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CUTWIDTH OF ITERATED CATERPILLARS ∗

Lan Lin
1,2

and Yixun Lin
3

Abstract. The cutwidth is an important graph-invariant in circuit
layout designs. The cutwidth of a graph G is the minimum value of the
maximum number of overlap edges when G is embedded into a line. A
caterpillar is a tree which yields a path when all its leaves are removed.
An iterated caterpillar is a tree which yields a caterpillar when all its
leaves are removed. In this paper we present an exact formula for the
cutwidth of the iterated caterpillars.

Mathematics Subject Classification. 05C78, 68M10, 68R10.

1. Introduction

The cutwidth problem for graphs, as well as a class of optimal labeling and
embedding problems, have significant applications in VLSI designs, network com-
munications and other areas. In particular, the cutwidth is related to a basic pa-
rameter, called congestion, in designing microchip circuits (see surveys [2,4]). Here,
a graph G may be thought of as a model of the wiring diagram of an electronic
circuit, with the vertices representing components and the edges representing wires
connecting them. When a circuit is laid out on a certain architecture (say a path),
the maximum number of overlap wires is the congestion, which is one of major pa-
rameters determining the electronic performance (the greater the congestion is, the
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(a) graph G with labels (b) embedding with cutwidth 3

Figure 1. An example of labeling and embedding.

more interference in the system). This motivates the cutwidth problem in graph
theory. In the following discussion, we follow the graph-theoretic terminology and
notation of [1].

The problem is formulated as follows. Given a simple graph G = (V (G), E(G))
on n vertices, a bijection f : V (G) → {1, 2, . . . , n} is called a labeling of G, which
can be thought of as an embedding of G into a path Pn of n vertices. For a given
labeling f of G, the cutwidth of f for G is

c(G, f) = max1≤i<n |{uv ∈ E(G) : f(u) ≤ i < f(v)}|,
which represents the maximum number of overlap edges (congestion) in the embed-
ding. The cutwidth of G is c(G) = min {c(G, f) : f is a labeling of G}. A labeling
f attaining this minimum is called an optimal labeling.

For example, a graph G is shown in Figure 1a, in which a labeling f is repre-
sented by the labels 1, 2, . . . , 8 besides the vertices. Then the embedding of G on
a path is depicted in Figure 1b, in which the maximum number of overlap edges
is c(G, f) = 3.

For a graph G, let S be a subset of V (G) and S̄ = V (G) \ S. The edge cut
E[S, S̄], i.e., the set of edges of G with one end in S and the other end in S̄, is
called the coboundary of S and denoted by ∂(S) (following the notation of [1]). For
a labeling f : V (G) → {1, 2, . . . , n} of G, let Sf

i = {v ∈ V (G) : f(v) ≤ i} denote
the set of vertices with the first i labels. Then the above definition is equivalent to

c(G, f) = max1≤i<n |∂(Sf
i )|.

In other words, let ui = f−1(i) for 1 ≤ i ≤ n. Then Sf
i = {u1, u2, . . . , ui} and

∂(Sf
i ) = {ujuk ∈ E(G) : j ≤ i < k}. The cutwidth c(G, f) is the maximum size of

these coboundaries ∂(Sf
i ). When there is no confusion, we may abbreviate Sf

i to
Si as f is known. In Figure 1, we have c(G, f) = |∂(Sf

6 )| = 3.
As immediate consequences of the definition, we have the following basic prop-

erties of the cutwidth (for the former see Lem. 3 of [3]).

Lemma 1.1. If G′ is a subdivision of G (that is, some edges are replaced by paths),
then c(G′) = c(G).



CUTWIDTH OF ITERATED CATERPILLARS 183

� � � �

� �

� � � �

� �

�

��
�

�

�
�

��

�
�
��

�
�
�

�
�

��

�
�
��

�
�
�

	
	
	

� � � � � � �

� � � � � � � � �

� � � � � � � � � � � � � �

� �


















�
�
�
��












�
�
�
��

�
��

�
��







�
��







�
��
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Figure 2. Caterpillar and iterated caterpillar.

Lemma 1.2. If G′ is a subgraph of G, then c(G′) ≤ c(G).

The cutwidth problem for a general graph is known to be NP-complete [6],
and it admits a polynomial algorithm for trees [15]. Much work has been done
for determining the exact value of the cutwidth of special classes of graphs (see,
e.g., [4, 7–10,12, 14]).

In this paper we study basic classes of trees, the caterpillars and iterated cater-
pillars, providing an exact formula to compute them. A caterpillar is a tree which
yields a path when all its leaves (vertices of degree one) are removed, and an iter-
ated caterpillar is a tree which yields a caterpillar when all its leaves are removed
(see Fig. 2). In the study of graceful labeling problem [5], the iterated caterpillars
are also called lobsters.

The paper is organized as follows. In Section 2, we describe a decomposition ap-
proach for caterpillars and iterated caterpillars. Sections 3 and 4 are devoted to the
main results on the iterated caterpillars, the lower bound and the exact formula.
A summary with connection to the bandwidth problem is given in Section 5.

2. Decomposition approach

Now we consider a caterpillar T , in which the path obtained from T by deleting
all leaves is called the backbone of T , denoted p(T ) = (w1, w2, . . . , wm). Let ni

be the number of neighbors of wi (i = 1, 2, . . . , m). Then T is formed by m stars
T1 = K1,n1 , T2 = K1,n2 , . . . , Tm = K1,nm with n = |V (T )| = n1 + n2 + . . . + nm −
m + 2. That is, T = ∪m

i=1Ti with the edge wiwi+1 belonging to both Ti and Ti+1

(1 ≤ i ≤ m − 1).
For a set A = {a1, a2, . . . , ak} of k distinct numbers with a1 < a2 < . . . < ak,

if k is odd, the number a�k/2� is called the median of A; if k is even, the numbers
ak/2 and ak/2+1 are called the medians of A.

A crucial fact is that the cutwidth problem of caterpillar T can be decomposed
into m subproblems for each star Ti. By the center of a star K1,n, we mean the
vertex adjacent to all other vertices. We begin with an obvious fact for stars as
follows (cf. [2] among others).

Proposition 2.1. Let T = K1,n be a star with center w. Then c(T ) = �n/2� and
f is an optimal labeling if and only if f(w) is a median of the label set {f(v) : v ∈
V (T )}.
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Proof. Suppose that f(w) = i + 1 for an arbitrary labeling f . Then |∂(Si)| = i
and |∂(Si+1)| = n− i. Thus c(T, f) ≥ max {i, n− i} ≥ �n/2�. On the other hand,
we define a labeling f∗ such that f∗(w) = 	n/2
 + 1 is a median of the label set.
Then c(T, f∗) = max {	n/2
, �n/2�} = �n/2� attaining the above lower bound.
Thus f∗ is an optimal labeling and c(T ) = c(T, f∗) = �n/2�.

Conversely, if f(w) = i + 1 is not a median of {f(v) : v ∈ V (T )} for some
labeling f , then c(T, f) ≥ max {i, n − i} > �n/2�, and so f is not optimal. This
completes the proof. �

We further obtain the following.

Proposition 2.2. Let T = ∪m
i=1Ti be a caterpillar with Ti = K1,ni (i =

1, 2, . . . , m). Then

c(T ) = max 1≤i≤m c(Ti) = max 1≤i≤m �ni/2�.
Proof. Since Ti is a subgraph of T , we have c(Ti) ≤ c(T ) by Lemma 1.2. Hence
we obtain the lower bound c(T ) ≥ max 1≤i≤m c(Ti). On the other hand, we
define a labeling f∗ as follows: The stars T1, T2, . . . , Tm are labeled in turn by
the numbers {1, 2, . . . , n} (where n = n1 + n2 + . . . nm − m + 2) such that
f∗(wi) is a median of {f∗(v) : v ∈ V (Ti)} (1 ≤ i ≤ m). Then this label-
ing f∗ restricted to each subtree Ti is an optimal labeling of Ti. Consequently,
c(T, f∗) = max 1≤i≤m c(Ti) = max 1≤i≤m�ni/2�, whence f∗ is an optimal label-
ing of T . The proof is complete. �

We proceed to consider an iterated caterpillar T . A hair is an edge incident with
a leaf. Meanwhile, the neighbor set of vertex v is denoted by N(v) = {u ∈ V (T ) :
uv ∈ E(T )}. Suppose that when deleting all leaves, T becomes a caterpillar T ′

with backbone (w1, w2, . . . , wm). Then we define p(T ) = (w1, w2, . . . , wm) to be
the backbone of iterated caterpillar T . Moreover, assume that no hair is directly
incident with wi for 1 ≤ i ≤ m, for otherwise we may subdivide this hair by
inserting a new vertex (see Lem. 1.1).

Now we decompose T into subtrees T1, T2, . . . , Tm as follows. For 1 ≤ i ≤ m, let
Li be the set of leaves of T which are adjacent to vertices in N(wi). Then Ti is a
tree induced by {wi} ∪N(wi) ∪ Li. Note that wiwi+1 is contained in both Ti and
Ti+1 (1 ≤ i ≤ m−1). These Ti’s, 1 ≤ i ≤ m, are called iterated stars, each of which
yields a star when the leaves are removed. Besides, each of Ti’s is called a section
of T . Among them, T1 and Tm are called end sections and Ti (1 < i < m) are
intermediate sections. This decomposition is shown in Figure 3. Here, we make a
convention that the edge wiwi+1 belongs to both Ti and Ti+1 (which is ambiguous
in Fig. 3).

By virtue of Lemma 1.2 we obtain the following lower bound.

Proposition 2.3. Let T = ∪m
i=1Ti be an iterated caterpillar with Ti being iterated

stars (i = 1, 2, . . . , m). Then

c(T ) ≥ max 1≤i≤m c(Ti).
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Figure 3. Decomposition of iterated caterpillar.

In addition to Lemma 1.1, another important feature of the cutwidth problem is
the following property due to Chung [3].

Lemma 2.4 ([3]). For the cutwidth problem of a tree T , there exists an optimal
labeling f satisfying the following properties:

(1) The leaf property: the vertices labeled by 1 and n are leaves of T .
(2) The monotone property: Let P = (v0, v1, . . . , vl) be the path connecting the

vertices labeled by 1 and n, where f(v0) = 1, f(vl) = n. Then f(v0) < f(v1) <
. . . < f(vl).

(3) The block property: Let F be the forest obtained from T by removing the edges
of P , where P = (v0, v1, . . . , vl) is defined in (2). Then any connected compo-
nent (maximal subtree) of F is labeled by a set of consecutive integers.

We apply this result to an iterated caterpillar T = ∪m
i=1Ti. Let V1 = V (T1) \

{w2}, Vm = V (Tm) \ {wm−1}, and Vi = V (Ti) \ {wi−1, wi+1} (1 < i < m). Then
(V1, V2, . . . , Vm) forms a partition of V (T ). We can further show that there exists
an optimal labeling f such that f−1(1) ∈ V1 and f−1(n) ∈ Vm, and so the path P
connecting these two vertices passes through w1, w2, . . . , wm. Therefore we have
the following consequence.

Corollary 2.5. For any iterated caterpillar T = ∪m
i=1Ti, there exists an optimal

labeling f satisfying the following properties:

(i) f(w1) < f(w2) < . . . < f(wm).
(ii) Each subset Vi (1 ≤ i ≤ m) is labeled by a set of consecutive integers.

For convenience, this labeling f is called a proper labeling. Henceforth, we can only
consider proper labelings for any iterated caterpillar T .

3. Lower bound

By Proposition 2.3, in order to derive lower bounds for the cutwidth of iterated
caterpillar T = ∪m

i=1Ti, we need only consider each section Ti for 1 ≤ i ≤ m.
We first consider an intermediate section Ti (1 < i < m). As mentioned before,

Ti is an iterated star induced by {wi} ∪ N(wi) ∪ Li, which contains two special
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Figure 4. An intermediate section T (4, 4, 3, 2).

leaves wi−1, wi+1 ∈ N(wi). We may call wi the root of Ti and wi−1, wi+1 the
backbone leaves.

In general, we define an iterated star TS = T (n1, n2, . . . , nk) with root w as
follows. Let T 1 = K1,n1 , T

2 = K1,n2, . . . , T
k = K1,nk

be k stars, where ni ≥ 2, i =
1, 2, . . . , k. Then we take one leaf from each star T j and merge these k vertices into
a single vertex w. In addition, w has two special neighbors w′ and w′′, which are
backbone leaves. Let uj denote the center of star T j and let vj,1, vj,2, . . . , vj,nj−1

denote the leaves (other than w) of star T j (j = 1, 2, . . . , k). An example is shown
in Figure 4.

By virtue of Corollary 2.5, for an iterated caterpillar T , we always assume that
the considered labeling f is proper. So we have f(w′) < f(w) < f(w′′) in TS .
Moreover, we assume that f(w′) and f(w′′) are given when discussing the labeling
f in T 1 ∪ T 2 ∪ . . . ∪ T k (as w′ and w′′ are roots of other iterated stars). To derive
the lower bound, we need the following sequencing property.

Proposition 3.1. Let (a1, a2, . . . , ak) and (b1, b2, . . . , bk) be two sequences of
real numbers where a1 ≤ a2 ≤ . . . ≤ ak. Then among all permutations π of
{1, 2, . . . , k}, the value max 1≤i≤k(ai + bπ(i)) is minimum if bπ(1) ≥ bπ(2) ≥ . . . ≥
bπ(k).

Proof. We define a function g(π) = max 1≤i≤k(ai + bπ(i)) on the set of all
permutations π. A permutation π is said to be optimal if g(π) is minimum. Now
we proceed to show that π is optimal if bπ(1) ≥ bπ(2) ≥ . . . ≥ bπ(k). Suppose that
there is an optimal permutation π such that bπ(i) < bπ(i+1) for some index i. Then
we can construct another permutation π′ by exchanging the positions π(i) and
π(i + 1), that is, π′(i) = π(i + 1), π′(i + 1) = π(i) and π′(j) = π(j) for j �= i, i + 1.
It follows from ai ≤ ai+1 and bπ(i) < bπ(i+1) that

max{ai + bπ(i), ai+1 + bπ(i+1)} = ai+1 + bπ(i+1) ≥ max{ai + bπ(i+1), ai+1 + bπ(i)}
= max{ai + bπ′(i), ai+1 + bπ′(i+1)}.
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Let R = max{aj + bπ(j) : 1 ≤ j ≤ k, j �= i, i + 1}. Then g(π) = max{R, ai +
bπ(i), ai+1 + bπ(i+1)} ≥ max{R, ai + bπ′(i), ai+1 + bπ′(i+1)} = g(π′). Thus π′ is also
optimal. If this π′ does not satisfy the condition bπ′(1) ≥ bπ′(2) ≥ . . . ≥ bπ′(k), then
we carry out the same transformation. In this way, we can eventually obtain an
optimal permutation satisfying the required condition. However, all permutations
satisfying this condition have the same value of g(π). Therefore, every permutation
satisfying bπ(1) ≥ bπ(2) ≥ . . . ≥ bπ(k) is optimal. This completes the proof. �

This sequencing property is similar to the well-known property for∑
1≤i≤k aibπ(i), only the addition “+” is replaced by “max” and the multiple “×”

is replaced by “+”.

Proposition 3.2. Suppose that an intermediate section Ti is an iterated star TS =
T (n1, n2, . . . , nk). Then for any proper labeling f , a lower bound of the cutwidth
is given by

c(TS , f) ≥ max 1≤j≤k (�j/2�+ �nj/2�),
where n1 ≥ n2 ≥ . . . ≥ nk.

Proof. Given an iterated star TS = T (n1, n2, . . . , nk), the edges are divided into
two parts: one part consists of those edges between w and u ∈ N(w) (including
ww′, ww′′); the other part consists of those hairs between uj and vj,l for 1 ≤ j ≤
k, 1 ≤ l ≤ nj − 1. Let f be a proper labeling of TS.

We consider a vertex uj with f(uj) < f(w) (1 ≤ j ≤ k). Suppose that Aj =
{uw ∈ E(TS) : u ∈ N(w), f(u) < f(uj)} (including w′w) and aj = |Aj | ≥ 1.
Meanwhile, suppose that Bj = {ujvj,l ∈ E(TS) : vj,l ∈ N(uj), f(vj,l) < f(uj)}.
Then Aj ∪Bj ⊆ ∂(Sf(uj)−1). Thus |∂(Sf(uj)−1)| ≥ |Aj |+ |Bj|. On the other hand,
let B̄j = {ujvj,l ∈ E(TS) : vj,l ∈ N(uj), f(vj,l) > f(uj)} ∪ {ujw}. Then Aj ∪ B̄j ⊆
∂(Sf(uj)). Thus |∂(Sf(uj))| ≥ |Aj | + |B̄j |. Combining these two inequalities and
noting Bj ∪ B̄j = E(K1,nj), we have

c(TS , f) ≥ max {|∂(Sf(uj)−1)|, |∂(Sf(uj))|}
≥ max {|Aj | + |Bj |, |Aj | + |B̄j |} ≥ aj + �nj/2�.

Symmetrically, for a vertex uj with f(uj) > f(w) (1 ≤ j ≤ k), suppose that
A′

j = {wu ∈ E(TS) : u ∈ N(w), f(u) > f(uj)} (including ww′′) and a′
j = |A′

j | ≥ 1.
Meanwhile, suppose that B′

j = {ujvj,l ∈ E(TS) : vj,l ∈ N(uj), f(vj,l) > f(uj)}.
Then A′

j ∪ B′
j ⊆ ∂(Sf(uj)). Thus |∂(Sf(uj))| ≥ |A′

j | + |B′
j |. On the other hand, let

B̄′
j = {ujvj,l ∈ E(TS) : vj,l ∈ N(uj), f(vj,l) < f(uj)} ∪ {ujw}. Then A′

j ∪ B̄′
j ⊆

∂(Sf(uj)−1). Thus |∂(Sf(uj)−1)| ≥ |A′
j | + |B̄′

j |. Combining these two inequalities
and noting B′

j ∪ B̄′
j = E(K1,nj ), we have

c(TS , f) ≥ max {|∂(Sf(uj)−1)|, |∂(Sf(uj))|}
≥ max {|A′

j | + |B′
j |, |A′

j | + |B̄′
j |} ≥ a′

j + �nj/2�.
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Figure 5. An end section T ′(4, 4, 3, 3).

To unify the notation, we also denote a′
j by aj depending on either f(uj) < f(w)

or f(uj) > f(w). In summary, we obtain the following lower bound:

c(TS, f) ≥ max 1≤j≤k (aj + �nj/2�).

In this context, for all vertices uj with 1 ≤ j ≤ k, the sequence of numbers aj is
(1, 1, 2, 2, . . . , k/2, k/2) (if k is even) or (1, 1, 2, 2, . . . , (k−1)/2, (k−1)/2, (k+1)/2)
(if k is odd). This sequence can be written as (�j/2� : j = 1, 2, . . . , k). Note that
this sequence aj = �j/2� is monotonically increasing. By Proposition 3.1, the
above lower bound attains its minimum value when bj = �nj/2� is monotonically
decreasing. As a result, we obtain

c(TS , f) ≥ max 1≤j≤k (�j/2�+ �nj/2�),

where n1 ≥ n2 ≥ . . . ≥ nk. Thus the assertion is proved. �

We next consider an end section T1. This subtree T1 is induced by {w1} ∪
N(w1) ∪ L1, which contains only one special leaf w2 ∈ N(w1), the backbone leaf.
As above, we can define an iterated star T ′

S = T ′(n1, n2, . . . , nk) = K1,n1 ∪K1,n2 ∪
. . .∪K1,nk

∪{w1w2} with the root w1 and only one backbone leaf w2. An example
is shown in Figure 5.

Proposition 3.3. Suppose that the end section T1 is an iterated star T ′
S =

T ′(n1, n2, . . . , nk). Then for any proper labeling f , a lower bound of the cutwidth
is given by

c(T ′
S , f) ≥ max 1≤j≤k (�(j − 1)/2�+ �nj/2�),

where n1 ≥ n2 ≥ . . . ≥ nk.

Proof. As in Proposition 3.2, the iterated star T ′
S = T ′(n1, n2, . . . , nk) has two

parts of edges: those edges between w1 and u ∈ N(w1) (including w1w2) and those
hairs between uj and vj,l (1 ≤ l ≤ nj − 1).
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For a vertex uj with f(uj) < f(w1), define Aj = {uw ∈ E(T ′
S) : u ∈

N(w1), f(u) < f(uj)} and aj = |Aj |. Note that there is no w′w1 with f(w′) <
f(w1) in Aj now. So it is possible that aj = 0 when f(uj) is minimal. By the same
argument as in Proposition 3.2, we can deduce the lower bound

c(T ′
S , f) ≥ aj + �nj/2�.

Symmetrically, for a vertex uj with f(uj) > f(w), we define A′
j = {wu ∈ E(TS) :

u ∈ N(w), f(u) > f(uj)} (including w1w2) and a′
j = |A′

j | ≥ 1. A similar argument
shows that

c(T ′
S , f) ≥ a′

j + �nj/2�.
By unifying a′

j and aj, we obtain:

c(T ′
S , f) ≥ max 1≤j≤k (aj + �nj/2�).

For all vertices uj with 1 ≤ j ≤ k, the sequence of numbers aj is
(0, 1, 1, 2, 2, . . . , (k− 1)/2, (k− 1)/2) (if k is odd) or (0, 1, 1, 2, 2, . . . , k/2− 1, k/2−
1, k/2) (if k is even). This sequence can be written as (�(j−1)/2� : j = 1, 2, . . . , k).
By Proposition 3.1, the above lower bound attains its minimum value when �nj/2�
is monotonically decreasing. Hence we obtain

c(T ′
S, f) ≥ max 1≤j≤k (�(j − 1)/2�+ �nj/2�),

where n1 ≥ n2 ≥ . . . ≥ nk, as required. �

Note that �(j − 1)/2� = 0 when j = 1. So the above inequality can be written
as

c(T ′
S , f) ≥ max {�n1/2�, max 2≤j≤k (�(j − 1)/2�+ �nj/2�)}.

For the end section Tm, we have the same formula as Proposition 3.3. In order to
get a uniform formula for intermediate sections and end sections (Propositions 3.2
and 3.3), we make a refinement of the decomposition of T as follows. If T1 is an
iterated star T ′

S = T ′(n1, n2, . . . , nk) with n1 ≥ n2 ≥ . . . ≥ nk, and u1 is the center
of star K1,n1 , which has as many hairs as possible, then we take w0 = u1 and set
T0 to be the star K1,n1 induced by {w0} ∪ N(w0). Thus T1 is decomposed into a
star T0 and an iterated star T ′

1 = T1 − u1. In this way, T0 becomes an end section
and T ′

1 becomes an intermediate section (we may denote it again by T1). In the
lower bound of Proposition 3.3, the first term �n1/2� is for the end section T0 and
the second term max 2≤j≤k (�(j − 1)/2�+ �nj/2�) is for the intermediate section
T ′

1, which agrees with the formula of Proposition 3.2.
Symmetrically, let wm+1 be a vertex in N(wm)\{wm−1} with the largest number

of hairs. Then we set Tm+1 to be a star induced by {wm+1}∪N(wm+1). Thus Tm

is decomposed into a star Tm+1 and an iterated star T ′
m = Tm − wm+1.

In summary, we decompose T into subtrees T0, T1, . . . , Tm, Tm+1. Meanwhile, we
may stipulate p(T ) = (w0, w1, w2, . . . , wm, wm+1) to be the backbone of T . In this
context, T0 and Tm+1 are stars, whose cutwidth values are given in Proposition 2.1;
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Figure 6. Further decomposition of iterated caterpillar.

and T1, . . . , Tm are iterated stars, whose lower bounds are given in Proposition 3.2.
This decomposition is shown in Figure 6.

For this decomposition, Proposition 2.3 can be written as:

c(T ) ≥ max 0≤i≤m+1 c(Ti).

4. The main result

With the foregoing preparation, we come to the formula of c(T ) for any iterated
caterpillars T .

Theorem 4.1. For any iterated caterpillar T = ∪m+1
i=0 Ti, where T0 and Tm+1 are

stars and Ti are iterated stars for i = 1, . . . , m, the cutwidth of T is

c(T ) = max 0≤i≤m+1 c(Ti),

where c(T0) = �|V (T0)|/2�, c(Tm+1) = �|V (Tm+1)|/2�, and for 1 ≤ i ≤ m, if Ti is
an iterated star T (n1, n2, . . . , nk), then

c(Ti) = max 1≤j≤k (�j/2� + �nj/2�),

where n1 ≥ n2 ≥ . . . ≥ nk.

Proof. The lower bound given in the right-hand side of the above formula is due to
Propositions 2.1, 2.3, and 3.2. We next show that this lower bound is attainable,
namely, there exists a labeling f∗ such that c(T, f∗) equals this lower bound,
and thus f∗ is an optimal labeling and the lower bound is the minimum value.
In fact, we can construct a labeling f∗ performing successively in the order of
T0, T1, T2, . . . , Tm, Tm+1 such that when f∗ is restricted in each subtree Ti, it is
optimal. In more detail, f∗ is constructed as follows.

Step 1. For T0 = K1,n0 with center w0, we label the vertices by N0 =
{1, 2, . . . , n0 + 1} such that f(w0) is a median of the label set N0. Set n̄ := n0 + 1
and i := 1.
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Figure 7. A tree with optimal labeling.

Step 2. For Ti which is an iterated star T (n1, n2, . . . , nk) (excluding the backbone
leaves wi−1, wi+1) with vertex number n(Ti) = n1 +n2 + . . .+nk +1, we label the
vertices by Ni = {n̄ + 1, n̄ + 2, . . . , n̄ + n(Ti)} as follows.

By the notation of the previous section, suppose that T 1 = K1,n1 , T
2 =

K1,n2 , . . . , T
k = K1,nk

are k stars with centers u1, u2, . . . , uk respectively, where
n1 ≥ n2 ≥ . . . ≥ nk. Moreover, let T̂ j = T j − {w} for j = 1, 2, . . . , k. We
arrange them in the order T̂ 1, T̂ 3, . . . , T̂ k−1, {w}, T̂ k, . . . , T̂ 4, T̂ 2 (if k is even) or
T̂ 1, T̂ 3, . . . , T̂ k, {w}, T̂ k−1, . . . , T̂ 4, T̂ 2 (if k is odd). Then we label them in turn by
the consecutive numbers of Ni and in each subtree T j we set f(uj) to be a median
of the label set {f(v) : v ∈ V (T j)}. Set n̄ := n̄ + n(Ti). If i = m, then go to the
next step, else set i := i + 1 and go back to the beginning of this step.

Step 3. For Tm+1 = K1,nm+1 with center wm+1, we label the vertices by Nm+1 =
{n̄ + 1, n̄ + 2, . . . , n̄ + nm+1 + 1} such that f(wm+1) is a median of the label set.
Finally return the labeling f∗.

By Proposition 2.1 for stars, we have c(T0, f
∗) = �n0/2�, c(Tm+1, f

∗) =
�nm+1/2�.

For 1 ≤ i ≤ m, suppose that Ti is an iterated star TS = T (n1, n2, . . . , nk)
and n1 ≥ n2 ≥ . . . ≥ nk. By viewing the proof of Proposition 3.2, we can
see that c(T j, f∗) = max {|∂(Sf∗(uj)−1)|, |∂(Sf∗(uj))|} = �j/2� + �nj/2�. Hence
c(TS , f∗) = max 1≤j≤k c(T j, f∗) = max 1≤j≤k (�j/2� + �nj/2�).

Therefore the labeling f∗ constructed by the above algorithm attains the lower
bound of max 0≤i≤m+1 c(Ti) and thus it is optimal. This completes the proof. �

An example of optimal labeling is shown in Figure 7. The lower bound is given
by an intermediate section T (4, 4, 3, 2), that is, c(TS , f) ≥ max 1≤j≤k (�j/2� +
�nj/2�) = max {1 + �4/2�, 1 + �4/2�, 2 + �3/2�, 2 + �2/2�} = 4. On the other
hand, the labeling in Figure 7 has maximum size of coboundary |∂(S10)| = 4,
attaining the above lower bound. Therefore, this is an optimal labeling.
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5. Concluding remarks

In the above discussion, we obtain the exact representations of cutwidth c(T )
for caterpillars and iterated caterpillars. Note that when all ni = 2, the formula of
Theorem 4.1 for iterated caterpillars reduces to the formula of Proposition 2.2 for
caterpillars. It is known that [15] presented an O(n log n) algorithm for computing
the cutwidth of general trees. If we use the formula of Theorem 4.1 to compute
the cutwidth of iterated caterpillars, the worst-case complexity is also O(n log n).
However, the computation based on the formula is more straightforward.

The diameter of a tree may be called the length of the tree. Relatively, the
width of a tree means the maximum distance from any leaf to the diameter path.
Now, we determine the cutwidth value for trees with width 1 and 2. More classes
of special graphs remain to be studied. For example, we may consider the doubly
iterated caterpillars, each of which is a tree which yields an iterated caterpillar
when all its leaves are removed, namely, the trees with width 3.

The cutwidth and the bandwidth of a graph are two closely related parame-
ters in the VLSI designs, which are to minimize the congestion and the dilation
respectively. In more detail, for a given labeling f of G, the bandwidth of f for G is

B(G, f) = max {|f(u) − f(v)| : uv ∈ E(G)},

which represents the maximum length of edges (dilation) in the embedding. The
bandwidth of G is B(G) = min {B(G, f) : f is a labeling of G}.

The bandwidth problem for caterpillars is solved by Syslo and Zak [13]. Their
result is as follows. Let T be a caterpillar with backbone p(T ) = (w1, w2, . . . , wm).
Denote by Tij the subtree of T induced by wi, wi+1, . . . , wj−1, wj and all their

neighbors. Then the bandwidth is B(T ) = maxi≤j

⌈ |V (Tij)|−1
j−i+2

⌉
. Moreover, a tree

is called subdivided caterpillar if it is obtained from a caterpillar by subdividing the
edges. Here, a subdivided edge is called a hair of length k if the edge is replaced by
a path of length k. Surprisingly, Monien [11] proves that the bandwidth problem
for subdivided caterpillars with hair length 3 is NP-complete. Fortunately, the
cutwidth problem for subdivided caterpillars is easier. In fact, by Lemma 1.1, if
T ′ is a subdivided caterpillar obtained from a caterpillar T , then c(T ′) = c(T ). So
the cutwidth problem for subdivided caterpillars is as easy as that for caterpillars,
which is polynomially solvable (as seen in Prop. 2.2).

With respect to the relation of cutwidth and bandwidth, it can be seen that
c(T ) ≤ B(T ) if T is a star, caterpillar, or iterated caterpillar. The result for
complete binary trees in [2, 7] also supports this inequality. So, it is interesting to
characterize the graphs (or trees) G with c(G) ≤ B(G) or c(G) ≥ B(G).
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