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REGULARITY OF LANGUAGES DEFINED BY FORMAL
SERIES WITH ISOLATED CUT POINT ∗
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Abstract. Let Lϕ,λ = {ω ∈ Σ∗ | ϕ(ω) > λ} be the language recog-
nized by a formal series ϕ : Σ∗ → R with isolated cut point λ. We
provide new conditions that guarantee the regularity of the language
Lϕ,λ in the case that ϕ is rational or ϕ is a Hadamard quotient of
rational series. Moreover the decidability property of such conditions is
investigated.
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1. Introduction

In this paper, we investigate some problems concerning formal power series
ϕ : Σ∗ → R in noncommutative variables with coefficients in the field of real
numbers. Formal power series in noncommutative variables have a deep impact
on several areas of mathematics and computer science. Indeed, they provide a
powerful tool to describe the behavior of various models of acceptors of formal
languages such as, for instance, grammars [10], probabilistic automata [11], and
quantum automata [5] (see also [2, 19]).
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Given a number λ ∈ R and a series ϕ : Σ∗ → R, we can associate to ϕ and λ
the language Lϕ,λ = {ω ∈ Σ∗ | ϕ(ω) > λ}. The value λ is said to be isolated for
ϕ if infω∈Σ∗ |ϕ(ω) − λ| > 0.

In this theoretical frame, a classical line of investigation concerns the study of
the so-called regularity conditions, that is, conditions on ϕ and λ which guarantee
that Lϕ,λ is a regular language. It is worth mentioning that a celebrated theorem by
Rabin [18] shows the importance of the notion of isolated cut point as a regularity
condition for languages accepted by finite probabilistic automata.

In this paper the first result we prove concerns a regularity condition for the class
Rrat〈〈Σ∗〉〉 of rational power series. More precisely, we prove that, if ϕ ∈ Rrat〈〈Σ∗〉〉
is bounded and λ is isolated, then Lϕ,λ is a regular language.

We then investigate regularity conditions for the Hadamard quotient of series
of Rrat〈〈Σ∗〉〉. It is well known that the class of rational series is closed with
respect to the Hadamard product of series, while it is not closed with respect
to the Hadamard quotient. In the univariate case, a remarkable result is due to
Van Der Poorten [21]: if the Hadamard quotient of two rational functions is a
Taylor series with integer coefficients, then it is a rational function.

Another reason that makes the Hadamard quotient an interesting operation is
that the behavior defined by a two-way probabilistic automaton can be expressed
as the Hadamard quotient (generally non-rational) of two rational series [1].

The second result of this paper is the following. Let ϕ, ψ be two bounded rational
power series of Rrat〈〈Σ∗〉〉 and let ξ be the Hadamard quotient of ϕ and ψ. Under
the assumption that 0 is isolated for ψ and λ is isolated for ξ, we have that Lξ,λ is
regular. Moreover, we show by counterexamples that all hypotheses are necessary,
even in the univariate case. The proof of these results is based upon an argument
of Diophantine approximation.

Finally, we show that the boundedness problem for rational power series of
Rrat〈〈Σ∗〉〉 and the regularity problem for languages defined by rational power
series of Rrat〈〈Σ∗〉〉, with isolated cut point, are undecidable.

2. Preliminaries

Let R be the field of real numbers. For every r ∈ R, |r| indicates the absolute
value of r. We denote by Rn×m the set of n ×m matrices with real entries. For
every vector v = (v1, . . . , vn) ∈ R1×n, we denote by

‖v‖2 =
√
v2
1 + · · · + v2

n, ‖v‖∞ = max
1≤i≤n

|vi|,

the Euclidean norm and the maximum norm of v, respectively. Note that for every
v ∈ R1×n we have

‖v‖∞ ≤ ‖v‖2 ≤ n‖v‖∞. (2.1)
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For matrices A ∈ Rn×m and B ∈ Rp×q, their direct sum is the (n + p) × (m+ q)
matrix defined as

A⊕B =
(

A 0n×q
0p×m B

)
,

where 0h×k denotes the h × k zero matrix. With a slight abuse of notation, we
define the direct sum of two vectors π ∈ R1×n and ξ ∈ R1×m, as the 1 × (n+m)
vector π ⊕ ξ = (π1, . . . , πn, ξ1, . . . , ξm).

Given a function f : D → R, the set of accumulation points of f , denoted
Lim {f(x) | x ∈ D}, is the set:

{	 ∈ R | ∀ ε ∈ R ∃ xs ∈ D such that 0 < |f(xs) − 	| < ε}.

Given r ∈ R, the best integer approximation of r is q(r) = argminz∈Z|z − r| and
the quantization error is {r} = |r − q(r)|. Given two sequences f(n) and g(n), we
set f(n) ∼ g(n) iff limn→∞ f(n)/g(n) = 1. The following lemma is immediate.

Lemma 2.1. Let f(n) be a sequence satisfying |f(n)| ≤ 1
2 for every n. If limn→∞

| sin(πf(n))| = 0, then | sin(πf(n))| ∼ π|{f(n)}|.

Let Σ∗ be the free monoid generated by the finite alphabet Σ; we denote by
ε the empty word. Given a word ω ∈ Σ∗, we write |ω| for the length of ω. Given
an alphabet Σ, a word ω ∈ Σ∗ and a symbol σ ∈ Σ, we denote by #σ(ω) the
number of occurrences of the symbol σ in ω. Given an alphabet Γ ⊆ Σ, we denote
by PΓ (ω) the projection of ω on the alphabet Γ , i.e. for ω = σ1 · · ·σn it holds
PΓ (ω) = PΓ (σ1) · · ·PΓ (σn) and for each σ ∈ Γ it holds PΓ (σ) = σ, while for
σ ∈ Σ − Γ it holds PΓ (σ) = ε.

A formal power series (in noncommutative variables) with coefficients in
the field R is any function ϕ : Σ∗ → R, usually expressed by the formal sum
ϕ =

∑
ω∈Σ∗ ϕ(ω)ω. The class of all formal power series ϕ : Σ∗ → R is written as

R〈〈Σ∗〉〉. The support of ϕ is the language supp(ϕ) = {ω ∈ Σ∗ | ϕ(ω) = 0}. A
polynomial is a series with finite support, and the class of polynomials is denoted
by R〈Σ∗〉. For the sake of simplicity, for any a ∈ R, we write a for the polynomial
aε. A ring structure is defined on R〈〈Σ∗〉〉 by introducing the operations of sum
and Cauchy product:

Sum: (ϕ+ ψ)(ω) = ϕ(ω) + ψ(ω).
Cauchy product: (ϕ · ψ)(ω) =

∑
x,y∈Σ∗
xy=ω

ϕ(x)ψ(y).

A series ϕ is proper if ϕ(ε) = 0; in this case, the star operation can be defined as

ϕ∗ =
∑
i≥0

ϕi, where ϕ0 = 1 and ϕi = ϕ · ϕi−1, for i > 0.
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An important subclass of R〈〈Σ∗〉〉 is the class of rational series:

Definition 2.2. The class Rrat〈〈Σ∗〉〉 of rational power series is the smallest sub-
class of R〈〈Σ∗〉〉 containing R〈Σ∗〉 that is closed under the rational operations of
sum, Cauchy product and star of proper series.

A triple (ν, μ, η), with ν, η ∈ R1×m and, for every σ ∈ Σ, μ(σ) ∈ Rm×m is
a linear representation of dimension m of a series ϕ : Σ∗ → R, iff for any word
ω = σ1σ2 · · ·σn ∈ Σ∗ we get

ϕ(ω) = νμ(ω)ηT = ν

(
n∏
i=1

μ(σi)

)
ηT .

A series that admits a linear representation is called recognizable. In [20],
Schützenberger proved that a formal power series is rational iff it is recognizable.
This result can be seen as an extension of Kleene’s theorem.

One important application of rational formal power series is the description of
the behavior of one-way probabilistic and quantum finite state automata.

Example 2.3. A probabilistic automaton [17, 18] (1pfa, for short) on Σ with
m states is represented by A = (ν, μ, η), where ν is a 1 × m stochastic vector
(probability distribution of initial states), μ(σ) is an m × m stochastic matrix
(transition matrix), for every σ ∈ Σ, and η ∈ {0, 1}m is the characteristic vector
of final states; A is the linear representation of the formal series PA : Σ∗ → [0, 1],
where PA(ω) is the probability of accepting the word ω.

Given a formal power series ϕ and a real λ, the language Lϕ,λ defined by ϕ with
cut-point λ is written as Lϕ,λ = {ω ∈ Σ∗ | ϕ(ω) > λ}. The cut-point is said to be
isolated if there exists a positive δ such that |ϕ(ω) − λ| ≥ δ, for any ω ∈ Σ∗.

In [18], Rabin proved that the class of languages recognized by 1pfa’s with iso-
lated cut-point coincides with the class of regular languages. A quantum extension
of this result is presented in [8] for measure-once automata (MO-1qfa). For more
general quantum models, analogous results hold (see, e.g. [5]).

In both probabilistic and quantum interpretations of a formal power series ϕ,
the stochastic behavior of the automaton imposes the constraint Im (ϕ) ⊆ [0, 1]. In
analogy to this property, we introduce the more general notion of bounded series:
we call ϕ ∈ R〈〈Σ∗〉〉 a bounded series iff supω∈Σ∗ |ϕ(ω)| <∞. Moreover, if (π, μ, η)
is a linear representation of ϕ and it holds supω∈Σ∗ ‖πμ(ω)‖2 < ∞, we say that
(π, μ, η) is a bounded representation of ϕ.

The Hadamard product of two series ϕ, ψ ∈ R〈〈Σ∗〉〉 is defined as (ϕ� ψ)(ω) =
ϕ(ω) · ψ(ω). The Hadamard quotient ϕ

ψ is defined as ϕ
ψ (ω) = ϕ(ω)

ψ(ω) , whenever
supp(ψ) = Σ∗. It is well-known that the class Rrat〈〈Σ∗〉〉 is closed under Hadamard
product, but not under Hadamard quotient, even when Σ is a one-letter alphabet.
For the unary case, although, the following result has been proved [21]:

Theorem 2.4 (Pisot’s conjecture). Let
∑
n∈N

snz
n and

∑
n∈N

tnz
n be two ratio-

nal power series with coefficients in R. If every tn is different from 0 and sn

tn
∈ Z

for all n, then the power series
∑

n∈N

sn

tn
zn is rational.
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On a generic finite alphabet, Hadamard quotients of rational series describe
the behavior of particular classes of two-way probabilistic automata (2pfa’s) [1].
By allowing a two-way motion on the input head, Rabin’s theorem does not hold
anymore: in [13], Freivalds showed that the nonregular language {anbn | n ∈ N}
can be recognized by a 2pfa with isolated cut-point. Dwork and Stockmeyer [12]
completed this result showing that if a 2pfa recognizes a nonregular language with
isolated cut-point, then it requires time 2n

b

infinitely often, where n is the length
of the input and b is a positive constant. Moreover, this time bound cannot be
improved, as shown by Kaneps and Freivalds [15].

3. Bounded rational formal power series and isolated
cut-point

Fixing a formal power series ϕ ∈ R〈〈Σ∗〉〉 for a polynomial P ∈ R〈Σ∗〉, the
function ϕ(P ) =

∑
ω∈Σ∗ ϕ(ω)P (ω) is a linear form on R〈Σ∗〉. A reduced linear

representation of a rational series ϕ of R〈〈Σ∗〉〉 is a linear representation of ϕ with
minimal dimension among all its representations.

The following result was proved by Schützenberger in the more general case of
rational series over a commutative field (see also [2], Cor. 2.3).

Theorem 3.1 ([20]). If (ν, μ, η) is a reduced linear representation of dimension n
of a rational series ϕ of R〈〈Σ∗〉〉, then there exist polynomials of R〈Σ∗〉

P1, . . . , Pn, Q1, . . . , Qn,

such that, for every ω ∈ Σ∗ and, for all indexes i, j ∈ N, with 1 ≤ i, j ≤ n

μ(ω)ij = ϕ(PiωQj). (3.1)

This allows us to state our main result:

Theorem 3.2. For every reduced linear representation (ν, μ, η) of a rational series
ϕ ∈ Rrat〈〈Σ∗〉〉, it holds

(ν, μ, η) is bounded ⇔ ϕ is bounded.

Proof. (⇒) Since the linear representation is bounded, there exists a positive inte-
ger K such that ‖νμ(ω)‖2 ≤ K, for every word ω ∈ Σ∗. By applying the Schwarz
inequality, for every word ω ∈ Σ∗, one thus has

|ϕ(ω)| = |νμ(ω)ηT | ≤ ‖νμ(ω)‖2‖η‖2 ≤ K‖η‖2.

(⇐) Let (ν, μ, η) be a reduced linear representation of dimension n of a rational
series ϕ of R〈〈Σ∗〉〉 such that

|ϕ(ω)| ≤ K, (3.2)
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for a fixed positive constant K and for every ω ∈ Σ∗. By applying Theorem 3.1
to (ν, μ, η), there exist 2n polynomials of R〈Σ∗〉

P1, . . . , Pn, Q1, . . . , Qn,

such that, for every ω ∈ Σ∗ and, for every pair of indexes i, j ∈ N, with 1 ≤ i, j ≤ n,

μ(ω)ij = ϕ(PiωQj). (3.3)

For our convenience, let us denote the polynomial Pi (i = 1, . . . , n)

Pi =
αi∑
�=1

ci�ui�,

where αi ∈ N, ui� ∈ Σ∗ and ci� = Pi(ui�) denotes the coefficient associated with
ui� by Pi. Similarly, let us denote the polynomial Qj (j = 1, . . . , n)

Qj =
βj∑
m=1

djmvjm,

where βj ∈ N, vjm ∈ Σ∗ and djm = Qj(vjm) denotes the coefficient associated
with vjm by Qj. Therefore we have

PiωQj =
∑

1 ≤ � ≤ αi,
1 ≤ m ≤ βj

ci�djmui�ωvjm,

and hence, by the linearity of ϕ on R〈Σ∗〉, we get

ϕ(PiωQj) =
∑

1 ≤ � ≤ αi,
1 ≤ m ≤ βj

ci�djmϕ(ui�ωvjm). (3.4)

By (3.2)–(3.4), we get

|μ(ω)ij | = |ϕ(PiωQj)| ≤
∑

1 ≤ � ≤ αi,
1 ≤ m ≤ βj

| ci�||djm||ϕ(ui�ωvjm)| ≤ Cij ,

where Cij = Kαiβj max1≤�≤αi |ci�|max1≤m≤βj |djm|. This implies

|μ(ω)ij | ≤ C, (3.5)

where C = max1≤�,m≤nC�m,. From (2.1) and (3.5), one derives that

sup
ω∈Σ∗

‖νμ(ω)‖2 ≤ sup
ω∈Σ∗

(n‖νμ(ω)‖∞) = n sup
ω∈Σ∗

‖νμ(ω)‖∞ ≤ n2C‖ν‖∞.

The proof is thus complete. �
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The following result is shown in [5]:

Theorem 3.3. Let ϕ ∈ Rrat〈〈Σ∗〉〉 be a rational formal power series and let λ
be a real value isolated for ϕ. If ϕ has a bounded linear representation, then the
language Lϕ,λ is regular.

This, together with Theorem 3.2, directly implies

Theorem 3.4. Let ϕ ∈ Rrat〈〈Σ∗〉〉 be a bounded rational formal power series and
let λ be a real value isolated for ϕ. Then the language Lϕ,λ is regular.

4. Hadamard quotient of rational series and regular
languages

In the case of a Hadamard quotient of rational formal power series, we can-
not directly apply Theorem 3.4, since Rrat〈〈Σ∗〉〉 is not closed under Hadamard
quotient. Instead, it holds

Theorem 4.1. Let ϕ, ψ ∈ Rrat〈〈Σ∗〉〉 and consider the Hadamard quotient series
ξ = ϕ

ψ . If
(I) ξ is bounded;
(II) ψ is bounded;
(III) 0 is isolated for ψ,
then Lξ,λ is a regular language for every λ that is isolated for ξ.

Proof. The facts that ψ and ξ are bounded imply that also ϕ is bounded. Indeed,
if |ψ(ω)| ≤ M1 and

∣∣∣ϕ(ω)
ψ(ω)

∣∣∣ ≤ M2, then |ϕ(ω)| ≤ M2|ψ(ω)| ≤ M1M2. Since 0 is

isolated for ψ, there exists an ε > 0 such that (ψ(ω))2 ≥ ε, and since λ is isolated
for ξ, there exists a δ > 0 such that

∣∣∣ϕ(ω)
ψ(ω) − λ

∣∣∣ ≥ δ.
The language in which we are interested is

Lξ,λ =
{
ω ∈ Σ∗

∣∣∣∣ ϕ(ω)
ψ(ω)

> λ

}
=
{
ω ∈ Σ∗ ∣∣ ϕ(ω)ψ(ω) − λ(ψ(ω))2 > 0

}
.

It holds ∣∣∣∣ϕ(ω)
ψ(ω)

− λ

∣∣∣∣ ≥ δ ⇔ ∣∣ϕ(ω)ψ(ω) − λ(ψ(ω))2
∣∣ ≥ δ(ψ(ω))2

⇒ ∣∣ϕ(ω)ψ(ω) − λ(ψ(ω))2
∣∣ ≥ δε,

which proves that 0 is isolated for ϕ(ω)ψ(ω) − λ(ψ(ω))2. Moreover,

|ϕ(ω)ψ(ω) − λ(ψ(ω))2| ≤ |ϕ(ω)| · |ψ(ω)| + |λ| · (ψ(ω))2 ≤M2
1 (M2 + λ)

is bounded, so, by Theorem 3.4, Lξ,λ is a regular language. �



486 A. BERTONI ET AL.

In what follows, we will show that, if one of conditions (I)–(III) is dropped,
then Theorem 4.1 does not hold anymore, even in the unary case. Our first main
result is

Theorem 4.2. Let ϕ(σn) = n2 sin2(πnθ), where θ = 1+
√

5
2 . For every rational

ρ > π2

5 , there exists a rational λ ≥ ρ such that:

• Lϕ,ρ is not context-free;
• λ is isolated for ϕ and Lϕ,λ = Lϕ,ρ.

As a direct consequence of the previous result, we obtain

Theorem 4.3. If one of conditions (I)–(III) in Theorem 4.1 is dropped, then there
exists an isolated λ for ξ such that the language Lξ,λ is not context free.

Proof. In this proof, we will show three Hadamard quotients of formal power series
in Rrat〈〈{σ}∗〉〉, satisfying only two of the conditions in Theorem 4.1 and charac-
terizing, with an isolated cut point, the non-context-free language Lϕ,λ defined in
Theorem 4.2.

By dropping condition (I) we consider the power series ξ1 = ϕ1(σ
n)

ψ1(σn) , where
ϕ1(σn) = n2 sin2(πnθ) is rational and unbounded, while ψ1(σn) = 1 respects
conditions (II) and (III). Clearly, Lξ1,λ = {σn | ξ1(σn) > λ} = Lϕ,λ.

By dropping condition (II), we consider the series ξ2 = ϕ2
ψ2

, where ϕ2(σn) =
n2 sin2(πnθ)+1 and ψ2(σn) = n2 sin2(πnθ)+2, so that ψ2(σn) ≥ 2 and ξ2(σn) ≤ 1
for all n. By considering the function f(x) = x+1

x+2 , we can write ξ2(σn) = f(ξ1(σn)).
We are going to show that f(λ) is isolated for ξ2: indeed, since f is nondecreasing,
whenever ξ1(σn) ≥ λ + ε, for some 0 < ε ≤ λ, it holds ξ2(σn) ≥ f(λ + ε) =
f(λ) + ε

(λ+ε+2)(λ+2) . Symmetrically, whenever ξ1(σn) ≤ λ − ε, it holds ξ2(σn) ≤
f(λ− ε) = f(λ) − ε

(λ−ε+2)(λ+2) , so the claim is settled, and it holds

Lξ2,λ+1
λ+2

= {σn | ξ2(σn) > f(λ)} = {σn | ξ1(σn) > λ} = Lϕ,λ.

By dropping condition (III), we consider the series ξ3 = ϕ3
ψ3

, where ϕ3(σn) =
2−n(n2 sin2(πnθ) + 1) and ψ3(σn) = 2−n(n2 sin2(πnθ) + 2) are both bounded, but
ψ3 approaches zero as n grows. Clearly, ξ3 = ξ2, so f(λ) is isolated for ξ3 and

Lξ3,λ+1
λ+2

= {σn | ξ3(σn) > f(λ)} = Lξ2,f(λ) = Lϕ,λ. �

Now, we prove Theorem 4.2: let θ1 = 1+
√

5
2 and θ2 = 1−√

5
2 be the positive and

negative roots of the equation x2 − x − 1 = 0. Our aim is to show that the limit
points of the sequence

φ(n) = |n sin(πnθ1)| (4.1)

are of type |b2 − ab− a2| π√
5
, with a, b integers and b > a ≥ 0.

Lemma 4.4. If z is a limit point of φ then there exist integers b > a ≥ 0 such
that z = |b2−ab−a2|π√

5
.
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Proof. Let z ≥ 0 be a limit point of the sequence φ. There exists a subsequence
|nk sin(πnkθ1)| such that

lim
k→∞

|nk sin(πnkθ1)| = z. (4.2)

Since | sin(πnkθ1)| = | sin(π{nkθ1})|, it holds: limk→∞ |nk sin(π{nkθ1})| = z,
and this implies:

lim
k→∞

| sin(π{nkθ1})| = lim
k→∞

z

nk
= 0. (4.3)

Moreover, since {nkθ1} ≤ 1
2 , by Lemma 2.1 we have:

| sin(π{nkθ1})| ∼ π{nkθ1}. (4.4)

Equations (4.2)–(4.4) imply the following:

lim
k→∞

nk{nkθ1} =
z

π
, (4.5)

and
lim
k→∞

{nkθ1} = 0. (4.6)

By the definition of the quantization error, for every nk, there exists an integer
mk such that:

{nkθ1} = |mk − nkθ1|,
so that

lim
k→∞

∣∣∣∣mk

nk
− θ1

∣∣∣∣ = lim
k→∞

|mk − nkθ1|
nk

= lim
k→∞

{nkθ1}
nk

= 0,

and that implies:
mk

nk
∼ θ1. (4.7)

The numbers θ1 and θ2 satisfy the equality:∣∣∣∣mk

nk
− θ1

∣∣∣∣
∣∣∣∣mk

nk
− θ2

∣∣∣∣ =
|m2

k −mknk − n2
k|

n2
k

·

By the latter together with (4.5) and (4.7), we get:

lim
k→∞

|m2
k −mknk − n2

k| = lim
k→∞

nk|mk − nkθ1|
∣∣∣∣mk

nk
− θ2

∣∣∣∣
=
(

lim
k→∞

nk{nkθ1}
)(

lim
k→∞

∣∣∣∣mk

nk
− θ2

∣∣∣∣
)

=
z

π
|θ1 − θ2| =

z
√

5
π

·

Since |m2
k − mknk − n2

k| is a convergent sequence of integers, there exists an
integer c such that, for a sufficiently large k̄, it holds for every k ≥ k̄: |m2

k −
mknk − n2

k| = c. Since c = z
√

5
π , we have z = cπ√

5
.
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Moreover, since mk

nk
∼ θ1 > 1 we can assume k̄ big enough so that it holds

mk̄ > nk̄. By setting b = mk̄ and a = nk̄, we obtain: b > a ≥ 0 and z = |b2−ab−a2|π√
5

.
This concludes the proof. �

Lemma 4.5. Let a, b be integers such that b > a ≥ 0 and z = |b2−ab−a2|π√
5

. Then
z is a limit point of φ.

Proof. We consider the sequence Fk wich is the solution of the recurrence equation

uk+2 = uk+1 + uk, (4.8)

with the initial conditions F0 = a and F1 = b. Elementary computations show
that

Fk = α(θ1)k + β(θ2)k

where α = b−aθ2√
5

and β = aθ1−b√
5

. In particular, since |θ2| < 1, we have Fk ∼ αθk1 .

This yiels θ1Fk − Fk+1 = β(θ1 − θ2)θk2 = β
√

5θk2 ; since limk→∞ θk2 = 0, Fk+1 is
the best integer approximation of θ1Fk. Hence, for sufficiently large k, we get

{θ1Fk} = |β√5θk2 |.
As consequence:

Fk{θ1Fk} = Fk|β
√

5θk2 | ∼ |
√

5αβ(θ1θ2)k| =
|b2 − ab− a2|√

5
,

since θ1θ2 = −1 and αβ = −(b2−ab−a2)
5 . In conclusion, we have:

|Fk sin(πFkθ1)| = |Fk sin(π{θ1Fk})| ∼ Fkπ{θ1Fk} ∼ π|b2 − ab− a2|√
5

· (4.9)

�

As an immediate consequence of the previous two lemmas we get the following
characterization of the limit points of φ [9]:

Lemma 4.6.

lim{φ(n) | n ∈ N} =
{
z ∈ R

∣∣∣∣ ∃ a, b ∈ Z, b > a ≥ 0, z =
|b2 − ab− a2|π√

5

}
·

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. We recall that

ϕ(σn) = φ2(n) = n2 sin2(πnθ),
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therefore, by Lemma 4.6, the limit points of ϕ are of the form (b2−ab−a2)2π2

5 for
some integers b > a ≥ 0 and, in particular, π2

5 is a limit point. Since any unary
context-free language is also regular, our main task amounts to show that

Lcϕ,ρ = L = {σn | ϕ(σn) ≤ ρ}

is not regular. By letting Fk be the Fibonacci sequence, which can be obtained by
the recurrence equation (4.8) by setting a = 0 and b = 1, Equation (4.9) translates
into limk→∞ Fk(π{Fkθ}) = π√

5
, therefore

lim
k→∞

ϕ(Fk) = lim
k→∞

F 2
k sin2(Fkπθ) = lim

k→∞
F 2
k (π{Fkθ})2 =

π2

5
,

so there exist infinitely many values k such that aFk ∈ L, since we assumed ρ > π2

5 .
Suppose, by contradiction, that L is regular. Then, because of the Pumping

Lemma, there exist integers h > 0 and d > 0 such that aFh+γd ∈ L, for all γ ∈ N,
which translates into the following condition

(Fh + γd)2 · sin2 (π(Fh + γd)θ) ≤ ρ. (4.10)

The defining condition of L is sin2(πnθ) ≤ ρ
n2 and, thus, for γ → ∞ it holds

sin2 (π(Fh + γd)θ) ∼ ({πFhθ + γπdθ})2. However, since θ is irrational, the set
{{πFhθ + γπdθ} | γ ∈ N} is dense in [0, 1

2 ], so for every constant τ ∈ [0, 1
2 ] there

exists a subsequence γ1 < γ2 < . . . < γt < . . . such that

lim
t→∞ ({πFhθ + γtπdθ})2 = τ2,

which implies that (Fh + γtd)2 · sin2 (π(Fh + γtd)θ) diverges, against (4.10).
In order to prove the second statement of the theorem, it is sufficient to notice

that ρ is not a limit point of ϕ. Therefore, we can always find a rational value
λ ≥ ρ isolated for ϕ and close enough to ρ, so that it holds Lϕ,λ = Lϕ,ρ. ��

5. Decision problems on rational power series

In the previous sections we have analyzed the languages defined by formal
power series with isolated cut point and took into consideration some properties
of those series in order to guarantee the regularity of the associated language.
Now we investigate the decidability of these properties. In the literature there are
many undecidability results on formal power series and, in particular, on 1pfa’s. A
crucial problem on 1pfa’s is the isolation problem: given a 1pfa A and a cut point
λ, do there exist words whose acceptance probability is arbitrarily close to λ?
This problem has been shown to be undecidable even for values of λ in the interval
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(0, 1) [3, 4] (see [16] for a different proof). The result may be written in terms of
rational series as follows:

Lemma 5.1. [3, 4] Given a rational series ϕ ∈ Rrat〈〈Σ∗〉〉, the problem of deter-
mining whether 1

2 is isolated for ϕ is undecidable.

The problem remains undecidable for rational series with reduced representa-
tion of fixed dimension [6]. Notice that, however, if we restrict ourselves to series
where the matrices in the linear representation belong to a compact group (e.g.
unitary matrices), then the isolation problem becomes decidable, as shown in [7]
for quantum automata.

Another important decidability result on power series is stated in [19]:

Lemma 5.2. Given an alphabet Σ such that |Σ| ≥ 2 and a rational series with
integer coefficients ϕ ∈ Zrat〈〈Σ∗〉〉, it is undecidable whether there exists a word
ω ∈ Σ∗ such that ϕ(ω) = 0.

The first decision problem we approach concerns the regularity of the language
defined by a rational series with isolated cut point. Notice that, as stated in
Lemma 5.1, the isolation problem itself is undecidable, so the set of all the ra-
tional series with isolated cut point is non-recursive. However, we show that there
exists a recursive subclass of rational power series with isolated cut point such
that the regularity of the associated language is undecidable.

Theorem 5.3. There exists a recursive set I of rational series ϕ ∈ Qrat〈〈Σ∗〉〉
such that the value λ = 2

3 is isolated for every series ϕ ∈ I, and such that the
problem of deciding whether the language Lϕ,λ is regular is undecidable.

Proof. We first remark that Lemma 5.2 still holds in the case of alphabets with
only two symbols. Therefore, in the sequel, we restrict ourselves to consider a
rational series with integer coefficients ψ ∈ Zrat〈〈{a, b}∗〉〉 on the alphabet {a, b}.
Let us define a new rational series ϕ ∈ Qrat〈〈{a, b, c, d}∗〉〉 as follows:

ϕ(ω) = 2#c(ω)−#d(ω) + ψ2(P{a,b}(ω)),

where P{a,b}(ω) is the projection of ω on the alphabet {a, b}. Since ϕ is of the
form 2α + β, with α ∈ Z and β ∈ N, the value λ = 2

3 is isolated for ϕ. In order
to prove the undecidability of our problem, we are going to show that Lϕ,λ is
regular iff there exists no word x ∈ {a, b}∗ such that ψ(x) = 0. We first analyze
the case where there is no such word x and, since ψ2 only assumes values in N,
this implies that ψ2(x) ≥ 1 for all x ∈ {a, b}∗. Then, for all ω ∈ {a, b, c, d} it
holds ϕ(ω) = 2#c(ω)−#d(ω) + 1 ≥ 1 > λ, so the language Lϕ,λ = {a, b, c, d}∗
is regular. Instead, if there exists a word x̄ such that ψ(x̄) = 0, for each word
ω ∈ L = (c+ d)∗x̄ it holds ϕ(ω) = 2#c(ω)−#d(ω) + 0, and therefore

ϕ(ω) >
2
3

⇔ #c(ω) ≥ #d(ω),
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so the language Lϕ,λ ∩ L is not regular, and since L is regular, Lϕ,λ must be not
regular. �

The second decision problem we consider concerns one of the regularity condi-
tions we gave in Corollary 3.4:

Theorem 5.4. Given a rational formal power series ϕ ∈ Rrat〈〈Σ∗〉〉, the problem
of determining whether ϕ is bounded is undecidable.

Proof. Consider a rational series ζ ∈ Rrat〈〈Σ∗〉〉. Because of Schützenberger’s the-
orem and because of the closure properties of Rrat〈〈Σ∗〉〉, we can always define a
linear representation A = (ν, μ, η) such that φ(ω) = νμ(ω)ηT = 1 − (2ζ(ω) − 1)2.
Without loss of generality we can assume Σ = {a, b}, and it still holds, for
Lemma 5.1, that asking whether 1

2 is isolated for ζ is undecidable, so also the
problem of determining whether 1 is isolated for φ is undecidable. We want to find
a rational series which is bounded if and only if 1 is isolated for φ. By calling m the
dimension of A, we define a new linear representation Â = (ν̂, μ̂, η̂) of dimension
m+ 1 on the alphabet Σ̂ = {a, b, c, d} such that:

• ν̂ = e2 = (0, 1, 0, . . . , 0) ∈ R1×(m+1);
• η̂ = e1 = (1, 0, . . . , 0) ∈ R1×(m+1);
• μ̂(a) = (1) ⊕ μ(a);
• μ̂(b) = (1) ⊕ μ(b);
• μ̂(c) is the matrix where the only nonzero components are the first two rows
r1 = e1 and r2 = (1) ⊕ ν;

• μ̂(d) is the matrix where the only nonzero components are the first two columns
c1 = eT1 and c2 = ((0) ⊕ η)T .

For any x ∈ {a, b}∗ we have the following

μ̂(cxd) =

⎛
⎜⎝

1 01×m
1 μ

0(m−1)×(m+1)

⎞
⎟⎠
(

1 01×m

0m×1 μ(x)

)(
1 0

0m×1 η
0(m+1)×(m−1)

)

=

⎛
⎜⎝

1 0
1 φ(x) 02×(m−1)

0(m−1)×2 0(m−1)×(m−1)

⎞
⎟⎠ .

For simplicity, we can reduce the above matrix to the top left block containing
the only nonzero values when μ is applied to words in the language L = (c(a +
b)∗d)∗, so the coefficients of the series ψ(ω) = ν̂μ̂(ω)η̂T can be obtained as follows

ψ(cx1dcx2d · · · cxsd) = (0 1)
(

1 0
1 φ(x1)

)
· · ·
(

1 0
1 φ(xs)

)(
1
0

)

where x1, x2, . . . , xs ∈ {a, b}∗. The rational series we consider to prove the theorem
is ϕ = χL � ψ: we are going to show that ϕ is bounded iff 1 is isolated for φ. Let
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us start with the case where 1 is isolated for φ, which means there exists a value
ρ < 1 such that φ(x) ≤ ρ for all x ∈ {a, b}∗, so, for any ω = cx1dcx2d · · · cxsd ∈ L,
we have that

ψ(ω) ≤ (0 1)
(

1 0
1 ρ

)s(
1
0

)
=

s−1∑
j=0

ρj =
1 − ρs

1 − ρ
<

1
1 − ρ

is bounded. In the case 1 is not isolated for φ, there exists a sequence S = {xn | xn ∈
{a, b}∗, n ∈ N} such that limn→∞ φ(xn) = 1. We choose the sequence S such that
φ(xn) > 1 − 1

n , and we consider the sequence of words {(cxnd)n | xn ∈ S, n ∈ N}.
It holds

ψ((cxnd)n) =
n−1∑
j=0

φj(xn) =
1 − φn(xn)
1 − φ(xn)

·

Since 1−xn

1−x is a monotonic increasing function, we have

ψ((cxnd)n) ≥ 1 − (1 − 1
n

)n
1
n

∼ (1 − e−1)n

which diverges for n→ ∞, so the series ϕ = χL � ψ is not bounded. �

It is worth noticing that the boundedness problem is decidable in Zrat〈〈Σ∗〉〉.
Indeed in this case the question is equivalent to asking whether the series have a
finite image, which is a decidable problem [14].
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