regular language. Then BL is a minimal biautomaton
of the language L.

Proof. It can be easily checked that BL satisfies all conditions in the definition
of a biautomaton. To prove the minimality it is enough to formalize the idea
from the beginning of this subsection. Let ζ : CL → BL be a mapping given by
ζ(u−1Lv−1) = [u]−1F [v]−1. This definition is correct because [u]−1F [v]−1 = {[w] |
w ∈ u−1Lv−1} by (∗) and the value [u]−1F [v]−1 does not depend on the words
u and v but only on the set u−1Lv−1. Now one can easily prove that ζ is an
isomorphism from the canonical biautomaton CL to the biautomaton BL. �

Remark 3.10. The previous construction can be also modified to an arbitrary
surjective homomorphism ξ : A∗ → N , u → [u] of monoids, and a subset F ⊆
N recognizing the regular language L = { u ∈ A∗ | [u] ∈ F }. We define the
biautomaton Bξ = (Bξ, A, ·, ◦, i, T ), where

• Bξ = N × N ;
• for every a ∈ A and p, r ∈ N ; we set (p, r) · a = (p[a], r);
• similarly (p, r) ◦ a = (p, [a]r);
• i = ([λ], [λ]) = (1, 1);
• T = { (p, r) | pr ∈ F }.

Now one can check that Bξ is a biautomaton. Moreover, we see that the following
five conditions are equivalent

u ∈ L (Bξ); ([λ], [λ]) · u ∈ T ; ([u], [λ]) ∈ T ; [u] ∈ F ; u ∈ L.

Hence the constructed biautomaton Bξ recognizes L.
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3.6. Biautomata and graphs

Let G = (V, E) be an oriented graph, i.e. V is a finite non-empty set of vertices
and E ⊆ V ×V is a set of edges. A sequence (v0, v1, . . . , vn), n ≥ 2, vn = v0 �= v1,
of vertices, such that (v0, v1), . . . , (vn−1, vn) ∈ E, is a cycle in G. The graph V is
acyclic if it contains no cycles. Note that “loops” are allowed in an acyclic graph.

On the set V of vertices, we define the relation ≈ by p ≈ q if and only if there
is a path from p to q and also a path from q to p. Clearly, it is an equivalence
relation on the set V and the induced subgraphs on the classes of V/≈ are called
the strongly connected components (scc in short) of G.

We can also consider the quotient (oriented) graph G/≈ having the scc’s as
vertices and there is an edge between different scc’s S and S′ if and only if there
is an edge from p ∈ S to q ∈ S′. Note that such a graph is always acyclic and
contains no loops. For v ∈ V , we define the number m(v) as the maximal length
of a path in G/≈ starting in the scc containing v.

For each biautomaton B we can consider its (oriented) graph

G(B) = (Q, {(q, q · a) | q ∈ Q, a ∈ A} ∪ {(q, q ◦ a) | q ∈ Q, a ∈ A})

having left edges (q, q · a) and right edges (q, q ◦ a) (in case q · a = q ◦ b the edge
(q, q ·a) is both left and right). Left (resp. right) corresponds here to reading from
left (resp. right). A biautomaton B is acyclic if its graph G(B) is. Furthermore, for
a biautomaton B with initial state i, we define the number m(B) as m(i) in the
graph G(B).

4. Biautomata for piecewise testable languages

4.1. Proof of Theorem 1.1

A regular language L over an alphabet A is called piecewise testable if it is
a Boolean combination of languages of the form A∗a1A

∗a2A
∗ . . . A∗a�A

∗, where
a1, . . . , a� ∈ A, 	 ≥ 0. An effective characterization of piecewise testable languages
was given by Simon [9, 10] who proved that a language L is piecewise testable if
and only if its syntactic monoid is J -trivial. Here we give an alternative effective
characterization of piecewise testable languages via biautomata.

For words u, v ∈ A∗, we write u 
 v if and only if u is a subword of v, i.e. there
are letters a1, . . . , a� ∈ A and words v0, v1, . . . , v� ∈ A∗ such that u = a1 . . . a� and
v = v0a1v1 . . . a�v�. For v ∈ A∗, we denote Subk(v) = { u ∈ A+ | u 
 v, |u| ≤ k }.
We define the equivalence relation ∼k on A∗ by the rule: u ∼k v if and only
if Subk(u) = Subk(v). Note that for k = 1, the set Subk(v) is equal to c(u).
Further, for a given word u ∈ A∗, we denote by Lu the language of all words which
contain the word u as a subword, i.e. Lu = { v ∈ A∗ | u 
 v }. If u = a1a2 . . . a�,
where a1, a2, . . . , a� ∈ A, then we can write Lu = A∗a1A

∗a2A
∗ . . . A∗a�A

∗. An
easy consequence of the definition of piecewise testable languages is the following
lemma. The proof can be found e.g. in [4,9]. In fact the proof is so easy that many
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authors skip it and even in some papers the condition from the lemma is taken as
a definition condition for piecewise testable languages.

Lemma 4.1. A language L is piecewise testable if and only if there exists an index
k such that L is a union of classes in the partition A∗/∼k.

Our goal is to prove Theorem 1.1, i.e. the characterization that the piecewise
testable languages are exactly the languages with acyclic canonical biautomata.

Example 4.2 (continuation of 3.7). The biautomaton in Figure 1 is acyclic and
therefore, by Theorem 1.1, the language L is piecewise testable. In fact,

L = A∗cA∗aA∗ ∩ (A∗cA∗aA∗aA∗)c ∩ (A∗cA∗cA∗aA∗)c ∩ (A∗cA∗bA∗aA∗)c.

We need first some auxiliary statements.

Lemma 4.3. Let B be an acyclic biautomaton and let ∼ be a congruence relation
on B. Then the quotient automaton B/∼ is acyclic.

Proof. Let ([q0]∼, [q1]∼, . . . , [qn]∼) be a cycle in G(B/∼) with [q0]∼, . . . , [qn−1]∼
pairwise different. We have n ≥ 2, qn ∼ q0 �∼ q1, and we can choose (possibly
other representatives of the above classes of ∼) q1, . . . , qn and a1, . . . , an ∈ A such
that q0 ∗1 a1 = q1, q1 ∗2 a2 = q2, . . . , qn−1 ∗n an = qn where each ∗i is · or ◦. We
can continue qn ∗1 a1 = qn+1, . . . , q2n−1 ∗n an = q2n, q2n ∗1 a1 = q2n+1, . . . . Notice
that qi ∼ qj if and only if i and j are congruent modulo n, in particular qi �∼ qi+1

and consequently qi �= qi+1 for all i ≥ 0. Since B is finite there are i < j such that
qi = qj .

Hence we have a cycle in G(B) starting at qi. �
Lemma 4.4. Let L be a piecewise testable language over an alphabet A. Then the
canonical biautomaton CL = (CL, A, ·, ◦, L, T ) of L is acyclic.

Proof. Since every piecewise testable language over the alphabet A is a Boolean
combination of languages Lu, it is enough to prove the following:

Claim 4.5. CLu and CLc
u

are acyclic for every u ∈ A∗.

Claim 4.6. If CK and CL are acyclic then both CK∩L and CK∪L are also acyclic.

Proof of Claim 4.5. Indeed, for every u ∈ A∗, the canonical biautomaton CLu =
(CLu , A, ·, ◦, L, T ) of the language Lu has states of the form s−1Lut−1, where
s, t ∈ A∗. Notice that for each word w = b1b2 . . . b�, where b1, b2, . . . , b� ∈ A, left
derivatives of the language Lw = A∗b1A

∗b2A
∗ . . . A∗b�A

∗ are computed by the
following rules: b−1

1 Lw = Lw′ where w′ = b2 . . . b� and for a �= b1, a ∈ A, we have
a−1Lw = Lw. The same rules can be written for right derivatives and therefore
each s−1Lut−1 is of the form Lv, where v ∈ A∗ is a factor of u.

Let v, w ∈ A∗ and a ∈ A be such that Lw �= Lv ∈ CLu and Lw = Lv · a or
Lw = Lv◦a. Then |w| < |v| and we can deduce that the biautomaton CLu is acyclic.
If we consider a language Lc

u instead of Lu then the canonical biautomaton CLc
u

is
acyclic because it is, in fact, the canonical biautomaton CLu where just terminal
states are changed. �
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Proof of Claim 4.6. Now if K, L are languages such that CK and CL are acyclic
then one can consider the direct product of biautomata CK and CL which is acyclic.
In this structure we can choose, in the usual way, reachable states and also terminal
states TK∩L and TK∪L respectively, namely (p, q) ∈ TK∩L if and only if both p and
q are terminal states in the biautomata CK and CL and (p, q) ∈ TK∪L if and only
if at least one of the states p, q is terminal. In this way we obtain a certain acyclic
biautomaton which recognizes the language K ∩ L (and K ∪ L respectively). To
finish the proof, we can use Lemmas 3.8 and 4.3. �

Now we prove the difficult part of Theorem 1.1. The basic idea, namely reading
one word from left and the other from right, is inspired by the first author’s recent
combinatorial proof [2] of Simon’s result.

Lemma 4.7. Let L be a regular language such that the canonical biautomaton CL

of L is acyclic. Then L is a piecewise testable language.

Proof. With respect to Lemma 4.1, we need to find an appropriate index k such
that L is a union of some classes in the partition A∗/∼k. Such k will be 2 times
the size of the canonical biautomaton CL = (CL, A, ·, ◦, L, T ) and the proof will be
given by induction with respect to this k.

Claim 4.8. Let B = (B, A, ·, ◦, i, T ) be an arbitrary acyclic biautomaton such
that |B| = 	. For every u, v ∈ A∗ such that Sub2�(u) = Sub2�(v) and every q ∈ B,
we have q · u ∈ T if and only if q · v ∈ T .

Proof. For 	 = 1, the statement is trivial. Let 	 > 1 be arbitrary and assume that
the statement holds for all smaller numbers. Let q ∈ B be arbitrary and u, v ∈ A∗

be such that Sub2�(u) = Sub2�(v). We will assume that q · u ∈ T and q · v �∈ T
and we show that this assumption leads to a contradiction. Recall that q · v �∈ T is
equivalent to q ◦ v �∈ T . In the state q we read u from left and v from right and we
are interested in the position in the words, where we leave the state q. First assume
that q · u = q ∈ T , i.e. we do not leave the state q. Then Sub2�(u) = Sub2�(v)
implies c(u) = c(v) and we have q · v = q ∈ T – a contradiction. Thus q · u �= q
and in the same way we can show that q ◦ v �= q. Hence we really leave the state q
and there are u′, u′′ ∈ A∗, a ∈ A such that u = u′au′′, for every c ∈ c(u′) we have
q · c = q, and q · a �= q. In particular a �∈ c(u′). Similarly, let v′, v′′ ∈ A∗, b ∈ A be
such that v = v′bv′′, for every c ∈ c(v′′) we have q ◦ c = q, and q ◦ b �= q (possibly
a = b). Recall that we have c(u) = c(v) and we can look for the first occurrence of
a in the word v and the last occurrence of b in the word u. We distinguish three
cases depending on the relative positions of these occurrences of a and b in u. In
general, note that for x, y ∈ A, w ∈ A∗, we have xy ∈ Sub2(w) if and only if
the first occurrence of x in w is before the last occurrence of y in w. We will use
this property together with Sub2(u) = Sub2(v) which follows from the assumption
Sub2�(u) = Sub2�(v).
Case I. The first occurrence of a in u is before the last occurrence of b in u.
Since Sub2(u) = Sub2(v) the same is true for v and we can consider the
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Figure 2. States in the proof of Case I from Lemma 4.7.

following decompositions of u and v: u = u0au1bu2, v = v0av1bv2 where
u0 = u′, u1, u2, v0, v1, v2 = v′′ ∈ A∗ are such that a �∈ c(u0), a �∈ c(v0),
b �∈ c(u2), b �∈ c(v2). If we consider an arbitrary w ∈ Sub2�−1(u1bu2), then
aw ∈ Sub2�(u) = Sub2�(v) from which w ∈ Sub2�−1(v1bv2) follows. This means
Sub2�−1(u1bu2) ⊆ Sub2�−1(v1bv2) and the opposite inclusion can be proved in
the same way. Thus we have Sub2�−1(u1bu2) = Sub2�−1(v1bv2) and similarly
Sub2�−1(u0au1) = Sub2�−1(v0av1) and Sub2�−2(u1) = Sub2�−2(v1).

The following part of the proof is illustrated in Figure 2.
Notice that the depicted states are not necessarily pairwise different. But the

crucial property is that the state q is different from all other ones.
We denote qu = q · u0a �= q and we can consider the biautomaton consisting

of all states reachable from qu. This is an acyclic biautomaton with at most 	 − 1
states, because it is a subset of B and it does not contain the state q. By induction
assumption qu ·u1bu2 ∈ T if and only if qu ·v1bv2 ∈ T . The first condition is satisfied
because qu · u1bu2 = q · u0au1bu2 = q · u. Hence qu · v1bv2 = (qu · v1) · bv2 ∈ T and
also (qu ◦ bv2) · v1 = (qu · v1) ◦ bv2 ∈ T . We denote the state qu ◦ bv2 as p.

Analogously, we denote qv = q◦bv2 = (q◦v2)◦b �= q and we consider the acyclic
biautomaton consisting of all states reachable from qv. We have qv ◦v0av1 = q◦v �∈
T hence qv ◦u0au1 �∈ T follows from the induction assumption. Since we work with
the biautomaton we deduce that qv · u0au1 = (qv · u0a) · u1 �∈ T . Now we can see
that qv · u0a = (q ◦ bv2) · u0a = (q · u0a) ◦ bv2 = qu ◦ bv2 = p. We have observed
p · v1 ∈ T in the previous paragraph and p · u1 �∈ T here. It is clear that p �= q and
we can consider the biautomaton consisting of all states reachable from p, which
has at most 	 − 1 states. Since Sub2�−2(u1) = Sub2�−2(v1) we see that p · v1 ∈ T
and p · u1 �∈ T cannot hold simultaneously. We obtain a contradiction.

Case II. The first occurrence of a in u is also the last occurrence of b in u.
In other words, a = b and the first occurrence of a is the unique occurrence of
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this letter in u. Hence a ∈ c(u) = c(v), aa �∈ Sub2(u) = Sub2(v) and a has
the unique occurrence in v too. In the same manner as in Case I we can deduce
that Sub2�−1(u′) = Sub2�−1(v′) and Sub2�−1(u′′) = Sub2�−1(v′′). In particular
c(u′) = c(v′) and c(u′′) = c(v′′) which give q · v′ = q and q ◦ u′′ = q. Now
q · u = (q · u′a) · u′′ ∈ T implies (q · u′a) ◦ u′′ ∈ T , and thus (q · u′a) ◦ u′′ =
(q ◦ u′′) · u′a = q · u′a = q · a. In the same way q ◦ v = (q ◦ av′′) ◦ v′ �∈ T implies
(q ◦av′′) ·v′ �∈ T , and thus (q ◦av′′) ·v′ = (q ·v′)◦av′′ = q ◦av′′ = (q ◦v′′)◦a = q ◦a.
We get q ·a ∈ T and q◦a �∈ T which is not possible in biautomata – a contradiction.

Case III. The first occurrence of a in u is after the last occurrence of b in u.
This means that ab �∈ Sub2(u) = Sub2(v) and the first occurrence of a in v is after
the last occurrence of b in v. We can consider the following decompositions of u
and v: u = u0bu1au2, v = v0bv1av2 where u0, u1, u2, v0, v1, v2 ∈ A∗ are such that
u0bu1 = u′, v1av2 = v′′. Again we can deduce that Sub2�−1(u0) = Sub2�−1(v0) and
Sub2�−1(u2) = Sub2�−1(v2), in particular c(u0) = c(v0) and c(u2) = c(v2). Hence
for every c ∈ c(u′) = c(u0bu1) we have q · c = q, in particular q · b = q and q · c = q
for every c ∈ c(u0) = c(v0). Now we see that q◦v = q◦v0bv1av2 = (q◦v1av2)◦v0b =
q ◦ v0b �∈ T . Hence q ·v0b �∈ T , q ·v0b = q and we deduce q �∈ T . On the other hand,
for every c ∈ c(v′′) = c(v1av2) we have q◦c = q, in particular q◦a = q and q◦c = q
for every c ∈ c(v2) = c(u2). Now q · u = (q · u0bu1) · au2 = q · au2 ∈ T . Hence
q ◦ au2 ∈ T , q ◦ au2 = q. But this means q ∈ T which contradicts the previous
conclusion q �∈ T .

We have proved the claim which completes the proof of the lemma. �

Now Theorem 1.1 is a consequence of Lemmas 4.4 and 4.7.

4.2. Simon’s theorem as a consequence of Theorem 1.1

Recall Simon’s famous result giving the effective characterization of piecewise
testable languages.

Result 1 (Simon [9, 10]). Let L be a language over a finite alphabet A. Then L
is piecewise testable if and only if the syntactic monoid M(L) is J -trivial.

The statement consists of two implications where one of them is easy to prove.
Namely, one can easily show that for each word u ∈ A∗ the syntactic monoid of
the language Lu is J -trivial. Using standard algebraic considerations, this implies
that every piecewise testable language has a J -trivial syntactic monoid. Here we
want to show the difficult implication in Simon’s theorem as a consequence of
Theorem 1.1.

Lemma 4.9. Let L be a language over a finite alphabet A such that the syntactic
monoid M = M(L) is J -trivial. Then the canonical biautomaton CL of L is acyclic.
Therefore L is piecewise testable.
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Proof. Let L be a regular language and η its syntactic homomorphism onto M . We
consider the biautomaton Bη from Remark 3.10. We claim that the biautomaton
Bη is acyclic. Indeed, assume that G(Bη) contains a cycle (q0, q1, . . . , qn), where
qn = q0 �= q1, and letters a1, . . . , an ∈ A are such that for each i = 1, . . . , n
we have qi−1 · ai = qi or qi−1 ◦ ai = qi. Assume additionally that q1 = q0 · a1.
(The case q1 = q0 ◦ a1 can be treated dually). Then we have q0 = (p0, r0), where
p0, r0 ∈ M and q1 = (p0[a1], r0). Thus p0[a1] �= p0. Now qn = q0 implies that there
are u, v ∈ A∗ such that (q1 · u) ◦ v = q0. Hence p0[a1][u] = p0. We have found two
different elements p0[a1] and p0 which are J -related. This is a contradiction to the
assumption that M is J -trivial.

Finally, CL can be obtained as a quotient biautomaton of the biautomaton Bη

by Lemma 3.8. Hence CL is acyclic by Lemma 4.3. �

5. Prefix-suffix testable languages, proof

of Theorem 1.2

A language L ⊆ A∗ is prefix-suffix testable if it is a Boolean combination of the
languages of the form vA∗, A∗w where v, w ∈ A∗. Usually this terminology is used
for languages of non-empty words (the so-called +-languages) – see Section 5.3
in [7] and references given there. We have chosen to work with ∗-languages to
avoid several technical modifications in our theory of biautomata needed when
considering +-languages. We present a full proof of the following proposition since
we really need that result and it seems that the corresponding result in [7], namely
Proposition 5.17, is not completely correct. For example, the prefix-suffix testable
+-language L = (aA∗ ∩ A∗b) ∪ (bA∗ ∩ A∗a) over the alphabet A = {a, b} cannot
be written in the form mentioned in Proposition 5.17 of [7].

Proposition 5.1. A language L ⊆ A∗ is prefix-suffix testable if and only if it is
of the form

v1A
∗w1 ∪ · · · ∪ vpA

∗wp ∪ {u1, . . . , uq},
where p, q ≥ 0, v1, . . . vp, w1, . . . wp, u1, . . . , uq,∈ A∗.

Proof.
“⇒”: Let v ∈ A+. Then

(vA∗)c = v1A
∗ ∪ · · · ∪ vrA

∗ ∪ {u1, . . . , us}

where v1, . . . , vr are all words of the length |v| different from v and u1, . . . , us

are all words from A∗ which are shorter than v. Similarly, for A∗w, w ∈ A+. Also
(A∗)c = ∅ and so we do not need complements to express the considered languages.

Clearly, if K = vA∗ ∩ wA∗ �= ∅ then v is a prefix of w and K = wA∗ or w is
a prefix of v and K = vA∗. Similarly for A∗v ∩ A∗w. Further, for v, w ∈ A+, we
have

vA∗ ∩ A∗w = vA∗w ∪ {u1, . . . , us},
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where u1, . . . , us are all words of length less than |v|+ |w| with prefix v and suffix
w. Using both simple ideas from the above considerations, we get that

v1A
∗w1 ∩ v2A

∗w2 = v′A∗w′ ∪ {u′
1, . . . , u

′
t},

for appropriate v′, w′, u′
1, . . . , u

′
t or it is the empty set.

“⇐”: Clearly, for u ∈ A∗, we can write {u} = uA∗ ∩ (ua1A
∗)c ∩ · · · ∩ (uanA∗)c

where A = {a1, . . . , an}.
Finally, for v, w ∈ A∗, the equality vA∗w = (vA∗ ∩ A∗w) \ {u1, . . . , us} holds,

where u1, . . . , us are again all words of length less than |v|+ |w| with prefix v and
suffix w. �

Note that the expression from the last proposition is not uniquely determined.
The following result ensures that all states of the canonical biautomaton of a

prefix-suffix testable language are also prefix-suffix testable languages.

Lemma 5.2. The class of all prefix-suffix testable languages is closed under taking
derivatives.

Proof. Let u, v ∈ A∗ and consider L = a−1uA∗v. If u = a · u′ then L = u′A∗v. If
u is not the empty word λ and the first letter in u is different from a, then L = ∅.
Furthermore, if u = λ and v = av′ then L = A∗v ∪ {v′}, and if u = λ and v is
not of the form av′ then L = A∗v. We can establish similar equalities for right
derivatives. By Proposition 5.1 we get the statement. �

The following result is one of the implications in Theorem 1.2.

Lemma 5.3. Let L ⊆ A∗ be a prefix-suffix testable language. Then the canonical
biautomaton CL of L satisfies the condition (†).
Proof. We will work with expressions which are formal finite sums of finite words
and terms of the form vA∗w where v, w are words from A∗. For such an expression

E = v1A
∗w1 + · · · + vpA

∗wp + u1 + · · · + uq

where p, q ≥ 0, v1, . . . vp, w1, . . . wp, u1, . . . , uq ∈ A∗, we denote the corresponding
prefix-suffix testable language

v1A
∗w1 ∪ · · · ∪ vpA

∗wp ∪ {u1, . . . , uq}
by L(E). For the expression E we define 	(E) as the maximum of the lengths of
the words v1, . . . , vp. Similarly we define r(E) of the expression E as the maximum
of the lengths of the words w1, . . . , wp. Finally, we put s(E) = 	(E) + r(E).

Now, for a letter a ∈ A, we define an operation a−1 on the set of all considered
expressions given by the rules:

• for expressions E1, E2 we put a−1(E1 + E2) = a−1E1 + a−1E2;
• for u = au′ ∈ A∗ we put a−1u = u′;
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• for u ∈ A∗ which is not of the form au′, we put a−1u = ∅;
• for w ∈ A∗ we put a−1(A∗w) = A∗w + a−1w;
• for v, w ∈ A∗, v �= λ we put a−1(vA∗w) = (a−1v)A∗w.

Now by the equalities in the proof of Lemma 5.2, for every expression E, we have
L(a−1E) = a−1L(E). Moreover, 	(a−1E) ≤ 	(E) and the equality holds here if
and only if 	(E) = 0. On the other side, r(a−1E) = r(E). We can also define
u−1E inductively with respect to the length of a word u ∈ A∗ and observe that
L(u−1E) = u−1L(E), r(u−1E) = r(E), 	(u−1E) ≤ 	(E) and 	(u−1E) = 	(E) if
and only if 	(E) = 0. We can define Ea−1 and Eu−1 in the same way and we can
observe similar properties.

After the preliminary considerations above, now let L be a prefix-suffix testable
language. By the definition of the canonical biautomaton CL and since prefix-
suffix testable languages are closed under derivatives, every state q in CL is in
fact a prefix-suffix testable language K. Assume that there are words u, v ∈ A+

such that q · u = q ◦ v = q, i.e. u−1K = Kv−1 = K. Among all expressions E
with the property L(E) = K we choose some with minimal s(E). We claim that
s(E) = 0. Indeed, if 	(E) �= 0 then 	(u−1E) < 	(E) which is in contradiction
with the equality u−1K = K. Thus 	(E) = 0 and also r(E) = 0 by the dual
argument. Hence E is a finite sum of words or E is an expression of the form
A∗ + U , where U is a finite sum of words. In the first case, it is not possible to
have u−1K = K because these two finite languages have different lengths of the
longest words. In the second case, we have K = L(A∗ + U) = A∗ from which
K · a = a−1K = a−1A∗ = A∗ = K and similarly K ◦ a = Ka−1 = K follows. This
means that q = K is an absorbing state in the biautomaton CL. �

For considered languages, the strongly connected components of the correspond-
ing graphs G(CL) are of very special forms as stated below.

Lemma 5.4. Let L ⊆ A∗ be a language and let CL be its canonical biautomaton
satisfying the condition (†). Then each strongly connected component S of G(CL)
is of one of the following types:

1. a single vertex (no loops are allowed);
2. there are edges in S and all of them are left;
3. there are edges in S and all of them are right;
4. S consists of a single absorbing state.

In particular, for each q ∈ S and a ∈ A, the edge (q, q · a) runs outside of S in
cases (1) and (3), and the edge (q, q ◦ a) runs outside of S in cases (1) and (2).

Proof. First, we will prove the following consequence of (†):
∀ q ∈ CL, u, v ∈ A+, the fact (q · u) ◦ v = q implies that q is absorbing. (†′)
For this purpose choose q ∈ CL and u, v ∈ A+ such that (q · u) ◦ v = q. Let

qi = q · ui for each i ≥ 0. For i ≥ 1, we have

qi ◦ v = (q · ui) ◦ v = ((q · u) ◦ v) · ui−1 = q · ui−1 = qi−1.
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Since CL is finite there exist i < j such that qi = qj . Then we have qi · uj−i =
qj = qi and qi ◦ vj−i = qj ◦ vj−i = qi. By (†), the state qi is absorbing and since
qi = qi ◦ vi = q0 = q the state q is absorbing, which proves (†′).

Now having a scc S with at least 2 states and with both left and right edges we
can form a cycle (p0, . . . , pn) with both kinds of edges. We can transform this cycle
repeatedly in such a way that each part (pi, pi+1, pi+2), for i ∈ {0, . . . , n−2}, such
that pi ◦ b = pi+1, pi+1 · c = pi+2, b, c ∈ A, is replaced by (pi, pi · c, pi+2) – here
we use the condition from the definition of the biautomaton (p ◦ b) · c = (p · c) ◦ b.
This procedure constructs the words u, v ∈ A+ such that (p0 · u) ◦ v = p0. By (†′),
p0 is an absorbing state – a contradiction.

Finally a scc with a single vertex and both kinds of edges is absorbing
by (†). �

Recall the definition of the invariant m from Section 3.6.

Lemma 5.5. Let L ⊆ A∗ be a language and let CL be its canonical biautomaton
satisfying the condition (†). Then, for each u ∈ L, |u| ≥ m(CL) there are v, w ∈ A∗

such that u ∈ vA∗w ⊆ L and |v| + |w| ≤ m(CL).

Proof. Notice that each state of CL is of the form K = v−1Lw−1, v, w ∈ A∗, and
CK is a substructure of CL and it satisfies the condition (†) again.

The statement of our lemma can be obtained from the following claim
putting q = i.

Claim 5.6. For each q ∈ CL and u = a1 . . . a�, a1, . . . , a� ∈ A, 	 ≥ m(q) = k
such that q · u ∈ T there exists v, w ∈ A∗ such that u ∈ vA∗w ⊆ L (CL, q) and
|v| + |w| ≤ k.

Proof. We will use induction, with respect to k, and Lemma 5.4 which describes
the possible forms of scc’s of G(CL).

If q is in a scc of type (4), then q is absorbing and we have u ∈ A∗ = L (CL, q).
In particular, we can use this observation for k = 0, which starts our induction.

Induction step: Let k ≥ 1 and suppose the validity of our assertion for all states
p such that m(p) < k. Let u = a1 . . . a�, where a1, . . . , a� ∈ A, 	 ≥ k.

If q is in a scc of type (1) or (3) then q·a1 is not in the same scc as q by Lemma 5.4
and (q · a1) · a2 . . . a� ∈ T . Thus m(q · a1) < k and by the induction assumptions
there exist v, w ∈ A∗ with |v|+ |w| < k such that a2 . . . a� ∈ vA∗w ⊆ L (CL, q ·a1).
Then u ∈ a1vA∗w ⊆ L (CL, q).

Similarly, if q is in a scc of type (2) then q ◦ a� is not in the same scc as q by
Lemma 5.4 and (q ◦ a�) · a1 . . . a�−1 ∈ T . Thus m(q ◦ a�) < k and by the induction
assumptions there exist v, w ∈ A∗ with |v| + |w| < k such that a1 . . . a�−1 ∈
vA∗w ⊆ L (CL, q ◦ a�). Hence, u ∈ vA∗wa� ⊆ L (CL, q). �
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Proof of Theorem 1.2. “⇐”: Let U be the set of all words from L of length less
than m(CL). The language L can be written in the form of Proposition 5.1 where
{u1, . . . , uq} = U and the terms vA∗w are those from Lemma 5.5. Since there are
only finitely many possible pairs (v, w) such that |v|+ |w| ≤ m(CL), the statement
follows.

“⇒”: This implication is the content of Lemma 5.3. �

6. Conclusions

We have introduced the notion of biautomata; in particular we attach to each
regular language L its canonical biautomaton. Using graph properties of such struc-
tures we can decide a membership of L in certain prominent classes of languages,
namely piecewise testable languages and prefix-suffix testable ones. A future re-
search could concentrate to get similar characterizations for further significant
classes of regular languages. Other possibility is to consider “varieties” of biau-
tomata and relate them to classes of languages via an Eilenberg-type theorem.
Moreover, it could be interesting to consider a non-deterministic version of biau-
tomata.
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